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Abstract—Several approaches can be used for estimating
neural activity. The main differences between them are in the
apriori information used and their sensibility to high noise levels.
Empirical Mode Decomposition (EMD) has been recently applied
to Electroencephalography EEG-based neural activity reconstruc-
tion to provide apriori time-frequency information to improve
the neural activity estimation. EMD has the specific ability to
identify independent oscillatory modes in non-stationary signals
with multiple oscillatory components. The various attempts to
use EMD in EEG analysis, however, did not provide yet the
best reconstructions due to the intrinsic mode mixing problem of
EMD. Some previous works have used a single-channel analysis
and in other cases, multiple-channel have been used for other
applications. In this paper, we present a study about multiple-
channel analysis using Multivariate Empirical Mode Decomposi-
tion (MEMD) as a method to attenuate the mode mixing problem
and to provide apriori useful time-frequency information to the
reconstruction of neuronal activity using several low-density EEG
electrode montages.The methods were evaluated over real and
synthetic EEG data, in which the reconstructions were performed
using multiple sparse priors (MSP) method with several electrode
numbers of 32, 16, and 8, and the source reconstruction quality
was measured using the Wasserstein Metric. Comparing the
solutions when no pre-processing was made and when MEMD
was applied, the source reconstructions were improved using
MEMD as apriori information in the low-density montage of
8 and 16 electrodes. The mean source reconstruction error on
a real EEG dataset was reduced a 59.42% and 66.04% for the
8 and 16 electrodes montages respectively, and on a simulated
EEG with three active sources, the mean error was reduced an
87.31% and 31.45% for the same electrodes montages.

Keywords– Multivariate Empirical Mode Decomposition,

Brain Mapping, EEG Signals, Neuronal Activity Reconstruc-
tion, Time-Frequency Decomposition, Low-density EEG.

I. INTRODUCTION

EEG is an indicator of neural activity and it is used to study
complex brain dynamic processes, as the cognitive processes,
memory process, and emotion recognition Soleymani et al.
(2016), Lin et al. (2016). Due to the non-linear and non-
stationary nature of EEG signals, their analysis is a challenging
task in either, time and frequency domains. However, some
hidden information can be extracted to be used in early
detection of different disorders by using advanced techniques
in signal processing and analysis Subha et al. (2010). In recent
years, Hilbert Huang Transform (HHT) is increasingly used
in the analysis of such signals Bueno-López et al. (2018).
However, in some applications, the extraction of information
has been hampered by the mode mixing problem that appears
in the Empirical Mode Decomposition (EMD) when frequency
components are relatively close or exhibit intermittency. A
mode mixing problem can be identified when a set of signals
of widely disparate scales appear in an Intrinsic Mode Function
(IMF), or when a signal with a similar scale appears in different
IMF components. Mode mixing is a consequence of spectral
proximity of the frequency components or signals intermittency.

The presence of mode mixing can hamper the physical
interpretation of the process which is intended to be described
by the individual IMFs Wu and Huang (2009), Rilling and
Flandrin (2008). The mode mixing problem has been studied
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in applications in several fields, for example in Xue et al.
(2016), the authors discuss the mode mixing influence on
the hydrocarbon detection based on EMD. They use several
variations of EMD to eliminate the mode mixing effects,
specifically, they apply Ensemble EMD (EEMD) and Complete
Ensemble EMD (CEEMD), as useful tools to identify the
peak frequency volume and the peak amplitude above-average
volume.

In 2009, a new strategy was presented in Rehman and
Mandic (2009). In which, a multivariate variation of EMD
called Multivariate Empirical Mode Decomposition (MEMD).
The MEMD is a method that reduces the mode mixing problem
and it is a good alternative for multichannel data analysis, as is
the case of EEG signals. Some previous papers have reported
the use of EMD for neural activity reconstruction and other
applications in bioengineering Bueno-Lopez et al. (2017a),
Bueno-Lopez et al. (2017b), Okcana (2016), Men-Tzung et al.
(2008), but the use of MEMD for the same application is
less. In Yin et al. (2012) the authors presented a method for
data analysis based on MEMD, applying a pre-processing step
with Independent Component Analysis (ICA) to calculate and
evaluate the energy presented in an EEG record from the
quasi brain deaths and to evaluate the brain activity. In Zahra
et al. (2017), the authors proposed a data-driven method for
classifying ictal (epileptic activity) and non-ictal EEG signals
using MEMD algorithm. In which, they extract and select
suitable feature sets to classify the neural activity based on a
multiscale Time-Frequency representation of the EEG signals
by the application of MEMD. A fusion between MEMD and
source reconstruction algorithms with an unsupervised eye blink
artifact remover was introduced in Khosropanah et al. (2018),
with the purpose of accurate localization of epileptogenic
sources. In She et al. (2017) a novel identification method
of relevant Intrinsic Mode Functions is proposed based on
Noise-assisted-MEMD and Jensen-Shannon distance measure.

In this research work, we propose the application of
multivariate time-frequency EEG signals analysis using the
MEMD method as a pre-processing step before applying source
localization algorithms. The MEMD decomposes the signal
in several intrinsical mode functions IMFs, in which the
information of the underlying brain activity is separated in
frequency bands. Due to the relation between the information
in each channel, MEMD reduces the mode mixing problem,
which allows understanding the effect of a stimulus on
different regions of the brain. Next, selected information of the
decomposed EEG signals are used to perform neural activity

reconstruction with high accuracy than using the raw electrode
information, therefore, less number of electrodes is required to
extract this underlaying time-frequency information due to the
MEMD properties and the EEG redundancy in the electrode
measurements on the scalp. This hypothesis is evaluated with
simulated EEG data and real EEG signals from a face-evoked
potentials paradigm.

We perform MEMD on the sets of EEG data and then
perform source activity reconstruction using Multiple Sparse
Priors (MSP). According to Jatoi and Kamel (2018) MSP
method presents better performance than other well-known al-
gorithms to solve the EEG inverse problem like Minimum Norm
Estimation (MNE), Low-Resolution Tomography (LORETA),
and beamforming, using a reduced set of seven electrodes. In
our case, we evaluated the source reconstruction with 32, 16
and 8 electrodes to analyze and discuss the effects of channel
reduction with the proposed methodology.

II. MATERIAL AND METHODS

A. Empirical Mode Decomposition

The Empirical Mode Decomposition (EMD) is a method
adaptive, which dependent directly from data. The aim this
method is to decompose a nonlinear and non-stationary signal
y(tk) into a several intrinsic mode functions (IMFs), in which
each one satisfies the two following conditions Huang et al.
(1998):

1) The number of extrema and the number of zero crossings
must be the same or differ at most by one.

2) At any point, the mean value of the envelope defined by
the local maxima and the envelope defined by the local
minima is zero.

Empirical Mode Decomposition is applied over y(tk) to
obtain γi(tk) being i the intrinsic mode function (IMF), and

y(tk) =
N∑
i=1

γi(tk) + r(tk) (1)

where N represents the number of IMFs and r(tk) a residual
information. Recently, some optimization techniques have been
proposed to improve the performance of the EMD Xu et al.
(2016), Hou and Shi (2013).

Having obtained the intrinsic mode function components,
we can apply the Hilbert transform to each IMF component,
and compute the instantaneous frequency according to equation
(2).

fi(t) ,
1

2π
· dθi(t)

dt
, (2)
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where θi(t) is the function phase of each IMF calculated
from the analytic signal associated Boashash (1992). Finally,
the instantaneous frequency can be observed in the Hilbert
Spectrum.

B. Multivariate Empirical Mode Decomposition (MEMD)

The MEMD allows a decomposition of the EEG y(tk) in
several IMFs γ(tk) and a residual r(tk) as follows:

y(tk) =
∑
i

γi(tk) + r(tk) (3)

The brain mapping can be performed either for each γi(tk)
independently or for a linear combination of IMFs.

C. IMF selection: Entropy Function

An entropy based cost function is applied over each IMF
γi(tk) as follows (Bueno-López et al. (2019), Muñoz-Gutiérrez
et al. (2019)):

ei = −
∑
k

‖γi(tk)‖22 log(‖γi(tk)‖22) (4)

being ei the entropy of each IMF, and e = [e1 . . . eN ]. With
the objective to rebuild the EEG signal ỹ(tk) a selection of
the IMFs, based on the IMFs with highest entropy, is applied
according to the measured entropy ei.

ỹ(tk) =
∑
i∈O

γi(tk) (5)

in which O represents the subset of IMFs that have been
selected to build the filtered EEG signals.

D. Source Reconstruction Algorithm

The relation between the brain activity at cortical areas
(source activity) and the measurement electrodes in the scalp
is represented by the forward problem equation:

y(tk) =Mx(tk) + ε(tk) (6)

being y(tk) ∈ Rd×T the EEG signals at d number of
electrodes with T samples, x(tk) ∈ Rn×T contains the
amplitude of n sources distributed over the cortical areas, ε(tk)
is a noise covariance, assumed as a Gaussian distributed with
zero mean, and M ∈ Rd×n is the lead field matrix or volume
conductor model, and it represents the physical model based
on head anatomy, and explains how the potentials flow through

from brain to electrodes, this is based on the conductivities of
different layers between current sources and electrodes, like
scalp, skull, CSF, gray matter, and white matter.

The source reconstruction involve the solution of the EEG
inverse problem, which is mathematically ill-posed and ill-
conditioned, due to the high number of unknowns sources of
activity (thousands of sources), and the reduced quantity of
observations (tens of electrodes). To overcome such challenging
characteristics, several approaches tackle the inverse problem as
a minimization problem with spatial constraints, in which, the
solutions are smooth in the source space as MNE (Hämäläinen
and Ilmoniemi (1994)) and LORETA (Pascual-Marqui et al.
(1994)). In other hand, the MSP method with a Bayesian
approach has been gaining attention due to the sparse solutions
outcome and the high performance in terms of localization
error and free energy, as presented in Friston et al. (2008) and
validated in López et al. (2014) and Jatoi and Kamel (2018).
Due to outcomes of MSP, we chose it to perform the brain
mapping and to evaluate the effects of using MEMD as a
prior information. This method can be found in the SPM12
software (Friston et al. (2007)) as a package for MATLAB
(The MathWorks, Inc.)

E. Generation of synthetic EEG Signals

To assess the solution for the neuromagnetic inverse problem
using EEG signals, we performed simulations with several
scenarios in which the brain activity is known. Therefore, it is
necessary to use a lead field matrix (head model, preferably
a realistic representation) that allows generating EEG signals
with active sources in predefined or random positions and with
specific activity function.

The head model used to generate the synthetic EEG signals,
can be found it in the database called Multi-modal Face

Dataset in http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/ of
SPM software. This dataset was obtained using the same
paradigm reported in Henson et al. (2003) and contains EEG,
MEG and fMRI data for one subject. This paradigm has been
used in different works for source reconstruction and addressed
to evoked responses (Friston et al. (2006); Henson et al. (2007,
2009, 2011); Gramfort et al. (2013); Fukushima et al. (2015)).
The head model contains a cortical mesh with 8196 vertices as
distributed sources and relates them to 128 electrodes. However,
reduction to 8, 16 and 32 channels is performed as shown
in Fig. 1. This reduction in the number of measurements is
performed in order to analyzed the quality of the reconstruction
vs the number of measurements.
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Fig. 1: Three configurations of electrode positions for EEG
measurements

Nine configurations of EEG signals were proposed. We
considered three different number of active sources: 1, 3, and
5. For each number of active sources, the synthetic EEG was
generated considering 8, 16 and 32 electrodes. One of the
goals, for this paper, was to show that the MEMD was able to
reduce the mode mixing generated in the process to obtain the
IMFs. MEMD allows to make a better choice of frequencies
inside the each IMFs, therefore, the source activity for 1, 3
and 5 active sources were simulated with different frequencies
and different instants of time. Moreover, the evaluation was
done in different levels of measurement resolution, i.e. 8, 16
and 32 channels as it is shown in Fig. 1.

The brain activity was simulated for each source using a
windowed sinusoidal activity, as follows:

xi(tk) = e
− 1

2 (
tk−ci
σi

)
sin(2πfitk) (7)

The signals were generated in a time interval from 0s
to 6s with a sample frequency fs of 200Hz. The activities
frequencies were selected into the typical ranges for brain
frequencies, e.g., alpha or beta brainwaves, in order to have a
realistic scenario, in addition, in the cases of 3 and 5 active
sources, some sources were located at low brain frequencies
e.g., theta or delta, to observe the perform under several range
of frequencies. For the case of 1 active source, the activity was
generated in t = 1s with a f = 10Hz and the active source
was in the position 4000, Fig. 2a shows the configuration for

this first case

In the cases of 3 and 5 active sources, the activity were
simulated in different instants of time. In Fig. 2b are shown
the simulated signals for 3 active sources. For the case of 3

active sources, the first activity was generated in the source
located in the position 4000 at t = 1s with a f = 20Hz, at
t = 3s with a f = 12Hz was activated the second source
in the position 5020 and, the third source, was located in the
position 150 at t = 5s with f = 4Hz.

Finally, for 5 active sources the signals were generated at
t = 1s, t = 2s, t = 3s, t = 4s and t = 5s, with f = 20Hz in
the position 4000, with f = 15Hz in the position 5020, with
f = 10Hz in the position 150, with f = 6Hz in the position
8100 and with f = 2Hz in the position 2200, respectively.
Fig. 2c shows the simulated activity for 5 sources.

A common evaluation of inverse problem solutions is
performed by using simulated sources where the underlying
activity is known. In this work, simultaneous simulated sources
with sinusoidal activity are used in order to evaluate the
performance of the MEMD in terms of the separability of the
source activity in the frequency domain. To this end, simulated
EEG activity is obtained for 1, 3 and 5 sources located spatially
and temporally at different points. Sources frequencies fi in
the range of 2Hz to 20Hz are considered. Also, temporal
localization of sources is in the range of 1 to 5 seconds. The
source reconstruction is made in two ways, using MSP directly
from the synthetic EEG without any pre-processing step, like
raw signals, and using MEMD as prior information to MSP, in
which the main IMFs were selected according to the entropy
function in equation 4, where those IMFs whose presented the
highest entropy were used to recalculate the EEG.

The simulating procedure starts with the generation of each
source, using the windowed sinusoidal activity, the active
sources are located in predetermined locations, the activity
x(tk) is calculated, and then, the synthetic EEG is obtained
by using:

y(tk) =Mx(tk) + ε(tk) (8)

Then a noise is added to the EEG signal y(tk) with a signal-
to-noise ratio of SRN = 10. Where three configurations are
considered for the measurements: 32, 16 and 8 EEG channels.
For each synthetic EEG at different channel number, a reduced
lead field matrix were used to perform the brain mapping and
then, the source reconstruction were calculated directly with
MSP (raw MSP) and applying MEMD to the electrode space
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Fig. 2: Simulated activity for one source (A) with 10Hz and 32, 16 and 8 EEG channels. Simulated activity for three sources
(B) with 4, 12 and 20Hz windowed sinusoidal activity and using 32, 16 and 8 EEG channels. Simulated activity for five sources
(C) with 2, 6, 10, 15 and 20Hz windowed sinusoidal activity and using 32, 16 and 8 EEG channels

(MEMD-MSP). Finally the reconstruction were compared with
a spatial accuracy measurement, the Wasserstein Metric.

F. Real EEG Signals Database

For an evaluation of the MEMD method and his application
over real EEG signals, a multi-subject, multi-modal human
neuroimaging dataset was used. The experiment has 16
participants where the stimulus were presented in a screen
to each one of the subjects, three conditions were considered
in the stimulus, familiar faces (famous), unfamiliar faces (non-
famous) and scrambled faces. As described in Wakeman and
Henson (2015), the experiment involved EEG, MEG and fMRI
to estimate the neural activity and their location over the cortical
areas of brain by applying a multi-modal technique presented in
Henson et al. (2011). The EEG recordings were taken with 70
electrodes of AgCl using a layout according to the 10-10 system.
All the subjects in database have their own head model and
their ground truth activity. The lead field matrix that modeled
the head conductivities was made by 8196 distributed sources.
The lead field matrix was used for solving the inverse problem

and the ground truth activity was used to compare the obtained
solutions with the MEMD method as apriori information to
MSP and the EEG directly with MSP. As the dataset contains
the ERPs of the experiment, we considered the event related
potentials ERPs around the 170 ms or ’N170’ component for
the experiments with scrambled and familiar faces. As well like
in the simulated data, a reduction of channels was developed
from 70 electrodes to 32, 16 and 8, in order to evaluate the
performance of the brain mapping solution with MSP using
one or several IMFs from MEMD and comparing the results
against MSP with raw data. For evaluate the activity around
the N170, we have established the region of interest ROI as in
Henson et al. (2011), in the window between 100 ms and 220
ms. The methodology followed for processing the high density
data is presented in Fig. 3.

According to the number of electrodes to evaluate, the
channels are extracted from the high density EEG. The reduced
data is directly processed by MSP to obtain the called raw
inverse solution. Besides, the reduced data is also processed
with MEMD and one or several IMFs are selected to obtain
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Fig. 3: Block diagram of the methodology followed for
processing the EEG from database.

the inverse solution with MSP. Finally, the both reconstructions
of the source activity are compared with the ground truth
to measure the spatial accuracy of the solution using the
Wasserstein Metric. Following a similar procedure as in the
synthetic EEG signals, the lead field matrix was reduced
according to the position of electrodes, and we selected the
channels trying to maintain an equal spatial distribution of
them over the scalp. The layout of the reduction is presented
in Fig.4a, 4b and 4c for 32, 16 and 8 electrodes respectively.
In addition, Fig.4d shows the 8196 distributed sources of one
of the subjects, the reduction of electrodes for 32, 16, and 8
channels, and their positions.

G. Accuracy Measurement

The Wasserstein metric wm (also known as Earth-Movers

Distance, Rubner et al. (2000)) is used as a quality index of
the source reconstruction accuracy. This measured provide a
spatial comparison between the ground truth and the estimated
source activity, in which, the wm ∈ R+ measures the work to
transform the estimated power distribution of sources into the
ground truth power distribution by ”transporting” probability
mass. (Castano-Candamil et al. (2015)). With this index, a
lower wm value represents a better spatial accuracy of the
source reconstruction. This metric have been used to compare
EEG/MEG inverse solutions in order to have a meaningful
measure for the estimated source distributions (Haufe et al.
(2008)). As the Wasserstein metric is considered as a spatial
accuracy index, usually the mean activity during the complete
EEG segment is compared with the mean ground truth activity
to assess the source localization. In addition, to offer a temporal

Fig. 4: Layout according to the 10-10 system for 70 electrodes
and the performed reduction for (A) 32 electrodes, (B) 16
electrodes, (C) 8 electrodes,(D) Brain model with 8196
distributed sources, names and position of electrodes used
in the channel reduction.

assessment of the reconstructed activity, the solutions also are
evaluated using small time windows (time-ROIs), in the case
of synthetic EEG, the time-ROIs are defined 250 ms before
and 250 ms after the time of maximum activity of each one of
the simulated sources, and for the real dataset assessment, the
ROI is definet between 100 ms and 22 0ms. In general, the
mean activity in the time-ROI is calculated and then compared
with the mean activity of the ground truth during the same
time-ROI.

III. RESULTS

A. Synthetic EEG Data Study

We generated and processed the EEG signals for the nine
aforementioned cases. An example of the application of MEMD
for the reconstruction case of one source with 10Hz and 8 EEG
channels are shown in Fig. 5. It can be seen that MEMD shows
in the IMF2 noise activity and there is not any identifiable
source activity, meanwhile, the IMF3 unmixed the source
activity, it is clearly identifiable with no underlying noise.
In addition, when the brain activity reconstruction is obtained,
it can be seen that for the MSP without preprocessing using
MEMD (raw-MSP), the source activity is split in two sources,
in which one of them has an acceptable location, however, the
main activity represented with a red color is located in the
prefrontal cortex but in a lateral position far of the original
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source, this fact explains the higher value of wm = 6.23

than MEMD-MSP reconstruction. In other hand, by using the
MEMD-MSP has obtained wm = 1.26, and in the source map
the main activity is accurately located, even if spurious activity
appears at the same position than with raw MSP, its value is
attenuated. The appearance of this ”ghost” activity could be
due to the performed channel reduction, however, is remarkable
that the value with MEMD-MSP is lower and the main activity
is clearly identifiable.

Fig. 5: MEMD for one source with 10 Hz sinusoidal windowed
activity and 8 EEG channels

As shown in Fig.5 for one source, the MEMD is able to
unmix the frequency activity, this effect was also evident in
the three and five active sources cases. Fig.6 depicts the main
IMFs decomposed by MEMD over 16 EEG channels, and
the resulting brain reconstruction for three sources case. It
is noticeable that the decomposition by using the MEMD
splits the activity clearly in three IMFs as follows: the activity
around 20 Hz is shown in the IMF2, the activity around 12

Hz is shown in the IMF4, and the 4 Hz is shown in the IMF6.
It is worth noting that there is no mode mixing in the MEMD
decomposition. In addition, in terms of the Wasserstein metric,
it can be seen that the MEMD-MSP achieves a wm = 10.14,
which is substantially less than raw-MSP value wm = 15.57

when the neural activity reconstruction averaged over time is
analyzed. Moreover, the MEMD-MSP reconstruction keeps the
position of the three simulated sources, even if some spurious
activity appears, in other hand, in the raw-MSP reconstruction,

the second source located in left hemisphere visual cortex loss
its position and spurious activity appears in different areas,
even with more power than the first source, fact that is evident
in the higher value of accuracy obtained.

Fig. 6: Ground truth activity, MEMD-MSP reconstruction, and
raw-MSP reconstruction. The sources were simulated at 4, 12
and 20 Hz with a sinusoidal windowed activity and the source
reconstruction was performed using 16 EEG channels. For the
depicted MEMD-MSP reconstruction the IMFs 2, 4, and 6
(showed at right) were added to rebuild the EEG.

To analyze the three sources temporal reconstruction, the
spatial and time evolution of the neural activity for the ground
truth and the reconstructions by using MEMD-MSP and raw-
MSP are shown in Fig. 7 for three time instants t = 1, t = 3

and t = 5 seconds with 16 EEG channels. It is clear that for
each time instant the neural activity reconstruction obtained by
the MEMD-MSP is better than the one obtained from the raw
data in terms of the Wasserstein metric. The time evolution
of the neural activity for the MEMD was obtained by mixing
the resulting brain mapping for the IMF2, IMF4 and IMF6 of
the MEMD, since the activity corresponding to each sources
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is clearly divided in the selected IMFs as shown in Fig. 6.

Fig. 7: Ground truth, MEMD-MSP and raw-MSP neural activity
mapping considering the evolution in time for three sources
at time instants t = 1, t = 3 and t = 5 seconds with 16 EEG
channels

A similar spatial and time evolution evaluation than showed
in Fig. 7 is shown in Fig. 8, where the case of five active
sources with 32 EEG channels was analyzed. In which
the MEMD-MSP outperforms raw-MSP, the reconstructed
neural activity with raw-MSP decrease the spatial accuracy
in almost all the sources, just in the case of the third source
at t = 3 the raw-MSP presents a low value than MEMD-
MSP, however, the raw-MSP reconstruction contains several
spurious activities at this third source, in addition, in the other
sources reconstructions, it is possible to observe the effects of
previous and posterior sources. In contrast, those effects are
reduced when MEMD decomposition is applied, in which just
in the fourth reconstructed source an attenuated activity from
the third source could be seen, furthermore, the indexes of
Wasserstein Metric are smaller than raw-MSP almost all the
sources. This reduction of spurious activity and the attenuation
of effects from other sources appear when the EEG signals
were decomposed in IMF, and could be explained due to noisy
information was rejected in the IMF selection process, and the
mode mixing effects are attenuated by MEMD.

Information of the reconstruction is shown in Fig. 9, where
the mean and temporal reconstruction WM values are presented.
In general, it could be seen the effects of the channels reduction,

Fig. 8: Ground truth, MEMD-MSP and raw-MSP neural activity
mapping considering the evolution in time for five sources at
time instants t = 1, t = 2, t = 3, t = 4 and t = 5 seconds
with 32 EEG channels

in which the source reconstruction with 8 channels increased
the inaccuracy, specially when raw-MSP is applied. The results
suggest that the brain reconstruction with MEMD-MSP can
still be performed without loosing the accuracy by reducing
the amount of EEG channels by a factor of two, in which, even
if the WM index increase with the channel reduction, its slope
is low and the reconstruction could be tolerated. In contrast,
the raw-MSP method reconstruction presented a exponential
increase when the electrode reduction is performed. In several
cases, especially with less number of electrodes, the inclusion
of the MEMD stage improves the performance of the brain
mapping method significantly. Those significant differences
presented in Fig. 9 were obtained by performing two-sided
pairwise t-test with alpha level of p < 0.05 using IBM SPSS
Statistics for Windows, version 24 (IBM Corp., Armonk, N.Y.,
USA), we compared the WM index between the MEMD-MSP
and raw-MSP for mean reconstruction and for each source at
time instants t = 1, t = 3, and t = 5 seconds with 32, 16, and
8 electrodes.

In general, the results over the synthetic EEG signals suggest
that the use of the extracted information by MEMD improve
the brain mapping method MSP. In all the analyzed cases,
the MEMD-MSP has attenuated the appearance of spurious
activity, and during the electrodes reduction, the joint of the
methods keep the spatial accuracy.
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Fig. 9: WM mean and standard deviation of the mean and temporal reconstruction with three number of electrodes, and
considering three active sources in the brain at times 1s, 3s, and 5s.*Significant improvements with p<0.001

B. Results over EEG Dataset

We applied the methodology showed in Fig.3, the dataset was
processed using with MEMD as a pre-processing step, the brain
mapping solutions were obtained using MSP for MEMD and
directly from the ERP data, and then, each subject average was
compared with its own ground truth activity. A general vision of
the results is shown in Fig. 10, where is presented the general
mean of the WM and its standard deviation across all the
subjects and conditions, comparing raw-MSP and MEMD-MSP
with the ground truth activity by number of electrodes. It can
be seen that the electrode reduction applied affect directly the
quality of the source reconstruction, in which the solutions with
MEMD-MSP have a lower mean and standard deviation that the
raw-MSP in all the cases. The inaccuracy of raw-MSP increase
as the electrodes are reduced with a high slope. In contrast,
the MEMD-MSP keep a constant quality index when the brain
mapping is performed with 32 and 16 electrodes, and increase
when 8 electrodes were used, however, with 8 electrodes the
MEMD-MSP reached a WM value and standard deviation

similar to the obtained by raw-MSP with 32 electrodes, where
no significant differences were found.

In order to provide an additional point of view of the results,
the WM indexes were labeled according to the condition of
the EEG signals (familiar or scrambled faces) and the quantity
of electrodes used for performing the inverse solutions. The
WM means according to the type of experiment and number
of electrodes are shown in Fig. 11. In which the results show
that for the case of scrambled faces with 8 electrodes with
MEMD-MSP the WM mean is slightly than the obtained with
raw-MSP with 32 electrodes, in other hand, the for the case of
familiar faces the raw-MSP with 32 electrodes get a lower WM
value than MEMD-MSP with 8 electrodes, however, when the
comparison is between the same condition and the same number
of electrodes, in all the cases, MEMD-MSP outperforms MSP.

The improvement of the results applying the Multivariate
EMD can be explained due to the separation of IMFs as is
shown by Fig.12. Where is presented a 8 electrodes EEG signals
and the IMF4 EEG reconstruction obtained with MEMD, the
figure depicts how is extracted the main information of the
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Fig. 10: WM mean and standard deviation according to the
number of electrodes

Fig. 11: WM mean and standard deviation according to the
type of experiment and number of electrodes

evoked response around the established ROI, where the sparse
temporal and frequency information provided by the IMF is
enough to get a better source localization of the activity than
using all the components of the EEG signal.

Fig.13 shows the location of the neural activity in the
brain, it activity has been found in the visual cortex, as
the results presented in Wakeman and Henson (2015) and
Henson et al. (2011) with a multi-modal technique involving
EEG+MEG+fMRI. The figure provide the ground truth activity

Fig. 12: 8 channel real EEG (Top) and the IMF4 decomposition
(Botton)

and the brain mapping reconstruction with 8, 16 and 32

electrodes with raw-MSP and MEMD-MSP.

From Fig.13, it can be seen that the reconstructions using
MEMD-MSP shown a low variation across the diferent number
of electrodes involved in the source localization, in the other
hand, the without pre-processing the data, the raw-MSP
reconstructions have a higher variation in localization and
intensity of the source between electrodes, moreover, those
solutions present activity in the diferent brain areas, when the
MEMD method focused just in the visual cortex, which is
directly involved during the visual face stimulus, therefore,
the use of some IMFs provided by MEMD have resulted in a
constant localization of the neural activity and an attenuation of
background activity, which is represented by the lower values
of WM.

IV. DISCUSSION AND CONCLUSIONS

It is well known that the brain works under frequency
rhythms between 0.5Hz at Delta rhythm to 45Hz in Gamma
rhythm, the use of time-frequency decomposition methods to
the EEG signals is generally applied to study the brain processes
related to certain frequency activity and the changes in the
brain waves oscillations during several experiments e.g. ERP
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Fig. 13: Brain activity reconstruction with a multi-modal technique involving EEG+MEG+fMRI ground truth activity from
Henson et al. (2011) (A), using MEMD-MSP with 8 electrodes (B), 16 electrodes (C), and 32 electrodes (D), using raw-MSP
with 8 electrodes (E), 16 electrodes (F), and 32 electrodes(G).

studies. The EMD is a method that has shown the capability
to separate signals using a time-frequency decomposition in
different contexts, however the EEG signals are challenging
due to the frequency proximity of the source activity, this
condition makes that EMD solutions generally present mode
mixing effects in the IMF decomposition, in which, the MEMD
attenuate these effects when sources have a closer frequency
as presented in Muñoz-Gutiérrez et al. (2018).

This study investigated the Multivariate version of EMD
combined with source reconstruction algorithm MSP in order to
evaluate the effects of MEMD as a pre-processing step during
the calculation of the brain mapping solutions and their perform
at several electrode montages with 32, 16 and 8 channels. We
compared the solutions obtained with MEMD-MSP against
raw-MSP for synthetic EEG signals, in which, we proposed
three scenarios of source activity: one active source, three
active sources, and five active sources, where the sources were
simulated from 2 to 20Hz, and for real dataset of signals from

a behavioral study of face perception as presented in Henson
et al. (2003).

For all the evaluations performed, the experiments have
shown that using a pre-processing step with MEMD improves
the accuracy of the source reconstruction made by MSP. The
results over synthetic and real EEG data show that the quality
of the solutions with MEMD-MSP keep stable when a number
of electrodes of 16 and 32 are used, and it just decreases
using 8 channels. The reconstructions using MEMD-MSP
with 8 channels achieved similar values than raw-MSP with
32 channels (shown in Fig.9 for simulated sources and in
Fig.11 for real data), and significant differences were not found
between those reconstructions, where is clear that adding the
decomposition of MEMD and using selected information of
IMF during the source reconstruction process make feasible to
perform this process with low-density EEG. In which a low
quantity of electrodes with sparse information of IMFs from
MEMD can keep the accuracy of the source reconstruction and
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can reduce the effects of noise in the brain mapped solution.
We performed a temporal evaluation focused on ROIs defined

by time windows around the appearance of sources in the
synthetic EEG signals test and around the evoked activity for
the real dataset. In general, the reconstruction with MEMD-
MSP presented a clear attenuation of the background activity
as can be shown in Fig. 6, 7, 8, and 13. This effect could
be explained by the frequency decomposition and the mode
mixing attenuation made by MEMD, in which the analysis of
the frequency information of the EEG channels allows to MSP
to focus on the source activity presented in the selected IMFs,
as shown in Fig. 6, and 12, resulting in solutions with a lower
index in terms of WM for the combination of methods.

In conclusion, the present study has shown that adding
a priori time-frequency information as input to the source
reconstruction method MSP, it is possible to find better solutions
even when a sparse number of electrode’s information is used.
That represents that with MEMD we could extract the main
time-frequency information of the sources that are hidden
over the electrodes data, and then used it in order to obtain
a good quality reconstruction, comparable as the same MSP
method with a high number of electrodes and without any
prior information. Moreover, in the MEMD-MSP solutions,
the source activity is clearly separable, producing an unmixing
effect in the source space. The application of MEMD with
other methods and the unmixed activity for brain connectivity
will be studied in future, we consider that the presented method
could be applied over Brain-Computer Interfaces applications
and studies of brain connectivity due to the time-frequency
information could be an important source of features at source
space.
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