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Abstract:

The bacterium Escherichia coli is not only an important gut commensal, but also a
common pathogen involved in both diarrheic and extra-intestinal diseases. To
characterize the genetic determinants of extra-intestinal virulence we carried out an
unbiased genome-wide association study (GWAS) on 234 commensal and
extra-intestinal pathogenic strains representative of the species phylogenetic diversity,
tested in a mouse model of sepsis. We found that the high-pathogenicity island (HPI), a
~35 kbp gene island encoding the yersiniabactin siderophore, is highly associated with
death in mice, surpassing all other genetic factors by far. We validated the association in
vivo by deleting key components of the HPI in strains in two phylogenetic backgrounds,
and found that virulence is correlated with growth in the presence of various compounds
including several antimicrobials, which hints at collateral sensitivities associated with
intrinsic pathogenicity. This study points at the power of unbiased genetic approaches to
uncover virulence determinants and the use of phenotypic data to generate new
hypothesis on pathogenicity and phenotypic characteristics associated with it.
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Introduction

Escherichia coli is both a commensal of vertebrates' and an opportunistic pathogen?
involved in a wide range of intestinal and extra-intestinal infections. Extra-intestinal
infections in humans represent a considerable burden®, bloodstream infections
(bacteraemia) being the most severe with a high attributable mortality of between
10-30%*°. The regular increase over the last 20 years of E. coli bloodstream incidence’
and antibiotic resistance® is particularly worrisome. The factors associated with high
mortality are mainly linked to host conditions such as age, the presence of underlying
diseases and to the portal of entry, with the urinary origin being more protective. These
factors outweighing those directly attributable to the bacterial agent*°°.

Nevertheless, the use of animal models has shown a great variability in the intrinsic
extra-intestinal virulence potential of natural E. coli isolates. In a mouse model of sepsis
where bacteria are inoculated subcutaneously, it has been clearly shown that the
intrinsic virulence quantified by the number of animal deaths over the number of
inoculated animals for a given strain is dependant on the number of virulence factors
such as adhesins, toxins, protectins and iron capture systems'®'. One of the most
relevant virulence factors is the so-called high-pathogenicity island (HPI), a 36 to 43 kb
region encoding the siderophore yersiniabactin, a major bacterial iron uptake system'.
The deletion of the HPI results in a decrease in the intrinsic virulence in the mouse
model but in a strain-dependent manner''¢, indicating complex interactions between
the genetic background of the strains and the HPI.

The limitation of these gene KO studies is that they target specific candidate genes.
Recently, the development of new approaches in bacterial genome-wide association
studies (GWAS)'-2° allows searching in an unbiased manner for genotypes associated
to specific phenotypes such as drug resistance or virulence. In this context, we
conducted a GWAS in 234 commensal and extra-intestinal pathogenic strains of E. coli,
representing the species phylogenetic diversity, to search for traits associated to
virulence in the mouse model of sepsis?’. The strains belong to three large strain
collections that span the species’ major phylogroup diversity; the ECOR?, IAI'® and
NILS® collections. All three collections contain commensal as well as extra-intestinal
pathogenic E. coli (ExPEC), being defined as strains that possessed currently
recognized extra-intestinal virulence factors and/or demonstrated enhanced virulence in
an appropriate animal model of extra-intestinal infection?*. Most importantly, strains from
these collections have been recently sequenced and phenotyped across hundreds of
growth conditions, including antibiotics and other chemical and physical stressors?®.
This data could then be used to find phenotype associations with virulence and to
generate hypotheses on the function of genetic variants associated with the ExPEC
phenotype and potential collateral sensitivities associated with them.
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67 Results

68  GWAS identifies the high-pathogenicity island as the strongest driver of the

69  extra-intestinal virulence phenotype

70 We studied three strain collections representative of the E. coli sensu lato phylogenetic
71 diversity, i.e., Escherichia clade | in addition to phylogroup A, B1, C, D, E and F
72 strains®. These strains encompass 90 commensal strains and 144 strains isolated in
73 various extra-intestinal infections, mainly urinary tract infections and septicaemia'®#23,
74 To avoid any bias linked to host conditions, we assessed the strain virulence as its
75  intrinsic extra-intestinal pathogenic potential using a well-calibrated mouse model of
76 sepsis'®?! expressed as the number of killed mice over the 10 inoculated per strain. In
77 accordance with previous data, phylogroups B2, D and F have a higher proportion of
78  virulent strains, as compared to phylogroups A and B1 (Figure 1A, Supplementary Table
79 1).

80 We used a bacterial GWAS method to associate k-mers to the virulence phenotype,
81  allowing us to simultaneously test the contribution of core and accessory genome
82  variation to pathogenicity. It is generally understood that such methods require large
83  sample sizes to have sufficient power, partly due to the need to break the long clonal
84  frames typical of bacterial genomes; the appropriate sample size is also a function of
85  the penetrance of the associated variants'®?’. We ran simulations with an unrelated set
86  of complete E. coli genomes and verified that our sample size was appropriate for
87  variants with high penetrance (i.e. odds ratio above 5, Supplementary Figure 1,
88  Methods). We reasoned that the genetic determinants of virulence are likely to have a
89  relatively high penetrance, and that the strains used were genetically diverse, enough to
90  break the clonal frame.

91 We uncovered a statistically significant association between 47,598 k-mers and the
92  virulence phenotype, which were mapped back to 86 genes across the strains’
93  pangenome (Figure 1B, Methods). A separate association using genes’ presence
94  absence patterns showed that the genes to which the associated k-mers mapped to
95 have an odds ratio that far exceeds the required threshold we estimated from
96  simulations (Figure 1C). Since the average minimum allele frequency (MAF) of
97  associated k-mers is consistently around 36% (Figure 1B) and the distance between the
98  genes they map to across all strains is around 1 kbp (Figure 1D), we concluded that the
99  virulence phenotype is associated to the presence of a gene island. In fact, all genes
100 belonging to the HPI had the vast majority of associated k-mers mapped to them
101 (normalized hits >= 0.1, Figure 1E). Moreover, we found that the HPI structure was
102 highly conserved across the 151 genomes that encode it (Supplementary Figure 2). We
103 also observed that the distribution of known virulence factors doesn’t match the
104  virulence phenotype as closely as the HPI or has k-mers passing the association
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105  threshold, further reinforcing the association results that the HPI is one of the main
106 genetic factors behind virulence across phylogroups (Supplementary Figure 3).
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107  Figure 1. The HPI is strongly associated with the extra-intestinal virulence phenotype
108 assessed in the mouse sepsis assay. A) Core genome phylogenetic tree of the E. coli strains
109  used in this study rooted on Escherichia clade | strains. Outer ring reports virulence as the
110 number of killed mice over the 10 inoculated per strain, inner ring the phylogroup each strain
111 belongs to. B) Results of the k-mer association analysis: for each gene the minimum association
112 p-value and average minimum allele frequency (MAF) across all mapped k-mers are reported.
113 The normalized hits are computed by dividing the number of mapped kmers by the length of the
114  gene. C) Results of the gene association analysis; each gene tested is represented. Genes from
115  the k-mer association analysis are highlighted in red. D) The associated genes (normalized hits
116 >= 0.1) belong to a gene cassette. OGs: orthologous groups. E) The HPI gene cassette
117 structure in strain IAI39; all associated genes are highlighted.
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118 KO gene experiments validate the role of the HPI in the extra-intestinal phenotype
119 The studies on the role of the HPI in experimental virulence gave contrasting results
120  according to the strains’ genetic background™. Among B2 phylogroup strains, HPI
121 deletion in the 536 (ST127) strain did not have any effect in the mouse model of sepsis?®
122 whereas this deletion in the NU14 (ST95) strain dramatically attenuated virulence™. Two
123 strains from this study belonging to B2 phylogroup/ST141 (IAI51 and IAI52) deleted in
124 irp1 have attenuated virulence in the same model™. To have a broader view of the role
125  of the HPI in various genetic backgrounds, we constructed irp2 deletion gene mutants in
126 two strains of phylogroup D (NILS46) and A (NILS9) belonging to STs frequently
127 involved in human bacteraemia (ST69 and ST10, respectively)?®. We first verified that
128 the wild-type strains strongly produced yersiniabactin, whereas the irp2 mutants did not
129 (Figure 2A). We then tested them in the mouse sepsis model and saw an increase in
130 survival for both mutated strains (log-rank test p-value < 0.0001 and 0.0217 for strain
131 NILS9 and NILS46, respectively, Figure 2B, Supplementary Table 2) with no significant
132 difference between the survival profiles for the two mutants (log-rank test p-value > 0.1).
133 We have therefore validated in vivo the causal link between the HPI and the virulence
134 phenotype detected by the means of an unbiased association approach, which
135  demonstrates the power and accuracy of bacterial GWAS.

A) B)
1
NILSO | | H oo 1.0
i
NILS9 Airp2 E 0.8
I
I
NILS46 | ! s 3
| 506
C
= >
© niLsa6 airp2 | $9 S
I} ] 5
8! Voa
HB101 (-) |8! |
: Strain
DH5a () |88 02| — NILsa6
s —-- NILS46 Airp2
; — NILS9 1
SE15 (+) i L L 0.0 | === NILS9 Airp2
00 05 1.0 15 20 25 3.0 35 0 20 40 60 80 100 120 140
RLU 1e5 Time (hours)

136  Figure 2. Phenotypic consequences of HPI's deletion. A) Deletion of HPI leads to a
137  decrease in production of yersiniabactin. Production of yersiniabactin is measured using a
138 luciferase-based reporter (Methods). Strains marked with a “-” and “+” sign indicates a negative
139  and positive control, respectively. The red dashed line indicates an arbitrary threshold for
140 yersiniabactin production, derived from the average signal recorded from the negative controls
141 plus two standard deviations. RLU, relative light units. B) Deletion of HPI leads to an increase in
142 survival after infection. Survival curves for wild-type strains and the corresponding irp2 deletion
143 mutant, built after infection of 20 mice for each strain.
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144 High-throughput phenotypic data sheds light on HPI’s function

145  The main function encoded by the HPI cassette is iron scavenging through the
146 expression of the siderophore yersiniabactin'®, which has been previously validated in
147 E. coli through knockout experiments'. In order to investigate other putative functions,
148 we leveraged a previously-generated high-throughput phenotypic screening in an E. coli
149 strain panel that largely overlaps with the strains used here (186 over 234)®. We
150  observed a relatively high correlation between growth profiles in certain conditions and
151 both virulence and presence of the HPI cassette (Figure 3A and 3B, Supplementary
152 Table 3); given the strong association between the two, we observed similar conditions
153 being correlated.

154 As expected, we found a correlation between growth on the iron-sequestering agent
155  pentetic acid®® and both HPI presence and virulence (Pearson’s r: 0.47 and 0.36,
156 respectively). We similarly, observed a correlation between pyocyanin, a redox-active
157 phenazine compound being able to reduce Fe®*" to Fe?*?', and both HPI presence and
158  virulence (Pearson’s r: 0.36 and 0.29, respectively)

159 Interestingly, we found similarly strong correlations with growth on sub-inhibitory
160  concentrations of several antibiotics, such as rifampicin, ciprofloxacin, amoxicillin and
161 oxacillin, as well as other antimicrobial agents such as cerulenin and colicin. This might
162 be due to the presence of resistance alleles and/or genes that are strongly associated
163 with pathogenic strains, or might point to the role of iron homeostasis in intrinsic
164  resistance to antibiotics®>. As an example, quinolones bind Fe** on its pyridione ring,
165  which is also involved in the interaction with its target, DNA gyrase®®. Cell envelope
166 permeability can also be modified in response to the presence of iron via
167  two-component systems, rendering the cell more resistant®?. On the other hand we
168 found that growth in presence of indole at 2 mM in association with sub-inhibitory
169  concentrations of cefsulodin and tobramycin antibiotics, but not with each of these
170  compounds alone, was negatively correlated with both HPI presence and virulence.
171 This might indicate a synergy between antibiotics and indole. In lysogeny broth, sub
172 lethal concentrations of antibiotics increased the endogenous production of indole by
173 the cells®* and, at very high concentration (5 mM), indole induces the production of
174 reactive oxygen species and is toxic for the cells®. This toxicity has been shown to be
175  partly iron mediated due to the Fenton reaction®, explaining that cells with increased
176 import of extracellular iron due to the HPI might be more sensitive to these compounds.
177 These associations suggest the potential for collateral sensitivities related to both
178  intrinsic pathogenicity and the presence of the HPI.

179 Given the relatively large number of conditions correlated with both pathogenicity
180  and HPI presence, we tested whether both features could be predicted from growth
181  data. We used the commonly-used random forests machine learning algorithm with
182 appropriate partitioning of input data to tune hyperparameters and reduce overfitting,
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183 leading to two classifiers for virulence and presence of the HPI cassette with high
184  predictive power (Figure 3C and 3D and Methods). We noted that prediction of HPI
185  presence performs slightly better than virulence, possibly reflecting the complex nature
186 of the latter phenotype. As expected, we found that conditions with relatively high
187  correlation with both features have a higher weight in both classifiers (Figure 3E,
188 Supplementary Table 4), which suggests that a subset of phenotypic tests might be
189 sufficient to classify pathogenic strains. These results show how phenotypic data can be
190  used to generate hypotheses over gene function and pathogenesis.
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191 Figure 3. Growth profiles can predict virulence and HPI presence. A-B) Volcano plots for
192  the correlation between the strains’ growth profiles and: A) virulence levels and B) presence of
193  the HPI. C-D) Use of the strains’ growth profiles to build a predictor of virulence levels and
194  presence of the HPI. C) Receiver operating characteristic (ROC) curve and D) Precision-Recall
195 curve for the two tested predictors. E) Feature importance for the predictors, showing the top 15
196 conditions contributing to the virulence levels predictor.

197 Discussion

198  With the steady decline in the price of genomic sequencing and the increasing
199  availability of molecular and phenotypic data for bacterial isolates, it has finally become
200  possible to use statistical genomics approaches such as GWAS to uncover the genetic
2071 determinants of relevant phenotypes. Such approaches have the advantage of being
202 unbiased, and can then be used to confirm previous targeted findings and potentially
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203 uncover new factors, given sufficient statistical power. The accumulation of other
204 molecular and phenotypic data can on the other hand uncover variables correlated with
205  phenotype, which can be used to generate testable hypothesis on the function of
206 genomic hits and potential collateral sensitivities associated with them. Given the rise of
207 both E. coli extra-intestinal infections and antimicrobial resistance, we reasoned that the
208 intrinsic virulence assessed in a calibrated mouse model of sepsis'®?! is a phenotype
209  worth exploring with such an unbiased approach.

210 We were able to confirm earlier reports on the importance of the HPI in
211 extra-intestinal virulence"%37 which showed the strongest signal in both the k-mer and
212 accessory genome association analysis, and whose importance was validated in vitro
213 and in an in vivo model. The distribution of the HPI within the species resulting from
214 multiple horizontal gene transfers via homologous recombination® has probably
215  facilitated its identification using GWAS. Additional genetic factors might have been
216 overlooked by this analysis, due to the relatively small sample size; we however
217  estimate that those putative additional factors might have a relatively low penetrance,
218 based on our simulations in an independent dataset. As sequencing of bacterial isolates
219 is becoming more common in clinical settings®***', we expect to be able to uncover
220  these additional genetic factors in future studies.

221 The association between both the intrinsic virulence phenotype and the presence of
222 the HPI and previously collected growth data allowed us to generate testable
223 hypotheses on mechanism of pathogenesis and putative additional functions of the HPI.
224 In particular we observed a relatively strong correlation between growth on various
225  antimicrobial agents and both pathogenicity and HPI presence, which confirms the
226 pressure to acquire resistance for these isolates, but also on the potential role of HPI
227 and iron homeostasis on antimicrobial resistance®. E. coli mutants of fur, a
228  transcriptional regulator that represses iron uptake systems, which accumulate high
229  level of intracellular iron, have been shown to increase resistance to quinolones,
230  aminoglycoside, tetracycline, rifampicin and amoxicillin®2. The negative correlation with
231 growth profiles in the presence of the indole associated to antibiotics points to the
232 possible deleterious role of iron in the effect of sublethal doses of antibiotics. A vicious
233 circle is rapidly established as antibiotics increase the production of indole®*, which in
234 turn destabilise the membrane®®, further increasing the penetration of the antibiotics.
235  The deletion of TonB, an iron transporter, increase resistance to the antibiotic, showing
236 the role of reactive oxygen species generated by the Fenton reaction in the presence of
237 iron®*. Altogether, these data bring new light on the “liaisons dangereuses” between iron
238 and antibiotics that could potentially be targeted®.

239 We also demonstrate how growth data across several conditions can accurately
240  distinguish pathogenic from non-pathogenic isolates, which could lead to the
241 development of growth-based tests, which could complement and validate existing

8


https://doi.org/10.1101/712034
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/712034; this version posted July 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

242 diagnostic tools based on molecular and phenotypic data***°. Taken together this
243 analysis demonstrates how a data-centric approach can increase our knowledge of
244 complex bacterial phenotypes and guide further empirical work on gene function and its
245 relationship to intrinsic pathogenicity.

246 Materials and methods

247  Strains used

248  The full list of the 234 strains used in the association analysis, together with their main
249  characteristics is reported in Supplementary Table 1. The genome sequences of all 234
250  strains is available through Figshare®.

251 The construction of the irp2 deletion mutants of the NILS9 and NILS46 strains was
252 achieved following a strategy adapted from Datsenko and Wanner*’. Primers used in
253  the study are listed in Supplementary Table 5. In brief, primers used for gene disruption
254 included 44-46 nucleotide homology extensions to the 5’- and 3’ regions of the target
255  gene, respectively, and additional 20 nucleotides of priming sequence for amplification
256 of the resistance cassette on the template plasmids pKD4. The PCR product was then
257  transformed into strains carrying the helper plasmid pKOBEG expressing the lambda
258 red recombinase under control of an arabinose-inducible promoter®®. Kanamycin
259  resistant transformants were selected and further screened for correct integration of the
260  resistance marker by PCR. For elimination of the antibiotic resistance gene, helper
261 plasmid pCP20 was used according to the published protocol. PCR followed by Sanger
262 sequencing of the mutants were performed to verify the deletion and the presence of
263 the expected scar.

264 Yersiniabactin detection assay

265  Production of the siderophore yersiniabactin was detected and quantified using a
266 luciferase reporter assay as described elsewhere'“°. Briefly, bacterial strains were
267  cultivated in NBD medium for 24 hours at 37°C. Next, bacteria were pelleted by
268  centrifugation and the supernatant was added to the indicator strain WR 1542
269  harbouring plasmid pACYC5.3L. All the genes necessary for yersiniabactin uptake are
270 located on the plasmid pACYCS5.3L, i.e. irp6, irp7, irp8, fyuA, ybtA. Furthermore, this
271 plasmid is equipped with a fusion of the fyuA promoter region with the luciferase
272 reporter gene. The amount of yersiniabactin can be quantified semi-quantitatively, as
273 yersiniabactin-dependant upregulation of fyuA expression is determined by luciferase
274 activity of the fyuA-luc reporter fusion.

275  Mouse virulence assay
276 Ten female mice OF1 of 14-16 g (4 week-old) from Charles River® (L'Arbresle, France)
277  received a subcutaneous injection of 0.2 ml of bacterial suspension in the neck (2:108
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278  colony forming unit). Time to death was recorded during the following 7 days. Mice
279  surviving more than 7 days were considered cured and sacrificed™. In each experiment,
280  the E. coli CFT073 strain was used as a positive control killing all the inoculated mice
281 whereas the E. coli K-12 MG1655 strain was used as a negative control for which all the
282  inoculated mice survive?'. For the mutant assays, 20 mice per strain were used to
283  obtain statistical relevant data. The data was analysed using the lifeline package
284 v0.21.0%.

285  Association analysis

286 All genome-wide association analysis were carried out using pyseer, version v1.2.0"°.
287  All input genomes were re-annotated using prokka, version v1.13.3%', to ensure uniform
288 gene calls and excluding contigs whose size was above 200 base pairs. The core
289  genome phylogenetic tree was generated using ParSNP>? to generate the core genome
290  alignment and gubbins v2.3.1%® to generate the phylogenetic tree. The strain’s
291 pangenome was estimated using roary v3.12.0%*. K-mers distributions from the input
292 genome assemblies were computed using fsm-lite'®, with a minimum and maximum k
293 value of 9 and 100, respectively. The association between both k-mers and pangenome
294 and phenotype (expressed as number of mice killed post-infection) was carried out
295  using the FastLMM?® linear mixed-model implemented in pyseer, using a kinship matrix
296  derived from the phylogenetic tree as population structure. For both association analysis
297  we used the number of unique presence/absence patterns to derive an appropriate
298  p-value threshold for the association likelihood ratio test (2.90E and 7.03E for the
299  k-mers and pangenome analysis, respectively). K-mers significantly associated with the
300  phenotype were mapped back to each input genome using bwa mem v0.7.17-r1188%
301 and betools v.2.27.1%, using the pangenome analysis to collapse gene hits to individual
302  groups of orthologs. A sample protein sequence for each groups of orthologs where at
303  least on k-mer with size 20 or higher was mapped was extracted giving priority to strain
304  IAI39 when available, given it was the only strain with a complete genome available;
305 those sample sequences where used to search for homologs in the uniref50 database
306 from uniprot® using blast v2.7.1+%°, Each group of orthologs was then given a gene
307  name using both available literature information and the results of the homology search.
308  Distances between each pair of associated groups of orthologs was computed using the
309  annotation files, using an equal number of random pairs as background.

310  Power simulations

311 Statistical power was estimated using an unrelated set of 548 complete E. coli genomes
312 downloaded from NCBI RefSeq using ncbi-genome-download v0.2.9 on May 24th 2018.
313 Each genome was subject to the same processing as the actual ones used in the real
314 analysis (re-annotation, phylogenetic tree construction, pangenome estimation). The
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315  gene presence/absence patterns were used to run the simulations, in a similar way as
316 described in the original SEER implementation'. Briefly, for each sample size, a
317 random subset of strains was selected, and the likelihood ratio test p-value threshold
318  was estimated by counting the number of unique gene presence/absence patterns in
319  the reduced roary matrix. For each odds ratio tested, a binary case-control phenotype
320  vector was constructed for the strains subset using the following formulae:

321 P Do

caselvariant — MAF

322 2D,
P Syl

caselnovariant ~ 1 — MAF

323  Were S, is the ratio of case/controls (set at 1 in these simulations), MAF as the
324 minimum allele frequency of the target gene in the strains subset, and D, the number of
325  cases. pyseer's LMM model was then applied to the presence/absence vector of the
326  target gene and the likelihood ratio test p-value was compared with the empirical
327  threshold. The randomization was repeated 100 times and power was defined as the
328  proportion of randomizations for each sample size and odds ratio whose p-value was
329  below the threshold. The pks2 and fabG genes were used as gene targets in the
330  simulations, and both gave very similar results.

331  Correlations with growth profiles

332 The previously generated phenotypic data?® for 186 over 234 strains were used to
333  compute correlations with both the number of mice killed after infection and
334  presence/absence of the HPI. The data was downloaded from the ecoref website
335  (https://evocellnet.qgithub.io/ecoref/download/) and the pearson correlation with the
336  s-scores was computed together with the correlation p-value. Two predictors, one for
337  virulence (number of killed mice post-infection) and one for presence of the HPI were
338 built using the random forest classifier algorithm implemented in scikit-learn v.020.2°°,
339  using the s-scores as predictors. The input was column imputed, and 33% of the
340  observations were kept as a test dataset, using a “stratified shuffle split” strategy. The
341 remainder was used to train the classifier, using a grid search to select the number of
342 trees and the maximum number of features used, through 10 rounds of stratified shuffle
343 split with validation set size of 33% the training set and using the F1 measure as score.
344  The performance of the classifiers on the test set were assessed by computing the area
345  under the receiver operating characteristic curve (ROC-curve).

346  Code and data availability
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347  All input data and code used to run the analysis and generate the plots is available
348  online at https://github.com/mgalardini/2018_ecoli_pathogenicity. Code is mostly based
349 on the Python programming language and the following libraries: numpy v1.16.1%", scipy
350  v1.2.1%2, biopython v1.71%3%4 pandas v0.24.1%°, pybedtools v0.8.0%, dendropy 4.4.0%,
351  ete3 v3.1.1% statsmodels v0.9.0%°, matplotlib v3.0.27°, seaborn v0.9.0"", jupyterlab
352 v0.34.11" and snakemake v4.5.07.
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518  Supplementary Figure 1. Simulations of statistical power on an unrelated set of
519  complete E. coli genomes, using the pks2 gene as target. The dotted red line indicate
520  the sample size used in the actual analysis.
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521  Supplementary Figure 2. HPI structure conservation across strains. One strain per
522 phylogroup is shown, using the same color scheme as Figure 1E for each gene.
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523  Supplementary Figure 3. Presence/absence patterns of known virulence factors other
524 than genes belonging to the HPI. Blue indicates presence, light grey indicates absence.

525  Phenotypes (number of killed mice) and phylogroup of each strain are reported as in
526 Figure 1A.
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