

1 **Allicin regulates energy homeostasis through brown adipose tissue**

2 **Chuanhai Zhang^{1,2}, Xiaoyun He^{1,2}, Yao Sheng^{1,2}, Jia Xu^{1,2}, Cui Yang^{1,2}, Shujuan Zheng^{1,2},**
3 **Junyu Liu^{1,2}, Haoyu Li^{1,2}, Jianbing Ge^{1,2}, Minglan Yang^{1,2}, Baiqiang Zhai^{1,2}, Wentao Xu^{1,2},**
4 **Yunbo Luo^{*1,2} and Kunlun Huang^{*1,2}**

5 ¹ Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science
6 and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.

7 ² Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of
8 Agriculture, Beijing, 100083, China.

9 * Corresponding author. College of Food Science and Nutritional Engineering, China Agricultural
10 University, No. 17 Tsinghua Donglu, Beijing 100083, China.

11 E-mail address: hkl009@163.com (K. Huang), lyb@cau.edu.cn

12

13 **Abstract:**

14 **Background/objectives:** Disorder of energy homeostasis can lead to a variety of metabolic diseases,
15 especially obesity. Brown adipose tissue (BAT) is a promising potential therapeutic target for the
16 treatment of obesity and related metabolic diseases. *Allicin*, a main bioactive ingredient in garlic, has
17 multiple biology and pharmacological function. However, the role of *Allicin*, in the regulation of
18 metabolic organ, especially the role of activation of BAT, has not been well studied. Here, we
19 analyzed the role of Allicin in whole-body metabolism and the activation of BAT.

20 **Results:** Allicin had a significant effect in inhibiting body weight gain, decreasing adiposity,
21 maintaining glucose homeostasis, improving insulin resistance, and ameliorating hepatic steatosis in
22 diet-introduced obesity (DIO) mice. Then we find that Allicin can strongly activate brown adipose
23 tissue (BAT). The activation of brown adipocyte treated with Allicin was also confirmed in mouse
24 primary brown adipocytes.

25 **Conclusion:** Allicin can ameliorate obesity through activating brown adipose tissue. Our findings
26 provide a promising therapeutic approach for the treatment of obesity and metabolic disorders.

27 **KEYWORDS:** Allicin; energy homeostasis; brown adipose tissue; obesity; mitochondria

28

29

30

31

32

33

34

35

36

37

38

39

40 **Introduction**

41 The regulation of energy homeostasis, including food intake, energy expenditure, and body
42 adiposity, is crucial for the health of the body (1, 2). Obesity is a result of unbalance of energy
43 homeostasis which caused by energy intake exceeds energy expenditure, and then excess
44 energy stored in fat in the form of triglycerides which lead to adiposity(3) and can cause a
45 series of metabolic diseases, such as insulin resistance, type 2 diabetes mellitus cardiovascular
46 disease, cancer, inflammation and other related diseases(4). Currently, obesity has become
47 one of the fastest-growing non-communicable diseases, and it estimated that by 2030, 38% of
48 adults would be overweight and 20% will develop obesity in the world (5, 6). Although the
49 situation of obesity is dire, satisfactory safe and effective treatment strategies are limited for
50 individuals(7).

51 There are two main types of fat in mammals, including energy-storing white adipose
52 tissues (WAT) and energy-consuming brown adipose tissues (BAT) (8). Different from WAT,
53 BAT contains a large number of mitochondria which is responsible for nonshivering
54 thermogenesis in mammals(9, 10). Increasing studies showed that the potential therapy of
55 anti-obesity and related metabolic diseases are related to the activation of BAT, which bring a
56 new way to fight obesity (11-14). Besides, the proper stimulus could induce the generation of
57 UCP1 (uncoupling protein-1) in WAT, which is also rich in mitochondria and defined as
58 beiging (15). Many studies suggested that beiging in WAT also can effectively enhance
59 energy expenditure and improve metabolic disorder(16, 17). Furthermore, reducing the
60 amount of WAT and the size of white adipocyte can effectively improve inflammation and
61 metabolic disorders (18). Both WAT and BAT have essential functions in regulating energy
62 homeostasis. Therefore, increasing activation of BAT and induction of *beiging* in WAT could
63 be an effective therapeutic strategy for obesity and its related diseases.

64 *Allicin*, a main bioactive ingredient in garlic(19), has multiple pharmacological functions,
65 including anti-oxidative stress, anti-tumor, cholesterol-lowering, anti-platelet aggregation,
66 liver protection, prevention of cardiovascular disease and anti-inflammatory (20-22).
67 Although Allicin induces beiging in WAT(23), the effect of the regulation of energy
68 homeostasis including whole-body energy metabolism and the mechanism of activation of
69 BAT of *Allicin* is still unclear.

70 In this study, we determined the effect of the whole-body energy metabolism and activating
71 BAT of Allicin. Our data establish that Allicin plays a previously not fully recognized role in
72 regulating energy homeostasis, which may provide more rigorous thinking of the therapeutic
73 approach to the treatment of metabolic disorders.

74 **2. Materials and methods**

75 *2.1. Animals*

76 C57BLKS/J-Leprdb/Leprdb (Db/Db) male mice (3-weeks old) purchased from the Model Animal
77 Research Center of Nanjing University. Male C57BL/6J mice (15–20 g, 3-4 weeks old) were purchased
78 from Vital River Laboratories (Beijing, China) and housed under 22±2°C and 55%±10% humidity with
79 12-hour light-dark cycle.

80 For the DIO mice model, eight mice were fed a low-fat diet (LFD), and the rest mice were fed
81 high-fat-diet (HFD) until the weight difference was over 18-20% for six weeks (Figure s1A). We
82 marked the mice fed an LFD and sterile water as the vehicle control group (LFD, n = 8). The HFD
83 mice divided into four groups: control group (HFD, n = 8) fed an HFD and sterile water, and three
84 treatment groups fed an HFD and ALLICIN solutions (Allic+High, Allic+Mid, Allic+Low with 0.3%,
85 0.6%, 1% m/m ALLICIN solution for drinking, respectively, n = 8). The experiment lasted for another

86 13 weeks. ALLICIN solutions refreshed every 1-2 days. ALLICIN (98%, YZ-100384, Solarbio)
87 purchased from Solarbio Life Science Biotechnology Co. Ltd. All experimental procedures conducted
88 and the animals used according to the Guide for the Care and Use of Laboratory Animals published by
89 the U.S. National Institute of Health and approved by the Animal Ethics Committee of China
90 Agricultural University, Beijing.

91 *2.2. Glucose tolerance test and insulin tolerance test*

92 GTT and ITT performed during the last week of the experiment. For GTT, mice fasted for 16h
93 with free access to drinking water. Glucose (0.8 g/kg for Db/Db mice and 1.5 g/kg for HFD and LFD
94 mice) was administered intraperitoneally, and blood glucose levels were measured with an Accu-Chek
95 glucose monitor (ACCU-CHEK, Shanghai, China) at 0, 15, 30, 60, 90 and 120 min. For the insulin
96 tolerance test (ITT), the mice fasted for 4 h (9:00 AM to 1:00 PM), and the mice were administered
97 human insulin (0.7 U/kg Humulin R; Novo Nordisk) by intraperitoneal injection. Blood glucose
98 concentrations were determined from the tail vein with a blood glucose meter (ACCU-CHEK) at 0, 15,
99 30, 45, and 60 min after the insulin injection.

100 *2.3. Cold-induced thermogenesis*

101 For cold tolerance test, mice were placed in a cold chamber (4°C) for four h. We evaluated the
102 cold-induced thermogenesis by measuring the rectal temperature with a temperature sensor (AT210,
103 Zhongyidapeng, Shenzhen, China). Then we took infrared thermal imaging of the animals by a
104 handheld infrared camera (FLIR T600) on a whiteboard.

105 *2.4. Metabolic rate and physical activity*

106 Oxygen consumption and physical activity were determined at the 12th week of the experiment
107 with a TSE lab master (TSE Systems, Germany) (24). Mice were acclimated to the system for 20–24h,
108 and then we measured oxygen consumption (VO₂ and VCO₂) over the next 24 h. The animals were
109 maintained at 25°C in a 12-h light/dark cycle with free access to food and water. We measured the
110 voluntary activity of each mouse using an optical beam technique (Opto-M3, Columbus Instruments,
111 Columbus, OH, USA) over 24 h and expressed as 24 h average activity. The respiratory exchange ratio
112 (RER) was then calculated (25).

113 *2.5. Body composition measurements*

114 The total fat and lean masses of mice after a 12-week treatment with either vehicle or ALLICIN
115 were assessed with the Small Animal Body Composition Analysis and Imaging System (MesoQMR23-
116 060H-I, Nuimag Corp., Shanghai, China), according to the manufacturer's instructions.

117 *2.6. Positron emission-computed tomographic imaging*

118 Specific method reference from Yuan et al. Briefly described as the mice were left unfed
119 overnight and was lightly anesthetized with isoflurane followed by a tail vein injection of
120 fluorodeoxyglucose ([18F]-FDG; 500 mCi). They were subjected to PET-CT analysis at 60min after
121 radiotracer injection. Inveon Acquisition Workplace (IAW) software (Siemens Preclinical Solutions)
122 was used for the scanning process. A 10-min CTX-ray for attenuation correction was scanned with a
123 power of 80 kV and 500 mA and an exposure time of 1100ms before the PET scan. Ten-minute static
124 PET scans were acquired, and images were reconstructed by ordered-subsets expectation maximization
125 (OSEM) 3-dimensional algorithm followed by maximization/maximum a posteriori (MAP) or Fast
126 MAP provided by IAW. The 3-dimensional regions of interest (ROIs) were drawn over the guided CT
127 images, and the tracer uptake was measured with the IRW software (Siemens). Specific quantification
128 of the [18F]-FDG uptake in each of the ROIs was calculated. The data for the accumulation of [18F]-
129 FDG on micro-PET images were expressed as the standard uptake values, which were determined by
130 dividing the relevant ROI concentration by the ratio of the injected activity to the bodyweight.

131 2.7 *Histology*

132 Tissues fixed with 4% paraformaldehyde were sectioned after embedment in paraffin. We
133 prepared multiple sections for hematoxylin-eosin staining. We incubated cells grown on poly-L-lysine-
134 pretreated coverslips (Sigma-Aldrich, St. Louis, MO, USA) in 5% goat serum for 1 h at room
135 temperature after fixation with 1% formalin at room temperature for 1 h. All images were acquired
136 with the BX51 system (Olympus, Tokyo, Japan).

137

138 2.8 *Brown adipocyte differentiation*

139 The isolation method of mouse BAT primary cells referred to(26). Primary cells were cultured in
140 basal medium (containing 80% DMEM, 20% fetal bovine serum, and 1% penicillin and streptomycin)
141 until the cells had reached more than 90% confluency. Then, cells were treated with a brown
142 adipogenic induction cocktail (DMEM) containing 10% fetal bovine serum, 1% penicillin and
143 streptomycin, 20 nM insulin, 1 mM dexamethasone, 0.5 mM isobutylmethylxanthine, 125 nM
144 indomethacin, and 1 nM 3,3,5-triiodo-L-thyronine (T3) for the first two days. The medium was then
145 replaced by the medium supplemented with only insulin and T3 every other day. The cells were treated
146 with or without ALLICIN (50 µg/mL, SA8720, Solarbio) for six days during brown adipogenesis. BAT
147 differentiation medium was used as the solvent, and 0.1 µg/mL, 1 µg/mL, 10 µg/mL, 50 µg/mL and 100
148 µg/mL solutions were used as the material for the *in vitro* tests. At day 6, fully differentiated adipocytes
149 were used for the experiments.

150 2.9 *Measurements of cellular respiration*

151 BAT primary adipocytes were treated with and/or without Allicin (50 µg/mL) at day 6 of brown
152 adipogenesis for 24h. We measured O₂ consumption of fully differentiated adipocytes at day 7 with an
153 XF24-3 extracellular flux analyzer (Agilent Technologies, Santa Clara, CA, USA). Basal respiration
154 was also assessed in untreated cells.

155 2.10 *RNA isolation and real-time quantitative PCR*

156 Total RNAs from tissues or cells were extracted with Trizol reagent (Thermo Fisher Scientific).
157 We used equal amounts of RNA to synthesize cDNA with the transcript One-Step gDNA Removal and
158 cDNA Synthesis SuperMix kit (AT311-03, TransGen Biotech, Beijing, China). The PCR reaction was
159 run in triplicate for each sample using a Prism VIIA7 real-time PCR system (Thermo Fisher Scientific).
160 Primer sequences are available upon request.

161

162 2.11 *Western blot analysis*

163

164 An equal amount of protein from cell lysate was loaded into each well of a 12%SDS-
165 polyacrylamide gel after denaturation with SDS loading buffer. After electrophoresis, we transferred
166 proteins to a PVDF membrane and incubated with blocking buffer (5% fat-free milk) for 1 h at room
167 temperature. The following antibodies were added overnight: anti-UCP1 (Abcam, ab10983, 1:1000
168 diluted in 5% BSA, 0.0025% Tween-20 in 1× TBS solution), anti-Oxphos (Abcam, ab110413, 1:1000
169 dilution), anti-β-actin (CST, #8457, 1:1000 dilution) and anti-β-tubulin (CST, #2146, 1:1000 dilution).
170 These primary antibodies were incubated overnight in a 4°C refrigerator. The membrane was incubated
171 with horseradish peroxidase-conjugated secondary antibodies for 1 h at room temperature. All signals
172 were visualized and analyzed by Clinx Chemi Capture software (Clinx, Shanghai, China).

173 2.12 *Immunofluorescence staining*

174 We stained differentiated cells with anti-human UCP1, followed by an Alexa 488-conjugated
175 secondary antibody (Invitrogen, Carlsbad, CA, USA), BODIPY (Thermo Fischer Scientific, Waltham,
176 MA, USA) and DAPI (Leagene, Beijing, China), complying with manufacturers' the procedure. Brown
177 adipocytes were positive for both UCP1 and BODIPY. We stained negative controls with the omission

178 of a primary antibody. Images were taken by Zeiss laser scanning confocal microscopy (LSM780,
179 Oberkochen, Germany).

180 **2.13 Statistical analysis**

181 We used a single-factor analysis of variance (ANOVA) followed by a two-tailed Student's *t*-test
182 for comparisons. We presented almost all data as means \pm SEM. Significant differences were
183 considered when $P < 0.05$.

184

185 **Result**

186 **3.1. Allicin reduces adiposity and maintains glucose homeostasis in mice**

187 To investigate the effect of allicin on energy homeostasis, the high-fat-diet-induced
188 obesity mice model (HFD) and genetically leptin-receptor-deficiency obese (Db/Db) mice
189 model was used to assess the role of Allicin on obesity and energy metabolism. Firstly, we
190 screened the optimal treatment concentration (Allicin-high) of allicin by observing the effect
191 of three doses of allicin on the reduction of body weight of HFD mice (*Fig. 1A* and *Fig. s1B*)
192 and also treated the Db/Db mice with the optimal concentration. A significant reduction in
193 body weight after Allicin treatment was observed both in HFD and Db/Db mice models (*Fig.*
194 *1A-1B*, *Fig. 2A-2C*). Notably, the protection from weight gain after Allicin treatment mainly
195 due to the reduction of fat accumulation in eWAT and sWAT (*Fig. 1C-1E*, *Fig. 2D* and *2E*).
196 These data indicated that the anti-adiposity effect of Allicin is evident from both long-term
197 accumulations of innate and genetic obesity. Besides, adiposity often affects glucose
198 homeostasis, so glucose homeostasis and insulin resistance were analyzed by glucose
199 tolerance testing (GTT) and insulin tolerance testing (ITT) both in HFD and Db/Db mice. As
200 expected, Allicin treatment improved glucose tolerance and insulin sensitivity (*Fig. 1F-1G*,
201 *Fig. 2F-2G*). Correspondingly, Serum profiles, including total cholesterol (CHO), TG, LDL,
202 and NEFA levels, were also markedly reduced after Allicin treatment (*Fig. s4*). Taken
203 together, these results indicated that Allicin notably ameliorates adiposity and maintains
204 glucose homeostasis in mice.

205 **3.2. Allicin augments whole-body energy expenditure by activation of brown adipose tissue**

206 Energy consumption is an essential indicator of assessing energy homeostasis. We next
207 investigated the effect of Allicin on whole-body energy expenditure in HFD and Db/Db mice
208 with *the respiratory metabolic system*. We found that Allicin markedly increased the oxygen
209 consumption both in HFD and Db/Db mice (*Fig. 3A-3C*, *Fig. 4A* and *4B*), indicating that
210 Allicin-treated group mice have a higher energy expenditure. However, there is no significant
211 difference in physical activity, food intake, or water intake (*Fig. 3D-3E*, *Fig. S2*). Besides,
212 Allicin treatment significantly increased the thermogenesis of interscapular BAT site and
213 rectal temperature after cold stimulation in all Allicin treatment groups compared with the
214 control group both in HFD and Db/Db mice (*Fig. 3G* and *3H*, *Fig. 4C* and *4D*). BAT is well
215 known as an essential thermogenic and energy-consuming organ in the body, maintaining the
216 body temperature by non-shaking thermogenesis under the stimuli of cold. Based on the
217 above results, we hypothesized that Allicin augments whole-body energy expenditure by
218 activation of BAT in HFD and Db/Db mice. Expectedly, Allicin treatment significantly
219 induced the expression of genes related to thermogenesis and energy expenditure, including
220 UCP1, PRDM16, PGC1 α / β , CPT1 α , and MCAD, in the BAT from HFD mice (*Fig. 3I*).

221 Meanwhile, the 18F-fluorodeoxyglucose(FDG) PET combined with X-ray CT analysis shows
222 that Allicin treatment dramatically increased the glucose utilization rate both in HFD and
223 Db/Db mice (*Fig. 3J and 3K, Fig. 4E and 4F*). Histological analysis of BAT indicates that
224 allicin treatment can reduce the size of lipid droplet (*Fig. 2F and Fig. 4G*). The
225 immunoblotting analysis further indicated that Allicin significantly enhanced the UCP1 and
226 OXPHPS-related proteins (ATP5A, UQCRC2, SDHB, and NDUFB8) expression in BAT
227 both from HFD and Db/Db mouse (*Fig. 3L and Fig. 4H*). These results strongly indicated that
228 that Allicin dramatically increased BAT activity in the HFD and Db/Db mice. These results
229 altogether confirm that Allicin treatment increased *whole-body energy expenditure* and
230 reduced adiposity in the mice.

231 **3.3 Allicin active the brown adipocytes and increase the energy expenditure in vitro.**

232 The above results have proved that Allicin can increase energy expenditure through the
233 activation of BAT in vivo. However, it is unclear whether allicin activates brown fat as a
234 direct or indirect effect. In order to Fig. out this question, we isolated brown primary
235 adipocytes from mice and performed an in vitro brown adipocytes differentiation assay with
236 and/or without Allicin treatment. As the results, Allicin increased the expression of UCP1, the
237 golden maker of activation of BAT, in a dose-dependent manner and with best activation
238 effect at a concentration of 50 μ M (*Fig. 5A*). Consistently, the thermogenic genes, including
239 PGC1 α/β and CPT1 α/β were also upregulated after the Allicin treatment compared with the
240 solvent treatment (*Fig. 5B*). Besides, UCP1 levels were further confirmed by quantification of
241 the protein expression by immunoblotting and immunostaining (*Fig. 5C and 5D*).
242 Furthermore, the expression levels of OXPHOS proteins, including ATP5A, UQCRC2,
243 SDHB, and NDUFB8, were markedly upregulated after Allicin treatment compared with the
244 solvent treatment (*Fig. 5D*). Importantly, the effect of Allicin on energy expenditure were
245 accessed by an oxygen consumption rate (OCR) in brown adipocytes. Expectedly, the OCR-
246 related basal metabolic rate, ATP levels, maximum oxygen consumption, and proton leakage
247 were all markedly increased after Allicin treatment compared with solvent treatment (*Fig. 5E-
248 4I*). Notably, we also investigated the effect of Allicin on activation of brown adipocytes in
249 human brown adipocytes. Surprisingly, the expression levels of thermogenic genes including
250 UCP1, PGC1 α/β , and CPT1 α/β were dramatically increased after the brown adipocyte
251 differentiation cocktail medium treatment with Allicin compared with solvent (*Fig. s5A*).
252 Correspondingly, the UCP1 levels in human brown adipocytes were further confirmed by
253 immunoblotting and immunostaining (*Fig. s5D and s5E*). Meanwhile, the expression levels of
254 OXPHOS proteins in human brown adipocytes also were significantly upregulated after
255 Allicin treatment compared with the solvent treatment (*Fig. s5E*). The human brown
256 adipocytes results indicated that Allicin also has the potential to be applied to human
257 metabolic disease. Collectively, these results indicate that Allicin can active brown adipocytes
258 and increase the energy expenditure in vitro.

259

260 **Discussion**

261 Metabolic diseases caused by the unbalance of energy homeostasis are an explosive
262 epidemic, especially obesity, and related metabolic diseases (27). BAT is a critical organ that
263 regulates energy homeostasis and known as an important potential target for the treatment of
264 metabolic diseases. Bioactive compounds in food have attracted much attention as a safe and
265 effective molecular library. It has reported that garlic is an excellent natural source of

266 bioactive compounds(28). In this study, we revealed that the beneficial effects of Allicin on
267 energy homeostasis in obese mice. Our data show that allicin enhances the BAT function,
268 promotes the energy expenditure, inhibits the fat mass accumulation, improves the glucose
269 homeostasis and insulin sensitivity, and improve hepatic steatosis. Mechanisms, we found
270 that Allicin can induce the promote the activity of sirt1 and induce the downstream PGC1 α -
271 Tfam signaling pathway. It is the first study that relatively systematically demonstrated that
272 Allicin induces BAT activation and regulate energy homeostasis. Our findings point out that
273 reasonable proper administration of Allicin may be a promising potential therapeutic strategy
274 for obesity and related metabolic syndromes.

275 Allicin (thio-2-propene-1-sulfinic acid S-allyl ester) is the principal component of garlic and has
276 many physiological functions. Several studies have reported that garlic or its main ingredient,
277 allicin, has an anti-obesity , anti-hyperinsulinemic, anti-hyperlipidemic, and anti-
278 hypertensive effect (23, 29-31). Among them, a research article reported that Allicin could
279 induce brown-like adipogenesis and increased lipid oxidation in subcutaneous fat though
280 KLF15 signal cascade (23). However, the effect and mechanism of Allicin on the BAT
281 functions has remained unclear. Additionally, the research of Allicin on regulating energy
282 homeostasis is not systematic. In the present study, our findings demonstrated that Allicin
283 induced BAT activation, leading to the inhibition of obesity and maintain energy homeostasis
284 in mice.

285 The malfunctions of energy homeostasis, including energy expenditure (EE), food intake,
286 and fat hypertrophy, can cause obesity (1, 2). In the current study, Allicin treatment
287 profoundly increased the energy expenditure, reduced fat mass, body weight gain, and
288 improved the glucose homeostasis in HFD mice. Importantly, the similar effect of allicin was
289 further confirmed in DB/DB mice, which is a leptin receptor-deficient genetic obese mice
290 model. This indicates that Allicin has a stable function of preventing and treating obesity and
291 regulating energy metabolism of the body. Furthermore, we investigated the effect of Allicin
292 on BAT activation both in HFD and DB/DB mice and found that Allicin treatment more
293 profoundly promotes the activation of BAT in Db/Db mice than in HFD mice (Fig. 3 and Fig.
294 4) , based on that Db/Db mice are known to deficient in BAT activity(32, 33). This result
295 indicated that Allicin has excellent ability to activate BAT and regulate energy metabolism.
296 However, there are many factors (including thyroid hormones, catecholamine
297 neurotransmission, and cytokines) secreted by the endocrine system, which can activate
298 brown adipocyte. So, in order to determine the effect of allicin on BAT activation is direct or
299 secondary, we performed the Allicin treatment on brown adipocytes in vitro. Our data of
300 Allicin treatment in vitro confirmed that Allicin could directly activate the brown adipocyte.

301 In summary, the present study demonstrated that allicin regulates energy homeostasis
302 through promoting BAT activation. In general, moderate application of Allicin
303 represents a promising potential treatment strategy for prevention of obesity and
304 related metabolic disorder.

305

306

307

308

309

310

311 **Compliance with ethical standards**

312 The authors declare that they have no conflict of interest.

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340 **Reference**

341 1. K. G. Murphy, S. R. Bloom, Gut hormones and the regulation of energy
342 homeostasis. *Nature* **444**, 854-859 (2006); published online EpubDec 14
343 (10.1038/nature05484).

344 2. I. S. Farooqi, S. O'Rahilly, Monogenic obesity in humans. *Annual review of*
345 *medicine* **56**, 443-458 (2005)10.1146/annurev.med.56.062904.144924).

346 3. X. Yuan, G. Wei, Y. You, Y. Huang, H. J. Lee, M. Dong, J. Lin, T. Hu, H.
347 Zhang, C. Zhang, H. Zhou, R. Ye, X. Qi, B. Zhai, W. Huang, S. Liu, W. Xie, Q.
348 Liu, X. Liu, C. Cui, D. Li, J. Zhan, J. Cheng, Z. Yuan, W. Jin, Rutin ameliorates
349 obesity through brown fat activation. *FASEB journal : official publication of*
350 *the Federation of American Societies for Experimental Biology* **31**, 333-345
351 (2017); published online EpubJan (10.1096/fj.201600459RR).

352 4. N. Yin, H. Zhang, R. Ye, M. Dong, J. Lin, H. Zhou, Y. Huang, L. Chen, X. Jiang,
353 K. Nagaoka, C. Zhang, Fluvastatin Sodium Ameliorates Obesity through
354 Brown Fat Activation. **20**, (2019); published online EpubApr 1
355 (10.3390/ijms20071622).

356 5. S. Nishtar, P. Gluckman, T. Armstrong, Ending childhood obesity: a time for
357 action. *Lancet (London, England)* **387**, 825-827 (2016); published online
358 EpubFeb 27 (10.1016/s0140-6736(16)00140-9).

359 6. M. Geserick, M. Vogel, R. Gausche, T. Lipek, U. Spielau, E. Keller, R. Pfaffle,
360 W. Kiess, A. Korner, Acceleration of BMI in Early Childhood and Risk of
361 Sustained Obesity. **379**, 1303-1312 (2018); published online EpubOct 4
362 (10.1056/NEJMoa1803527).

363 7. H. Zhang, Y. Hao, C. Wei, B. Yao, S. Liu, H. Zhou, D. Huang, C. Zhang, Y. Wu,
364 Chinese medicine Jinlida granules improve high-fat-diet induced metabolic
365 disorders via activation of brown adipose tissue in mice. *Biomedicine &*
366 *pharmacotherapy = Biomedecine & pharmacotherapy* **114**, 108781 (2019);
367 published online EpubJun (10.1016/j.biopha.2019.108781).

368 8. V. Peirce, S. Carobbio, A. Vidal-Puig, The different shades of fat. *Nature* **510**,
369 76-83 (2014); published online EpubJun 5 (10.1038/nature13477).

370 9. C. Zhang, Y. Weng, F. Shi, W. Jin, The Engrailed-1 Gene Stimulates Brown
371 Adipogenesis. *Stem cells international* **2016**, 7369491
372 (2016)10.1155/2016/7369491).

373 10. B. Cannon, J. Nedergaard, Brown adipose tissue: function and physiological
374 significance. *Physiological reviews* **84**, 277-359 (2004); published online
375 EpubJan (10.1152/physrev.00015.2003).

376 11. M. Harms, P. Seale, Brown and beige fat: development, function and
377 therapeutic potential. *Nature medicine* **19**, 1252-1263 (2013); published
378 online EpubOct (10.1038/nm.3361).

379 12. M. Matsushita, T. Yoneshiro, S. Aita, T. Kameya, H. Sugie, M. Saito, Impact of
380 brown adipose tissue on body fatness and glucose metabolism in healthy
381 humans. *International journal of obesity (2005)* **38**, 812-817 (2014);
382 published online EpubJun (10.1038/ijo.2013.206).

383 13. S. Kajimura, B. M. Spiegelman, P. Seale, Brown and Beige Fat: Physiological
384 Roles beyond Heat Generation. *Cell metabolism* **22**, 546-559 (2015);
385 published online EpubOct 6 (10.1016/j.cmet.2015.09.007).

386 14. J. Zhou, N. N. Wu, R. L. Yin, W. Ma, C. Yan, Y. M. Feng, C. H. Zhang, D. Zhao,
387 Activation of brown adipocytes by placental growth factor. *Biochemical and*
388 *biophysical research communications* **504**, 470-477 (2018); published online
389 EpubOct 2 (10.1016/j.bbrc.2018.08.106).

390 15. J. Wu, P. Bostrom, L. M. Sparks, L. Ye, J. H. Choi, A. H. Giang, M. Khandekar,
391 K. A. Virtanen, P. Nuutila, G. Schaart, K. Huang, H. Tu, W. D. van Marken
392 Lichtenbelt, J. Hoeks, S. Enerback, P. Schrauwen, B. M. Spiegelman, Beige
393 adipocytes are a distinct type of thermogenic fat cell in mouse and human.
394 *Cell* **150**, 366-376 (2012); published online EpubJul 20
395 (10.1016/j.cell.2012.05.016).

396 16. P. Bostrom, J. Wu, M. P. Jedrychowski, A. Korde, L. Ye, J. C. Lo, K. A.
397 Rasbach, E. A. Bostrom, J. H. Choi, J. Z. Long, S. Kajimura, M. C. Zingaretti,
398 B. F. Vind, H. Tu, S. Cinti, K. Hojlund, S. P. Gygi, B. M. Spiegelman, A PGC1-
399 alpha-dependent myokine that drives brown-fat-like development of white fat
400 and thermogenesis. *Nature* **481**, 463-468 (2012); published online EpubJan
401 11 (10.1038/nature10777).

402 17. P. Seale, H. M. Conroe, J. Estall, S. Kajimura, A. Frontini, J. Ishibashi, P.
403 Cohen, S. Cinti, B. M. Spiegelman, Prdm16 determines the thermogenic
404 program of subcutaneous white adipose tissue in mice. *The Journal of clinical
405 investigation* **121**, 96-105 (2011); published online EpubJan
406 (10.1172/jci44271).

407 18. D. Merrick, A. Sakers, Identification of a mesenchymal progenitor cell
408 hierarchy in adipose tissue. **364**, (2019); published online EpubApr 26
409 (10.1126/science.aav2501).

410 19. M. P. McRae, A review of studies of garlic (*Allium sativum*) on serum lipids
411 and blood pressure before and after 1994: does the amount of allicin
412 released from garlic powder tablets play a role? *Journal of chiropractic
413 medicine* **4**, 182-190 (2005); published online EpubWinter (10.1016/s0899-
414 3467(07)60149-9).

415 20. J. Y. Chan, A. C. Yuen, R. Y. Chan, S. W. Chan, A review of the cardiovascular
416 benefits and antioxidant properties of allicin. *Phytotherapy research : PTR* **27**,
417 637-646 (2013); published online EpubMay (10.1002/ptr.4796).

418 21. G. Ding, J. Zhao, D. Jiang, Allicin inhibits oxidative stress-induced
419 mitochondrial dysfunction and apoptosis by promoting PI3K/AKT and
420 CREB/ERK signaling in osteoblast cells. *Experimental and therapeutic
421 medicine* **11**, 2553-2560 (2016); published online EpubJun
422 (10.3892/etm.2016.3179).

423 22. A. R. El-Sheakh, H. A. Ghoneim, G. M. Suddek, E. S. M. Ammar, Attenuation
424 of oxidative stress, inflammation, and endothelial dysfunction in
425 hypercholesterolemic rabbits by allicin. *Canadian journal of physiology and
426 pharmacology* **94**, 216-224 (2016); published online EpubFeb (10.1139/cjpp-
427 2015-0267).

428 23. C. G. Lee, D. K. Rhee, B. O. Kim, S. H. Um, S. Pyo, Allicin induces beige-like
429 adipocytes via KLF15 signal cascade. *The Journal of nutritional biochemistry*
430 **64**, 13-24 (2019); published online EpubFeb (10.1016/j.jnutbio.2018.09.014).

431 24. Q. S. Chi, D. H. Wang, Thermal physiology and energetics in male desert
432 hamsters (*Phodopus roborovskii*) during cold acclimation. *Journal of
433 Comparative Physiology B-biochemical Systemic & Environmental Physiology*
434 **181**, 91-103 (2011).

435 25. X. Liu, Z. Zheng, X. Zhu, M. Meng, L. Li, Y. Shen, Q. Chi, D. Wang, Z. Zhang,
436 C. Li, Brown adipose tissue transplantation improves whole-body energy
437 metabolism. *Cell Research* **23**, 851-854 (2013).

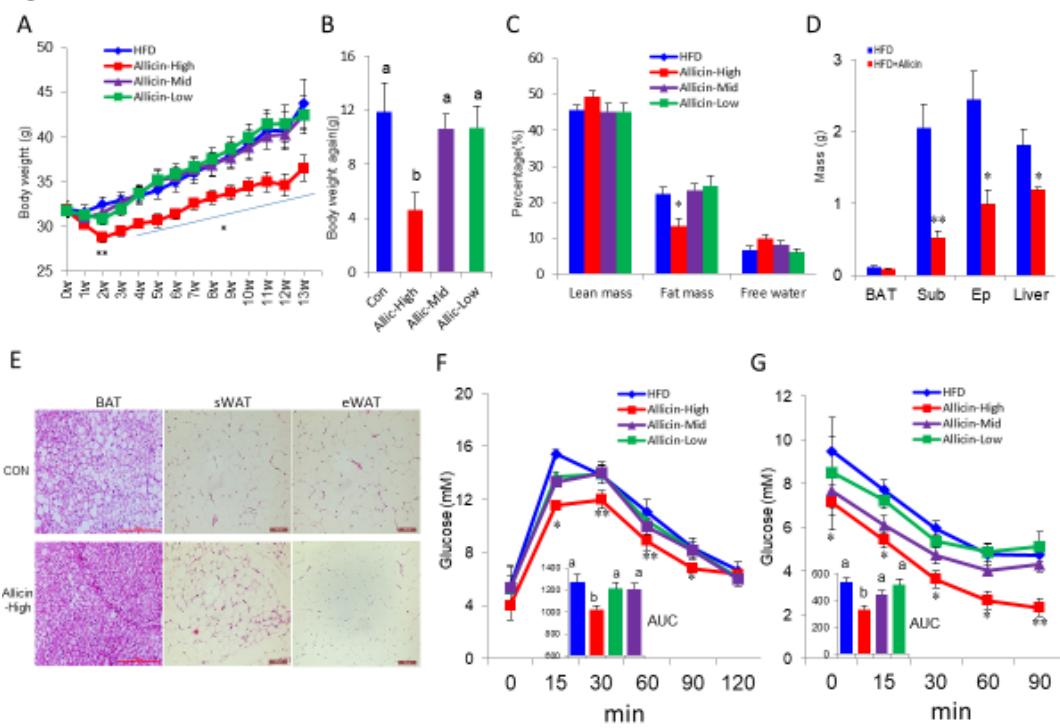
438 26. J. Klein, M. Fasshauer, H. H. Klein, M. Benito, C. R. Kahn, Novel adipocyte
439 lines from brown fat: a model system for the study of differentiation, energy
440 metabolism, and insulin action. *BioEssays : news and reviews in molecular,*

441 *cellular and developmental biology* **24**, 382-388 (2002); published online
442 EpubApr (10.1002/bies.10058).

443 27. C. Chevalier, O. Stojanovic, D. J. Colin, N. Suarez-Zamorano, V. Tarallo, C.
444 Veyrat-Durebex, D. Rigo, S. Fabbiano, A. Stevanovic, S. Hagemann, X.
445 Montet, Y. Seimbille, N. Zamboni, S. Hapfelmeier, M. Trajkovski, Gut
446 Microbiota Orchestrates Energy Homeostasis during Cold. *Cell* **163**, 1360-
447 1374 (2015); published online EpubDec 3 (10.1016/j.cell.2015.11.004).

448 28. A. Shang, S. Y. Cao, X. Y. Xu, R. Y. Gan, Bioactive Compounds and Biological
449 Functions of Garlic (*Allium sativum* L.). **8**, (2019); published online EpubJul 5
450 (10.3390/foods8070246).

451 29. A. Elkayam, D. Mirelman, E. Peleg, M. Wilchek, T. Miron, A. Rabinkov, M.
452 Oron-Herman, T. Rosenthal, The effects of allicin on weight in fructose-
453 induced hyperinsulinemic, hyperlipidemic, hypertensive rats. *American journal*
454 *of hypertension* **16**, 1053-1056 (2003); published online EpubDec
455 (10.1016/j.amjhyper.2003.07.011).


456 30. A. Hosseini, H. Hosseinzadeh, A review on the effects of *Allium sativum*
457 (Garlic) in metabolic syndrome. *Journal of endocrinological investigation* **38**,
458 1147-1157 (2015); published online EpubNov (10.1007/s40618-015-0313-8).

459 31. W. Gao, W. Wang, J. Zhang, P. Deng, J. Hu, J. Yang, Z. Deng, Allicin
460 ameliorates obesity comorbid depressive-like behaviors: involvement of the
461 oxidative stress, mitochondrial function, autophagy, insulin resistance and
462 NOX/Nrf2 imbalance in mice. *Metabolic brain disease*, (2019); published
463 online EpubJun 14 (10.1007/s11011-019-00443-y).

464 32. P. Hossain, B. Kawar, M. El Nahas, Obesity and diabetes in the developing
465 world--a growing challenge. *The New England journal of medicine* **356**, 213-
466 215 (2007); published online EpubJan 18 (10.1056/NEJMOp068177).

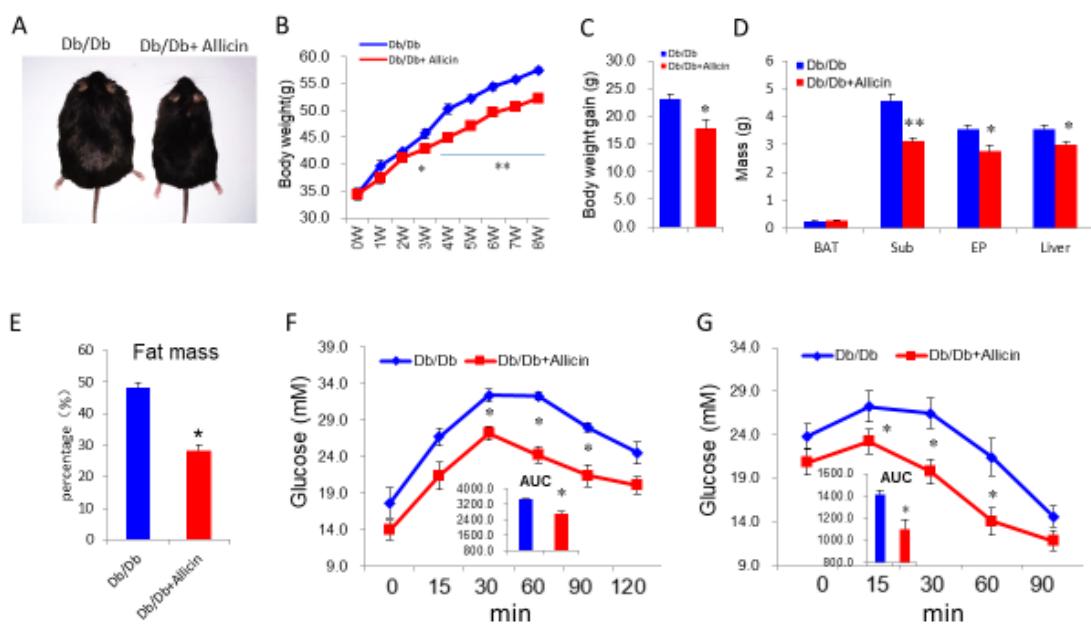
467 33. P. Trayhurn, Thermoregulation in the diabetic-obese (db/db) mouse. The role
468 of non-shivering thermogenesis in energy balance. *Pflugers Archiv : European*
469 *journal of physiology* **380**, 227-232 (1979); published online EpubJul (

Figure 1

474

475

476


477

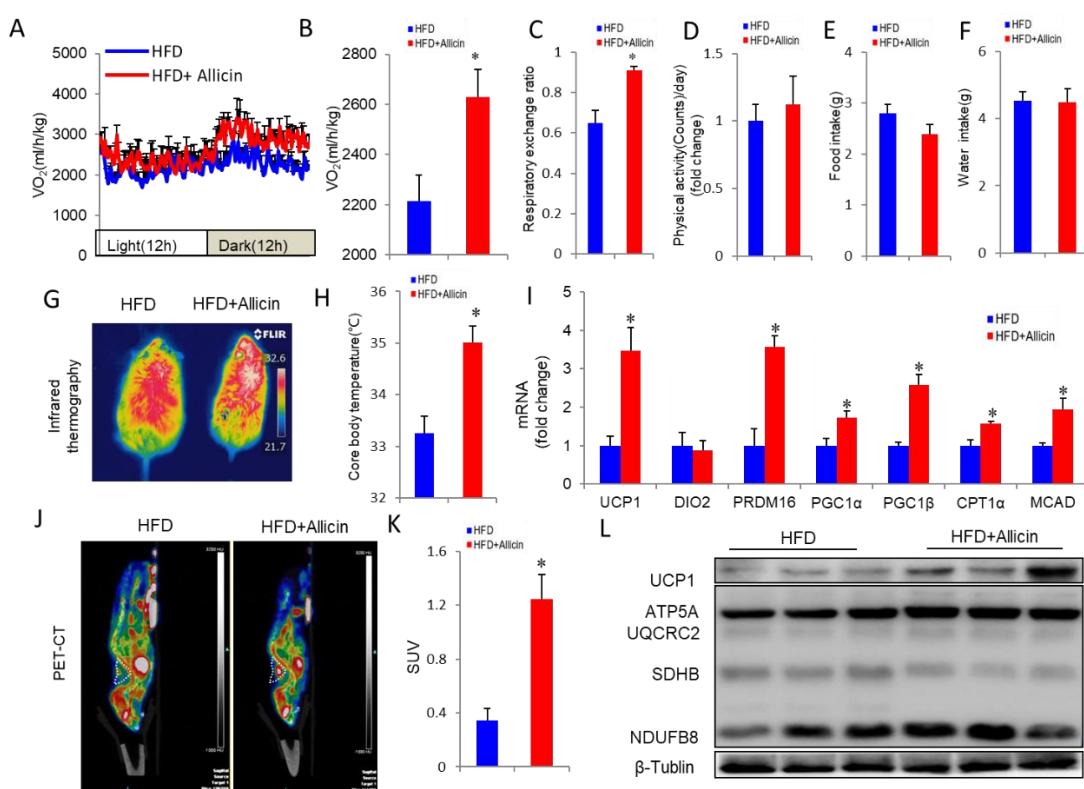
478

479

480

Figure 2

481


482

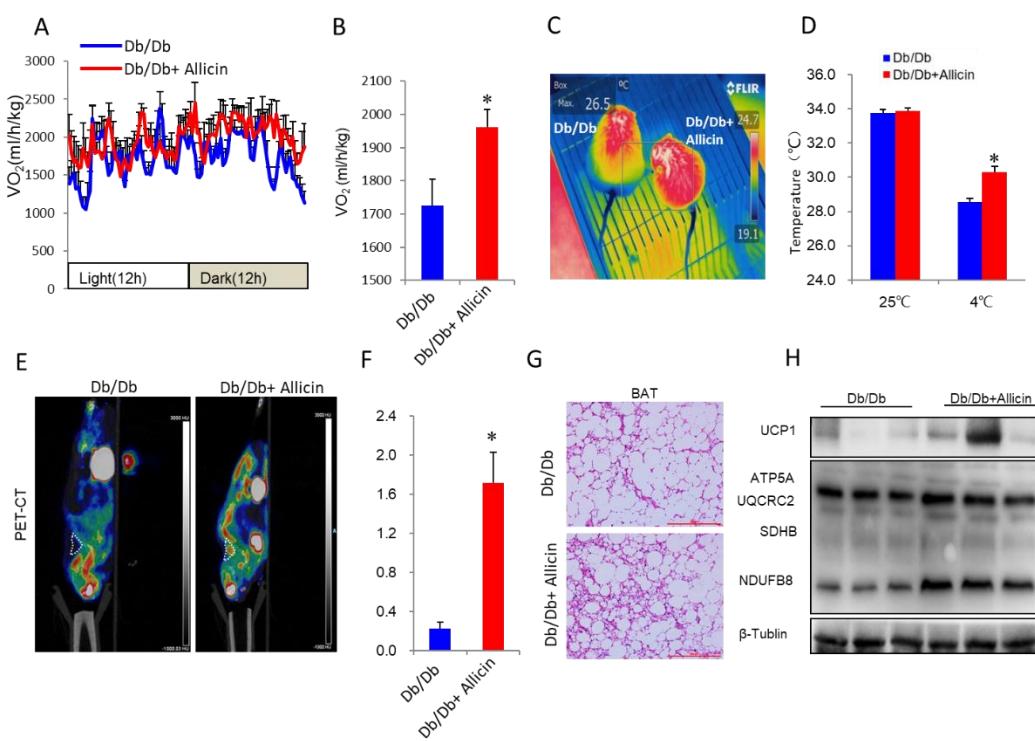
483

484

485

Figure 3

486


487

488

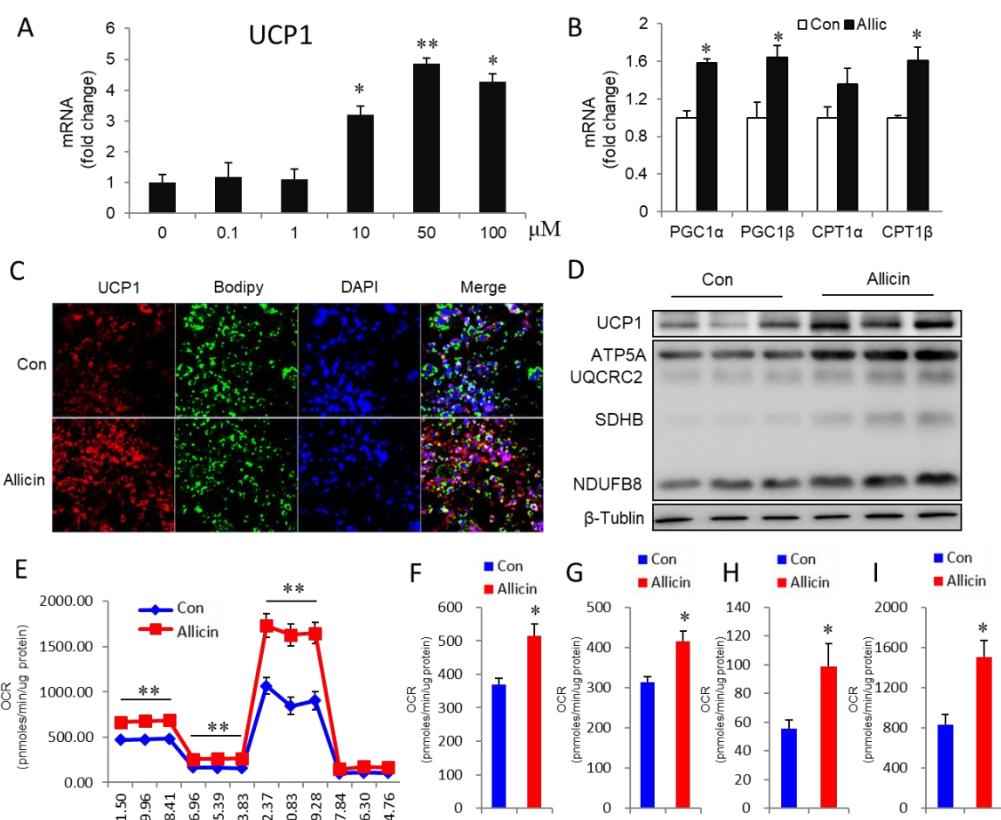
489

490

Figure 4

491

492


493

494

495

496

Figure 5

497

498

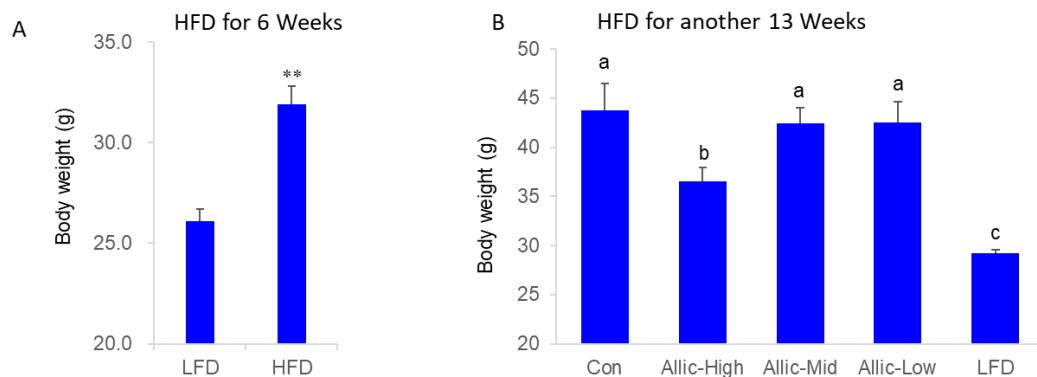
499

500

501

502

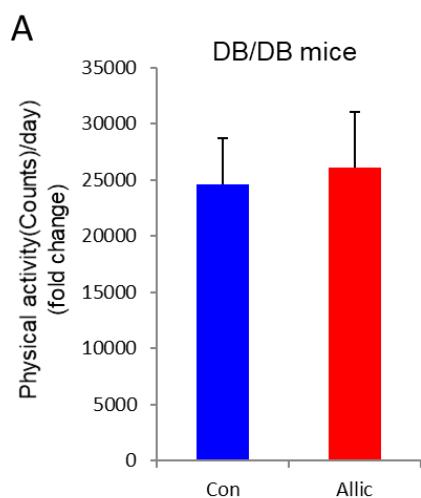
503


504

505

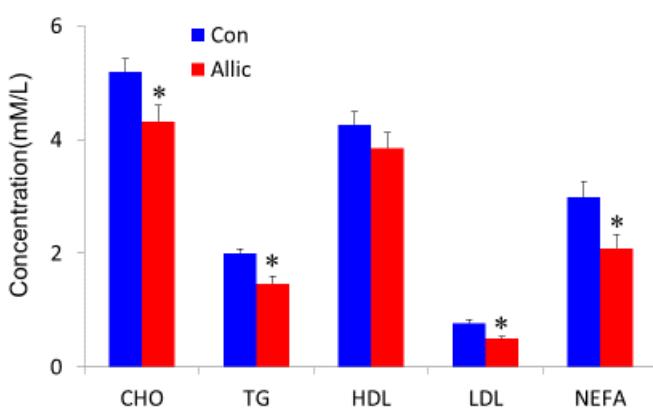
506

507


Figure s1

508

509


Figure s2

510

511

Figure s3

512

513

514

515 **Figure legends:**

516 **Figure 1. Allicin reduces adiposity and improves glucose homeostasis in DIO mice.**

517 Vehicle (control) or different-doses Allicin were daily administrated for 13 weeks. (A)
518 Bodyweight evaluation of control HFD mice or mice treated with different-dose Allicin.
519 (n=9). (B) Bodyweight again of different groups of mice (n=9). (C) Body fat percentage test
520 using NMR. (D) Organ weight of control and Allicin-treated HFD mice (n = 6). (E) H&E
521 staining of BAT, sWAT, and eWAT sections from DIO control and Allicin treated DIO mice.
522 (F) Glucose tolerance test on control and Allicin-treated DIO mice (I.P. with glucose as 1.0
523 g/kg after 16h fast) (n=8). Also, the average area under the curve (n = 8). (G) Insulin
524 tolerance test was performed on control and Allicin-treated DIO mice (injection insulin with
525 2.0 U/kg after 6 h of fasting (n = 8). And the average area under the curve (n=8). Values
526 represent means \pm SEM. Error bars represent SEM; significant differences compared to
527 vehicle controls are indicated by *p < 0.05, **p < 0.01, ***p < 0.001 (assessed by Student's
528 t-test).

529 **Figure 2. Allicin reduces body weight gain and improves glucose homeostasis in leptin-
530 receptor deficiency mice (Db/Db mice).**

531 (A) Body-shape image of Db/Db control mice and mice treated with Allicin. (B) Bodyweight
532 of Db/Db mice treated with vehicle or Allicin. (n=5). (C) Bodyweight gain of Db/Db control
533 mice and mice treated with Allicin. (n=5). (D) Organ weight of control and Allicin-treated
534 Db/Db mice (n = 5). (E) Body fat percentage test using NMR. (F) Glucose tolerance test on
535 control and Allicin-treated Db/Db mice (I.P. with glucose as 0.5 g/kg after 16h fast) (n=5).
536 And the average area under the curve (n = 5). (G) Insulin tolerance test was performed on
537 control and Allicin-treated Db/Db mice (injection insulin with 1.0 U/kg after 6 h of fasting (n
538 = 5). And the average area under the curve (n=5). Values represent means \pm SEM. Error bars
539 represent SEM; significant differences compared to vehicle controls are indicated by *p <
540 0.05, **p < 0.01, ***p < 0.001 (assessed by Student's t-test).

541 **Figure 3. Allicin increases energy expenditure and enhances BAT activity in DIO mice.**

542 (A and B) Energy expenditure was assessed by oxygen consumption (VO₂) in DIO mice after
543 12 wk of Allicin treatment (B) (n = 5); (C–F) physical activity (C); respiratory exchange ratio
544 (D); food intake (E); water intake (F) of control and Allicin-treated DIO mice (n = 5). (G)
545 Infrared thermal images of control and Allicin-treated DIO mice, which showed more thermal
546 signals in the interscapular BAT position. (H) The core body temperature of control and
547 Allicin treated mice after cold stimulation (4°C for 4 h). (I) The real-time PCR analysis of
548 thermogenic genes in BAT form control and Allicin-treated DIO mice. (J–K) PET/CT images
549 after injection of 18F-FDG into DIO mice treated with vehicle and Allicin for 12 weeks
550 (J).white triangle indicates the anatomical site of the interscapular BAT (n=3). Mean standard
551 uptake value (SUV) of 18F-FDG in BAT (K). UCP1 and OXPHOS expression levels in BAT
552 from control and Allicin-treated DIO mice (L). Values represent means \pm SEM. Error bars
553 represent SEM; significant differences compared to vehicle controls are indicated by *p <
554 0.05 (assessed by Student's t-test).

555 **Figure 4. Allicin increases energy expenditure and enhances BAT activity in leptin-
556 receptor deficiency mice (Db/Db mice).**

557 (A and B) Energy expenditure was assessed by oxygen consumption (VO₂) in Db/Db mice
558 after 8 weeks of Allicin treatment (B) (n = 5); (C) Infrared thermal images of control and
559 Allicin-treated Db/Db mice, which showed more thermal signals in the interscapular BAT
560 position. (D) The core body temperature of control and Allicin treated mice at room
561 temperature (25°C) and after cold stimulation (4°C for 4 h). (E-F) PET/CT images after
562 injection of 18F-FDG into Db/Db mice treated with vehicle and Allicin for 8 weeks (E). white
563 triangle indicates the anatomical site of the interscapular BAT (n=3). Mean standard uptake
564 value (SUV) of 18F-FDG in BAT (F). (G) H&E staining of BAT from control and Allicin-
565 treated Db/Db mice. (H) UCP1 and OXPHOS expression levels in BAT from control and
566 Allicin-treated Db/Db mice. Values represent means \pm SEM. Error bars represent SEM;
567 significant differences compared to vehicle controls are indicated by *p < 0.05 (assessed by
568 Student's t-test).

569 **Figure 5. Allicin increases the activity of brown adipocytes and oxygen consumption in**
570 **vitro.**

571 (A) Dose-dependent effect of Allicin on UCP1 expression in primary brown adipocytes at
572 Day 6 of brown adipogenesis. (B) Thermogenic gene expression in brown adipocytes treated
573 with 50 μ M Allicin or DMSO. (C) Immunofluorescence staining of UCP1 and Bodipy in
574 brown adipocytes treated with 50 μ M rutin or DMSO at day 6 of brown adipogenesis. (D)
575 The protein levels of UCP1 and OXPHOS in brown adipocytes treated with DMSO or Allicin.
576 (E) oxygen consumption rates (OCR) at day 6 of brown adipogenesis with Allicin or DMSO
577 treatment. (n=5). (F-I) The OCR-related basal metabolic rate, ATP levels, maximum oxygen
578 consumption and proton leakage. (n=5). Values represent means \pm SEM. Error bars represent
579 SEM; significant differences compared to vehicle controls are indicated by *p < 0.05, **p <
580 0.01, ***p < 0.001 (assessed by Student's t-test).

581

582 **Supplementary figure legends:**

583 **Figure s1.** (A) The bodyweight of chow diet and high-fat diet mice for the first 6 weeks
584 before the Allicin treatment. (B) The bodyweight of different group mice with chow diet and
585 high-fat diet for 13 weeks.

586 **Figure s2. The physical activity of Db/Db mice treated with or without Allicin**

587 **Figure s4. The lipid profile in the serum from control and Allicin-treated DIO mice.**