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22  Abstract

23 Genome-wide identification of gene expression regulators may facilitate our
24 understanding of the transcriptome constructed by gene expression profiling
25 experiment. These regulators may be selected as targets for genetic manipulations in
26 farm animals. In this study, we developed a gene expression profile of 76,000+ unique
27  transcripts for 224 porcine samples from 28 normal tissues collected from 32 animals
28 using Super deepSAGE (seriad analysis of gene expression by deep sequencing)
29  technology. Excellent sequencing depth has been achieved for each multiplexed
30 library, and principal component analysis showed that duplicated samples from the
31 same tissues cluster together, demonstrating the high quality of the Super deepSAGE
32 data Comparison with previous research indicated that our results not only have
33  excellent reproducibility but also have greatly extended the coverage of the sample
34 types as well as the number of genes. Clustering analysis discovered ten groups of
35  genes showing distinct expression patterns among those samples. Binding motif over
36 representative analysis identified 41 regulators responsible for the regulation of these
37 gene clusters. Finally, we demonstrate a potential application of this dataset to
38 infectious and immune research by identifying an LPS-dependent transcription factor,
39  runt-related transcription factor 1 (RUNXL1), in periphera blood mononuclear cells
40 (PBMCs). The selected genes are specifically responsible for the transcription of
41  toll-like receptor 2 (TLR2), lymphocyte-specific protein tyrosine kinase (LCK), vavl
42  oncogene (VAV1), and other 32 genes. These genes belong to the T and B cell
43  signaling pathways, making them potential novel targets for the diagnostic and

44  therapy of bacterial infections and other immune disorders.

45  Introduction

46 The domestic pig (Sus scrofa) is an important farm animal for meat source
47  worldwide and has been used as alternative models for studying genetics, nutrition,
48  and disease as reviewed recently (Houpt et a. 1979; Verma et al. 2011; Bailey and

49  Carlson 2019). The swine genome community has created a large amount of useful
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50 data about the transcriptome of pigs (Schroyen and Tuggle 2015). The recently
51 released pig genome sequence (Sscrofa 10.2) (Groenen et al. 2012) and associated
52 annotation greatly enhance our knowledge of the pig biology (Dawson et al. 2013;
53 Beiki et a. 2019). Currently, it is estimated that the porcine genome encodes for
54  [40,000 genes (Groenen et al. 2012). Transcriptome analysis indicated that the
55  actively transcribed genes are only a fraction, perhaps 15,000 genes, in normal tissues
56  (Hornshoj et a. 2007). Several research groups have created microarray transcriptome
57  profiling data for normal human tissues (Haverty et al. 2002; Shmueli et al. 2003),
58  normal mouse tissues (Su et al. 2002; Su et a. 2004), and normal rat tissues (Walker
59 et a. 2004). In the pig, several Expressed Sequence Tag (EST) sequencing projects,
60 microarray platforms, and deep sequencing projects have developed gene expression
61 profiles across a range of tissues (Hornshoj et al. 2007; Freeman et a. 2012).
62 Compared to the model organisms, the information of the pig transcriptome is still
63  limited in terms of comprehensive tissue and gene coverage (Schroyen and Tuggle
64  2015). Here we present Super deepSAGE (serial analysis of gene expression by deep
65 seguencing) profiling data for the normal pig tissues with wide gene coverage and
66  annotation. Using K-means clustering analysis and motif binding site enrichment
67 anaysis, we have identified regulators for co-expressed genes. A detailed analysis of
68 one of the interesting transcription factors, runt-related transcription factor 1

69 (RUNX1), illustrated the power of the data

70 Results and discussion

71 Development of the Super deepSAGE technology

72 A flowchart of the Super deepSAGE experiment is summarized in Fig. 1.
73 Dynabeads® M-270 Amine (Thermo Fisher Scientific, China) were coupled with
74 —C6-SH labeled reverse transcription-primer with the sequence containing the
75 5'-CAGCAG-3' recognition site of EcoP15l and an Oligo(dT) sequence at 3' end
76  designed intentionally to complement the poly(A) sequence of mRNASs (Synthesized

77 by Sangon Biotech, China). The coupling procedure was carried out following
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78  protocol reported by Hill and Mirkin (Hill and Mirkin 2006) using the succinimidyl
79  4-(p-maleimidophenyl)butyrate (SMPB) crosslink reagent (Thermo scientific,
80  Shanghai, China). Ten micrograms of mMRNA were reverse-transcribed (CDNA
81 synthesis system, Invitrogen) with the Oligo(dT) magnetic beads to generate
82  single-stranded cDNA using protocol recommended by the manufacturer. The product
83  was converted to double-stranded cDNA using random primer and then digested with
84 Nlalll (NEB, Beijing, China). The biotin-labeled linkers (linker-5EA) with
85  phosphorylated 5 termini and 3' end overhang (5 -CATG-3'), containing the EcoP15I
86 recognition site were prepared by annealing commercially synthesized
87  oligonucleotides. The magnetic beads-bound cDNA was washed and linked to
88 linker-5EA by T4 DNA ligase (NEB, Beijing, China). As a result, each cDNA
89  fragment bounded to the magnetic beads is flanked by two inverted repeats of
90  EcoP15I recognizing sites. The type 11 restriction enzyme EcoP15I cleaves the DNA
91  downstream of the recognizing site (25 nt in one strand and 27 nt in the other strand)
92 leaving a5 end overhang of two bases (Meisel et al. 1992; Moncke-Buchner et al.
93  2009). Linker-ligated cDNAs on the magnetic beads were digested with ten units of
94  EcoP15l under conditions described previously (Matsumura et al. 2003). The
95  supernatant containing released biotin-labeled fragments were added to streptavidin
96 magnetic beads (Promega, Beijing, China), and the biotin-labeled fragments of the
97 cDNAs were captured. Finally, barcoded linkers (linker-3EA) with two random base
98 overhangs & 5 end and phosphorylated termini were prepared and ligated to the
99 cDNA ends by T4 DNA ligase (NEB, Beijing, China). The resulting products were
100 amplified by polymerase chain reaction (PCR), and the 119 bp product was separated
101 by polyacrylamide gel electrophoresis (PAGE) and recovered from the gel. The
102 barcoded libraries prepared from different samples were combined into a single
103  multiplex sequencing reaction at the end of library construction and submitted for
104  deep sequencing. The sequence information of synthetic oligos, linkers, and primers

105  areavailable in Supplemental document 1.

106 The serial analysis of gene expresson (SAGE) was first developed by
107  Velculescu et a. (Velculescu et al. 1995) and improved by Saha et al. (Saha et al.
108  2002), Matsumura et a. (Matsumura et al. 2003), and Nielsen et al. (Nielsen et al.
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109  2006). The traditional SAGE library construction protocol includes multiple steps,
110  and the separation of the linker-tag fragment is challenging to perform, and the PAGE
111 purification often produces low yield. The library construction protocol in this study
112 was improved by introducing two magnet beads: 1) Dynabeads® M-270 Amine
113 coupled with —C6-SH labeled Oligo(dT) reverse transcription primer; 2) The
114  streptavidin magnetic beads which can capture biotin-labeled linkers (linker-5EA).
115  The magnetic beads used in this protocol can capture and purify the DNA fragments
116  and istechnically less demanding than PAGE separation. This modification increased
117  theyield of linker-tag fragments and resulted in the robustness of the technique. Also,
118  the primers and linkers were designed compatible with multiplexed deep sequencing

119  technology, saving the sequencing cost.
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121 Fig. 1. Howchart of Super deepSAGE library construction. There are three major
122 steps included in the protocol: A) reverse transcription with oligo(dT) coupled
123 magnetic beads, synthesis of the secondary chain, and digestion with Nlalll; B) add 5’
124  end linker and digest with EcoP15I, and C) add 3" end linker and PCR amplification.

125  For details see materials and methods section.
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126  Animals, samples collection, and deep sequencing

127 A total of 224 tissue samples across 28 different tissues were collected from a
128  slaughtering farm located in Hubei province in China. The samples were collected
129  from 32 animals from a Duroc x Landrace x Yorkshire (DLY) commercial crossbreed
130  pig populations consisting of 16 males and 16 females with a median age of 21 days.
131  The endometrium, placenta, and conceptus were collected from Landrace x Yorkshire
132 (LY) sows of 65 days of gestation. The detailed sample information is available in
133  Table 1. In the computational extraction of tags from sequence data, the in-house
134  designed program removes the two bases at the 5° end. This ‘digital removal’ is
135  performed to minimize the less accurate effect of two random bases, at the 5’ end of
136  linker-3EA, and could potentialy reduce the length of tags, and affect the
137  representative ability of the data. However, direct link with a linker that has two
138  random bases at the 5 end forming stick ends will 1) enhance the efficiency of the
139  link assay, and 2) no additional blunt ending process was needed. The inaccuracy
140 caused by this linkage process was removed by the ‘digital remova’ procedure,

141  thereby lowering the systematic bias in the data.

142 Table 1. Detailed information of the collected samples

ID Code Dupli Age Mae/ Breeds  Tissue
cates (day) fema

e

1 AC 8 21 4/4 DLY Adrenal cortex

2 AM 8 21 4/4 DLY Adrenal medulla

3 CPT.SPH 8 21 4/4 DLY Conceptus spherical
4 CPT.TUB 8 21 4/4 DLY Conceptus tubular

5 FT.AB 8 21 4/4 DLY Abdominal fat tissue
6 MS.DI 8 21 4/4 DLY Diaphragm muscle
7 STOM 8 21 4/4 DLY Stomach

8 CPT.FIL 8 21 4/4 DLY Conceptus filamentous
9 MS.LD 8 21 4/4 DLY Longissimus dorsi

10 LNG.TRA 8 21 4/4 DLY Lung porcine trachea
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11 PLACT 8 21 4/4 DLY Placenta

12 LNG.BRO 8 21 4/4 DLY Lung porcine bronchus

13 LNG.DIS 8 21 4/4 DLY Lung porcine distal

14 SPL 8 21 4/4 DLY Spleen

15 FT.BF 8 21 4/4 DLY Back fat tissue

16 KID 8 21 4/4 DLY Kidney

17 ADE 8 21 4/4 DLY Adenohypophysis

18 MPBMD 8 21 4/4 DLY Bone-marrow  derived
macrophage

19 MS.BF 8 21 4/4 DLY Biceps femoris

20 EDMT 8 21 4/4 DLY Endometrium

21 BLD 8 21 4/4 DLY Blood

22 PBMC 8 21 4/4 DLY Peripheral blood
mononuclear cell

23 HT 8 21 4/4 DLY Heart

24 CcC 8 21 4/4 DLY Cerebral cortex

25 MPMD 8 21 4/4 DLY Monocyte derived
macrophage

26 MPALV 8 21 4/4 DLY Porcine alveolar
macrophages

27 MLN 8 21 4/4 DLY Mesenteric lymph nodes

28 LIV 8 21 4/4 DLY Liver

Analysis of the complexity and diversity of Super deepSAGE data across tissues

Rarefaction analysis of size-fractionated library for each sample was performed
to determine the complexity and diversity of the tissuesin pig (Wang et a. 2018). The
sequencing depth achieved using eight samples-multiplexed deep sequencing technic
reached near-saturation of transcript discovery within all size ranges. Saturation was
reached very early in Super deepSAGE sequencing data due to the lower complexity
of the tags (number of tags) in libraries (Fig. 2A-F showed the first six deep

sequencing runs). Samples from the same sequencing run were compared using reads
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151  from different size-fractionated libraries to further investigate the diversity of the
152  relationship between sequencing depth and transcript discovery. In al deep
153  sequencing runs, tissues exhibited transcriptome diversity in terms of both total
154  numbers of reads and the number of transcripts discovered. For example, the muscle
155  tissue (MS.DI_2) saturated much sooner than the conceptus (CPT.SPH_8) and have
156  less number of transcripts discovered in the first deep sequencing run (Fig. 2A).
157  Similar sequencing depth and diversity were obtained using size-fractionated data
158  from each of the sequencing run and transcript as outcome measures (Supplemental
159  Fig. SA-D).
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161 Fig. 2. Rarefaction analysis of covered genes/transcripts in porcine tissues and

162  cells Super deepSAGE library. Plot A to F shows the covered Kilo transcripts per Kilo

8/31


https://doi.org/10.1101/713206
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/713206; this version posted July 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

163  reads in the first six Super deepSAGE sequencing runs. The samples in each

164  sequencing run were randomized and detailed information is given in Table 1.

165  Data quality and internal consistency control using principal component analysis

166  (PCA)

167 Principal component analysis (PCA) was used to check if the samples clustered
168  together according to their tissue source (Son et al. 2005). Even though the samples
169  were collected from 32 individual animals from different families, genders, and ages
170  (Table 1), the PCA plot showed that the samples from the same tissues clustered
171  together and were distinct from other samples (Fig. 3). The transcripts in conceptus,
172 blood, and macrophages had relatively distinct expression profile and segregation
173 apart from the rest of the samples when plotted using the first two components of the
174  PCA anaysis (Fig. 3A). The adenohypophysis, cerebral cortex, heart, and muscle
175  were aggregate and separated from other samples when plotted using the third and
176  fourth component (Fig. 3B). The adrena, liver, mesenteric lymph nodes, peripheral
177 blood mononuclear cell, and spleen were slightly away from other samples when
178  plotted using the fifth and sixth component (Fig. 3C). When removing those samples
179  from the datasets and re-calculating the PCAs, the remaining samples; fat, placenta,
180  endometrium, kidney, lung, and stomach grouped differently according to the
181  tissue/cell types (Fig. 3D to F). Tissues having similar cellular composition and
182  biological function, like alveolar macrophages and monocyte-derived macrophages or
183  heart and skeletal muscles, clustered closely together but were separated from each

184  other.
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186 Fig. 3. Principal components analysis of the Super deepSAGE sequencing data. A)
187  to D) shows the top eight principal components of all 224 samples from the 28 tissues
188  (two principal components per each plot). Samples separated in plot A to D were
189  removed, and PCA was re-calculated with the remaining samples (fat, placenta,
190  endometrium, kidney, lung, and stomach grouped). E) and F) shows the top four
191  principal components of al the remaining samples (two principal components per

192  each plot).

193  Comparison of the Super deepSAGE data with previously published microarray

194 research

195 The expression profiles were compared with microarray data published
196  previously (Hornshoj et al. 2007). There is atotal of 18,306 common genes for seven
197  tissues, while high correlations (r=0.85-0.93 and p-values less than 1.0xe™%) were
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198  calculated between the gene expression profiles generated by the two platforms (Fig.
199  4). Smilar dynamic range was observed in both platforms for transcripts with relative
200 expression level between 0.55 and 0.95. Differences in expression profiles were
201  apparent between the two platforms with several genes exhibiting relatively higher or
202 lower expression values in either platform deviated from the diagonal line (Fig. 4). All
203 transcripts had an expression value in the microarray, due to background hybridization
204  or noise, regardless of whether it was truly expressed or not. The overall dynamics of
205 the fitted curve showed that the Super deepSAGE is more sensitive than that
206 microarray for the low expressed genes showing a concaved trend at the lower ends
207  (with relative expression level less than 0.55 in Fig. 4). For those genes with high
208  expression levels, variability is high in both Super deepSAGE and microarray

209  platforms.

210 As compared by microarray, reliable gene expression profiles can be generated
211 by Super deepSAGE in seven known tissues. Of the 50 highest expressed Super
212 deepSAGE tags, 38 (76%) found corresponding probesets in the 50 highest expressed
213 genes, and only three tags showed a statistically significant difference between Super
214  deepSAGE and microarray data. Two possibilities could cause such discrepancies
215  between Super deepSAGE and microarray data: 1) the SAGE tag was derived from
216  two or more different transcripts, which were differentially expressed in the samples
217 tested, and 2) the microarray probeset can target two or more transcripts due to
218 seguence similarity of transcripts. For example, the transcripts from the same gene
219  family will always produce the same SAGE tag (attributable to the lower resolution
220 power of Super deepSAGE) and preferred to hybrid to the same microarray probeset
221 (can be minimized by design probesets in the none-conserved region). Regardless of
222  some discrepancy, we conclude that Super deepSAGE data are overal compatible

223 with the microarray data and provide faithful gene expression profiles.
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225  Figure 4. Comparison of the expression profiles of the 18,306 common transcripts
226 between Super deepSAGE and microarray platforms. Scatter plots show the averages
227  (between biological duplicates) of log, transformed expression values of transcripts
228  between two platforms. The relationship between the expression profiles generated in

229  thetwo platformsis depicted as a smoothing spline (red).

230 ldentification of tissue-specific expression of transcripts

231 A total of 4,165 transcripts showed significant up or down-regulation at least in
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232 one tissues in comparison to the average tag count for all other 27 tissues. K-means
233 clustering was then performed by trying a different number of centers (K from 5 to 28)
234  and several random sets (S from 10 to 1000). Finally, we selected K = 10 and S = 400
235  to produce clustering result with clean and clear expression pattern (by visualization),
236 highly reproducible for each duplicated run (Fig. 5). The result indicated that Cluster
237 1 has the largest number of transcripts, and most of these transcripts were expressed
238 low in tissues, except macrophages, PBMCs, blood, and conceptus which were
239  moderately expressed. The conceptus specifically expressed transcripts were in
240  Cluster 2, while the conceptus, macrophages, PBMCs, and blood de-expressed
241  transcripts were in Cluster 4. The macrophages, PBMCs, blood, mesenteric lymph
242 nodes, and spleen specific expressed transcripts were in Cluster 5. The genes
243 gpecifically expressed in heart and skeletal muscle were in cluster 10. The cerebral
244  cortex specifically expressed genes were in Cluster 6, and liver specifically expressed
245  transcriptswerein Cluster 7. The adrenal cortex, adrenal medulla, cerebral cortex, and
246 adenohypophysis specifically expressed transcripts were in Cluster 8. Transcript in
247  Cluster 3 and Cluster 9 were ubiquitously expressed or expressed in multiple tissues.

248 Gene expression data obtained from transcriptional profiling experiments have
249  inspired severa applications, such as the identification of differentialy expressed
250 genes (Huang et a. 2011; Huang et al. 2018) and the creation of gene classifiers for
251  improved diagnoses of diseases such as cancer (Wesolowski and Ramaswamy 2011,
252  Tonelaet a. 2017). The gene expression profile of 224 samples created in this study
253 is complicated that traditiona models were difficult to apply to this data to find
254  differentialy expressed genes. An ad hoc method comparing each tissues to the
255 average tag count for all other 27 tissues was performed, and a very stringent
256 threshold was set (fold change >5.0, p-value <1.0x10°) to filter the tissues
257  specifically expressed transcripts. The K-means clustering algorithms which group
258  Similar transcripts and separate dissimilar transcripts by assigning them to different
259  clusters have proven to be useful for identifying biologically relevant gene clusters for
260 different biological status (Yao et a. 2016). Even though very useful, the K-means
261  clustering algorithm is particularly sensitive to initial starting conditions and
262 converges to the point that is the local minimum (Selim and Ismail 1984).
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263 Furthermore, the number of clusters (parameter K) is difficult to be determined. In
264  this study, global-seeding procedures of BF98 (Bradley and Fayyad 1998) have been
265 introduced into the algorithm to improve the consistency and quantity of clustering
266 results. The BF98 method employed a bootstrap-type procedure to determine the
267 initia seeds for the centers. Several subsamples (recommended n = 10) of the data set
268 were clustered using K-means. Each clustering operation produced a different
269  candidate set of centroids from which a new data set was constructed. This data set
270  was clustered using K-means, and the centroids were chosen as the initial seeds. The
271 optimal BF98 clustering result on the Super deepSAGE data was obtained by
272 “visualization” of the result performed by using K=10 and number of subsamples
273 S=1000 after trying K from 5 to 28 and S from 20 to 1,000. The “visualization”
274  method is straightforward for that deterring the best parameter for the K-means
275  clustering procedure, but when the K reached 10, definite, compact and representative
276  gene clustering was formulated, and when the S is higher than 200, consistent

277  clustering result was produced for each duplicated clustering run.
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278

279 Fig. 5. K-means clustering analysis of differentially expressed genes across
280 tissues. Data adjustment (median center and normalization) was performed before the
281  clustering analysis. The color codes of red, white, black, and dark green represent
282  high, average, low, and absence of expression, respectively. A detailed view of

283  expression pattern and internal structure of each gene cluster were constructed by
15/31
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284  hierarchical clustering and is shown in plot areas from 1-10.

285 ldentification of over-represented motif for tissues specifically expressed

286 transcripts

287 The CLOVER software (Frith et al. 2004) with JASPAR PWM database (Khan et
288  al. 2018) was used to identify over-represented transcription factor binding motifs for
289  each cluster of genes. The promoter regions for each cluster of transcript (1,000 bp
290 upstream) were obtained using the Ensemble Biomart tool (Kasprzyk 2011). The
291  promoter regions for the whole transcript detected in this project, which possesses
292 sgmilar GC content, were used as background. Motifs having a p-value of < 0.05 were
293 selected as significant (Table 2, top 5 motifs). The most significantly enriched motif in
294  Class 1 is MZF1. TFAP2A and TFAP2C were aso significantly enriched with a raw
295  score higher than 30. In Class 2, there was only one significantly enriched motif,
296 RHOXFL. In Class 3 and 4, there were five and four motifs with p-value < 0.05
297  respectively, but the raw score was lower than ten. In Class 5, there were at least five
298  motifs with p-value < 0.05, and three of them, RUNX1, ASCL1, and Myodl had a
299  raw score higher than 30. In Class 6, the significantly enriched motifs with the highest
300 score were SNAI2 and FIGLA, whereas, in Class 7, the significantly enriched motifs
301  with the highest score was NR4A2. In Class 8, there was only one motif ZEB1
302 enriched in the promoter region of these transcripts. In Class 9, all the enriched motifs
303 had araw score of less than ten. In Class 10, the top three motifs were Ascl2, Myog,
304 and Tcfl2.

305 The transcription factors interact with the DNA recognition motifs, regulates
306 transcription of a large number of genes, and play important roles in fundamental
307 biologica processes, including growth, development, and disease (Latchman 1997).
308  To understand gene expression regulation in the Super deepSAGE data obtained in
309 this study, identifying the over-represented or under-represented motifs in the
310  seqguence showing similar expression pattern and which factors bind to them, is
311  necessary. Over-representation indicated the motif candidates playing a regulatory

312 role in the sequences, while under-representation indicated that the motif would have
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a harmful dis-regulatory effect. In each gene clusters showing a similar expression

pattern, Clover successfully detects motifs known to function in the sequences and
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generate interesting and testable hypotheses.

Table 2. Significantly over-represented binding motifs in the promoter region of

transcripts showing a similar expression pattern

Gene Occurren Gene Raw
Jaspar ID  TF name FDR

cluster ce count score

Class 1 MAQ0056.1 MZF1 291 291 91.6 0
TFAP2A(

Class 1 MAO0810.1 165 165 33.1 0.002

var.2)

Class 1 MAOQO524.2 TFAP2C 149 149 32.3 0.003

Class 1 MAO811.1 TFAP2B 143 143 29.1 0.004

Class 1 MAO507.1 POU2F2 53 53 8.35 0.006

Class 2 MAO0719.1 RHOXF1 142 142 6.96 0.008

Class 3 MA1105.1 GRHL2 28 28 6.99 0.003

Class 3 MAO0842.1 NRL 60 60 3.67 0.006

Class 3 MAOQ0164.1 Nr2e3 52 52 242 0.003

Class 3 MAOQ0029.1 Mecom 23 23 2.25 0.009

Class 3 MAO0117.2 Mafb 49 49 1.69 0.004

Class 4 MAO0691.1 TFAP4 20 20 4,93 0.004
TALL:T

Class 4 MAO091.1 16 16 243 0.006

CF3

Class4 MAO0616.1 Hes2 19 19 0.8 0.003
MAFG::

Class4 MAQ0089.1 21 21 -1.09 0.005
NFE2L1

Class5 MAQ002.2 RUNX1 135 135 55.5 0

Class5 MA1100.1 ASCL1 79 79 46.8 0.008

Class5 MAO0499.1 Myodl 59 59 31.6 0.003

Classb5 MA1124.1 ZNF24 30 30 18.6 0.002

Class5 MA1109.1 NEURO 57 57 9.76 0.004
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D1
Class6 MAOQ745.1 SNAI2 75 75 18.7 0.001
Class6 MAO0820.1 FIGLA 77 77 17.6 0.003
Class6 MAO0138.2 REST 6 6 7.13 0.002
Class6  MAO0665.1 MSC 36 36 6.63 0.002
Class6 MAO0691.1 TFAP4 30 30 5.79 0.003
Class7 MAO0160.1 NR4A2 59 59 155 0
Class7 MA0693.2 VDR 31 31 4.29 0.004
Class7 MAO0017.2 NR2F1 27 27 412 0.009
Class7 MA1142.1 FOSLL 38 38 3.25 0.001
UND
MAX:M
Class7 MAO0059.1 16 16 1.48 0.008
YC
Class8 MAO0103.3 ZEB1 21 21 10.9 0.002
Class9  MAO0084.1 SRY 22 22 9.59 0.01
ZNF354

Class9 MAO0130.1 c 35 35 9.47 0.007
Class9 MAO0463.1 Bcl6 21 21 7.12 0.007
Class9 MAO0799.1 RFX4 7 7 5.64 0.007
Class9 MAO0798.1 RFX3 7 7 5.38 0.009
Class10 MAO0816.1  Ascl2 66 66 28.6 0.009
Class10 MAO0500.1 Myog 58 58 28.5 0.01
Class10 MAO0521.1 Tcf12 57 57 27.2 0.008
Class10 MAO0665.1 MSC 36 36 9.17 0.002
Class10 MAO0108.2 TBP 57 57 4.39 0.007
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318  Casereport: confirmation of the regulatory roles of RUNX1in PBMCsin pig

319  Confirmation of the RUNXL1 binding sitein the promoter region of TLR-2, LCK,

320 and VAV1

321 The toll-like receptor 2 (TLR-2), lymphocyte-specific protein tyrosine kinase
322 (LCK), and vavl oncogene (VAV1) plasmid containing the 1Kb promoter sequence
323  wereused inin vivo studies (wild type). To show the regulation effect of RUNX1, the
324  binding site of RUNX1 in TLR-2, LCK, and VAV 1 was mutated or deleted. Reporter
325 vectors constructed by the wild type, mutated, or deleted promoter sequences were
326 transfected into the peripheral blood mononuclear cells (PBMCs), and luciferase
327  activity was monitored. Binding site deletion significantly attenuated the expression
328 of the downstream reporter luciferase activity (p<0.05), indicating that the RUNX1
329 could interact with the target site and regulate the expression of the downstream
330 reporter gene (Fig. 6A-C). The mutated vectors showed significant attenuation of the
331 activity of downstream luciferase at 40, 44, and 48 hours post-transfection (p<0.05)
332 indicating a regulatory relationship between RUNX1 and the targets. Another
333  experiment was performed using mouse macrophage cells (RAW 264.7) to validate
334  the hypothesis further. Consistent with the previous results, deletion/mutations to the
335 RUNX1 binding sites in TLR-2, LCK, and VAV1 promoter sequence significantly
336 attenuated the activity of downstream luciferase at 40, 44, and 48 hours
337  post-transfection (Fig. 6D-F). The luciferase reporter activity after transfection with
338  the wild-type vector was significantly higher in macrophage cells than in the PBMC
339 assays, suggesting that the endogenous RUNX 1expression in mouse macrophage cells
340 was higher thanin PBMCs.
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341
342 Fig. 6. Luciferase reporter assay of the RUNX1 targets. One wild-type promoter

343 construct (containing the predicted RUNX1 binding site), two mutant constructs
344  (mutated or not containing the binding site) were investigated. The mutant construct
345  (black) was identical to the wild-type, except that the RUNX1 binding site was
346 deleted or mutated. The line graphs show the luciferase activity after the reporter
347  plasmids were transfected into PBMCs (A-C) or macrophages (D-F). Three RUNX1
348  target gene have been investigated (A and D: TLR-2, B and E: LCK, Cand F: VAV1).

349  Theerror bars represent the mean + standard deviation of three duplicate samples.
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350 RNA flow cytometry analysis of RUNX1 targets in LPS and RUNX1 inhibitor

351 treated PBMCs

352 To show the effect of RUNX1 on three targets; TLR2, LCK, and VAV1, pig
353  PBMCswere stimulated with LPS and/or RUNX1 inhibitor, for 6 hours, during which
354 their TLR2, LCK, VAV 1, CD14 protein levels were monitored. Two subsets of cells
355 readily emerged from CDI14/TLR2 anadysis in PBMCs. a CD14"/TLR2°
356 (CD14"9TLR2'™) and a CD14'YTLR2"° population (Fig. 7D). The percentage of
357 CD14"/TLR2" cells increased in LPS plus RUNX1 inhibitor treated samples, but the
358  proportion of CD14'YTLR2 cells remained unchanged. The percentages of TLR2"
359  (for both CD14™ and CD14") cells increased seven-fold in LPS alone treated samples
360 compared with the non-treated controls. Four subsets of cells readily emerged from
361 CDI14/LCK anaysis in PBMCs treated with LPS or RUNX1 inhibitor: a
362 CD14"/LCK'®, cD14"/LCcK", CD14"/LCK"™, and CD14"/LCK'"® population (Fig. 7E).
363 The percentage of CD14"/LCK", and CD14"/LCK" cells increased in LPS plus
364 RUNX1 inhibitor treated samples, and the proportion of CD14"/LCK'" cells was
365 decreased. The percentages of CD14"/LCK" cells increased by 40% in LPS alone
366 treated samples compared with the non-treated controls. Two subsets of cells readily
367 emerged from CD14/VAV1 analysis in PBMCs: a CD14"/VAV1° and a
368 CD14'VAV1"° population (Fig. 7F). The percentage of VAV 1" (for both CD14™ and
369 CD14") cells increased four-fold in LPS plus RUNX1 inhibitor treated samples. The
370  percentages of VAV1" (for both CD14"™ and CD14") cells increased seven-fold in
371 LPS aone treated samples compared with the non-treated controls and is two-fold
372 higher than in LPS plus RNUX1 inhibitor treated samples.

373 RUNX1 is a master regulator of hematopoiesis and plays a vital rolein T and B
374  cells development. RUNX1 is critical in inducing the production of genes in immune
375 cdls, such as interleukin-2 (IL-2, (Wong et a. 2011), IL-3 (Uchida et a. 1997),
376  colony-stimulating factor 1 receptor (CSF1R, (Zhang et al. 1996), CSF2 (Frank et al.
377  1995), and cluster of differentiation 4 (CD4, (Taniuchi et al. 2002). However, its roles
378 in LPS-mediated inflammation in PBMCs remains unclear. In this study, regulations

379 of TLR-2, LCK, and VAV1 have been confirmed by flow cytometry. TLR2 is an
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380 essentia receptor for the recognition of a variety of pathogen-associated molecular
381 patern (PAMPs) from Gram-positive bacteria, including bacterial lipoproteins,
382 lipomannan, and lipoteichoic acids (Medzhitov 2001). LCK encoded protein is a key
383  signaling molecule in the selection and maturation of developing T-cells (Davis and
384 van der Merwe 2011). The VAV1 encoded protein is important in hematopoiesis,
385 playing arolein both T-cell and B-cell development and activation (DeFranco 2001,
386  Helou et al. 2015). These results suggested that RUNX1 might be a new potential

387  target for resolving inadequate or uncontrolled inflammation in PBMCs.

A B C

388 PE-A PE-A Peﬂa;

389 Fig. 7. Simultaneous staining of the target gene and CD14 protein in rested and
390 stimulated PBMCs. Plots of PBMCs that were left untreated (A) or were stimulated
391  with LPS plus RUNX1 inhibitor for 6 hours (B) or were stimulated with LPS only (C),
392  and labeled with antibodies that bind to CD14 (PE-A) and target protein (FITC-A,
393  D-F).
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394 Real-time PCR analysis of RUNX1 targetsin LPS and RUNX1 inhibitor treated

395 PBMCs

396 To investigate if the expression patterns of the 23 RUNX1 target genes could be
397 modeled by LPS and RUNX1 inhibitor treatment in vivo, we performed real-time
398 PCR assay after treating PBMCs with two different doses of LPS (1 ng/mL, 10
399 ng/mL), and RUNXL1 inhibitor (1 ng/mL, 10 ng/mL). Samples were collected six
400  hours post-stimulation. A total of 21 genes were induced in response to at least one
401 dose of LPS stimulation, as expression levels for these genes were different when
402 compared to non-stimulated control. A total of 10 genes were down-regulated in
403  response to the RUNX1 inhibitor treatment. Hierarchical clustering analysis was used
404  to determine whether the response of LPS stimulation response was similar to the
405  patterns detected in RUNX1 inhibitor treatment, and if any differences were observed
406  depending on the dosage of LPS and RUNX1 inhibitor used. As shown in Fig. 8, the
407  expression patterns of samples with RUNX1 inhibitor treatment, RUNX1 inhibitor
408  plus LPS treatment, and non-ssimulated controls clustered together. Different dose of
409 the RUNX1 inhibitor did not affect the samples, as observed by the mixing up of
410  respective samples in the heatmap. The LPS treated samples were unique and were
411  separated from the RUNX1 inhibitor-treated groups and control groups. Similar to the
412  RUNX1 inhibitor, different doses of LPS dose did not affect the samples as well. The
413  expression patterns of RUNX1 inhibitor plus LPS treatment samples were similar
414  with controls and samples treated with RUNX1 alone because they were mixed in the

415  heatmap.
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416

417 Fig. 8. RUNX1 target gene expression in PBMCs treated with LPS or RUNX1
418 inhibitor. Cells were treated in vitro with two different doses of LPS (1 ng/ml, 10
419  ng/ml) and RUNX1 inhibitor (1 ng/ml, 10 ng/ml). Color codes of yellow, black, and
420  blue represent expression levels of high, average, and low, respectively, across the

421  treatments shown.

422  Super deepSAGE isa useful dataresourcein pig study

423 Gene expression analysis is extensively applied in the understanding of the
424 molecular mechanisms underlying a wide range of biological process such as
425  host-pathogen interactions. Our dataset of transcript levels in normal tissues was
426  developed as a reference datasets that can be compared to attained information of
427  biologica event specifically related aberrations in transcript levels. Therefore, one

428  major focus of this manuscript was to demonstrate the biological importance of these
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429  profiles. We report that >40% of the measured transcripts were differentially
430  expressed between the different tissues. We show that statically the transcripts were
431  co-regulated by a few important transcription factors. We describe one of the many
432  transcription factors that regulated gene expression in PBM Cs. To our knowledge, this
433  dataset is the largest to date for the analysis of transcriptional profiles within normal
434  tissues from pigs and is complementary to previously published data sets. These data
435  will improve the annotation of the pig genome, support versatile biological research,
436  and increase the utility of the pig as a meat source animal and model in medical

437  research.

438 Materials and methods

439  Sample collection and RNA extraction

440 Soon after anesthesia by electric shock, specimens were excised, snap-frozen in
441  liquid nitrogen, and kept in a deep freezer (-80°C) until RNA extraction. RNA
442  extraction from the tissue samples and cells was conducted using the RNeasy Mini
443  Kit (Qiagen, Shanghai, China) following the manufacturer’'s protocols. The
444  BioAnalyzer 2100 (Agilent) was used to assess the integrity of total RNAs, and RIN

445  number of less than 0.7 was removed from the studly.

446  Super deepSAGE sequencing and data procession

447 The sequencing data were filtered by removing sequences that had poor quality
448  (score <0.5) for more than 20% of all the bases. All the data discussed in this study
449  have been deposited to the NCBI GEO database (Edgar et al. 2002) under accession
450 number GSE134461. Tag sequence was extracted, counted, and assigned for each
451 transcript, and then normalized for each sample by quantile normalization method
452  (Pan and Zhang 2018). For the tags assigned to multiple transcripts, the average copy
453  numbers of those tags were used. The principa component analysis (PCA) was
454  performed using the log, tag counts of al the transcripts across all the samples using

455 R dtatigtical software version 3.5. The tissue specific transcripts expressed were
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456  identified by comparing samples from each tissue to the overal tag count across all
457  samples (average), and a threshold was set to fold change >5.0, p-value <1.0x10®
458 according to a method implemented in limma package (Ritchie et al. 2015).
459  Clustering analysis was performed by first using K-means clustering method to
460  separate the transcripts to several big groups, and then using Hierarchical clustering to
461  build the internal structure of the transcripts within the groups according to the
462  method reported by Gu et a. (Gu et al. 2016).

463  Luciferasereporter assay

464 The three predicted target genes, TLR-2, LCK, and VAV 1, were also conserved
465  in human and mouse. For these three genes, a 1Kb nucleotide promoter segment that
466  included RUNX1 target sites was inserted upstream of afirefly luciferase ORF (pGL3,
467 Promega, Beijing, China), and luciferase activity was compared to that of an
468  analogous reporter with point substitutions disrupting the target sites, or analogous
469  reporter that the binding site deleted completed (see detailed sequence information in
470  Supplemental document 2). The logic behind the luciferase reporter assay is that
471  deletion/mutation of a RUNX1 binding site should allow the down-regulation of its
472  target genes, and hence the target gene should be expressed differently between the
473 wild type and mutated constructs. The pGL3-Control activity was used for the
474  normalization of firefly luciferase activity. For the assay, the cells were plated in a
475  96-well plate at 3,000 cells per well. After overnight incubation, the cells were treated
476  with a transfection mixture consisting of 35 uL of serum-free medium, 0.3 pL of
477 TransFast™ Transfection Reagent (Cat. E2431), and 0.02 pg of pGL3 and
478  pGL3-Control vector per well. After one hour incubation, 100 uL of the
479  serum-containing medium was added to the wells. At 24 to 48 hours of
480  post-transfection, EnduRen™ Live Cell Substrate (Cat. E6481) was added to a final

481  concentration of 60 uM, and luciferase activity was monitored.
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482 PBMC Isolation and Stimulation

483 Peripheral blood mononuclear cells (PBMCs) were isolated from whole normal
484  blood collected from five animals aged 21 days using BD Vacutainer'® Cell
485  Preparation Tubes (Becton Dickinson, Shanghai, China). The samples were processed
486  according to the manufacturer’s instructions within two hours of blood collection.
487 PBMCs were harvested from the tube, washed with phosphate-buffered saline (Life
488  Technologies), and centrifuged for 10 min a 300g prior to use. To induce gene
489  expression, PBMCs were resuspended in RPMI-1640 medium (Life Technologies)
490  supplemented with 10% fetal bovine serum (Life Technologies) at 1.5x10° cells/mL
491  in a 96-wel V-bottom polypropylene plate (Corning Incorporated). LPS
492  (Sigma-Aldrich, Shanghai, China) and RUNX1 inhibitor (Ro 5-3335, R&D Systems,
493  Shanghai, China) were added at 5 ng/mL and 10 ng/mL, respectively, according to the

494  manufacturer’s instructions. Untreated PBM Cs were used as control samples.

495  Surface staining and cytometry acquisition

496 Phenotypic surface staining was performed in BD Pharmingen™ stain buffer
497 (BSA, BD Biosciences, Shanghai, China) for 30 min at room temperature in the dark,
498 using anti-CD14 PE (BD Biosciences, Shanghai, China). Cells were washed and
499  suspended in BD Pharmingen stain buffer (BSA, BD Biosciences, Shanghai, China),
500 anti-TLR-2 FITC, anti-LCK FITC, anti-VAV1 FITC (BD Biosciences, Shanghai,
501  China), was then added separately, and the mixture was incubated for 20 min at room
502 temperature. Finally, cells were washed and acquired on a BD LSRFortessa™ cell
503 analyzer (BD Biosciences, Shanghai, China). The flow cytometry data were deposited
504 in Flow Repository database (ref) under accession FR-FCM-Z268.

505 Data access

506  https://www.nchi.nlm.nih.gov/geo/query/acc.cqi 7acc=GSE134461
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