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Abstract 22 

Genome-wide identification of gene expression regulators may facilitate our 23 

understanding of the transcriptome constructed by gene expression profiling 24 

experiment. These regulators may be selected as targets for genetic manipulations in 25 

farm animals. In this study, we developed a gene expression profile of 76,000+ unique 26 

transcripts for 224 porcine samples from 28 normal tissues collected from 32 animals 27 

using Super deepSAGE (serial analysis of gene expression by deep sequencing) 28 

technology. Excellent sequencing depth has been achieved for each multiplexed 29 

library, and principal component analysis showed that duplicated samples from the 30 

same tissues cluster together, demonstrating the high quality of the Super deepSAGE 31 

data. Comparison with previous research indicated that our results not only have 32 

excellent reproducibility but also have greatly extended the coverage of the sample 33 

types as well as the number of genes. Clustering analysis discovered ten groups of 34 

genes showing distinct expression patterns among those samples. Binding motif over 35 

representative analysis identified 41 regulators responsible for the regulation of these 36 

gene clusters. Finally, we demonstrate a potential application of this dataset to 37 

infectious and immune research by identifying an LPS-dependent transcription factor, 38 

runt-related transcription factor 1 (RUNX1), in peripheral blood mononuclear cells 39 

(PBMCs). The selected genes are specifically responsible for the transcription of 40 

toll-like receptor 2 (TLR2), lymphocyte-specific protein tyrosine kinase (LCK), vav1 41 

oncogene (VAV1), and other 32 genes. These genes belong to the T and B cell 42 

signaling pathways, making them potential novel targets for the diagnostic and 43 

therapy of bacterial infections and other immune disorders.  44 

Introduction 45 

The domestic pig (Sus scrofa) is an important farm animal for meat source 46 

worldwide and has been used as alternative models for studying genetics, nutrition, 47 

and disease as reviewed recently (Houpt et al. 1979; Verma et al. 2011; Bailey and 48 

Carlson 2019). The swine genome community has created a large amount of useful 49 
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data about the transcriptome of pigs (Schroyen and Tuggle 2015). The recently 50 

released pig genome sequence (Sscrofa 10.2) (Groenen et al. 2012) and associated 51 

annotation greatly enhance our knowledge of the pig biology (Dawson et al. 2013; 52 

Beiki et al. 2019). Currently, it is estimated that the porcine genome encodes for 53 

�40,000 genes (Groenen et al. 2012). Transcriptome analysis indicated that the 54 

actively transcribed genes are only a fraction, perhaps 15,000 genes, in normal tissues 55 

(Hornshoj et al. 2007). Several research groups have created microarray transcriptome 56 

profiling data for normal human tissues (Haverty et al. 2002; Shmueli et al. 2003), 57 

normal mouse tissues (Su et al. 2002; Su et al. 2004), and normal rat tissues (Walker 58 

et al. 2004). In the pig, several Expressed Sequence Tag (EST) sequencing projects, 59 

microarray platforms, and deep sequencing projects have developed gene expression 60 

profiles across a range of tissues (Hornshoj et al. 2007; Freeman et al. 2012). 61 

Compared to the model organisms, the information of the pig transcriptome is still 62 

limited in terms of comprehensive tissue and gene coverage (Schroyen and Tuggle 63 

2015). Here we present Super deepSAGE (serial analysis of gene expression by deep 64 

sequencing) profiling data for the normal pig tissues with wide gene coverage and 65 

annotation. Using K-means clustering analysis and motif binding site enrichment 66 

analysis, we have identified regulators for co-expressed genes. A detailed analysis of 67 

one of the interesting transcription factors, runt-related transcription factor 1 68 

(RUNX1), illustrated the power of the data.  69 

Results and discussion 70 

Development of the Super deepSAGE technology 71 

A flowchart of the Super deepSAGE experiment is summarized in Fig. 1. 72 

Dynabeads® M-270 Amine (Thermo Fisher Scientific, China) were coupled with 73 

–C6-SH labeled reverse transcription-primer with the sequence containing the 74 

5’-CAGCAG-3’ recognition site of EcoP15I and an Oligo(dT) sequence at 3’ end 75 

designed intentionally to complement the poly(A) sequence of mRNAs (Synthesized 76 

by Sangon Biotech, China). The coupling procedure was carried out following 77 
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protocol reported by Hill and Mirkin (Hill and Mirkin 2006) using the succinimidyl 78 

4-(p-maleimidophenyl)butyrate (SMPB) crosslink reagent (Thermo scientific, 79 

Shanghai, China). Ten micrograms of mRNA were reverse-transcribed (cDNA 80 

synthesis system, Invitrogen) with the Oligo(dT) magnetic beads to generate 81 

single-stranded cDNA using protocol recommended by the manufacturer. The product 82 

was converted to double-stranded cDNA using random primer and then digested with 83 

NlaIII (NEB, Beijing, China). The biotin-labeled linkers (linker-5EA) with 84 

phosphorylated 5’ termini and 3’ end overhang (5’-CATG-3’), containing the EcoP15I 85 

recognition site were prepared by annealing commercially synthesized 86 

oligonucleotides. The magnetic beads-bound cDNA was washed and linked to 87 

linker-5EA by T4 DNA ligase (NEB, Beijing, China). As a result, each cDNA 88 

fragment bounded to the magnetic beads is flanked by two inverted repeats of 89 

EcoP15I recognizing sites. The type III restriction enzyme EcoP15I cleaves the DNA 90 

downstream of the recognizing site (25 nt in one strand and 27 nt in the other strand) 91 

leaving a 5’ end overhang of two bases (Meisel et al. 1992; Moncke-Buchner et al. 92 

2009). Linker-ligated cDNAs on the magnetic beads were digested with ten units of 93 

EcoP15I under conditions described previously (Matsumura et al. 2003). The 94 

supernatant containing released biotin-labeled fragments were added to streptavidin 95 

magnetic beads (Promega, Beijing, China), and the biotin-labeled fragments of the 96 

cDNAs were captured. Finally, barcoded linkers (linker-3EA) with two random base 97 

overhangs at 5’ end and phosphorylated termini were prepared and ligated to the 98 

cDNA ends by T4 DNA ligase (NEB, Beijing, China). The resulting products were 99 

amplified by polymerase chain reaction (PCR), and the 119 bp product was separated 100 

by polyacrylamide gel electrophoresis (PAGE) and recovered from the gel. The 101 

barcoded libraries prepared from different samples were combined into a single 102 

multiplex sequencing reaction at the end of library construction and submitted for 103 

deep sequencing. The sequence information of synthetic oligos, linkers, and primers 104 

are available in Supplemental document 1. 105 

The serial analysis of gene expression (SAGE) was first developed by 106 

Velculescu et al. (Velculescu et al. 1995) and improved by Saha et al. (Saha et al. 107 

2002), Matsumura et al. (Matsumura et al. 2003), and Nielsen et al. (Nielsen et al. 108 
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2006). The traditional SAGE library construction protocol includes multiple steps, 109 

and the separation of the linker-tag fragment is challenging to perform, and the PAGE 110 

purification often produces low yield. The library construction protocol in this study 111 

was improved by introducing two magnet beads: 1) Dynabeads® M-270 Amine 112 

coupled with –C6-SH labeled Oligo(dT) reverse transcription primer; 2) The 113 

streptavidin magnetic beads which can capture biotin-labeled linkers (linker-5EA). 114 

The magnetic beads used in this protocol can capture and purify the DNA fragments 115 

and is technically less demanding than PAGE separation. This modification increased 116 

the yield of linker-tag fragments and resulted in the robustness of the technique. Also, 117 

the primers and linkers were designed compatible with multiplexed deep sequencing 118 

technology, saving the sequencing cost. 119 

 120 

Fig. 1. Flowchart of Super deepSAGE library construction. There are three major 121 

steps included in the protocol: A) reverse transcription with oligo(dT) coupled 122 

magnetic beads, synthesis of the secondary chain, and digestion with NlaIII; B) add 5’ 123 

end linker and digest with EcoP15I, and C) add 3’ end linker and PCR amplification. 124 

For details see materials and methods section.  125 
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Animals, samples collection, and deep sequencing 126 

A total of 224 tissue samples across 28 different tissues were collected from a 127 

slaughtering farm located in Hubei province in China. The samples were collected 128 

from 32 animals from a Duroc × Landrace × Yorkshire (DLY) commercial crossbreed 129 

pig populations consisting of 16 males and 16 females with a median age of 21 days. 130 

The endometrium, placenta, and conceptus were collected from Landrace × Yorkshire 131 

(LY) sows of 65 days of gestation. The detailed sample information is available in 132 

Table 1. In the computational extraction of tags from sequence data, the in-house 133 

designed program removes the two bases at the 5’ end. This ‘digital removal’ is 134 

performed to minimize the less accurate effect of two random bases, at the 5’ end of 135 

linker-3EA, and could potentially reduce the length of tags, and affect the 136 

representative ability of the data. However, direct link with a linker that has two 137 

random bases at the 5’ end forming stick ends will 1) enhance the efficiency of the 138 

link assay, and 2) no additional blunt ending process was needed. The inaccuracy 139 

caused by this linkage process was removed by the ‘digital removal’ procedure, 140 

thereby lowering the systematic bias in the data.  141 

Table 1. Detailed information of the collected samples 142 

ID Code Dupli

cates 

Age 

(day) 

Male/

femal

e 

Breeds Tissue 

1 AC 8 21 4/4 DLY Adrenal cortex 

2 AM 8 21 4/4 DLY Adrenal medulla 

3 CPT.SPH 8 21 4/4 DLY Conceptus spherical 

4 CPT.TUB 8 21 4/4 DLY Conceptus tubular 

5 FT.AB 8 21 4/4 DLY Abdominal fat tissue 

6 MS.DI 8 21 4/4 DLY Diaphragm muscle 

7 STOM 8 21 4/4 DLY Stomach 

8 CPT.FIL 8 21 4/4 DLY Conceptus filamentous 

9 MS.LD 8 21 4/4 DLY Longissimus dorsi 

10 LNG.TRA 8 21 4/4 DLY Lung porcine trachea 
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11 PLACT 8 21 4/4 DLY Placenta 

12 LNG.BRO 8 21 4/4 DLY Lung porcine bronchus 

13 LNG.DIS 8 21 4/4 DLY Lung porcine distal 

14 SPL 8 21 4/4 DLY Spleen 

15 FT.BF 8 21 4/4 DLY Back fat tissue 

16 KID 8 21 4/4 DLY Kidney 

17 ADE 8 21 4/4 DLY Adenohypophysis 

18 MP.BMD 8 21 4/4 DLY Bone-marrow derived 

macrophage 

19 MS.BF 8 21 4/4 DLY Biceps femoris 

20 EDMT 8 21 4/4 DLY Endometrium 

21 BLD 8 21 4/4 DLY Blood 

22 PBMC 8 21 4/4 DLY Peripheral blood 

mononuclear cell 

23 HT 8 21 4/4 DLY Heart 

24 CC 8 21 4/4 DLY Cerebral cortex 

25 MP.MD 8 21 4/4 DLY Monocyte derived 

macrophage 

26 MP.ALV 8 21 4/4 DLY Porcine alveolar 

macrophages 

27 MLN 8 21 4/4 DLY Mesenteric lymph nodes 

28 LIV 8 21 4/4 DLY Liver 

Analysis of the complexity and diversity of Super deepSAGE data across tissues 143 

Rarefaction analysis of size-fractionated library for each sample was performed 144 

to determine the complexity and diversity of the tissues in pig (Wang et al. 2018). The 145 

sequencing depth achieved using eight samples-multiplexed deep sequencing technic 146 

reached near-saturation of transcript discovery within all size ranges. Saturation was 147 

reached very early in Super deepSAGE sequencing data due to the lower complexity 148 

of the tags (number of tags) in libraries (Fig. 2A-F showed the first six deep 149 

sequencing runs). Samples from the same sequencing run were compared using reads 150 
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from different size-fractionated libraries to further investigate the diversity of the 151 

relationship between sequencing depth and transcript discovery. In all deep 152 

sequencing runs, tissues exhibited transcriptome diversity in terms of both total 153 

numbers of reads and the number of transcripts discovered. For example, the muscle 154 

tissue (MS.DI_2) saturated much sooner than the conceptus (CPT.SPH_8) and have 155 

less number of transcripts discovered in the first deep sequencing run (Fig. 2A). 156 

Similar sequencing depth and diversity were obtained using size-fractionated data 157 

from each of the sequencing run and transcript as outcome measures (Supplemental 158 

Fig. SA-D). 159 

 160 

Fig. 2. Rarefaction analysis of covered genes/transcripts in porcine tissues and 161 

cells Super deepSAGE library. Plot A to F shows the covered Kilo transcripts per Kilo 162 
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reads in the first six Super deepSAGE sequencing runs. The samples in each 163 

sequencing run were randomized and detailed information is given in Table 1. 164 

Data quality and internal consistency control using principal component analysis 165 

(PCA) 166 

Principal component analysis (PCA) was used to check if the samples clustered 167 

together according to their tissue source (Son et al. 2005). Even though the samples 168 

were collected from 32 individual animals from different families, genders, and ages 169 

(Table 1), the PCA plot showed that the samples from the same tissues clustered 170 

together and were distinct from other samples (Fig. 3). The transcripts in conceptus, 171 

blood, and macrophages had relatively distinct expression profile and segregation 172 

apart from the rest of the samples when plotted using the first two components of the 173 

PCA analysis (Fig. 3A). The adenohypophysis, cerebral cortex, heart, and muscle 174 

were aggregate and separated from other samples when plotted using the third and 175 

fourth component (Fig. 3B). The adrenal, liver, mesenteric lymph nodes, peripheral 176 

blood mononuclear cell, and spleen were slightly away from other samples when 177 

plotted using the fifth and sixth component (Fig. 3C). When removing those samples 178 

from the datasets and re-calculating the PCAs, the remaining samples; fat, placenta, 179 

endometrium, kidney, lung, and stomach grouped differently according to the 180 

tissue/cell types (Fig. 3D to F). Tissues having similar cellular composition and 181 

biological function, like alveolar macrophages and monocyte-derived macrophages or 182 

heart and skeletal muscles, clustered closely together but were separated from each 183 

other. 184 
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 185 

Fig. 3. Principal components analysis of the Super deepSAGE sequencing data. A) 186 

to D) shows the top eight principal components of all 224 samples from the 28 tissues 187 

(two principal components per each plot). Samples separated in plot A to D were 188 

removed, and PCA was re-calculated with the remaining samples (fat, placenta, 189 

endometrium, kidney, lung, and stomach grouped). E) and F) shows the top four 190 

principal components of all the remaining samples (two principal components per 191 

each plot). 192 

Comparison of the Super deepSAGE data with previously published microarray 193 

research 194 

The expression profiles were compared with microarray data published 195 

previously (Hornshoj et al. 2007). There is a total of 18,306 common genes for seven 196 

tissues, while high correlations (r=0.85-0.93 and p-values less than 1.0×e-30) were 197 
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calculated between the gene expression profiles generated by the two platforms (Fig. 198 

4). Similar dynamic range was observed in both platforms for transcripts with relative 199 

expression level between 0.55 and 0.95. Differences in expression profiles were 200 

apparent between the two platforms with several genes exhibiting relatively higher or 201 

lower expression values in either platform deviated from the diagonal line (Fig. 4). All 202 

transcripts had an expression value in the microarray, due to background hybridization 203 

or noise, regardless of whether it was truly expressed or not. The overall dynamics of 204 

the fitted curve showed that the Super deepSAGE is more sensitive than that 205 

microarray for the low expressed genes showing a concaved trend at the lower ends 206 

(with relative expression level less than 0.55 in Fig. 4). For those genes with high 207 

expression levels, variability is high in both Super deepSAGE and microarray 208 

platforms.  209 

As compared by microarray, reliable gene expression profiles can be generated 210 

by Super deepSAGE in seven known tissues. Of the 50 highest expressed Super 211 

deepSAGE tags, 38 (76%) found corresponding probesets in the 50 highest expressed 212 

genes, and only three tags showed a statistically significant difference between Super 213 

deepSAGE and microarray data. Two possibilities could cause such discrepancies 214 

between Super deepSAGE and microarray data: 1) the SAGE tag was derived from 215 

two or more different transcripts, which were differentially expressed in the samples 216 

tested, and 2) the microarray probeset can target two or more transcripts due to 217 

sequence similarity of transcripts. For example, the transcripts from the same gene 218 

family will always produce the same SAGE tag (attributable to the lower resolution 219 

power of Super deepSAGE) and preferred to hybrid to the same microarray probeset 220 

(can be minimized by design probesets in the none-conserved region). Regardless of 221 

some discrepancy, we conclude that Super deepSAGE data are overall compatible 222 

with the microarray data and provide faithful gene expression profiles. 223 
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 224 

Figure 4. Comparison of the expression profiles of the 18,306 common transcripts 225 

between Super deepSAGE and microarray platforms. Scatter plots show the averages 226 

(between biological duplicates) of log2 transformed expression values of transcripts 227 

between two platforms. The relationship between the expression profiles generated in 228 

the two platforms is depicted as a smoothing spline (red).  229 

Identification of tissue-specific expression of transcripts 230 

A total of 4,165 transcripts showed significant up or down-regulation at least in 231 
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one tissues in comparison to the average tag count for all other 27 tissues. K-means 232 

clustering was then performed by trying a different number of centers (K from 5 to 28) 233 

and several random sets (S from 10 to 1000). Finally, we selected K = 10 and S = 400 234 

to produce clustering result with clean and clear expression pattern (by visualization), 235 

highly reproducible for each duplicated run (Fig. 5). The result indicated that Cluster 236 

1 has the largest number of transcripts, and most of these transcripts were expressed 237 

low in tissues, except macrophages, PBMCs, blood, and conceptus which were 238 

moderately expressed. The conceptus specifically expressed transcripts were in 239 

Cluster 2, while the conceptus, macrophages, PBMCs, and blood de-expressed 240 

transcripts were in Cluster 4. The macrophages, PBMCs, blood, mesenteric lymph 241 

nodes, and spleen specific expressed transcripts were in Cluster 5. The genes 242 

specifically expressed in heart and skeletal muscle were in cluster 10. The cerebral 243 

cortex specifically expressed genes were in Cluster 6, and liver specifically expressed 244 

transcripts were in Cluster 7. The adrenal cortex, adrenal medulla, cerebral cortex, and 245 

adenohypophysis specifically expressed transcripts were in Cluster 8. Transcript in 246 

Cluster 3 and Cluster 9 were ubiquitously expressed or expressed in multiple tissues. 247 

Gene expression data obtained from transcriptional profiling experiments have 248 

inspired several applications, such as the identification of differentially expressed 249 

genes (Huang et al. 2011; Huang et al. 2018) and the creation of gene classifiers for 250 

improved diagnoses of diseases such as cancer (Wesolowski and Ramaswamy 2011; 251 

Tonella et al. 2017). The gene expression profile of 224 samples created in this study 252 

is complicated that traditional models were difficult to apply to this data to find 253 

differentially expressed genes. An ad hoc method comparing each tissues to the 254 

average tag count for all other 27 tissues was performed, and a very stringent 255 

threshold was set (fold change >5.0, p-value <1.0×10-6) to filter the tissues 256 

specifically expressed transcripts. The K-means clustering algorithms which group 257 

similar transcripts and separate dissimilar transcripts by assigning them to different 258 

clusters have proven to be useful for identifying biologically relevant gene clusters for 259 

different biological status (Yao et al. 2016). Even though very useful, the K-means 260 

clustering algorithm is particularly sensitive to initial starting conditions and 261 

converges to the point that is the local minimum (Selim and Ismail 1984). 262 
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Furthermore, the number of clusters (parameter K) is difficult to be determined. In 263 

this study, global-seeding procedures of BF98 (Bradley and Fayyad 1998) have been 264 

introduced into the algorithm to improve the consistency and quantity of clustering 265 

results. The BF98 method employed a bootstrap-type procedure to determine the 266 

initial seeds for the centers. Several subsamples (recommended n = 10) of the data set 267 

were clustered using K-means. Each clustering operation produced a different 268 

candidate set of centroids from which a new data set was constructed. This data set 269 

was clustered using K-means, and the centroids were chosen as the initial seeds. The 270 

optimal BF98 clustering result on the Super deepSAGE data was obtained by 271 

“visualization” of the result performed by using K=10 and number of subsamples 272 

S=1000 after trying K from 5 to 28 and S from 20 to 1,000. The “visualization” 273 

method is straightforward for that deterring the best parameter for the K-means 274 

clustering procedure, but when the K reached 10, definite, compact and representative 275 

gene clustering was formulated, and when the S is higher than 200, consistent 276 

clustering result was produced for each duplicated clustering run. 277 
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 278 

Fig. 5. K-means clustering analysis of differentially expressed genes across 279 

tissues. Data adjustment (median center and normalization) was performed before the 280 

clustering analysis. The color codes of red, white, black, and dark green represent 281 

high, average, low, and absence of expression, respectively. A detailed view of 282 

expression pattern and internal structure of each gene cluster were constructed by 283 
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hierarchical clustering and is shown in plot areas from 1–10. 284 

Identification of over-represented motif for tissues specifically expressed 285 

transcripts 286 

The CLOVER software (Frith et al. 2004) with JASPAR PWM database (Khan et 287 

al. 2018) was used to identify over-represented transcription factor binding motifs for 288 

each cluster of genes. The promoter regions for each cluster of transcript (1,000 bp 289 

upstream) were obtained using the Ensemble Biomart tool (Kasprzyk 2011). The 290 

promoter regions for the whole transcript detected in this project, which possesses 291 

similar GC content, were used as background. Motifs having a p-value of ≤ 0.05 were 292 

selected as significant (Table 2, top 5 motifs). The most significantly enriched motif in 293 

Class 1 is MZF1. TFAP2A and TFAP2C were also significantly enriched with a raw 294 

score higher than 30. In Class 2, there was only one significantly enriched motif, 295 

RHOXF1. In Class 3 and 4, there were five and four motifs with p-value < 0.05 296 

respectively, but the raw score was lower than ten. In Class 5, there were at least five 297 

motifs with p-value < 0.05, and three of them, RUNX1, ASCL1, and Myod1 had a 298 

raw score higher than 30. In Class 6, the significantly enriched motifs with the highest 299 

score were SNAI2 and FIGLA, whereas, in Class 7, the significantly enriched motifs 300 

with the highest score was NR4A2. In Class 8, there was only one motif ZEB1 301 

enriched in the promoter region of these transcripts. In Class 9, all the enriched motifs 302 

had a raw score of less than ten. In Class 10, the top three motifs were Ascl2, Myog, 303 

and Tcf12. 304 

The transcription factors interact with the DNA recognition motifs, regulates 305 

transcription of a large number of genes, and play important roles in fundamental 306 

biological processes, including growth, development, and disease (Latchman 1997). 307 

To understand gene expression regulation in the Super deepSAGE data obtained in 308 

this study, identifying the over-represented or under-represented motifs in the 309 

sequence showing similar expression pattern and which factors bind to them, is 310 

necessary. Over-representation indicated the motif candidates playing a regulatory 311 

role in the sequences, while under-representation indicated that the motif would have 312 
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a harmful dis-regulatory effect. In each gene clusters showing a similar expression 313 

pattern, Clover successfully detects motifs known to function in the sequences and 314 

generate interesting and testable hypotheses. 315 

Table 2. Significantly over-represented binding motifs in the promoter region of 316 

transcripts showing a similar expression pattern 317 

Gene 

cluster 
Jaspar ID TF name 

Occurren

ce 

Gene 

count 

Raw 

score 
FDR 

Class 1 MA0056.1 MZF1 291 291 91.6 0 

Class 1 MA0810.1 
TFAP2A(

var.2) 
165 165 33.1 0.002 

Class 1 MA0524.2 TFAP2C 149 149 32.3 0.003 

Class 1 MA0811.1 TFAP2B 143 143 29.1 0.004 

Class 1 MA0507.1 POU2F2 53 53 8.35 0.006 

Class 2 MA0719.1 RHOXF1 142 142 6.96 0.008 

Class 3 MA1105.1 GRHL2 28 28 6.99 0.003 

Class 3 MA0842.1 NRL 60 60 3.67 0.006 

Class 3 MA0164.1 Nr2e3 52 52 2.42 0.003 

Class 3 MA0029.1 Mecom 23 23 2.25 0.009 

Class 3 MA0117.2 Mafb 49 49 1.69 0.004 

Class 4 MA0691.1 TFAP4 20 20 4.93 0.004 

Class 4 MA0091.1 
TAL1::T

CF3 
16 16 2.43 0.006 

Class 4 MA0616.1 Hes2 19 19 0.8 0.003 

Class 4 MA0089.1 
MAFG::

NFE2L1 
21 21 -1.09 0.005 

Class 5 MA0002.2 RUNX1 135 135 55.5 0 

Class 5 MA1100.1 ASCL1 79 79 46.8 0.008 

Class 5 MA0499.1 Myod1 59 59 31.6 0.003 

Class 5 MA1124.1 ZNF24 30 30 18.6 0.002 

Class 5 MA1109.1 NEURO 57 57 9.76 0.004 
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D1 

Class 6 MA0745.1 SNAI2 75 75 18.7 0.001 

Class 6 MA0820.1 FIGLA 77 77 17.6 0.003 

Class 6 MA0138.2 REST 6 6 7.13 0.002 

Class 6 MA0665.1 MSC 36 36 6.63 0.002 

Class 6 MA0691.1 TFAP4 30 30 5.79 0.003 

Class 7 MA0160.1 NR4A2 59 59 15.5 0 

Class 7 MA0693.2 VDR 31 31 4.29 0.004 

Class 7 MA0017.2 NR2F1 27 27 4.12 0.009 

Class 7 MA1142.1 
FOSL1::J

UND 
38 38 3.25 0.001 

Class 7 MA0059.1 
MAX::M

YC 
16 16 1.48 0.008 

Class 8 MA0103.3 ZEB1 21 21 10.9 0.002 

Class 9 MA0084.1 SRY 22 22 9.59 0.01 

Class 9 MA0130.1 
ZNF354

C 
35 35 9.47 0.007 

Class 9 MA0463.1 Bcl6 21 21 7.12 0.007 

Class 9 MA0799.1 RFX4 7 7 5.64 0.007 

Class 9 MA0798.1 RFX3 7 7 5.38 0.009 

Class 10 MA0816.1 Ascl2 66 66 28.6 0.009 

Class 10 MA0500.1 Myog 58 58 28.5 0.01 

Class 10 MA0521.1 Tcf12 57 57 27.2 0.008 

Class 10 MA0665.1 MSC 36 36 9.17 0.002 

Class 10 MA0108.2 TBP 57 57 4.39 0.007 
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Case report: confirmation of the regulatory roles of RUNX1 in PBMCs in pig 318 

Confirmation of the RUNX1 binding site in the promoter region of TLR-2, LCK, 319 

and VAV1 320 

The toll-like receptor 2 (TLR-2), lymphocyte-specific protein tyrosine kinase 321 

(LCK), and vav1 oncogene (VAV1) plasmid containing the 1Kb promoter sequence 322 

were used in in vivo studies (wild type). To show the regulation effect of RUNX1, the 323 

binding site of RUNX1 in TLR-2, LCK, and VAV1 was mutated or deleted. Reporter 324 

vectors constructed by the wild type, mutated, or deleted promoter sequences were 325 

transfected into the peripheral blood mononuclear cells (PBMCs), and luciferase 326 

activity was monitored. Binding site deletion significantly attenuated the expression 327 

of the downstream reporter luciferase activity (p<0.05), indicating that the RUNX1 328 

could interact with the target site and regulate the expression of the downstream 329 

reporter gene (Fig. 6A-C). The mutated vectors showed significant attenuation of the 330 

activity of downstream luciferase at 40, 44, and 48 hours post-transfection (p<0.05) 331 

indicating a regulatory relationship between RUNX1 and the targets. Another 332 

experiment was performed using mouse macrophage cells (RAW 264.7) to validate 333 

the hypothesis further. Consistent with the previous results, deletion/mutations to the 334 

RUNX1 binding sites in TLR-2, LCK, and VAV1 promoter sequence significantly 335 

attenuated the activity of downstream luciferase at 40, 44, and 48 hours 336 

post-transfection (Fig. 6D-F). The luciferase reporter activity after transfection with 337 

the wild-type vector was significantly higher in macrophage cells than in the PBMC 338 

assays, suggesting that the endogenous RUNX1expression in mouse macrophage cells 339 

was higher than in PBMCs. 340 
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 341 

Fig. 6. Luciferase reporter assay of the RUNX1 targets. One wild-type promoter 342 

construct (containing the predicted RUNX1 binding site), two mutant constructs 343 

(mutated or not containing the binding site) were investigated. The mutant construct 344 

(black) was identical to the wild-type, except that the RUNX1 binding site was 345 

deleted or mutated. The line graphs show the luciferase activity after the reporter 346 

plasmids were transfected into PBMCs (A-C) or macrophages (D-F). Three RUNX1 347 

target gene have been investigated (A and D: TLR-2, B and E: LCK, C and F: VAV1). 348 

The error bars represent the mean ± standard deviation of three duplicate samples. 349 
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RNA flow cytometry analysis of RUNX1 targets in LPS and RUNX1 inhibitor 350 

treated PBMCs 351 

To show the effect of RUNX1 on three targets; TLR2, LCK, and VAV1, pig 352 

PBMCs were stimulated with LPS and/or RUNX1 inhibitor, for 6 hours, during which 353 

their TLR2, LCK, VAV1, CD14 protein levels were monitored. Two subsets of cells 354 

readily emerged from CD14/TLR2 analysis in PBMCs: a CD14hi/TLR2lo 355 

(CD14high/TLR2low) and a CD14lo/TLR2lo population (Fig. 7D). The percentage of 356 

CD14hi/TLR2lo cells increased in LPS plus RUNX1 inhibitor treated samples, but the 357 

proportion of CD14lo/TLR2lo cells remained unchanged. The percentages of TLR2hi 358 

(for both CD14hi and CD14lo) cells increased seven-fold in LPS alone treated samples 359 

compared with the non-treated controls. Four subsets of cells readily emerged from 360 

CD14/LCK analysis in PBMCs treated with LPS or RUNX1 inhibitor: a 361 

CD14hi/LCKlo, CD14hi/LCKhi, CD14lo/LCKhi, and CD14lo/LCKlo population (Fig. 7E). 362 

The percentage of CD14hi/LCKhi, and CD14lo/LCKhi cells increased in LPS plus 363 

RUNX1 inhibitor treated samples, and the proportion of CD14hi/LCKlo cells was 364 

decreased. The percentages of CD14hi/LCKhi cells increased by 40% in LPS alone 365 

treated samples compared with the non-treated controls. Two subsets of cells readily 366 

emerged from CD14/VAV1 analysis in PBMCs: a CD14hi/VAV1lo and a 367 

CD14lo/VAV1lo population (Fig. 7F). The percentage of VAV1hi (for both CD14hi and 368 

CD14lo) cells increased four-fold in LPS plus RUNX1 inhibitor treated samples. The 369 

percentages of VAV1hi (for both CD14hi and CD14lo) cells increased seven-fold in 370 

LPS alone treated samples compared with the non-treated controls and is two-fold 371 

higher than in LPS plus RNUX1 inhibitor treated samples.  372 

RUNX1 is a master regulator of hematopoiesis and plays a vital role in T and B 373 

cells development. RUNX1 is critical in inducing the production of genes in immune 374 

cells, such as interleukin-2 (IL-2, (Wong et al. 2011), IL-3 (Uchida et al. 1997), 375 

colony-stimulating factor 1 receptor (CSF1R, (Zhang et al. 1996), CSF2 (Frank et al. 376 

1995), and cluster of differentiation 4 (CD4, (Taniuchi et al. 2002). However, its roles 377 

in LPS-mediated inflammation in PBMCs remains unclear. In this study, regulations 378 

of TLR-2, LCK, and VAV1 have been confirmed by flow cytometry. TLR2 is an 379 
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essential receptor for the recognition of a variety of pathogen-associated molecular 380 

pattern (PAMPs) from Gram-positive bacteria, including bacterial lipoproteins, 381 

lipomannan, and lipoteichoic acids (Medzhitov 2001). LCK encoded protein is a key 382 

signaling molecule in the selection and maturation of developing T-cells (Davis and 383 

van der Merwe 2011). The VAV1 encoded protein is important in hematopoiesis, 384 

playing a role in both T-cell and B-cell development and activation (DeFranco 2001; 385 

Helou et al. 2015). These results suggested that RUNX1 might be a new potential 386 

target for resolving inadequate or uncontrolled inflammation in PBMCs. 387 

 388 

Fig. 7. Simultaneous staining of the target gene and CD14 protein in rested and 389 

stimulated PBMCs. Plots of PBMCs that were left untreated (A) or were stimulated 390 

with LPS plus RUNX1 inhibitor for 6 hours (B) or were stimulated with LPS only (C), 391 

and labeled with antibodies that bind to CD14 (PE-A) and target protein (FITC-A, 392 

D-F). 393 
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Real-time PCR analysis of RUNX1 targets in LPS and RUNX1 inhibitor treated 394 

PBMCs 395 

To investigate if the expression patterns of the 23 RUNX1 target genes could be 396 

modeled by LPS and RUNX1 inhibitor treatment in vivo, we performed real-time 397 

PCR assay after treating PBMCs with two different doses of LPS (1 ng/mL, 10 398 

ng/mL), and RUNX1 inhibitor (1 ng/mL, 10 ng/mL). Samples were collected six 399 

hours post-stimulation. A total of 21 genes were induced in response to at least one 400 

dose of LPS stimulation, as expression levels for these genes were different when 401 

compared to non-stimulated control. A total of 10 genes were down-regulated in 402 

response to the RUNX1 inhibitor treatment. Hierarchical clustering analysis was used 403 

to determine whether the response of LPS stimulation response was similar to the 404 

patterns detected in RUNX1 inhibitor treatment, and if any differences were observed 405 

depending on the dosage of LPS and RUNX1 inhibitor used. As shown in Fig. 8, the 406 

expression patterns of samples with RUNX1 inhibitor treatment, RUNX1 inhibitor 407 

plus LPS treatment, and non-simulated controls clustered together. Different dose of 408 

the RUNX1 inhibitor did not affect the samples, as observed by the mixing up of 409 

respective samples in the heatmap. The LPS treated samples were unique and were 410 

separated from the RUNX1 inhibitor-treated groups and control groups. Similar to the 411 

RUNX1 inhibitor, different doses of LPS dose did not affect the samples as well. The 412 

expression patterns of RUNX1 inhibitor plus LPS treatment samples were similar 413 

with controls and samples treated with RUNX1 alone because they were mixed in the 414 

heatmap. 415 
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 416 

Fig. 8. RUNX1 target gene expression in PBMCs treated with LPS or RUNX1 417 

inhibitor. Cells were treated in vitro with two different doses of LPS (1 ng/ml, 10 418 

ng/ml) and RUNX1 inhibitor (1 ng/ml, 10 ng/ml). Color codes of yellow, black, and 419 

blue represent expression levels of high, average, and low, respectively, across the 420 

treatments shown. 421 

Super deepSAGE is a useful data resource in pig study 422 

Gene expression analysis is extensively applied in the understanding of the 423 

molecular mechanisms underlying a wide range of biological process such as 424 

host-pathogen interactions. Our dataset of transcript levels in normal tissues was 425 

developed as a reference datasets that can be compared to attained information of 426 

biological event specifically related aberrations in transcript levels. Therefore, one 427 

major focus of this manuscript was to demonstrate the biological importance of these 428 
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profiles. We report that >40% of the measured transcripts were differentially 429 

expressed between the different tissues. We show that statically the transcripts were 430 

co-regulated by a few important transcription factors. We describe one of the many 431 

transcription factors that regulated gene expression in PBMCs. To our knowledge, this 432 

data set is the largest to date for the analysis of transcriptional profiles within normal 433 

tissues from pigs and is complementary to previously published data sets. These data 434 

will improve the annotation of the pig genome, support versatile biological research, 435 

and increase the utility of the pig as a meat source animal and model in medical 436 

research. 437 

Materials and methods 438 

Sample collection and RNA extraction 439 

Soon after anesthesia by electric shock, specimens were excised, snap-frozen in 440 

liquid nitrogen, and kept in a deep freezer (-80°C) until RNA extraction. RNA 441 

extraction from the tissue samples and cells was conducted using the RNeasy Mini 442 

Kit (Qiagen, Shanghai, China) following the manufacturer’s protocols. The 443 

BioAnalyzer 2100 (Agilent) was used to assess the integrity of total RNAs, and RIN 444 

number of less than 0.7 was removed from the study. 445 

Super deepSAGE sequencing and data procession 446 

The sequencing data were filtered by removing sequences that had poor quality 447 

(score <0.5) for more than 20% of all the bases. All the data discussed in this study 448 

have been deposited to the NCBI GEO database (Edgar et al. 2002) under accession 449 

number GSE134461. Tag sequence was extracted, counted, and assigned for each 450 

transcript, and then normalized for each sample by quantile normalization method 451 

(Pan and Zhang 2018). For the tags assigned to multiple transcripts, the average copy 452 

numbers of those tags were used. The principal component analysis (PCA) was 453 

performed using the log2 tag counts of all the transcripts across all the samples using 454 

R statistical software version 3.5. The tissue specific transcripts expressed were 455 
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identified by comparing samples from each tissue to the overall tag count across all 456 

samples (average), and a threshold was set to fold change >5.0, p-value <1.0×10-6 457 

according to a method implemented in limma package (Ritchie et al. 2015). 458 

Clustering analysis was performed by first using K-means clustering method to 459 

separate the transcripts to several big groups, and then using Hierarchical clustering to 460 

build the internal structure of the transcripts within the groups according to the 461 

method reported by Gu et al. (Gu et al. 2016). 462 

Luciferase reporter assay 463 

The three predicted target genes, TLR-2, LCK, and VAV1, were also conserved 464 

in human and mouse. For these three genes, a 1Kb nucleotide promoter segment that 465 

included RUNX1 target sites was inserted upstream of a firefly luciferase ORF (pGL3, 466 

Promega, Beijing, China), and luciferase activity was compared to that of an 467 

analogous reporter with point substitutions disrupting the target sites, or analogous 468 

reporter that the binding site deleted completed (see detailed sequence information in 469 

Supplemental document 2). The logic behind the luciferase reporter assay is that 470 

deletion/mutation of a RUNX1 binding site should allow the down-regulation of its 471 

target genes, and hence the target gene should be expressed differently between the 472 

wild type and mutated constructs. The pGL3-Control activity was used for the 473 

normalization of firefly luciferase activity. For the assay, the cells were plated in a 474 

96-well plate at 3,000 cells per well. After overnight incubation, the cells were treated 475 

with a transfection mixture consisting of 35 μL of serum-free medium, 0.3 μL of 476 

TransFastTM Transfection Reagent (Cat. E2431), and 0.02 μg of pGL3 and 477 

pGL3-Control vector per well. After one hour incubation, 100 μL of the 478 

serum-containing medium was added to the wells. At 24 to 48 hours of 479 

post-transfection, EnduRenTM Live Cell Substrate (Cat. E6481) was added to a final 480 

concentration of 60 μM, and luciferase activity was monitored. 481 
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PBMC Isolation and Stimulation 482 

Peripheral blood mononuclear cells (PBMCs) were isolated from whole normal 483 

blood collected from five animals aged 21 days using BD VacutainerVR Cell 484 

Preparation Tubes (Becton Dickinson, Shanghai, China). The samples were processed 485 

according to the manufacturer’s instructions within two hours of blood collection. 486 

PBMCs were harvested from the tube, washed with phosphate-buffered saline (Life 487 

Technologies), and centrifuged for 10 min at 300g prior to use. To induce gene 488 

expression, PBMCs were resuspended in RPMI-1640 medium (Life Technologies) 489 

supplemented with 10% fetal bovine serum (Life Technologies) at 1.5×106 cells/mL 490 

in a 96-well V-bottom polypropylene plate (Corning Incorporated). LPS 491 

(Sigma-Aldrich, Shanghai, China) and RUNX1 inhibitor (Ro 5-3335, R&D Systems, 492 

Shanghai, China) were added at 5 ng/mL and 10 ng/mL, respectively, according to the 493 

manufacturer’s instructions. Untreated PBMCs were used as control samples. 494 

Surface staining and cytometry acquisition 495 

Phenotypic surface staining was performed in BD PharmingenTM stain buffer 496 

(BSA, BD Biosciences, Shanghai, China) for 30 min at room temperature in the dark, 497 

using anti-CD14 PE (BD Biosciences, Shanghai, China). Cells were washed and 498 

suspended in BD Pharmingen stain buffer (BSA, BD Biosciences, Shanghai, China), 499 

anti-TLR-2 FITC, anti-LCK FITC, anti-VAV1 FITC (BD Biosciences, Shanghai, 500 

China), was then added separately, and the mixture was incubated for 20 min at room 501 

temperature. Finally, cells were washed and acquired on a BD LSRFortessaTM cell 502 

analyzer (BD Biosciences, Shanghai, China). The flow cytometry data were deposited 503 

in Flow Repository database (ref) under accession FR-FCM-Z268. 504 

Data access 505 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134461 506 
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http://flowrepository.org/id/RvFrphtLijqf34kFNTA1gdB6BdXEskSDTdhZ4VwfM1q507 

bgTIPfmqbL8o5eVTIhiUH 508 
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