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Abstract 

 

Objective: 

To develop and validate a machine learning (ML) approach for automatic three-dimensional (3D) 

histopathological grading of osteochondral samples imaged with contrast-enhanced micro-computed 

tomography (CEµCT). 

Design: 

Osteochondral cores from 24 total knee arthroplasty patients and 2 asymptomatic cadavers (n = 34, 

Ø = 2 mm; n = 45, Ø = 4 mm) were imaged using CEμCT with phosphotungstic acid -staining. 

Volumes-of-interest (VOI) in surface (SZ), deep (DZ) and calcified (CZ) zones were extracted depth-

wise and subjected to dimensionally reduced Local Binary Pattern -textural feature analysis. 

Regularized Ridge and Logistic regression (LR) models were trained zone-wise against the manually 

assessed semi-quantitative histopathological CEμCT grades (Ø = 2 mm samples). Models were 

validated using nested leave-one-out cross-validation and an independent test set (Ø = 4 mm 

samples). The performance was assessed using Spearman’s correlation, Average Precision (AP) and 

Area under the Receiver Operating Characteristic Curve (AUC). 

Results: 

Highest performance on cross-validation was observed for SZ, both on Ridge regression (ρ = 0.68, p 

< 0.0001) and LR (AP = 0.89, AUC = 0.92). The test set evaluations yielded decreased Spearman’s 

correlations on all zones. For LR, performance was almost similar in SZ (AP = 0.89, AUC = 0.86), 

decreased in CZ (AP = 0.71→0.62, AUC = 0.77→0.63) and increased in DZ (AP = 0.50→0.83, AUC 

= 0.72→0.72). 

Conclusion: 

We showed that the ML-based automatic 3D histopathological grading of osteochondral samples is 

feasible from CEµCT. The developed method can be directly applied by OA researchers since the 

grading software and all source codes are publicly available. 

 

Keywords: osteoarthritis, histopathological grading, contrast-enhanced micro-computed 

tomography, machine learning, cartilage, textural analysis   
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Introduction 

Conventional microscopic histopathological grading of osteochondral tissue is the gold standard for 

assessment of osteoarthritis (OA) severity ex vivo. The most commonly used OA grading methods 

are OARSI1 and Mankin2 scoring systems3. Mankin scoring system was developed based on late-

stage OA samples, having limitations for assessment of early OA4 and disease extent5. Consequently, 

the OARSI grading system was introduced later to address these issues, offering more sensitivity to 

the mild and moderate progressive changes in articular cartilage, as well as functional information on 

cartilage properties6. Generally, histopathological grading methods sensitive to early changes are 

highly valuable for drug development and basic OA research7. Furthermore, sensitive grading 

methods might potentially be utilized in developing biomarkers, which are essential when developing 

prevention of the late-stage disease or non-surgical disease-modifying treatments8,9.  

The conventional histopathological methods are complex, destructive and time consuming4, 

and also unable to capture all of the OA-induced changes within the full sample volume. Recently, 

methods combining multiple thin sections into 3D volume through image registration have been 

proposed10,11. However, such approaches can only avert partly the problem of two-dimensionality 

with the expense of a more laborious protocol. 

Multiple 3D histopathological grading methods for different tissues have been proposed in 

the literature, based on magnetic resonance imaging (MRI)12-15, optical imaging16, ultrasound17, and 

atomic force microscopy18. 3D grading methods could possibly serve as a reference for clinical 3D 

modalities, as well as higher resolution 3D techniques. Contrast-enhanced micro-computed 

tomography (CEµCT) has shown potential in fast quantitation of osteochondral features while 

preserving the sample and reducing user bias19. We recently introduced a protocol for contrast-

enhanced micro-computed tomography (CEµCT) using phosphotungstic acid (PTA) as a collagen-

specific contrast agent20,21, and consequently, developed a 3D OA grading system to assess each 

articular cartilage (AC) zone separately22. However, the current 3D µCT grading system still requires 

manual assessment, thus, having a risk for user-dependent bias. The automation of this process could 

provide more objective evaluations. 

Recently, methods for the quantitative 3D analysis of AC surface23,24, calcified cartilage25 and 

full cartilage tissue19 degeneration, as well as chondrocyte organization26,27 with CEµCT, have been 

reported. However, most of the current methods are either limited to a single osteochondral zone23-25 

or not validated via independent testing19. The current implementations could be improved by 

developing more generalizable methods applicable to analyze multiple different osteochondral zones 

while utilizing more advanced validation techniques that show their feasibility on unseen data.  

The development of machine learning techniques has enabled a data-driven approach in 

pattern recognition and decision making without the need for explicit programming. Machine 

learning has been applied in clinical OA research in several domains, such as the prediction of OA 

severity28-31 and progression15,32,33 using X-ray radiographs28,29,31,32 or MRI analysis15,30,33. However, 

little attention has been paid to machine learning in pre-clinical OA research26,34,35. 

In this study, we aim to automate the recently proposed histopathological grading22 of CEµCT 

imaged osteochondral samples using Machine Learning. The feasibility of performing the automatic 
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grading in different cartilage zones, and the robustness of the developed models to a sample 

acquisition protocol change, are assessed with an independent test set. 

 

Materials and methods 

Sample preparation 

Osteochondral cores were harvested from tibial plateaus and femoral weight-bearing areas of human 

knee joints. Cores were extracted from 24 total knee arthroplasty (TKA) patients and 2 asymptomatic 

cadavers. Samples were split into two datasets based on the core diameter: 

• Cross-validation set; 19 patients, n = 34, Ø = 2 mm, ethical approval PPSHP 78/2013, Ethical 

committee of Northern Ostrobothnia’s Hospital District 

• Test set; 7 patients, n = 45, Ø = 4 mm, ethics approval PPSHP 78/2013; PSSHP 58/2013 & 

134/2015, Research Ethics Committee of the Northern Savo Hospital District  

 For these datasets, samples that did not contain either the cartilage or bone were excluded (n 

= 11). Detailed sample and patient distributions are given in Supplementary Table 1. After the core 

extraction, all the samples were kept frozen at -80°C. Before the imaging, the samples were thawed 

and then fixed in 10% neutral-buffered formalin for 5 days. Fixation was followed by a minimum of 

8h wash in 70% ethanol and minimum 48h immersion in 70% ethanol, 1% w/v PTA solution20,21. To 

prevent sample drying during µCT imaging, each sample was wrapped in Parafilm (Parafilm M, 

Bemis Company Inc, Neenah, WI, USA) and orthodontic wax (Orthodontic Wax, Ortomat Hepola, 

Turku, Finland). 

 S = Surface zone, D = Deep zone, C = Calcified zone 
  

Table 1. Distribution of µCT grades assessed from the reconstructions (used as ground truth). The 

cross-validation set contained only a small number of samples from grade 3 and a reduced number 

of healthy samples, while almost no healthy samples were found in the test set. Otherwise, samples 

were distributed relatively evenly. 

Dataset Zone Grade 0 Grade 1 Grade 2 Grade 3 

 S 7 11 13 3 

Cross-validation  D 8 16 8 2 

 C 8 16 7 3 

 S 2 19 9 14 

Test  D 0 16 15 13 

 C 0 24 11 9 
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Imaging 

The imaging was conducted right after the PTA immersion was completed.  Samples were imaged 

using a desktop µCT setup (Skyscan 1272; Bruker microCT, Kontich, Belgium; Scanning parameters: 

45 kV, 222 μA, 3.2 μm voxel side length, 3050 ms, 2 frames/projection, 1200 projections, additional 

0.25 mm aluminum filter). 

 During the imaging of the test set, we used an improved version of the data acquisition 

protocol by checking the sample voids – areas of deep cartilage with no PTA accumulation 

(supplementary video 2 in Nieminen et al.20). We observed that the voids appeared due to the 

insufficient diffusion time, especially in samples with very thick AC layer. In the new protocol, upon 

detection of a void in the µCT scan, the sample was re-immersed in PTA to allow full diffusion to 

deep AC.  

  

 

 

Figure 1. The workflow of the analysis methods used for CEµCT imaged samples. SZ = surface 

zone, DZ = deep zone, CZ = calcified zone. 
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3D histopathological grading 

We used reconstructed data to determine the semi-quantitative 3D histopathological grades for each 

sample, corresponding to the analyzed zones22. J. Leino conducted the grading according to the 

previously published grading system22. In this study we used the following grades: 

• Surface continuity: Smooth and continuous = 0; Slightly discontinuous = 1; Moderately 

discontinuous = 2; Severely discontinuous = 3, 

• Deep cartilage (zone 3, DZ) extracellular matrix (ECM) disorganization: Normal = 0; Slightly 

disorganized = 1; Moderately disorganized = 2; Severely disorganized = 3 

• Calcified cartilage (zone 4, CZ) ECM disorganization: Normal = 0; Slightly disorganized = 

1; Moderately disorganized = 2; Severely disorganized = 3 

 Grade distribution is presented in Table 1 and graphically in Supplementary Figure 1. Besides 

the multiclass grades, we also used dichotomized grades and split them into intact/mild VOI 

degeneration and moderate/severe VOI degeneration groups (Grades 0 and 1 were grouped against 2 

and 3). 

Basic data pre-processing 

A python ad hoc software was developed to preprocess the image stacks and train the regression and 

classification models. The workflow of this process is illustrated in Figure 1.  The reconstructed 

samples were loaded and oriented using the following optimization algorithm. Here, the dice score 

was calculated against the projection of the sample onto an XY plane and a circle fitted to the 

projection, aiming for maximal dice score in the optimization. The center of the sample in the XY 

plane was detected by finding the center of mass of the image stack summed along Z-axis (Z – 

sample’s depth dimension). Edges of the sample were cropped using detected center and pre-defined 

VOI size (1300µm‧1300µm‧Z for Ø = 2 mm, 2600µm‧2600µm‧Z for Ø = 4 mm). Orientation and 

edge cropping processes are further illustrated in Supplementary Figure 2. 

Calcified cartilage segmentation and VOI extraction 

After cropping the sample edges, the calcified cartilage interface (tidemark) was segmented. For the 

Ø = 2mm samples (cross-validation set), we used the method and the pre-trained model from36 that 

allowed us to segment the calcified cartilage interface and bone automatically using U-Net – Deep 

Convolutional Neural Network37 in a slice-by-slice manner. The U-Net approach was used to consider 

the existing voids in the Cross-validation set during segmentation. 

 For the Ø = 4mm samples (test set), we used a different approach since the trained CNN model 

did not generalize well to a different acquisition protocol that was used for the test set data acquisition 

(see Supplementary Figure 3). However, the reconstructed images in the test set did not include voids 

and there was always a strong gradient visible at the tidemark (Figure 2a). We performed a 

segmentation using k-means clustering with 3 clusters. Cluster with the highest grayscale centroid 

belonged to the deep cartilage due to the high PTA accumulation. The area below this cluster was 

labeled as the calcified zone. This segmentation was performed in a slice-wise manner on XZ and YZ 

planes. 
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Once the calcified tissue mask was acquired, the average depth of AC was calculated using 

the mask and the surface coordinates of the samples. The depth for DZ was set as 60% of AC depth 

to ensure that the full zone was included also on delaminated samples. The lower limit for DZ was 

set to 30µm above the segmentation mask to ensure that the interface and calcified tissues were not 

included in DZ. The surface was detected using the Otsu threshold, and surface zone (SZ) was set 

extending 160µm below (50 slices). CZ was set as 160µm thick volume immediately below DZ. Here, 

we used small zone thickness values to focus on the detailed surface features and account for samples 

with thin CZ. Extracted volumes (Figures 2 and 3) were collapsed into two-dimensional (2D) texture 

images summing their mean and the standard deviation depth-wise.  

 Finally, all the Ø = 4mm samples included in the test set were split into nine smaller sub-

images (with dimensions half to the original image) to increase prediction reliability. This was also 

done to make sure that the textural features of the large image have similar relative size and impact 

on the resulting feature descriptor used to predict the 3D grades of the sample, compared to the 

features trained on cross-validation. 

 

a) 

 

b) 

 

c) 

 

d) 

 

Figure 2. a) Oriented and edge-cropped VOI from a healthy / mildly degenerated osteochondral sample in 

the test set (harvested from an asymptomatic cadaver), b) Sub-VOI from the cartilage surface, c) deep 

cartilage, and d) calcified tissue. A smooth and continuous surface is visible. Deep and calcified ECM are 

well organized. 

  

a) 

 

b) 

 

c) 

 

d) 

 

Figure 3. a) Oriented and edge-cropped VOI from a degenerated osteochondral sample in the cross-

validation set (harvested from a TKA patient), b) Sub-VOI from the cartilage surface, c) deep cartilage, 

and d) calcified tissue. Surface discontinuities, as well as deep and calcified ECM disorganization, are 

clearly visible. Vascular infiltration and surface discontinuities are shown with a red arrow. 
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Feature extraction 

Prior to the feature extraction, possible misalignment artifacts appeared during preprocessing were 

automatically cropped out. In the algorithm, possible defects on the image corners were detected 

using adaptive thresholding and cropped. Subsequently, we performed a local normalization by 

subtracting from each pixel of its neighborhood’s weighted intensity. Here, we used a gaussian kernel 

for intensity weighing. The kernel parameters were optimized independently for each sample zone 

(Supplementary Table 2). 

To extract the features related to cartilage degeneration, Median Robust Extended Local 

Binary Patterns (MRELBP) were calculated according to Liu et al38. Thirty-two features were 

extracted using rotation-invariant uniform mapping (2 from the center image, 10 from small, large 

and radial LBP images each). This histogram was eventually normalized to have the total sum of 1 

(division by a sum of all elements). Features that did not have any occurrences were excluded 

resulting in 28 features. Subsequently, we mean-centered the data. 

 After the data centering, a principal component analysis (PCA) based whitening was used, 

and consequently, the dimensionality of the extracted feature vectors was also reduced. Here, 90% of 

the explained variance was set as a threshold for finding the optimal number of principal components. 

Eventually, three components were automatically selected for all the cartilage zones.  

Automatic grading 

After the PCA, we used the obtained features to train two regression models on cross-validation. In 

particular, we used leave-one-patient-out (LOPO) cross-validation, using samples from each 

individual patient as a validation set, against a model trained on the rest of the patients in the dataset. 

The cross-validation set had two samples per patient (Supplementary Table 1). Firstly, a Ridge 

regression model was trained against the ground truth µCT grades. Here, we used L2 regularization 

with a coefficient of 0.1. Secondly, a Logistic regression model (also with L2 regularization) was 

trained to assess the sample’s degeneration in a binary manner.  

For the test set images, the developed models were evaluated for all the nine sub-stacks 

separately and the average of their predictions was finally used. The models trained with the best 

hyperparameters from the cross-validation set were selected. To also estimate the validity of our 

texture-based 2D approach on the test set, separate models were subsequently trained using LOPO 

cross-validation (Replication experiment, see the results).  

Parameter optimization 

To tune the hyperparameters for MRELBP and grayscale normalization, we used the Bayesian 

hyperparameter optimization algorithm from Hyperopt package39,40. To avoid overfitting, we 

performed a “nested leave-one-out” cross-validation (Figure 4). In particular, during the leave-one-

out, we used a hyperparameter search on the N-1 (33 out of 34) samples using another, nested leave-

one-out cross-validation. A regression model was trained for each optimization batch of 33 samples. 

Optimization was conducted on the cross-validation set evaluating a maximum of 100 parameter sets 

per iteration. The algorithm converged to the same solution on most of the iterations (30/34 for SZ, 
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34/34 for DZ and 18/34 for CZ) and we used the most frequent solution as the hyperparameter 

selection for each zone. Optimized sets of parameters are listed in supplementary table 1. 

 Statistical analyses 

Predictions of the Ridge regression models were assessed using the mean squared error (MSE) and 

Spearman’s correlation analysis. For the Logistic regression models, receiver operating characteristic 

(ROC) curves and precision-recall curves (PRC) were calculated. We evaluated the area under the 

ROC curve (AUC) and the average precision (AP) of PRC. The 95% confidence intervals were 

estimated via stratified bootstrapping with 2000 iterations. To further analyze the performance of the 

binary classification models, we calculated the precision, recall and F1 scores under the threshold of 

0.5.  

 

Figure 4. Flowchart describing the nested cross-validation method used in the parameter optimization. 

First, LOO is performed resulting in n - 1 samples in the optimizations. A maximum of 100 parameter 

sets are evaluated in the optimization algorithm, where regression is performed with the LOPO split. 

Initial LOO results in 34 optimization results and the most frequent parameter set is used as a final 

solution. 
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Results 

Table 2. Performance of trained ridge and logistic regression models. Confidence intervals for 95% 

are given in parentheses. Statistical variables for ridge regression are on the left side of the table and 

variables for logistic regression are on the right side.  

Dataset Zone 

Ridge Regression Logistic Regression 

MSE SC p-value AUC AP Prec. Recall F1  

 S  0.49 0.68 < 0.0001 0.92 (0.80-0.99) 0.89 (0.77-0.99) 0.83 0.94 0.88 

Cross-

validation 
D  0.66 0.38 0.02 0.72 (0.54-0.88) 0.50 (0.35, 0.75) 0.44 0.80 0.57 

 C 0.50 0.54 0.001 0.77 (0.54, 0.94) 0.71 (0.48-0.91) 0.41 0.70 0.52 

 S  0.85 0.55 0.0001 0.86 (0.73-.95) 0.89 (0.78-0.96) 0.78 0.61 0.68 

Test D  1.30 0.34 0.02 0.72 (0.56-0.86) 0.83 (0.73, 0.93) 0.84 0.57 0.68 

 C 1.01 0.29 0.05 0.63 (0.45-0.78) 0.62 (0.48-0.77) 0.62 0.40 0.49 

S =  Surface zone, D = Deep zone, C = Calcified zone, SC = Spearman’s correlation, Prec. = Precision 

  

Detection of sample degeneration 

For the cross-validation set, we obtained the AUCs of 0.92 (0.80, 0.99), 0.72 (0.54, 0.88) 0.77 (0.54, 

0.94) for SZ, DZ and CZ, respectively. Having the threshold of 0.5 for LR’s predictions, the precision 

(positive predictive value) of the model was found to be high on SZ (0.83), while it remained 

moderate on DZ and CZ (0.44 and 0.41, respectively). The recall was found to be very high on SZ 

and DZ (0.94 and 0.80, respectively) and strong (0.70) for CZ. F1 scores were 0.88, 0.57 and 0.52 

for SZ, DZ and CZ respectively. APs from PRC curves were 0.89 (0.77, 0.99), 0.50 (0.35, 0.75) and 

0.71 (0.48, 0.91) for SZ, DZ and CZ, respectively.  

For the test set, we obtained the AUCs of 0.86 (0.73, 0.95), 0.72 (0.56, 0.86) and 0.63 (0.45, 

0.78) for SZ, DZ and CZ, respectively. Precisions were 0.78, 0.84 and 0.62 for SZ, DZ, and CZ, 

respectively. The recall was 0.61 on SZ, 0.57 for DZ and 0.40 for CZ. F1 scores for both SZ and DZ 

were 0.68 and 0.68, and for CZ of 0.49, respectively. APs from PRC curves were 0.89 (0.78, 0.96), 

0.83 (0.73, 0.93) and 0.62 (0.48, 0.77) for SZ, DZ and CZ, respectively. Comparable detection 

accuracy was found for SZ compared to the cross-validation set, while a minor performance decrease 

was seen on CZ. The average precision of the DZ model increased by 0.33 compared to the cross-

validation set. 

 ROC and PRC curves (Figure 5) show that the model for SZ is performing best compared to 

all zones. On the cross-validation set, ROC curves show that CZ performs slightly better compared 

to DZ, but the difference is much more obvious in the PRC plot. Similar results can be seen on the 

test set, except that DZ performs better compared to CZ. 
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Cross-validation set Test set 

  

  

Figure 5. Receiver operating characteristic (ROC) and precision-recall curves (PRC) for each 

dataset. Values for bootstrapped AUCs and APs with 95% confidence intervals are shown. From 

both curves, it can be clearly seen that surface models are performing well compared to the 

baseline. 

  

Automatic grading 

The performances of all the developed models are summarized in Table 2 and Figures 5-6.  In 

particular, the Ridge regression model yielded MSEs of 0.49, 0.66 and 0.50 for SZ, DZ and CZ, 

respectively. Strong Spearman’s correlation was observed for SZ (ρ = 0.68), while moderate and 

weak correlations were observed for CZ (ρ = 0.54) on DZ (ρ = 0.38) compared to the manual grades. 

For the test set, we evaluated the predictions using the models that were saved during the 

training of the cross-validation set. The test set yielded MSEs of 0.85, 1.30 and 1.01 for SZ, DZ and 
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CZ, respectively. Spearman’s correlation was moderate (ρ = 0.55) on SZ and weak (ρ = 0.34, 0.29) 

on DZ and CZ. 

Cross-validation set Test set 

  

  

  

Figure 6. Predictions obtained from the Ridge regression models on the cross-validation 

(left column) and test sets (right column). Predictions in most models are very close to 

grade 1, showing that ridge regression has little power to distinguish individual grades in 
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this case. On the cross-validation set, predictions for SZ and CZ as well as for test set SZ, 

low and high grades can be visually separated from each other.  

  

Replication experiment 

The replication experiment was performed to assess the transferability of the developed texture-based 

volume analysis technique. The results from the model trained separately for the test set with LOPO 

cross-validation are shown in Supplementary Table 3. Ridge regression showed improvement in MSE 

(0.85→0.69, 1.30→0.71, 1.01→0.72, for SZ, DZ and CZ, respectively) but not in Spearman’s 

correlation. Logistic regression yielded similar results using ROC/AUC and PRC analysis, apart from 

the slight increases in AUC for SZ and CZ models (0.86→0.87 and 0.63→0.64, for SZ and CZ, 

respectively). However, additional parameters show that recall and F1 score are improved in SZ and 

CZ, when using the threshold of 0.5 for the LR model (recall: 0.61→0.78 and 0.40→0.65, F1 score: 

0.68→0.78 and 0.49→0.61 for SZ and CZ, respectively). 

  

Software Prototype 

We implemented the developed automatic 3D grading method in an open-source software package 

for Windows OS (Supplementary Video). Currently, the models trained using a python script are 

exported into an intermediate format and loaded by the software to predict the degeneration of unseen 

samples. Additional features of the software are manual tools for artefact cropping and also the 

advanced visualization pipeline. The source code of the software is available on GitHub: 

https://github.com/MIPT-Oulu/3DHistoGrading. 

 

Discussion 

In this paper, we investigated the feasibility of automation of the 3D µCT grading system for 

osteochondral human samples. We developed a method based on machine learning to predict the 

grades of degeneration for AC surface, deep and calcified cartilage zones in an automatic manner. 

The trained models were evaluated in two settings – via cross-validation and on a completely 

independent dataset. This allowed the assessment of generalization of the developed method to the 

unseen data, as well as its robustness and applicability to the new data acquisition settings.  

From the experiments, we found that our models are more suited for the detection of the 

presence of overall degeneration in the analyzed VOI, instead of fine-grained grading. This is 

probably due to a limited number of training samples. However, on the other hand, this result is highly 

generalizable to different data acquisition settings as shown in our experiments. The results showed 

that the surface degeneration can be detected reliably (AUC of 0.92, F1 of 0.88 and AP of 0.89) and 

with moderate performance for both DZ and CZ (AUC > 0.70, F1 > 0.5 and AP > 0.5). To further 

increase the reliability of the presented models, novel data augmentation and semi-supervised grading 

techniques, e.g. domain adaptation41,42, could be utilized in the future. 
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 On the cross-validation set, our pipeline performed better on CZ compared to DZ. However, 

on the test set, an AP increase of 0.33 was observed for the DZ model and a drop of 0.09 for the CZ 

model, respectively. Besides, during parameter optimization, the CZ model had multiple occurrences 

of a second parameter set. These findings suggest a better overall quality of the predictions for the 

DZ compared to the CZ model. The absence of the fully intact samples in the test set might be one 

reason for the decreased recall values when only the possibly more difficult grade 1 samples are left 

to be classified as negatives (Table 1, Supplementary Figure 1). 

 To facilitate the generalization of our method, we performed several preprocessing steps: 

sample preparation artefact cropping, MRELBP histogram normalization, PCA-based dimensionality 

reduction and whitening as well as the splitting of the larger, Ø = 4mm samples to the sub-volumes. 

To ensure a robust validation scheme, we used nested LOO where a Bayesian hyperparameter search 

was performed at each iteration of cross-validation. According to this strategy, we mitigated the risk 

of overfitting43 that is highly probable with small sample sizes.  

 Besides the robust validation scheme, we also tackled the issue of a thorough evaluation of 

the results. When making binary classification, ROC curves are often reported44. They are easily 

understood and allow assess performance well on evenly distributed datasets. However, the PRCs are 

more descriptive on imbalanced datasets and provide information on the positive predictive value of 

the models45,46. The use of the ROC curve analysis can even lead to false conclusions on classifier 

reliability when using imbalanced data due to wrong interpretations of the true positive rate45. We 

consider the use of a different metric for classification models to be one of the core strengths of this 

study.  

 Our group has previously utilized a novel method for quantitative surface morphology 

assessment. Similarly to the handcrafted surface features presented by Ylitalo et al.23, our machine 

learning approach here showed the highest sensitivity for SZ for detecting intact samples. This 

highlights the importance of surface features, although the presented machine learning method can 

provide a comprehensive description of pathological changes of other cartilage zones as well. These 

studies are not otherwise directly comparable either since a different split (grades 0-1 against 2-3, 

instead of 0 against ≥ 1) was used here to better balance the grade distributions of the different groups 

(class distribution in Ylitalo et al.23 was 7 against 29 for the surface). Further, in the current study, we 

conducted a more thorough validation with nested LOO, PRC analysis, and independent testing. 

 Differences in performance between the replication experiment and the experiment on the 

cross-validation set could be explained by the differences in the data acquisition since µCT imaging 

parameters were optimized for Ø = 2mm. We analyzed this both visually and quantitatively, 

comparing the images with the filtered data (Supplementary figure 3 and 4). For the test set, MSE 

against the filtered data was higher (mean MSE = 29.6) compared to the cross-validation set (mean 

MSE = 5.8). Both PSNR and SSIM were higher in the cross-validation set (mean values 40.2 and 

0.84 compared to 33.3 and 0.71). All three metrics suggest higher data quality in the cross-validation 

set. 

 This study has several important limitations. First and foremost, a very reliable and accurate 

model might require hundreds or thousands of samples from different patients, and the current model 

was created based only on 34 samples from TKA patients. Secondly, we had to include one freeze-

thaw cycle for the samples due to practical reasons. Thirdly, datasets used in the study were very 
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heterogeneous due to different core diameters, causing decreased image quality in the test set. 

Fourthly, distribution of µCT grades was also different on the test set, which could be due to lower 

patient count or the lack of multiple graders. Finally, there are possible zone-specific limitations that 

should be noted: causes of error in the CZ model could be due to the use of a thin VOI or inefficient 

tidemark characterization by k-means clustering –based segmentation (our trained U-Net 

segmentation was not used for the test set since it did not generalize). Moreover, DZ model 

performance might increase if a smaller depth of cartilage was used (e.g. 30-40% instead of 60% of 

cartilage depth47), better avoiding inclusion of the transitional zone. 

 As a conclusion, this study shows that automatic 3D histopathological grading of 

osteochondral samples is feasible from CEµCT with minimal user input. Our model could be directly 

used to provide a second opinion for OA researchers requiring a reliable assessment of OA ex-vivo 

severity, especially at the surface zone. Further development of the model, including the acquisition 

of a bigger training dataset, would likely increase the reliability of the analysis for zones other than 

the cartilage surface. To the best of our knowledge, this is the first report presenting a machine 

learning based 3D histopathologic grading model, which also adequately generalizes to unseen data. 

All codes used, and the software prototype developed during this study are available on the project’s 

GitHub page (https://github.com/MIPT-Oulu/3DHistoGrading). 
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Supplementary material 

Cross-validation set   

a) 

 

b) 

 

c) 

 

Test set   

d) 

 

e) 

 

f) 

 

Supplementary Figure 1. Visual representation of the grade distribution of different datasets for the tested 

zones. Cross-validation (a-c) set has the broadest distribution of µCT grades and is well suited for training 

the regression models (however, only small amount of grade 3’s are included). Test set (d-f) has almost no 

grade 0 samples. Exact values for the classes are listed in Table 1. 
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Supplementary Figure 2.  Illustration of the orientation and cropping of the samples on the 

preprocessing pipeline. Poorly oriented sample casts an elliptic projection along the z-axis (a). 

This results in low dice score against the fitted circle (yellow). Small rotations are performed in 

order to increase the dice score between the fitted circle and the projection (b). From the oriented 

sample, the center of the projection is calculated and used to crop the edges of the sample (center 

axis displayed in red), resulting in a rectangular cuboid VOI (blue) inside the sample (c-d). 

 

 

a) 

 

b) 

 

Supplementary Figure 3. Comparison of µCT data on different datasets. In the cross-validation set 

(a), the core size is small, and the acquired signal is higher compared to test sets. The test set (b) has 

a larger core diameter, which seems to result in lower image quality due to imaging parameters 

optimized for the small diameter. This results in a lower measured signal on the detector. Visual 

differences are quantified in Supplementary Figure 4. 
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Mean squared error (MSE) 

a) 

 

Peak signal-to-noise ratio (PSNR) 

b) 

 

Structural similarity index (SSIM) 

c) 

 

 

Supplementary figure 4. To quantify the differences in image quality of the two datasets, we 

calculated MSE (a), peak signal-to-noise ratio (b, PSNR) and structural similarity index (c, SSIM). 

Reconstructed coronal slices were compared against the same slices with median filtering (kernel 

size 5). Multiple slices were assessed along each sample to get averaged values for metrics. 

Histograms from individual samples are shown. Mean values for Cross-validation set are: MSE = 

5.8, PSNR = 40.2, SSIM = 0.84. Mean values for test set: MSE = 29.6, PSNR = 33.3, SSIM = 0.71. 
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Supplementary Table 1. Sample and patient distribution. The cross-validation set consists of only TKA 

patients with one femoral and tibial sample each (four patients had a sample from only one location included). 

The test set consists of both cadaver and TKA patients from the tibial compartment. The number of patients is 

much higher on the Cross-validation set allowing large variation in training the models. Samples that were 

initially excluded when creating these datasets are shown (not containing either the cartilage or bone layer). 

Dataset # samples # patients # excluded Description 

Cross-validation set 

Total 34 19 2 

Only TKA patients,  

ages 51-86 
Tibial cores 16 16 2 

Femoral cores 18 18 0 

Test set 

Total 45 7 9 Only tibial cores 

TKA 15 5 7 Ages 64-75 

Cadaver 30 2 2 Ages 69 and 79 
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Supplementary Table 2. Parameters optimized in contrast normalization and MRELBP with a 

description of each parameter.  

Parameter 

Values used in all 

zones 

Frequently encountered 

values in CZ (16/34) 

Description 

Gaussian kernel 1 25 23 

Size of the kernel for 

centering the input image 

(subtracted from input) 

Gaussian kernel 2 21 21 

Size of the kernel for 

standardizing the input 

image (divided from image) 

Sigma 1 4 4 
Standard deviation of 

Gaussian kernel 1 

Sigma 2 7 6 
Standard deviation of 

Gaussian kernel 2 

Neighbors 8 8 

Number of neighbors used 

in MRELBP (4 orthogonal 

and 4 diagonal neighbors). 

Large radius 18 12 

Distance of center pixel 

from neighbors used in 

obtaining large image 

Small radius 4 11 

Distance of center pixel 

from neighbors used in 

obtaining small image 

Center kernel 15 9 
Kernel size used in median 

filtering center image 

Large radius kernel 15 9 
Kernel size used in median 

filtering large LBP image 

Small radius kernel 13 15 
Kernel size used in median 

filtering small LBP image 
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Supplementary Table 3. Results of trained models on the test set (replication experiment). Separate models 

were trained using leave-one-patient-out (LOPO) cross-validation, averaging predictions from the nine sub-

stacks. Values improved due to separate training are bolded. Ridge regression shows improvement in MSE but 

not in Spearman correlation. The values of AUC show only slight differences in logistic regression, but 

additional analysis shows that recall and F1 score are improved in SZ and CZ. 

Zone 

Ridge regression Logistic Regression 

MSE SC p-value AUC AP Prec. Recall F1 

S 0.69 0.45 <0.01 0.87 (0.74, 0.96) 0.87 (0.75, 0.96) 0.78 0.78 0.78 

D 0.71 -0.06 0.71 0.64 (0.46, 0.79) 0.80 (0.69, 0.90) 0.80 0.57 0.67 

C 0.72 -0.16 0.30 0.64 (0.45, 0.79) 0.56 (0.44, 0.77) 0.56 0.65 0.61 

S =  Surface zone, D = Deep zone, C = Calcified zone, SC = Spearman’s correlation, Prec. = Precision, F1 = F1 score 

 

 

Supplementary Video. Example usage of the grading and visualization software. 
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