

1 **Identification of porcine RUNX1 as an LPS-dependent gene expression regulator**
2 **in PBMCs by Super deepSAGE sequencing of multiple tissues**

3 Tinghua Huang¹, Min Yang¹, Kaihui Dong¹, Mingjiang Xu¹, Jinhui Liu¹, Zhi Chen¹,
4 Shijia Zhu¹, Wang Chen¹, Jun Yin¹, Kai Jin¹, Yu Deng¹, Zhou Guan¹, Xiali Huang¹,
5 Jun Yang¹, Rongxun Han¹, Min Yao¹

6 1. College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, China

7 Corresponding author's contact information: College of Animal Science, Yangtze
8 University, Jingzhou, Hubei 434025, China, Email: minyao@yangtzu.edu.cn, Tel:
9 8613387202183

10 Running title: RUNX1 is a LPS-dependent regulator in PBMCs

11 Keywords: RUNX1, Super deepSAGE, PBMC, LPS

12

13

14

15

16

17

18

19

20

21

22 Abstract

23 Genome-wide identification of gene expression regulators may facilitate our
24 understanding of the transcriptome constructed by gene expression profiling
25 experiment. These regulators may be selected as targets for genetic manipulations in
26 farm animals. In this study, we developed a gene expression profile of 76,000+ unique
27 transcripts for 224 porcine samples from 28 normal tissues collected from 32 animals
28 using Super deepSAGE (serial analysis of gene expression by deep sequencing)
29 technology. Excellent sequencing depth has been achieved for each multiplexed
30 library, and principal component analysis showed that duplicated samples from the
31 same tissues cluster together, demonstrating the high quality of the Super deepSAGE
32 data. Comparison with previous research indicated that our results not only have
33 excellent reproducibility but also have greatly extended the coverage of the sample
34 types as well as the number of genes. Clustering analysis discovered ten groups of
35 genes showing distinct expression patterns among those samples. Binding motif over
36 representative analysis identified 41 regulators responsible for the regulation of these
37 gene clusters. Finally, we demonstrate a potential application of this dataset to
38 infectious and immune research by identifying an LPS-dependent transcription factor,
39 runt-related transcription factor 1 (RUNX1), in peripheral blood mononuclear cells
40 (PBMCs). The selected genes are specifically responsible for the transcription of
41 toll-like receptor 2 (TLR2), lymphocyte-specific protein tyrosine kinase (LCK), vav1
42 oncogene (VAV1), and other 32 genes. These genes belong to the T and B cell
43 signaling pathways, making them potential novel targets for the diagnostic and
44 therapy of bacterial infections and other immune disorders.

45 Introduction

46 The domestic pig (*Sus scrofa*) is an important farm animal for meat source
47 worldwide and has been used as alternative models for studying genetics, nutrition,
48 and disease as reviewed recently (Houpt et al. 1979; Verma et al. 2011; Bailey and
49 Carlson 2019). The swine genome community has created a large amount of useful

50 data about the transcriptome of pigs (Schroyen and Tuggle 2015). The recently
51 released pig genome sequence (Sscrofa 10.2) (Groenen et al. 2012) and associated
52 annotation greatly enhance our knowledge of the pig biology (Dawson et al. 2013;
53 Beiki et al. 2019). Currently, it is estimated that the porcine genome encodes for
54 ~40,000 genes (Groenen et al. 2012). Transcriptome analysis indicated that the
55 actively transcribed genes are only a fraction, perhaps 15,000 genes, in normal tissues
56 (Hornshoj et al. 2007). Several research groups have created microarray transcriptome
57 profiling data for normal human tissues (Haverty et al. 2002; Shmueli et al. 2003),
58 normal mouse tissues (Su et al. 2002; Su et al. 2004), and normal rat tissues (Walker
59 et al. 2004). In the pig, several Expressed Sequence Tag (EST) sequencing projects,
60 microarray platforms, and deep sequencing projects have developed gene expression
61 profiles across a range of tissues (Hornshoj et al. 2007; Freeman et al. 2012).
62 Compared to the model organisms, the information of the pig transcriptome is still
63 limited in terms of comprehensive tissue and gene coverage (Schroyen and Tuggle
64 2015). Here we present Super deepSAGE (serial analysis of gene expression by deep
65 sequencing) profiling data for the normal pig tissues with wide gene coverage and
66 annotation. Using K-means clustering analysis and motif binding site enrichment
67 analysis, we have identified regulators for co-expressed genes. A detailed analysis of
68 one of the interesting transcription factors, runt-related transcription factor 1
69 (RUNX1), illustrated the power of the data.

70 **Results and discussion**

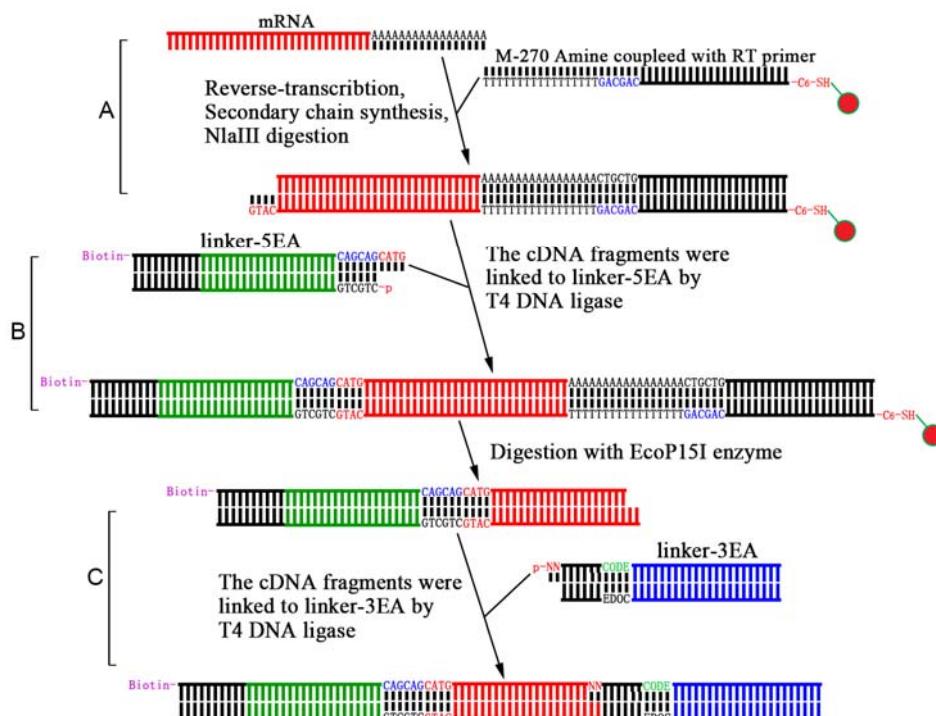
71 **Development of the Super deepSAGE technology**

72 A flowchart of the Super deepSAGE experiment is summarized in Fig. 1.
73 Dynabeads® M-270 Amine (Thermo Fisher Scientific, China) were coupled with
74 -C6-SH labeled reverse transcription-primer with the sequence containing the
75 5'-CAGCAG-3' recognition site of EcoP15I and an Oligo(dT) sequence at 3' end
76 designed intentionally to complement the poly(A) sequence of mRNAs (Synthesized
77 by Sangon Biotech, China). The coupling procedure was carried out following

78 protocol reported by Hill and Mirkin (Hill and Mirkin 2006) using the succinimidyl
79 4-(p-maleimidophenyl)butyrate (SMPB) crosslink reagent (Thermo scientific,
80 Shanghai, China). Ten micrograms of mRNA were reverse-transcribed (cDNA
81 synthesis system, Invitrogen) with the Oligo(dT) magnetic beads to generate
82 single-stranded cDNA using protocol recommended by the manufacturer. The product
83 was converted to double-stranded cDNA using random primer and then digested with
84 NlaIII (NEB, Beijing, China). The biotin-labeled linkers (linker-5EA) with
85 phosphorylated 5' termini and 3' end overhang (5'-CATG-3'), containing the EcoP15I
86 recognition site were prepared by annealing commercially synthesized
87 oligonucleotides. The magnetic beads-bound cDNA was washed and linked to
88 linker-5EA by T4 DNA ligase (NEB, Beijing, China). As a result, each cDNA
89 fragment bounded to the magnetic beads is flanked by two inverted repeats of
90 EcoP15I recognizing sites. The type III restriction enzyme EcoP15I cleaves the DNA
91 downstream of the recognizing site (25 nt in one strand and 27 nt in the other strand)
92 leaving a 5' end overhang of two bases (Meisel et al. 1992; Moncke-Buchner et al.
93 2009). Linker-ligated cDNAs on the magnetic beads were digested with ten units of
94 EcoP15I under conditions described previously (Matsumura et al. 2003). The
95 supernatant containing released biotin-labeled fragments were added to streptavidin
96 magnetic beads (Promega, Beijing, China), and the biotin-labeled fragments of the
97 cDNAs were captured. Finally, barcoded linkers (linker-3EA) with two random base
98 overhangs at 5' end and phosphorylated termini were prepared and ligated to the
99 cDNA ends by T4 DNA ligase (NEB, Beijing, China). The resulting products were
100 amplified by polymerase chain reaction (PCR), and the 119 bp product was separated
101 by polyacrylamide gel electrophoresis (PAGE) and recovered from the gel. The
102 barcoded libraries prepared from different samples were combined into a single
103 multiplex sequencing reaction at the end of library construction and submitted for
104 deep sequencing. The sequence information of synthetic oligos, linkers, and primers
105 are available in Supplemental document 1.

106 The serial analysis of gene expression (SAGE) was first developed by
107 Velculescu et al. (Velculescu et al. 1995) and improved by Saha et al. (Saha et al.
108 2002), Matsumura et al. (Matsumura et al. 2003), and Nielsen et al. (Nielsen et al.

109 2006). The traditional SAGE library construction protocol includes multiple steps,
110 and the separation of the linker-tag fragment is challenging to perform, and the PAGE
111 purification often produces low yield. The library construction protocol in this study
112 was improved by introducing two magnet beads: 1) Dynabeads® M-270 Amine
113 coupled with -C6-SH labeled Oligo(dT) reverse transcription primer; 2) The
114 streptavidin magnetic beads which can capture biotin-labeled linkers (linker-5EA).
115 The magnetic beads used in this protocol can capture and purify the DNA fragments
116 and is technically less demanding than PAGE separation. This modification increased
117 the yield of linker-tag fragments and resulted in the robustness of the technique. Also,
118 the primers and linkers were designed compatible with multiplexed deep sequencing
119 technology, saving the sequencing cost.



120

121 Fig. 1. Flowchart of Super deepSAGE library construction. There are three major
122 steps included in the protocol: A) reverse transcription with oligo(dT) coupled
123 magnetic beads, synthesis of the secondary chain, and digestion with NlaIII; B) add 5'
124 end linker and digest with EcoP15I, and C) add 3' end linker and PCR amplification.
125 For details see materials and methods section.

126 **Animals, samples collection, and deep sequencing**

127 A total of 224 tissue samples across 28 different tissues were collected from a
128 slaughtering farm located in Hubei province in China. The samples were collected
129 from 32 animals from a Duroc × Landrace × Yorkshire (DLY) commercial crossbreed
130 pig populations consisting of 16 males and 16 females with a median age of 21 days.
131 The endometrium, placenta, and conceptus were collected from Landrace × Yorkshire
132 (LY) sows of 65 days of gestation. The detailed sample information is available in
133 Table 1. In the computational extraction of tags from sequence data, the in-house
134 designed program removes the two bases at the 5' end. This 'digital removal' is
135 performed to minimize the less accurate effect of two random bases, at the 5' end of
136 linker-3EA, and could potentially reduce the length of tags, and affect the
137 representative ability of the data. However, direct link with a linker that has two
138 random bases at the 5' end forming stick ends will 1) enhance the efficiency of the
139 link assay, and 2) no additional blunt ending process was needed. The inaccuracy
140 caused by this linkage process was removed by the 'digital removal' procedure,
141 thereby lowering the systematic bias in the data.

142 **Table 1. Detailed information of the collected samples**

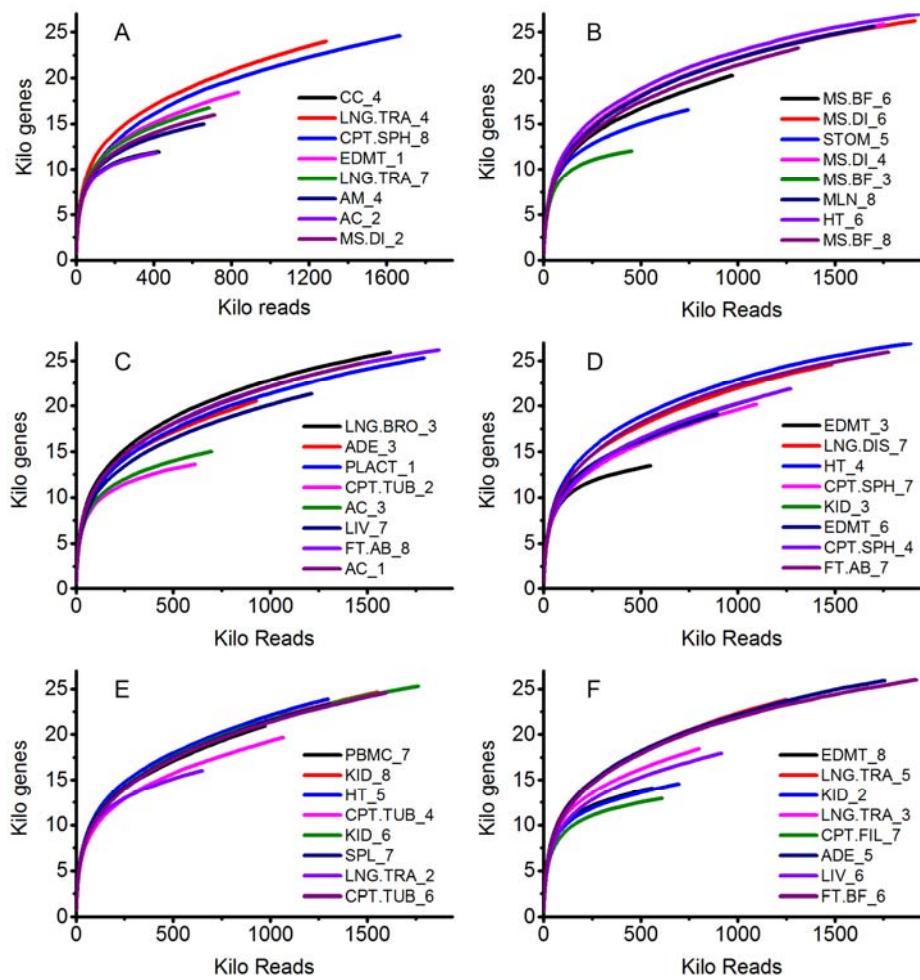
ID	Code	Dupli	Age	Male/	Breeds	Tissue
		cates	(day)	femal	e	
1	AC	8	21	4/4	DLY	Adrenal cortex
2	AM	8	21	4/4	DLY	Adrenal medulla
3	CPT.SPH	8	21	4/4	DLY	Conceptus spherical
4	CPT.TUB	8	21	4/4	DLY	Conceptus tubular
5	FT.AB	8	21	4/4	DLY	Abdominal fat tissue
6	MS.DI	8	21	4/4	DLY	Diaphragm muscle
7	STOM	8	21	4/4	DLY	Stomach
8	CPT.FIL	8	21	4/4	DLY	Conceptus filamentous
9	MS.LD	8	21	4/4	DLY	Longissimus dorsi
10	LNG.TRA	8	21	4/4	DLY	Lung porcine trachea

11	PLACT	8	21	4/4	DLY	Placenta
12	LNG.BRO	8	21	4/4	DLY	Lung porcine bronchus
13	LNG.DIS	8	21	4/4	DLY	Lung porcine distal
14	SPL	8	21	4/4	DLY	Spleen
15	FT.BF	8	21	4/4	DLY	Back fat tissue
16	KID	8	21	4/4	DLY	Kidney
17	ADE	8	21	4/4	DLY	Adenohypophysis
18	MP.BMD	8	21	4/4	DLY	Bone-marrow derived macrophage
19	MS.BF	8	21	4/4	DLY	Biceps femoris
20	EDMT	8	21	4/4	DLY	Endometrium
21	BLD	8	21	4/4	DLY	Blood
22	PBMC	8	21	4/4	DLY	Peripheral blood mononuclear cell
23	HT	8	21	4/4	DLY	Heart
24	CC	8	21	4/4	DLY	Cerebral cortex
25	MP.MD	8	21	4/4	DLY	Monocyte derived macrophage
26	MP.ALV	8	21	4/4	DLY	Porcine alveolar macrophages
27	MLN	8	21	4/4	DLY	Mesenteric lymph nodes
28	LIV	8	21	4/4	DLY	Liver

143 **Analysis of the complexity and diversity of Super deepSAGE data across tissues**

144 Rarefaction analysis of size-fractionated library for each sample was performed
145 to determine the complexity and diversity of the tissues in pig (Wang et al. 2018). The
146 sequencing depth achieved using eight samples-multiplexed deep sequencing technic
147 reached near-saturation of transcript discovery within all size ranges. Saturation was
148 reached very early in Super deepSAGE sequencing data due to the lower complexity
149 of the tags (number of tags) in libraries (Fig. 2A-F showed the first six deep
150 sequencing runs). Samples from the same sequencing run were compared using reads

151 from different size-fractionated libraries to further investigate the diversity of the
152 relationship between sequencing depth and transcript discovery. In all deep
153 sequencing runs, tissues exhibited transcriptome diversity in terms of both total
154 numbers of reads and the number of transcripts discovered. For example, the muscle
155 tissue (MS.DI_2) saturated much sooner than the conceptus (CPT.SPH_8) and have
156 less number of transcripts discovered in the first deep sequencing run (Fig. 2A).
157 Similar sequencing depth and diversity were obtained using size-fractionated data
158 from each of the sequencing run and transcript as outcome measures (Supplemental
159 Fig. SA-D).



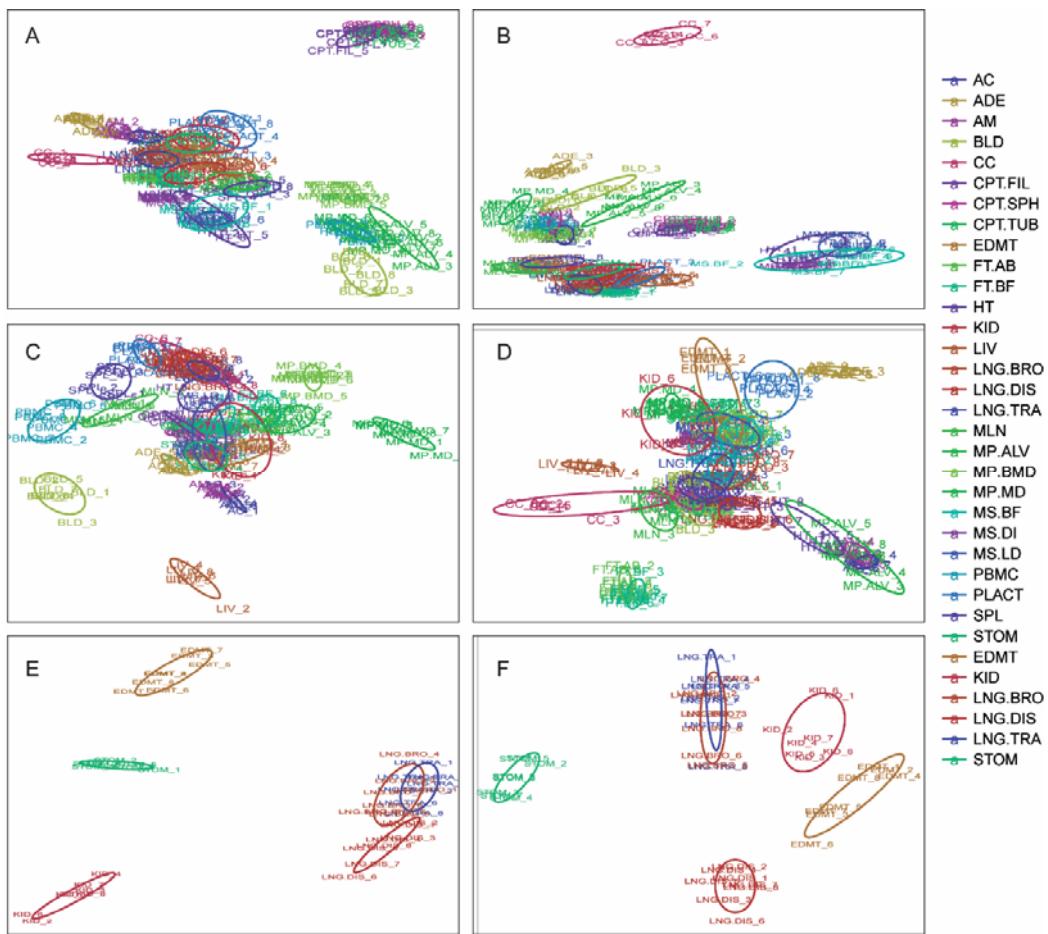
160

161 Fig. 2. Rarefaction analysis of covered genes/transcripts in porcine tissues and
162 cells Super deepSAGE library. Plot A to F shows the covered Kilo transcripts per Kilo

163 reads in the first six Super deepSAGE sequencing runs. The samples in each
164 sequencing run were randomized and detailed information is given in Table 1.

165 **Data quality and internal consistency control using principal component analysis
166 (PCA)**

167 Principal component analysis (PCA) was used to check if the samples clustered
168 together according to their tissue source (Son et al. 2005). Even though the samples
169 were collected from 32 individual animals from different families, genders, and ages
170 (Table 1), the PCA plot showed that the samples from the same tissues clustered
171 together and were distinct from other samples (Fig. 3). The transcripts in conceptus,
172 blood, and macrophages had relatively distinct expression profile and segregation
173 apart from the rest of the samples when plotted using the first two components of the
174 PCA analysis (Fig. 3A). The adenohypophysis, cerebral cortex, heart, and muscle
175 were aggregate and separated from other samples when plotted using the third and
176 fourth component (Fig. 3B). The adrenal, liver, mesenteric lymph nodes, peripheral
177 blood mononuclear cell, and spleen were slightly away from other samples when
178 plotted using the fifth and sixth component (Fig. 3C). When removing those samples
179 from the datasets and re-calculating the PCAs, the remaining samples; fat, placenta,
180 endometrium, kidney, lung, and stomach grouped differently according to the
181 tissue/cell types (Fig. 3D to F). Tissues having similar cellular composition and
182 biological function, like alveolar macrophages and monocyte-derived macrophages or
183 heart and skeletal muscles, clustered closely together but were separated from each
184 other.



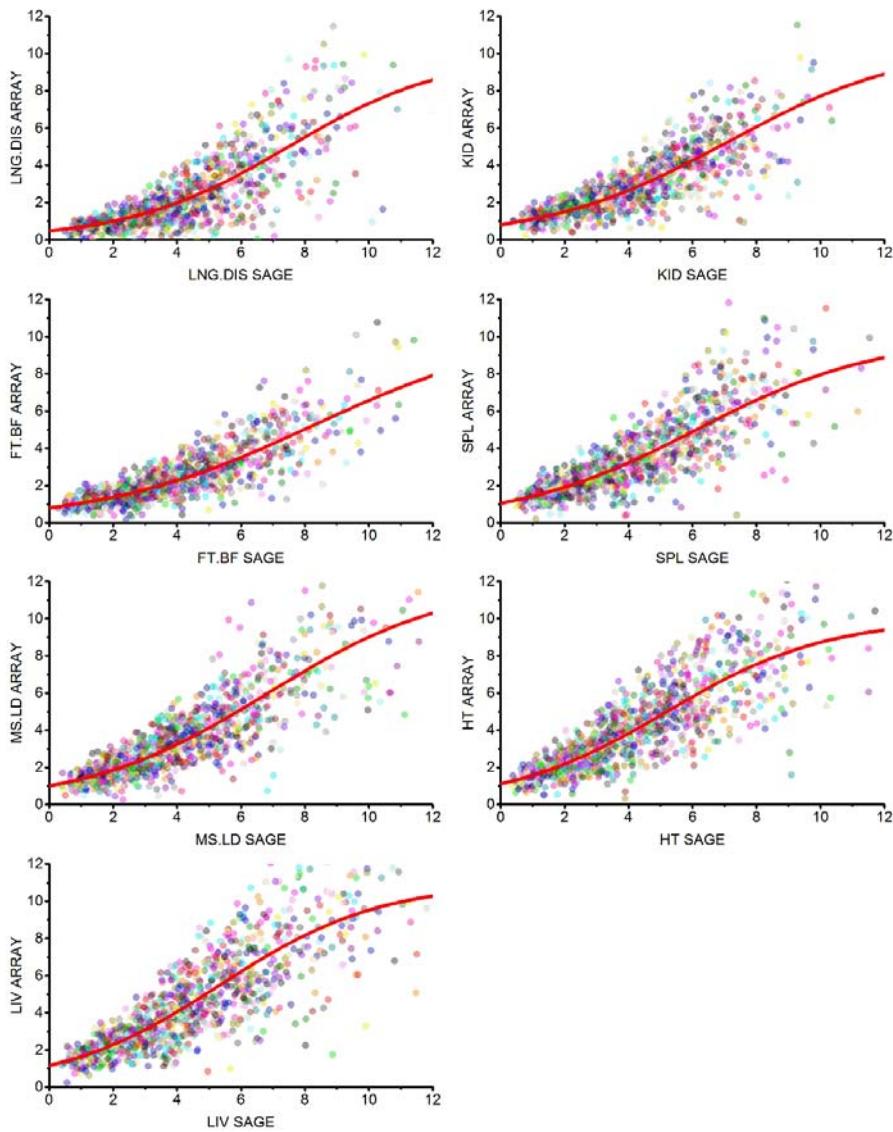
186 Fig. 3. Principal components analysis of the Super deepSAGE sequencing data. A)
187 to D) shows the top eight principal components of all 224 samples from the 28 tissues
188 (two principal components per each plot). Samples separated in plot A to D were
189 removed, and PCA was re-calculated with the remaining samples (fat, placenta,
190 endometrium, kidney, lung, and stomach grouped). E) and F) shows the top four
191 principal components of all the remaining samples (two principal components per
192 each plot).

193 **Comparison of the Super deepSAGE data with previously published microarray
194 research**

195 The expression profiles were compared with microarray data published
196 previously (Hornshoj et al. 2007). There is a total of 18,306 common genes for seven
197 tissues, while high correlations ($r=0.85-0.93$ and p -values less than 1.0×10^{-30}) were

198 calculated between the gene expression profiles generated by the two platforms (Fig.
199 4). Similar dynamic range was observed in both platforms for transcripts with relative
200 expression level between 0.55 and 0.95. Differences in expression profiles were
201 apparent between the two platforms with several genes exhibiting relatively higher or
202 lower expression values in either platform deviated from the diagonal line (Fig. 4). All
203 transcripts had an expression value in the microarray, due to background hybridization
204 or noise, regardless of whether it was truly expressed or not. The overall dynamics of
205 the fitted curve showed that the Super deepSAGE is more sensitive than that
206 microarray for the low expressed genes showing a concaved trend at the lower ends
207 (with relative expression level less than 0.55 in Fig. 4). For those genes with high
208 expression levels, variability is high in both Super deepSAGE and microarray
209 platforms.

210 As compared by microarray, reliable gene expression profiles can be generated
211 by Super deepSAGE in seven known tissues. Of the 50 highest expressed Super
212 deepSAGE tags, 38 (76%) found corresponding probesets in the 50 highest expressed
213 genes, and only three tags showed a statistically significant difference between Super
214 deepSAGE and microarray data. Two possibilities could cause such discrepancies
215 between Super deepSAGE and microarray data: 1) the SAGE tag was derived from
216 two or more different transcripts, which were differentially expressed in the samples
217 tested, and 2) the microarray probeset can target two or more transcripts due to
218 sequence similarity of transcripts. For example, the transcripts from the same gene
219 family will always produce the same SAGE tag (attributable to the lower resolution
220 power of Super deepSAGE) and preferred to hybrid to the same microarray probeset
221 (can be minimized by design probesets in the none-conserved region). Regardless of
222 some discrepancy, we conclude that Super deepSAGE data are overall compatible
223 with the microarray data and provide faithful gene expression profiles.



224

225 Figure 4. Comparison of the expression profiles of the 18,306 common transcripts
226 between Super deepSAGE and microarray platforms. Scatter plots show the averages
227 (between biological duplicates) of \log_2 transformed expression values of transcripts
228 between two platforms. The relationship between the expression profiles generated in
229 the two platforms is depicted as a smoothing spline (red).

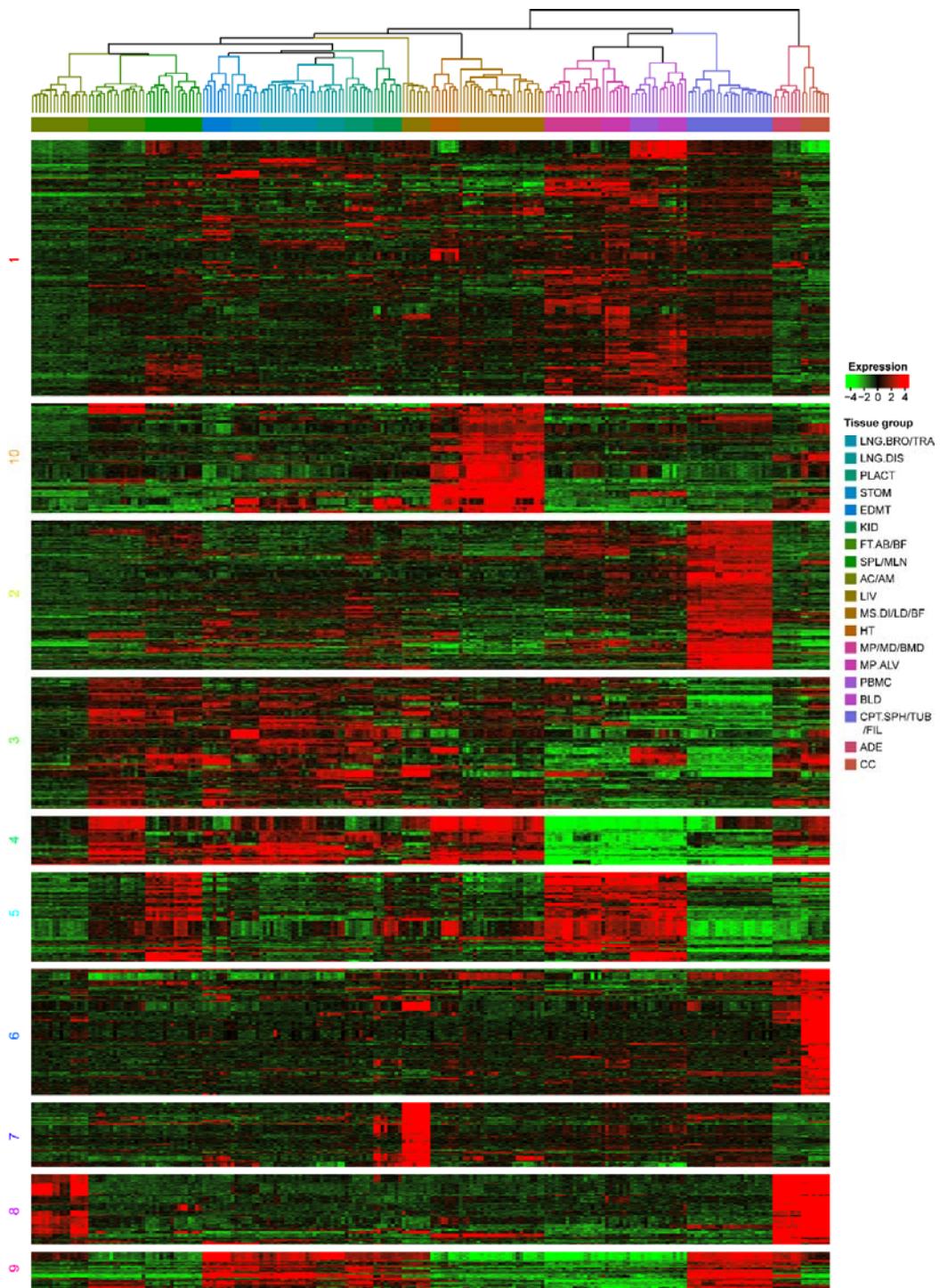
230 **Identification of tissue-specific expression of transcripts**

231 A total of 4,165 transcripts showed significant up or down-regulation at least in

232 one tissues in comparison to the average tag count for all other 27 tissues. K-means
233 clustering was then performed by trying a different number of centers (K from 5 to 28)
234 and several random sets (S from 10 to 1000). Finally, we selected K = 10 and S = 400
235 to produce clustering result with clean and clear expression pattern (by visualization),
236 highly reproducible for each duplicated run (Fig. 5). The result indicated that Cluster
237 1 has the largest number of transcripts, and most of these transcripts were expressed
238 low in tissues, except macrophages, PBMCs, blood, and conceptus which were
239 moderately expressed. The conceptus specifically expressed transcripts were in
240 Cluster 2, while the conceptus, macrophages, PBMCs, and blood de-expressed
241 transcripts were in Cluster 4. The macrophages, PBMCs, blood, mesenteric lymph
242 nodes, and spleen specific expressed transcripts were in Cluster 5. The genes
243 specifically expressed in heart and skeletal muscle were in cluster 10. The cerebral
244 cortex specifically expressed genes were in Cluster 6, and liver specifically expressed
245 transcripts were in Cluster 7. The adrenal cortex, adrenal medulla, cerebral cortex, and
246 adenohypophysis specifically expressed transcripts were in Cluster 8. Transcript in
247 Cluster 3 and Cluster 9 were ubiquitously expressed or expressed in multiple tissues.

248 Gene expression data obtained from transcriptional profiling experiments have
249 inspired several applications, such as the identification of differentially expressed
250 genes (Huang et al. 2011; Huang et al. 2018) and the creation of gene classifiers for
251 improved diagnoses of diseases such as cancer (Wesolowski and Ramaswamy 2011;
252 Tonella et al. 2017). The gene expression profile of 224 samples created in this study
253 is complicated that traditional models were difficult to apply to this data to find
254 differentially expressed genes. An *ad hoc* method comparing each tissues to the
255 average tag count for all other 27 tissues was performed, and a very stringent
256 threshold was set (fold change >5.0 , p-value $<1.0 \times 10^{-6}$) to filter the tissues
257 specifically expressed transcripts. The K-means clustering algorithms which group
258 similar transcripts and separate dissimilar transcripts by assigning them to different
259 clusters have proven to be useful for identifying biologically relevant gene clusters for
260 different biological status (Yao et al. 2016). Even though very useful, the K-means
261 clustering algorithm is particularly sensitive to initial starting conditions and
262 converges to the point that is the local minimum (Selim and Ismail 1984).

263 Furthermore, the number of clusters (parameter K) is difficult to be determined. In
264 this study, global-seeding procedures of BF98 (Bradley and Fayyad 1998) have been
265 introduced into the algorithm to improve the consistency and quantity of clustering
266 results. The BF98 method employed a bootstrap-type procedure to determine the
267 initial seeds for the centers. Several subsamples (recommended $n = 10$) of the data set
268 were clustered using K-means. Each clustering operation produced a different
269 candidate set of centroids from which a new data set was constructed. This data set
270 was clustered using K-means, and the centroids were chosen as the initial seeds. The
271 optimal BF98 clustering result on the Super deepSAGE data was obtained by
272 “visualization” of the result performed by using $K=10$ and number of subsamples
273 $S=1000$ after trying K from 5 to 28 and S from 20 to 1,000. The “visualization”
274 method is straightforward for that deterring the best parameter for the K-means
275 clustering procedure, but when the K reached 10, definite, compact and representative
276 gene clustering was formulated, and when the S is higher than 200, consistent
277 clustering result was produced for each duplicated clustering run.



279 Fig. 5. K-means clustering analysis of differentially expressed genes across
280 tissues. Data adjustment (median center and normalization) was performed before the
281 clustering analysis. The color codes of red, white, black, and dark green represent
282 high, average, low, and absence of expression, respectively. A detailed view of
283 expression pattern and internal structure of each gene cluster were constructed by

284 hierarchical clustering and is shown in plot areas from 1–10.

285 **Identification of over-represented motif for tissues specifically expressed**
286 **transcripts**

287 The CLOVER software (Frith et al. 2004) with JASPAR PWM database (Khan et
288 al. 2018) was used to identify over-represented transcription factor binding motifs for
289 each cluster of genes. The promoter regions for each cluster of transcript (1,000 bp
290 upstream) were obtained using the Ensemble Biomart tool (Kasprzyk 2011). The
291 promoter regions for the whole transcript detected in this project, which possesses
292 similar GC content, were used as background. Motifs having a p-value of ≤ 0.05 were
293 selected as significant (Table 2, top 5 motifs). The most significantly enriched motif in
294 Class 1 is MZF1. TFAP2A and TFAP2C were also significantly enriched with a raw
295 score higher than 30. In Class 2, there was only one significantly enriched motif,
296 RHOXF1. In Class 3 and 4, there were five and four motifs with p-value < 0.05
297 respectively, but the raw score was lower than ten. In Class 5, there were at least five
298 motifs with p-value < 0.05 , and three of them, RUNX1, ASCL1, and Myod1 had a
299 raw score higher than 30. In Class 6, the significantly enriched motifs with the highest
300 score were SNAI2 and FIGLA, whereas, in Class 7, the significantly enriched motifs
301 with the highest score was NR4A2. In Class 8, there was only one motif ZEB1
302 enriched in the promoter region of these transcripts. In Class 9, all the enriched motifs
303 had a raw score of less than ten. In Class 10, the top three motifs were Ascl2, Myog,
304 and Tcf12.

305 The transcription factors interact with the DNA recognition motifs, regulates
306 transcription of a large number of genes, and play important roles in fundamental
307 biological processes, including growth, development, and disease (Latchman 1997).
308 To understand gene expression regulation in the Super deepSAGE data obtained in
309 this study, identifying the over-represented or under-represented motifs in the
310 sequence showing similar expression pattern and which factors bind to them, is
311 necessary. Over-representation indicated the motif candidates playing a regulatory
312 role in the sequences, while under-representation indicated that the motif would have

313 a harmful dis-regulatory effect. In each gene clusters showing a similar expression
314 pattern, Clover successfully detects motifs known to function in the sequences and
315 generate interesting and testable hypotheses.

316 Table 2. Significantly over-represented binding motifs in the promoter region of
317 transcripts showing a similar expression pattern

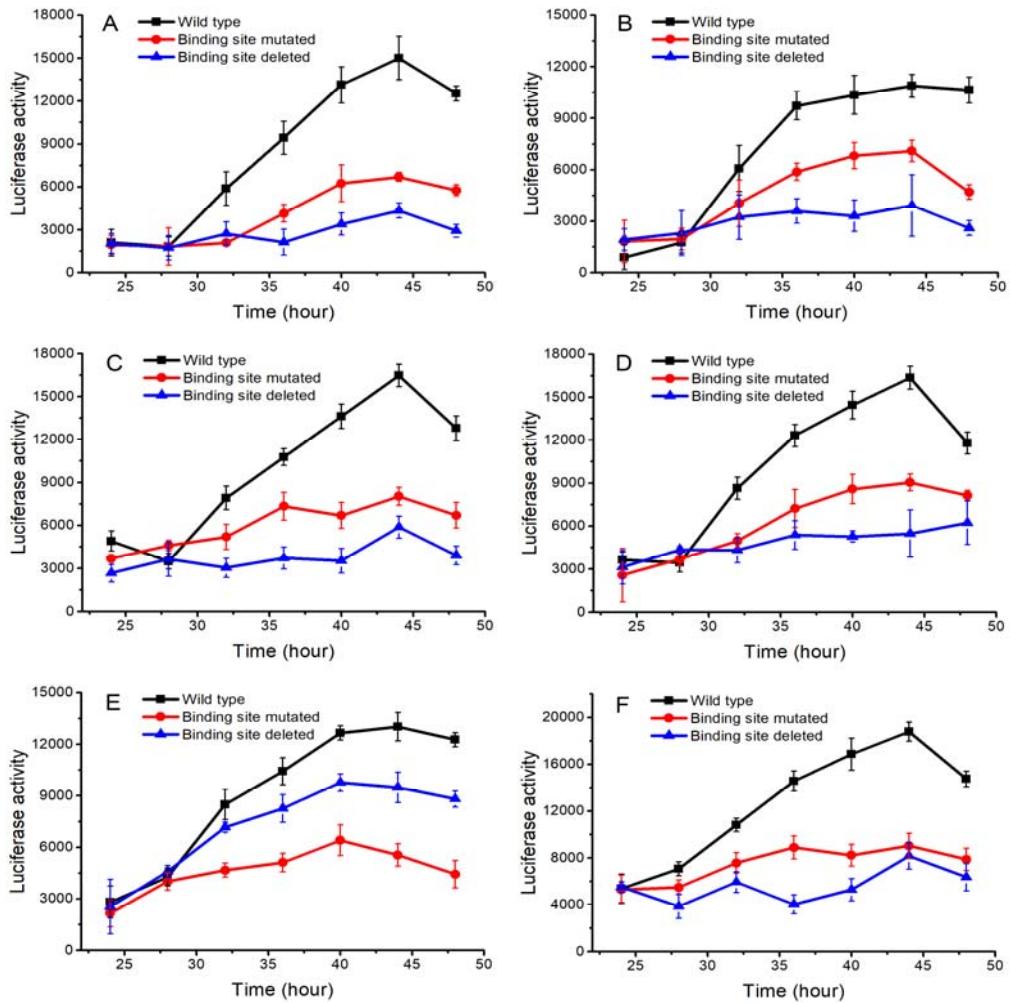
Gene cluster	Jaspar ID	TF name	Occurrence	Gene count	Raw score	FDR
Class 1	MA0056.1	MZF1	291	291	91.6	0
Class 1	MA0810.1	TFAP2A(var.2)	165	165	33.1	0.002
Class 1	MA0524.2	TFAP2C	149	149	32.3	0.003
Class 1	MA0811.1	TFAP2B	143	143	29.1	0.004
Class 1	MA0507.1	POU2F2	53	53	8.35	0.006
Class 2	MA0719.1	RHOXF1	142	142	6.96	0.008
Class 3	MA1105.1	GRHL2	28	28	6.99	0.003
Class 3	MA0842.1	NRL	60	60	3.67	0.006
Class 3	MA0164.1	Nr2e3	52	52	2.42	0.003
Class 3	MA0029.1	Mecom	23	23	2.25	0.009
Class 3	MA0117.2	Mafb	49	49	1.69	0.004
Class 4	MA0691.1	TFAP4	20	20	4.93	0.004
Class 4	MA0091.1	TAL1::T CF3	16	16	2.43	0.006
Class 4	MA0616.1	Hes2	19	19	0.8	0.003
Class 4	MA0089.1	MAFG:: NFE2L1	21	21	-1.09	0.005
Class 5	MA0002.2	RUNX1	135	135	55.5	0
Class 5	MA1100.1	ASCL1	79	79	46.8	0.008
Class 5	MA0499.1	Myod1	59	59	31.6	0.003
Class 5	MA1124.1	ZNF24	30	30	18.6	0.002
Class 5	MA1109.1	NEURO	57	57	9.76	0.004

D1						
Class 6	MA0745.1	SNAI2	75	75	18.7	0.001
Class 6	MA0820.1	FIGLA	77	77	17.6	0.003
Class 6	MA0138.2	REST	6	6	7.13	0.002
Class 6	MA0665.1	MSC	36	36	6.63	0.002
Class 6	MA0691.1	TFAP4	30	30	5.79	0.003
Class 7	MA0160.1	NR4A2	59	59	15.5	0
Class 7	MA0693.2	VDR	31	31	4.29	0.004
Class 7	MA0017.2	NR2F1	27	27	4.12	0.009
Class 7	MA1142.1	FOSL1::J UND	38	38	3.25	0.001
Class 7	MA0059.1	MAX::M YC	16	16	1.48	0.008
Class 8	MA0103.3	ZEB1	21	21	10.9	0.002
Class 9	MA0084.1	SRY	22	22	9.59	0.01
Class 9	MA0130.1	ZNF354 C	35	35	9.47	0.007
Class 9	MA0463.1	Bcl6	21	21	7.12	0.007
Class 9	MA0799.1	RFX4	7	7	5.64	0.007
Class 9	MA0798.1	RFX3	7	7	5.38	0.009
Class 10	MA0816.1	Ascl2	66	66	28.6	0.009
Class 10	MA0500.1	Myog	58	58	28.5	0.01
Class 10	MA0521.1	Tcf12	57	57	27.2	0.008
Class 10	MA0665.1	MSC	36	36	9.17	0.002
Class 10	MA0108.2	TBP	57	57	4.39	0.007

318 **Case report: confirmation of the regulatory roles of RUNX1 in PBMCs in pig**

319 **Confirmation of the RUNX1 binding site in the promoter region of TLR-2, LCK,**
320 **and VAV1**

321 The toll-like receptor 2 (TLR-2), lymphocyte-specific protein tyrosine kinase
322 (LCK), and vav1 oncogene (VAV1) plasmid containing the 1Kb promoter sequence
323 were used in *in vivo* studies (wild type). To show the regulation effect of RUNX1, the
324 binding site of RUNX1 in TLR-2, LCK, and VAV1 was mutated or deleted. Reporter
325 vectors constructed by the wild type, mutated, or deleted promoter sequences were
326 transfected into the peripheral blood mononuclear cells (PBMCs), and luciferase
327 activity was monitored. Binding site deletion significantly attenuated the expression
328 of the downstream reporter luciferase activity ($p<0.05$), indicating that the RUNX1
329 could interact with the target site and regulate the expression of the downstream
330 reporter gene (Fig. 6A-C). The mutated vectors showed significant attenuation of the
331 activity of downstream luciferase at 40, 44, and 48 hours post-transfection ($p<0.05$)
332 indicating a regulatory relationship between RUNX1 and the targets. Another
333 experiment was performed using mouse macrophage cells (RAW 264.7) to validate
334 the hypothesis further. Consistent with the previous results, deletion/mutations to the
335 RUNX1 binding sites in TLR-2, LCK, and VAV1 promoter sequence significantly
336 attenuated the activity of downstream luciferase at 40, 44, and 48 hours
337 post-transfection (Fig. 6D-F). The luciferase reporter activity after transfection with
338 the wild-type vector was significantly higher in macrophage cells than in the PBMC
339 assays, suggesting that the endogenous RUNX1 expression in mouse macrophage cells
340 was higher than in PBMCs.



341

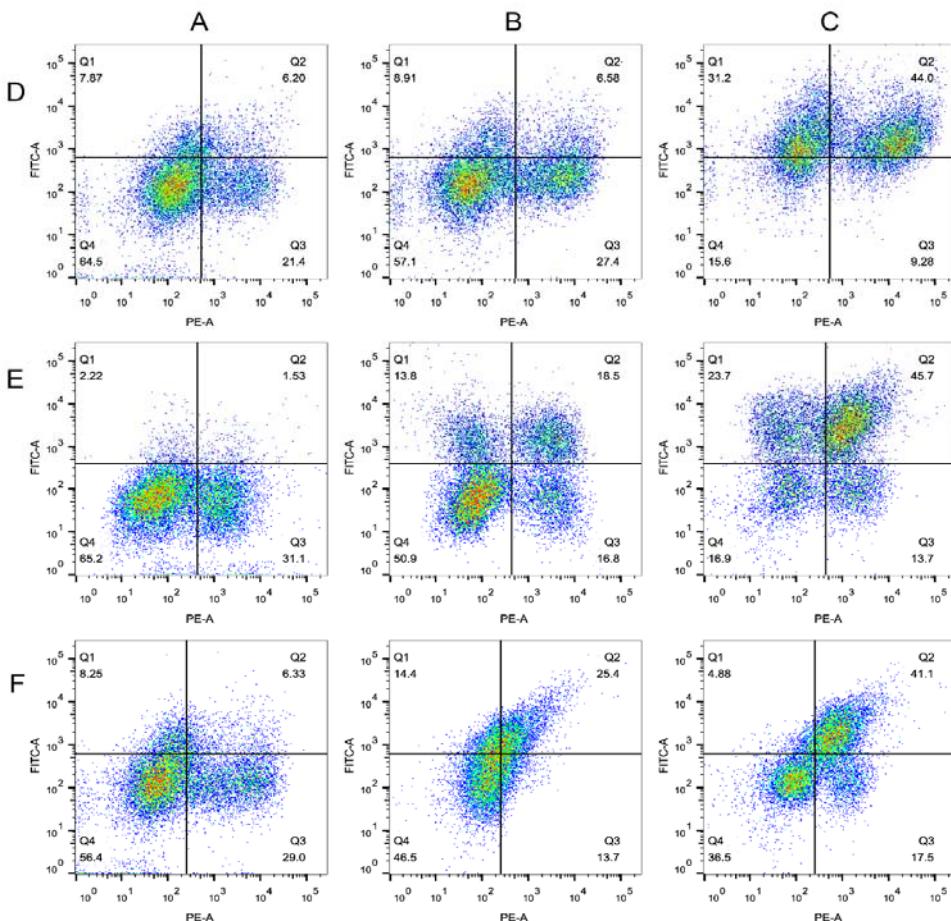
342 Fig. 6. Luciferase reporter assay of the RUNX1 targets. One wild-type promoter
343 construct (containing the predicted RUNX1 binding site), two mutant constructs
344 (mutated or not containing the binding site) were investigated. The mutant construct
345 (black) was identical to the wild-type, except that the RUNX1 binding site was
346 deleted or mutated. The line graphs show the luciferase activity after the reporter
347 plasmids were transfected into PBMCs (A-C) or macrophages (D-F). Three RUNX1
348 target gene have been investigated (A and D: TLR-2, B and E: LCK, C and F: VAV1).
349 The error bars represent the mean ± standard deviation of three duplicate samples.

350 **RNA flow cytometry analysis of RUNX1 targets in LPS and RUNX1 inhibitor
351 treated PBMCs**

352 To show the effect of RUNX1 on three targets; TLR2, LCK, and VAV1, pig
353 PBMCs were stimulated with LPS and/or RUNX1 inhibitor, for 6 hours, during which
354 their TLR2, LCK, VAV1, CD14 protein levels were monitored. Two subsets of cells
355 readily emerged from CD14/TLR2 analysis in PBMCs: a CD14^{hi}/TLR2^{lo}
356 (CD14^{high}/TLR2^{low}) and a CD14^{lo}/TLR2^{lo} population (Fig. 7D). The percentage of
357 CD14^{hi}/TLR2^{lo} cells increased in LPS plus RUNX1 inhibitor treated samples, but the
358 proportion of CD14^{lo}/TLR2^{lo} cells remained unchanged. The percentages of TLR2^{hi}
359 (for both CD14^{hi} and CD14^{lo}) cells increased seven-fold in LPS alone treated samples
360 compared with the non-treated controls. Four subsets of cells readily emerged from
361 CD14/LCK analysis in PBMCs treated with LPS or RUNX1 inhibitor: a
362 CD14^{hi}/LCK^{lo}, CD14^{hi}/LCK^{hi}, CD14^{lo}/LCK^{hi}, and CD14^{lo}/LCK^{lo} population (Fig. 7E).
363 The percentage of CD14^{hi}/LCK^{hi}, and CD14^{lo}/LCK^{hi} cells increased in LPS plus
364 RUNX1 inhibitor treated samples, and the proportion of CD14^{hi}/LCK^{lo} cells was
365 decreased. The percentages of CD14^{hi}/LCK^{hi} cells increased by 40% in LPS alone
366 treated samples compared with the non-treated controls. Two subsets of cells readily
367 emerged from CD14/VAV1 analysis in PBMCs: a CD14^{hi}/VAV1^{lo} and a
368 CD14^{lo}/VAV1^{lo} population (Fig. 7F). The percentage of VAV1^{hi} (for both CD14^{hi} and
369 CD14^{lo}) cells increased four-fold in LPS plus RUNX1 inhibitor treated samples. The
370 percentages of VAV1^{hi} (for both CD14^{hi} and CD14^{lo}) cells increased seven-fold in
371 LPS alone treated samples compared with the non-treated controls and is two-fold
372 higher than in LPS plus RUNX1 inhibitor treated samples.

373 RUNX1 is a master regulator of hematopoiesis and plays a vital role in T and B
374 cells development. RUNX1 is critical in inducing the production of genes in immune
375 cells, such as interleukin-2 (IL-2, (Wong et al. 2011), IL-3 (Uchida et al. 1997),
376 colony-stimulating factor 1 receptor (CSF1R, (Zhang et al. 1996), CSF2 (Frank et al.
377 1995), and cluster of differentiation 4 (CD4, (Taniuchi et al. 2002). However, its roles
378 in LPS-mediated inflammation in PBMCs remains unclear. In this study, regulations
379 of TLR-2, LCK, and VAV1 have been confirmed by flow cytometry. TLR2 is an

380 essential receptor for the recognition of a variety of pathogen-associated molecular
381 pattern (PAMPs) from Gram-positive bacteria, including bacterial lipoproteins,
382 lipomannan, and lipoteichoic acids (Medzhitov 2001). LCK encoded protein is a key
383 signaling molecule in the selection and maturation of developing T-cells (Davis and
384 van der Merwe 2011). The VAV1 encoded protein is important in hematopoiesis,
385 playing a role in both T-cell and B-cell development and activation (DeFranco 2001;
386 Helou et al. 2015). These results suggested that RUNX1 might be a new potential
387 target for resolving inadequate or uncontrolled inflammation in PBMCs.

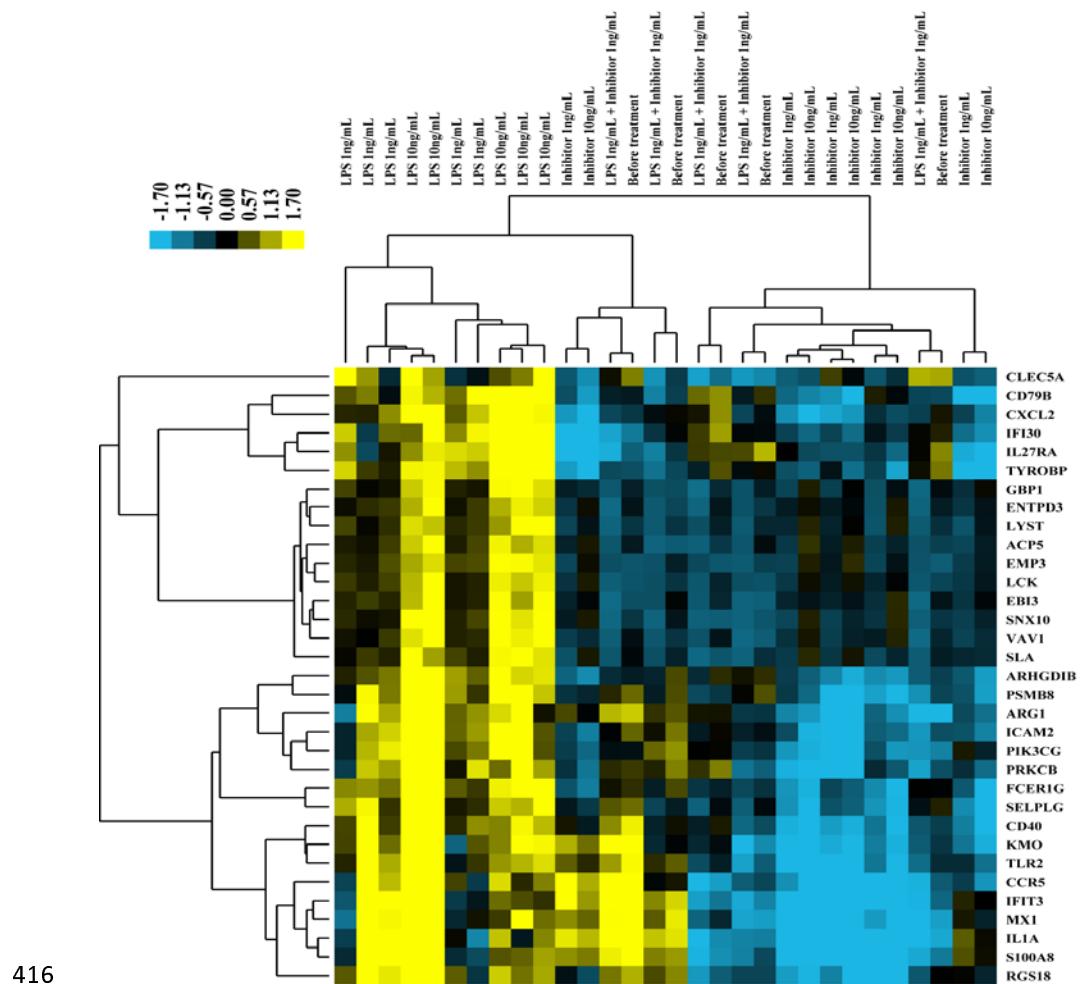


388

389 Fig. 7. Simultaneous staining of the target gene and CD14 protein in rested and
390 stimulated PBMCs. Plots of PBMCs that were left untreated (A) or were stimulated
391 with LPS plus RUNX1 inhibitor for 6 hours (B) or were stimulated with LPS only (C),
392 and labeled with antibodies that bind to CD14 (PE-A) and target protein (FITC-A,
393 D-F).

394 **Real-time PCR analysis of RUNX1 targets in LPS and RUNX1 inhibitor treated**
395 **PBMCs**

396 To investigate if the expression patterns of the 23 RUNX1 target genes could be
397 modeled by LPS and RUNX1 inhibitor treatment *in vivo*, we performed real-time
398 PCR assay after treating PBMCs with two different doses of LPS (1 ng/mL, 10
399 ng/mL), and RUNX1 inhibitor (1 ng/mL, 10 ng/mL). Samples were collected six
400 hours post-stimulation. A total of 21 genes were induced in response to at least one
401 dose of LPS stimulation, as expression levels for these genes were different when
402 compared to non-stimulated control. A total of 10 genes were down-regulated in
403 response to the RUNX1 inhibitor treatment. Hierarchical clustering analysis was used
404 to determine whether the response of LPS stimulation response was similar to the
405 patterns detected in RUNX1 inhibitor treatment, and if any differences were observed
406 depending on the dosage of LPS and RUNX1 inhibitor used. As shown in Fig. 8, the
407 expression patterns of samples with RUNX1 inhibitor treatment, RUNX1 inhibitor
408 plus LPS treatment, and non-simulated controls clustered together. Different dose of
409 the RUNX1 inhibitor did not affect the samples, as observed by the mixing up of
410 respective samples in the heatmap. The LPS treated samples were unique and were
411 separated from the RUNX1 inhibitor-treated groups and control groups. Similar to the
412 RUNX1 inhibitor, different doses of LPS dose did not affect the samples as well. The
413 expression patterns of RUNX1 inhibitor plus LPS treatment samples were similar
414 with controls and samples treated with RUNX1 alone because they were mixed in the
415 heatmap.



417 Fig. 8. RUNX1 target gene expression in PBMCs treated with LPS or RUNX1
418 inhibitor. Cells were treated in vitro with two different doses of LPS (1 ng/ml, 10
419 ng/ml) and RUNX1 inhibitor (1 ng/ml, 10 ng/ml). Color codes of yellow, black, and
420 blue represent expression levels of high, average, and low, respectively, across the
421 treatments shown.

422 **Super deepSAGE is a useful data resource in pig study**

423 Gene expression analysis is extensively applied in the understanding of the
424 molecular mechanisms underlying a wide range of biological process such as
425 host-pathogen interactions. Our dataset of transcript levels in normal tissues was
426 developed as a reference datasets that can be compared to attained information of
427 biological event specifically related aberrations in transcript levels. Therefore, one
428 major focus of this manuscript was to demonstrate the biological importance of these

429 profiles. We report that >40% of the measured transcripts were differentially
430 expressed between the different tissues. We show that statically the transcripts were
431 co-regulated by a few important transcription factors. We describe one of the many
432 transcription factors that regulated gene expression in PBMCs. To our knowledge, this
433 data set is the largest to date for the analysis of transcriptional profiles within normal
434 tissues from pigs and is complementary to previously published data sets. These data
435 will improve the annotation of the pig genome, support versatile biological research,
436 and increase the utility of the pig as a meat source animal and model in medical
437 research.

438 **Materials and methods**

439 **Sample collection and RNA extraction**

440 Soon after anesthesia by electric shock, specimens were excised, snap-frozen in
441 liquid nitrogen, and kept in a deep freezer (-80°C) until RNA extraction. RNA
442 extraction from the tissue samples and cells was conducted using the RNeasy Mini
443 Kit (Qiagen, Shanghai, China) following the manufacturer's protocols. The
444 BioAnalyzer 2100 (Agilent) was used to assess the integrity of total RNAs, and RIN
445 number of less than 0.7 was removed from the study.

446 **Super deepSAGE sequencing and data procession**

447 The sequencing data were filtered by removing sequences that had poor quality
448 (score <0.5) for more than 20% of all the bases. All the data discussed in this study
449 have been deposited to the NCBI GEO database (Edgar et al. 2002) under accession
450 number GSE134461. Tag sequence was extracted, counted, and assigned for each
451 transcript, and then normalized for each sample by quantile normalization method
452 (Pan and Zhang 2018). For the tags assigned to multiple transcripts, the average copy
453 numbers of those tags were used. The principal component analysis (PCA) was
454 performed using the \log_2 tag counts of all the transcripts across all the samples using
455 R statistical software version 3.5. The tissue specific transcripts expressed were

456 identified by comparing samples from each tissue to the overall tag count across all
457 samples (average), and a threshold was set to fold change >5.0 , p-value $<1.0 \times 10^{-6}$
458 according to a method implemented in limma package (Ritchie et al. 2015).
459 Clustering analysis was performed by first using K-means clustering method to
460 separate the transcripts to several big groups, and then using Hierarchical clustering to
461 build the internal structure of the transcripts within the groups according to the
462 method reported by Gu et al. (Gu et al. 2016).

463 **Luciferase reporter assay**

464 The three predicted target genes, TLR-2, LCK, and VAV1, were also conserved
465 in human and mouse. For these three genes, a 1Kb nucleotide promoter segment that
466 included RUNX1 target sites was inserted upstream of a firefly luciferase ORF (pGL3,
467 Promega, Beijing, China), and luciferase activity was compared to that of an
468 analogous reporter with point substitutions disrupting the target sites, or analogous
469 reporter that the binding site deleted completed (see detailed sequence information in
470 Supplemental document 2). The logic behind the luciferase reporter assay is that
471 deletion/mutation of a RUNX1 binding site should allow the down-regulation of its
472 target genes, and hence the target gene should be expressed differently between the
473 wild type and mutated constructs. The pGL3-Control activity was used for the
474 normalization of firefly luciferase activity. For the assay, the cells were plated in a
475 96-well plate at 3,000 cells per well. After overnight incubation, the cells were treated
476 with a transfection mixture consisting of 35 μ L of serum-free medium, 0.3 μ L of
477 TransFastTM Transfection Reagent (Cat. E2431), and 0.02 μ g of pGL3 and
478 pGL3-Control vector per well. After one hour incubation, 100 μ L of the
479 serum-containing medium was added to the wells. At 24 to 48 hours of
480 post-transfection, EnduRenTM Live Cell Substrate (Cat. E6481) was added to a final
481 concentration of 60 μ M, and luciferase activity was monitored.

482 **PBMC Isolation and Stimulation**

483 Peripheral blood mononuclear cells (PBMCs) were isolated from whole normal
484 blood collected from five animals aged 21 days using BD Vacutainer^{VR} Cell
485 Preparation Tubes (Becton Dickinson, Shanghai, China). The samples were processed
486 according to the manufacturer's instructions within two hours of blood collection.
487 PBMCs were harvested from the tube, washed with phosphate-buffered saline (Life
488 Technologies), and centrifuged for 10 min at 300g prior to use. To induce gene
489 expression, PBMCs were resuspended in RPMI-1640 medium (Life Technologies)
490 supplemented with 10% fetal bovine serum (Life Technologies) at 1.5×10^6 cells/mL
491 in a 96-well V-bottom polypropylene plate (Corning Incorporated). LPS
492 (Sigma-Aldrich, Shanghai, China) and RUNX1 inhibitor (Ro 5-3335, R&D Systems,
493 Shanghai, China) were added at 5 ng/mL and 10 ng/mL, respectively, according to the
494 manufacturer's instructions. Untreated PBMCs were used as control samples.

495 **Surface staining and cytometry acquisition**

496 Phenotypic surface staining was performed in BD PharmingenTM stain buffer
497 (BSA, BD Biosciences, Shanghai, China) for 30 min at room temperature in the dark,
498 using anti-CD14 PE (BD Biosciences, Shanghai, China). Cells were washed and
499 suspended in BD Pharmingen stain buffer (BSA, BD Biosciences, Shanghai, China),
500 anti-TLR-2 FITC, anti-LCK FITC, anti-VAV1 FITC (BD Biosciences, Shanghai,
501 China), was then added separately, and the mixture was incubated for 20 min at room
502 temperature. Finally, cells were washed and acquired on a BD LSRFortessaTM cell
503 analyzer (BD Biosciences, Shanghai, China). The flow cytometry data were deposited
504 in Flow Repository database (ref) under accession FR-FCM-Z268.

505 **Data access**

506 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134461>

507 <http://flowrepository.org/id/RvFrphLijqf34kFNTA1gdB6BdXEskSDTdhZ4VwfM1q>
508 [bgTIPfmqbL8o5eVTIhiUH](http://flowrepository.org/id/bgTIPfmqbL8o5eVTIhiUH)

509 **Acknowledgments**

510 This project was funded by the National Natural Science Foundation of China
511 (NSFC Grant No. 31402055), the College Students' Innovation and Entrepreneurship
512 Training Program of Yangtze University (Grant No. 2018057), the Science and
513 Technology Research Project of Department of Education of Hubei Province (Grant
514 No. Q20171305), the Yangtze Youth Talents Fund (Grant No. 2015cqr12), the
515 Yangtze Youth Fund (Grant No. 2015cqn39).

516 **Ethics approval and consent to participate**

517 All procedures involving animals were ethical and were approved by the Animal
518 Care and Use Committee of Hubei Province (China, YZU-2018-0031).

519 **Disclosure declaration**

520 The authors declare that the research was conducted in the absence of any
521 commercial or financial relationships that could be construed as a potential conflict of
522 interest.

523 **References**

524 Bailey KL, Carlson MA. 2019. Porcine Models of Pancreatic Cancer. *Front Oncol* **9**: 144.
525 Beiki H, Liu H, Huang J, Manchanda N, Nonneman D, Smith TPL, Reecy JM, Tuggle CK. 2019. Improved
526 annotation of the domestic pig genome through integration of Iso-Seq and RNA-seq data.
527 *BMC Genomics* **20**(1): 344.
528 Bradley PS, Fayyad UM. 1998. Refining initial points for K-Means clustering. *in Proc 15th International*
529 *Conf on Machine Learning* **1**: 91-99
530 Davis SJ, van der Merwe PA. 2011. Lck and the nature of the T cell receptor trigger. *Trends Immunol*
531 **32**(1): 1-5.

532 Dawson HD, Loveland JE, Pascal G, Gilbert JG, Uenishi H, Mann KM, Sang Y, Zhang J, Carvalho-Silva D,
533 Hunt T et al. 2013. Structural and functional annotation of the porcine immunome. *BMC
534 Genomics* **14**: 332.

535 DeFranco AL. 2001. Vav and the B cell signalosome. *Nat Immunol* **2**(6): 482-484.

536 Edgar R, Domrachev M, Lash AE. 2002. Gene Expression Omnibus: NCBI gene expression and
537 hybridization array data repository. *Nucleic Acids Res* **30**(1): 207-210.

538 Frank R, Zhang J, Uchida H, Meyers S, Hiebert SW, Nimer SD. 1995. The AML1/ETO fusion protein
539 blocks transactivation of the GM-CSF promoter by AML1B. *Oncogene* **11**(12): 2667-2674.

540 Freeman TC, Ivens A, Baillie JK, Beraldi D, Barnett MW, Dorward D, Downing A, Fairbairn L,
541 Kapetanovic R, Raza S et al. 2012. A gene expression atlas of the domestic pig. *BMC Biol* **10**:
542 90.

543 Frith MC, Fu Y, Yu L, Chen JF, Hansen U, Weng Z. 2004. Detection of functional DNA motifs via
544 statistical over-representation. *Nucleic Acids Res* **32**(4): 1372-1381.

545 Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-Gaillard C, Park C, Milan
546 D, Megens HJ et al. 2012. Analyses of pig genomes provide insight into porcine demography
547 and evolution. *Nature* **491**(7424): 393-398.

548 Gu Z, Eils R, Schlesner M. 2016. Complex heatmaps reveal patterns and correlations in
549 multidimensional genomic data. *Bioinformatics* **32**(18): 2847-2849.

550 Haverty PM, Weng Z, Best NL, Auerbach KR, Hsiao LL, Jensen RV, Gullans SR. 2002. HugeIndex: a
551 database with visualization tools for high-density oligonucleotide array data from normal
552 human tissues. *Nucleic Acids Res* **30**(1): 214-217.

553 Helou YA, Petrushen AP, Salomon AR. 2015. Vav1 Regulates T-Cell Activation through a Feedback
554 Mechanism and Crosstalk between the T-Cell Receptor and CD28. *J Proteome Res* **14**(7):
555 2963-2975.

556 Hill HD, Mirkin CA. 2006. The bio-barcode assay for the detection of protein and nucleic acid targets
557 using DTT-induced ligand exchange. *Nature protocols* **1**(1): 324-336.

558 Hornshoj H, Conley LN, Hedegaard J, Sorensen P, Panitz F, Bendixen C. 2007. Microarray expression
559 profiles of 20,000 genes across 23 healthy porcine tissues. *PLoS One* **2**(11): e1203.

560 Houpt KA, Houpt TR, Pond WG. 1979. The pig as a model for the study of obesity and of control of
561 food intake: a review. *Yale J Biol Med* **52**(3): 307-329.

562 Huang T, Huang X, Shi B, Wang F, Feng W, Yao M. 2018. Regulators of *Salmonella*-host interaction
563 identified by peripheral blood transcriptome profiling: roles of *TGFB1* and *TRP53* in
564 intracellular *Salmonella* replication in pigs. *Vet Res* **49**(1): 121.

565 Huang TH, Uthe JJ, Bearson SM, Demirkale CY, Nettleton D, Knetter S, Christian C, Ramer-Tait AE,
566 Wannemuehler MJ, Tuggle CK. 2011. Distinct peripheral blood RNA responses to *Salmonella*
567 in pigs differing in *Salmonella* shedding levels: intersection of *IFNG*, *TLR* and *miRNA* pathways.
568 *PLoS One* **6**(12): e28768.

569 Kasprzyk A. 2011. BioMart: driving a paradigm change in biological data management. *Database
570 (Oxford)* **2011**: bar049.

571 Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, Bessy A, Cheneby J,
572 Kulkarni SR, Tan G et al. 2018. JASPAR 2018: update of the open-access database of
573 transcription factor binding profiles and its web framework. *Nucleic Acids Res* **46**(D1): D1284.

574 Latchman DS. 1997. Transcription factors: an overview. *Int J Biochem Cell Biol* **29**(12): 1305-1312.

575 Matsumura H, Reich S, Ito A, Saitoh H, Kamoun S, Winter P, Kahl G, Reuter M, Kruger DH, Terauchi R.

576 2003. Gene expression analysis of plant host-pathogen interactions by SuperSAGE. *Proc Natl
577 Acad Sci U S A* **100**(26): 15718-15723.

578 Medzhitov R. 2001. Toll-like receptors and innate immunity. *Nat Rev Immunol* **1**(2): 135-145.

579 Meisel A, Bickle TA, Kruger DH, Schroeder C. 1992. Type III restriction enzymes need two inversely
580 oriented recognition sites for DNA cleavage. *Nature* **355**(6359): 467-469.

581 Moncke-Buchner E, Rothenberg M, Reich S, Wagenfuhr K, Matsumura H, Terauchi R, Kruger DH,
582 Reuter M. 2009. Functional characterization and modulation of the DNA cleavage efficiency
583 of type III restriction endonuclease EcoP15I in its interaction with two sites in the DNA target.
584 *J Mol Biol* **387**(5): 1309-1319.

585 Nielsen KL, Hogh AL, Emmersen J. 2006. DeepSAGE--digital transcriptomics with high sensitivity,
586 simple experimental protocol and multiplexing of samples. *Nucleic Acids Res* **34**(19): e133.

587 Pan M, Zhang J. 2018. Quantile normalization for combining gene-expression datasets. *Biotechnology
588 & Biotechnological Equipment* **32**(3): 751-758.

589 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 2015. limma powers differential
590 expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res* **43**(7): e47.

591 Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW, Velculescu VE. 2002. Using
592 the transcriptome to annotate the genome. *Nat Biotechnol* **20**(5): 508-512.

593 Schroyen M, Tuggle CK. 2015. Current transcriptomics in pig immunity research. *Mamm Genome*
594 **26**(1-2): 1-20.

595 Selim SZ, Ismail MA. 1984. K-means-type algorithms: a generalized convergence theorem and
596 characterization of local optimality. *IEEE Trans Pattern Anal Mach Intell* **6**(1): 81-87.

597 Shmueli O, Horn-Saban S, Chalifa-Caspi V, Shmoish M, Ophir R, Benjamin-Rodrig H, Safran M, Domany
598 E, Lancet D. 2003. GeneNote: whole genome expression profiles in normal human tissues. *CR
599 Biol* **326**(10-11): 1067-1072.

600 Son CG, Bilke S, Davis S, Greer BT, Wei JS, Whiteford CC, Chen QR, Cenacchi N, Khan J. 2005. Database
601 of mRNA gene expression profiles of multiple human organs. *Genome Res* **15**(3): 443-450.

602 Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, Orth AP, Vega RG, Sapino LM, Moqrich A
603 et al. 2002. Large-scale analysis of the human and mouse transcriptomes. *Proc Natl Acad Sci
604 U S A* **99**(7): 4465-4470.

605 Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G et al.
606 2004. A gene atlas of the mouse and human protein-encoding transcriptomes. *Proc Natl Acad
607 Sci U S A* **101**(16): 6062-6067.

608 Taniuchi I, Osato M, Egawa T, Sunshine MJ, Bae SC, Komori T, Ito Y, Littman DR. 2002. Differential
609 requirements for Runx proteins in CD4 repression and epigenetic silencing during T
610 lymphocyte development. *Cell* **111**(5): 621-633.

611 Tonella L, Giannoccaro M, Alfieri S, Canevari S, De Cecco L. 2017. Gene Expression Signatures for Head
612 and Neck Cancer Patient Stratification: Are Results Ready for Clinical Application? *Curr Treat
613 Options Oncol* **18**(5): 32.

614 Uchida H, Zhang J, Nimer SD. 1997. AML1A and AML1B can transactivate the human IL-3 promoter.
615 *The Journal of Immunology* **158**(5): 2251-2258.

616 Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. 1995. Serial analysis of gene expression. *Science*
617 **270**(5235): 484-487.

618 Verma N, Rettenmeier AW, Schmitz-Spanke S. 2011. Recent advances in the use of Sus scrofa (pig) as a
619 model system for proteomic studies. *Proteomics* **11**(4): 776-793.

620 Walker JR, Su AI, Self DW, Hogenesch JB, Lapp H, Maier R, Hoyer D, Bilbe G. 2004. Applications of a rat
621 multiple tissue gene expression data set. *Genome Res* **14**(4): 742-749.

622 Wang B, Regulski M, Tseng E, Olson A, Goodwin S, McCombie WR, Ware D. 2018. A comparative
623 transcriptional landscape of maize and sorghum obtained by single-molecule sequencing.
624 *Genome Res* **28**(6): 921-932.

625 Wesolowski R, Ramaswamy B. 2011. Gene expression profiling: changing face of breast cancer
626 classification and management. *Gene Expr* **15**(3): 105-115.

627 Wong WF, Kurokawa M, Satake M, Kohu K. 2011. Down-regulation of Runx1 expression by TCR signal
628 involves an autoregulatory mechanism and contributes to IL-2 production. *J Biol Chem*
629 **286**(13): 11110-11118.

630 Yao M, Wu QH, Li J, Huang TH. 2016. K-walks: clustering gene-expression data using a K-means
631 clustering algorithm optimised by random walks. *Int J Data Min Bioinform* **16**(2): 121-140.

632 Zhang DE, Hetherington CJ, Meyers S, Rhoades KL, Larson CJ, Chen HM, Hiebert SW, Tenen DG. 1996.
633 CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF alpha2) synergistically activate the
634 macrophage colony-stimulating factor receptor promoter. *Mol Cell Biol* **16**(3): 1231-1240.

635