

# Major role of the high-pathogenicity island (HPI) in the intrinsic extra-intestinal virulence of *Escherichia coli* revealed by a genome-wide association study

**Marco Galardini<sup>1,6,\*</sup>, Olivier Clermont<sup>2</sup>, Alexandra Baron<sup>2</sup>, Bede Busby<sup>3</sup>, Sara Dion<sup>2</sup>, Sören Schubert<sup>4</sup>, Pedro Beltrao<sup>1</sup>, Erick Denamur<sup>2,5,\*</sup>**

<sup>1</sup>EMBL-EBI, Wellcome Genome Campus, Cambridge, United Kingdom

<sup>2</sup>Université de Paris, IAME, UMR1137, INSERM, Paris, France

<sup>3</sup>Genome Biology Unit, EMBL, Heidelberg, Germany

<sup>4</sup>Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Germany

<sup>5</sup>APHP, Hôpitaux Universitaires Paris Nord Val-de-Seine, Site Bichat, Paris, France

<sup>6</sup>Current address: Biological Design Center, Boston University, Boston, MA 02215, USA

**\*Corresponding authors:** mgala@bu.edu and erick.denamur@inserm.fr

## Abstract:

The bacterium *Escherichia coli* is not only an important gut commensal, but also a common pathogen involved in both diarrheic and extra-intestinal diseases. To characterize the genetic determinants of extra-intestinal virulence we carried out an unbiased genome-wide association study (GWAS) on 234 commensal and extra-intestinal pathogenic strains representative of the species phylogenetic diversity, tested in a mouse model of sepsis. We found that the high-pathogenicity island (HPI), a ~35 kbp gene island encoding the yersiniabactin siderophore, is highly associated with death in mice, surpassing all other genetic factors by far. We validated the association *in vivo* by deleting key components of the HPI in strains in two phylogenetic backgrounds, and found that virulence is correlated with growth in the presence of various compounds including several antimicrobials, which hints at collateral sensitivities associated with intrinsic pathogenicity. This study points at the power of unbiased genetic approaches to uncover virulence determinants and the use of phenotypic data to generate new hypothesis on pathogenicity and phenotypic characteristics associated with it.

## 29 Introduction

30 *Escherichia coli* is both a commensal of vertebrates<sup>1</sup> and an opportunistic pathogen<sup>2</sup>  
31 involved in a wide range of intestinal and extra-intestinal infections. Extra-intestinal  
32 infections in humans represent a considerable burden<sup>3</sup>, bloodstream infections  
33 (bacteraemia) being the most severe with a high attributable mortality of between  
34 10-30%<sup>4-6</sup>. The regular increase over the last 20 years of *E. coli* bloodstream incidence<sup>7</sup>  
35 and antibiotic resistance<sup>8</sup> is particularly worrisome. The factors associated with high  
36 mortality are mainly linked to host conditions such as age, the presence of underlying  
37 diseases and to the portal of entry, with the urinary origin being more protective. These  
38 factors outweighing those directly attributable to the bacterial agent<sup>4-6,9</sup>.

39 Nevertheless, the use of animal models has shown a great variability in the intrinsic  
40 extra-intestinal virulence potential of natural *E. coli* isolates. In a mouse model of sepsis  
41 where bacteria are inoculated subcutaneously, it has been clearly shown that the  
42 intrinsic virulence quantified by the number of animal deaths over the number of  
43 inoculated animals for a given strain is dependant on the number of virulence factors  
44 such as adhesins, toxins, protectins and iron capture systems<sup>10-13</sup>. One of the most  
45 relevant virulence factors is the so-called high-pathogenicity island (HPI), a 36 to 43 kb  
46 region encoding the siderophore yersiniabactin, a major bacterial iron uptake system<sup>14</sup>.  
47 The deletion of the HPI results in a decrease in the intrinsic virulence in the mouse  
48 model but in a strain-dependent manner<sup>13-16</sup>, indicating complex interactions between  
49 the genetic background of the strains and the HPI.

50 The limitation of these gene KO studies is that they target specific candidate genes.  
51 Recently, the development of new approaches in bacterial genome-wide association  
52 studies (GWAS)<sup>17-20</sup> allows searching in an unbiased manner for genotypes associated  
53 to specific phenotypes such as drug resistance or virulence. In this context, we  
54 conducted a GWAS in 234 commensal and extra-intestinal pathogenic strains of *E. coli*,  
55 representing the species phylogenetic diversity, to search for traits associated to  
56 virulence in the mouse model of sepsis<sup>21</sup>. The strains belong to three large strain  
57 collections that span the species' major phylogroup diversity; the ECOR<sup>22</sup>, IAI<sup>10</sup> and  
58 NILS<sup>23</sup> collections. All three collections contain commensal as well as extra-intestinal  
59 pathogenic *E. coli* (ExPEC), being defined as strains that possessed currently  
60 recognized extra-intestinal virulence factors and/or demonstrated enhanced virulence in  
61 an appropriate animal model of extra-intestinal infection<sup>24</sup>. Most importantly, strains from  
62 these collections have been recently sequenced and phenotyped across hundreds of  
63 growth conditions, including antibiotics and other chemical and physical stressors<sup>25</sup>.  
64 This data could then be used to find phenotype associations with virulence and to  
65 generate hypotheses on the function of genetic variants associated with the ExPEC  
66 phenotype and potential collateral sensitivities associated with them.

67 **Results**

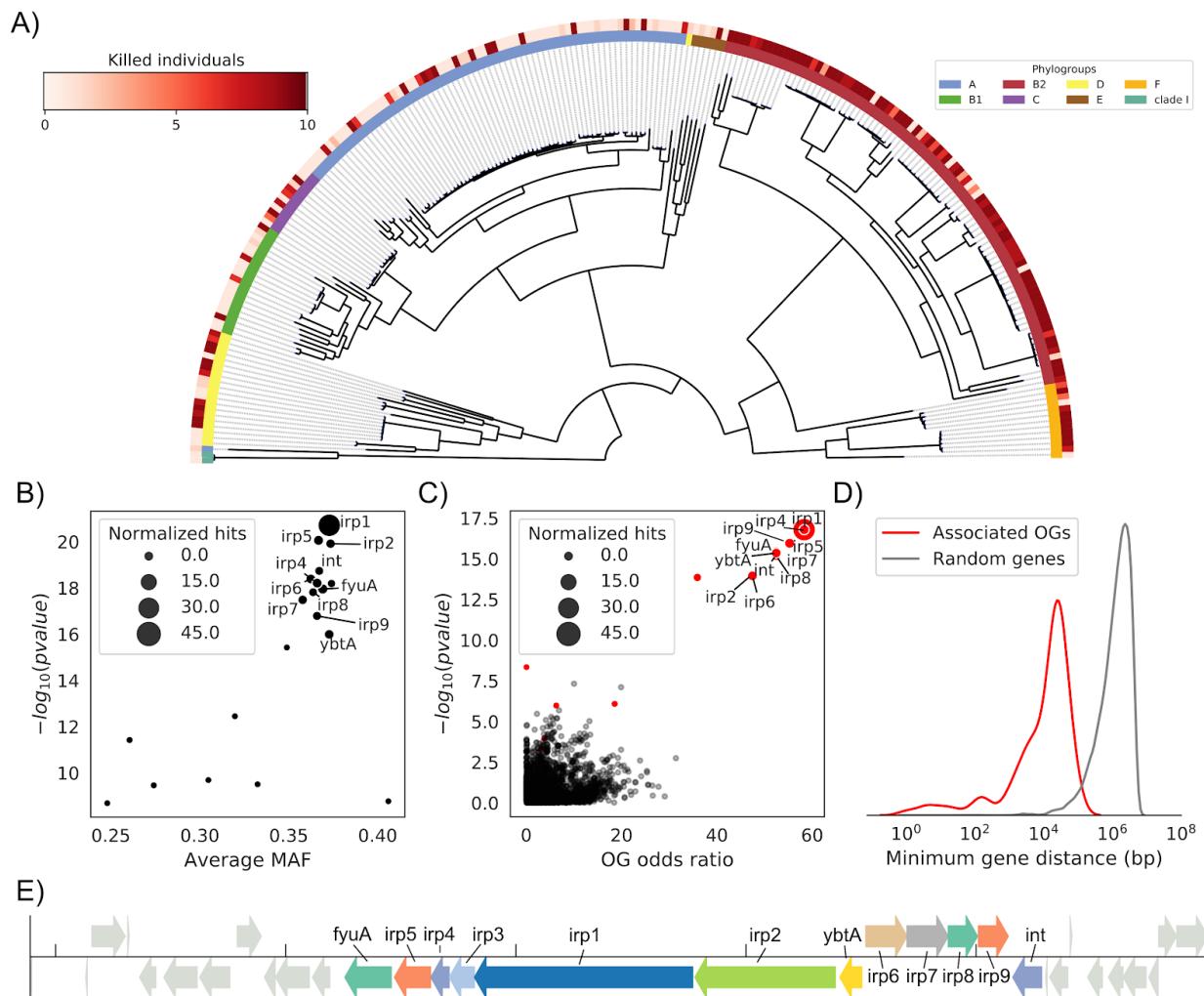
68 **GWAS identifies the high-pathogenicity island as the strongest driver of the**  
69 **extra-intestinal virulence phenotype**

70 We studied three strain collections representative of the *E. coli* *sensu lato* phylogenetic  
71 diversity, i.e., *Escherichia* clade I in addition to phylogroup A, B1, C, D, E and F  
72 strains<sup>26</sup>. These strains encompass 90 commensal strains and 144 strains isolated in  
73 various extra-intestinal infections, mainly urinary tract infections and septicaemia<sup>10,22,23</sup>.  
74 To avoid any bias linked to host conditions, we assessed the strain virulence as its  
75 intrinsic extra-intestinal pathogenic potential using a well-calibrated mouse model of  
76 sepsis<sup>10,21</sup>, expressed as the number of killed mice over the 10 inoculated per strain. In  
77 accordance with previous data, phylogroups B2, D and F have a higher proportion of  
78 virulent strains, as compared to phylogroups A and B1 (Figure 1A, Supplementary Table  
79 1).

80 We used a bacterial GWAS method to associate *k*-mers to the virulence phenotype,  
81 allowing us to simultaneously test the contribution of core and accessory genome  
82 variation to pathogenicity<sup>19</sup>. It is generally understood that such methods require large  
83 sample sizes to have sufficient power, partly due to the need to break the long clonal  
84 frames typical of bacterial genomes; the appropriate sample size is also a function of  
85 the penetrance of the associated variants<sup>18,27</sup>. We ran simulations with an unrelated set  
86 of complete *E. coli* genomes and verified that our sample size was appropriate for  
87 variants with high penetrance (i.e. odds ratio above 5, Supplementary Figure 1,  
88 Methods). We reasoned that the genetic determinants of virulence are likely to have a  
89 relatively high penetrance, and that the strains used were genetically diverse, enough to  
90 break the clonal frame.

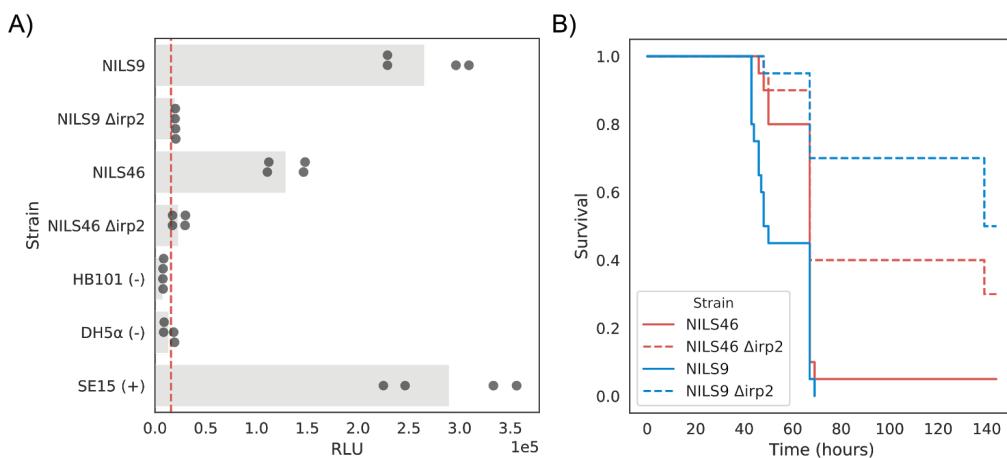
91 We uncovered a statistically significant association between 47,598 *k*-mers and the  
92 virulence phenotype, which were mapped back to 86 genes across the strains'  
93 pangenome (Figure 1B, Methods). A separate association using genes' presence  
94 absence patterns showed that the genes to which the associated *k*-mers mapped to  
95 have an odds ratio that far exceeds the required threshold we estimated from  
96 simulations (Figure 1C). Since the average minimum allele frequency (MAF) of  
97 associated *k*-mers is consistently around 36% (Figure 1B) and the distance between the  
98 genes they map to across all strains is around 1 kbp (Figure 1D), we concluded that the  
99 virulence phenotype is associated to the presence of a gene island. In fact, all genes  
100 belonging to the HPI had the vast majority of associated *k*-mers mapped to them  
101 (normalized hits  $\geq 0.1$ , Figure 1E). Moreover, we found that the HPI structure was  
102 highly conserved across the 151 genomes that encode it (Supplementary Figure 2). We  
103 also observed that the distribution of known virulence factors doesn't match the  
104 virulence phenotype as closely as the HPI or has *k*-mers passing the association

105 threshold, further reinforcing the association results that the HPI is one of the main  
106 genetic factors behind virulence across phylogroups (Supplementary Figure 3).



107 **Figure 1. The HPI is strongly associated with the extra-intestinal virulence phenotype**  
108 **assessed in the mouse sepsis assay.** A) Core genome phylogenetic tree of the *E. coli* strains  
109 used in this study rooted on *Escherichia* clade I strains. Outer ring reports virulence as the  
110 number of killed mice over the 10 inoculated per strain, inner ring the phylogroup each strain  
111 belongs to. B) Results of the k-mer association analysis: for each gene the minimum association  
112 p-value and average minimum allele frequency (MAF) across all mapped k-mers are reported.  
113 The normalized hits are computed by dividing the number of mapped kmers by the length of the  
114 gene. C) Results of the gene association analysis; each gene tested is represented. Genes from  
115 the k-mer association analysis are highlighted in red. D) The associated genes (normalized hits  
116  $\geq 0.1$ ) belong to a gene cassette. OGs: orthologous groups. E) The HPI gene cassette  
117 structure in strain IAI39; all associated genes are highlighted.

118 **KO gene experiments validate the role of the HPI in the extra-intestinal phenotype**  
119 The studies on the role of the HPI in experimental virulence gave contrasting results  
120 according to the strains' genetic background<sup>13</sup>. Among B2 phylogroup strains, HPI  
121 deletion in the 536 (ST127) strain did not have any effect in the mouse model of sepsis<sup>28</sup>  
122 whereas this deletion in the NU14 (ST95) strain dramatically attenuated virulence<sup>13</sup>. Two  
123 strains from this study belonging to B2 phylogroup/ST141 (IAI51 and IAI52) deleted in  
124 *irp1* have attenuated virulence in the same model<sup>15</sup>. To have a broader view of the role  
125 of the HPI in various genetic backgrounds, we constructed *irp2* deletion gene mutants in  
126 two strains of phylogroup D (NILS46) and A (NILS9) belonging to STs frequently  
127 involved in human bacteraemia (ST69 and ST10, respectively)<sup>29</sup>. We first verified that  
128 the wild-type strains strongly produced yersiniabactin, whereas the *irp2* mutants did not  
129 (Figure 2A). We then tested them in the mouse sepsis model and saw an increase in  
130 survival for both mutated strains (log-rank test p-value < 0.0001 and 0.0217 for strain  
131 NILS9 and NILS46, respectively, Figure 2B, Supplementary Table 2) with no significant  
132 difference between the survival profiles for the two mutants (log-rank test p-value > 0.1).  
133 We have therefore validated *in vivo* the causal link between the HPI and the virulence  
134 phenotype detected by the means of an unbiased association approach, which  
135 demonstrates the power and accuracy of bacterial GWAS.



136 **Figure 2. Phenotypic consequences of HPI's deletion.** A) Deletion of HPI leads to a  
137 decrease in production of yersiniabactin. Production of yersiniabactin is measured using a  
138 luciferase-based reporter (Methods). Strains marked with a “-” and “+” sign indicates a negative  
139 and positive control, respectively. The red dashed line indicates an arbitrary threshold for  
140 yersiniabactin production, derived from the average signal recorded from the negative controls  
141 plus two standard deviations. RLU, relative light units. B) Deletion of HPI leads to an increase in  
142 survival after infection. Survival curves for wild-type strains and the corresponding *irp2* deletion  
143 mutant, built after infection of 20 mice for each strain.

144 **High-throughput phenotypic data sheds light on HPI's function**

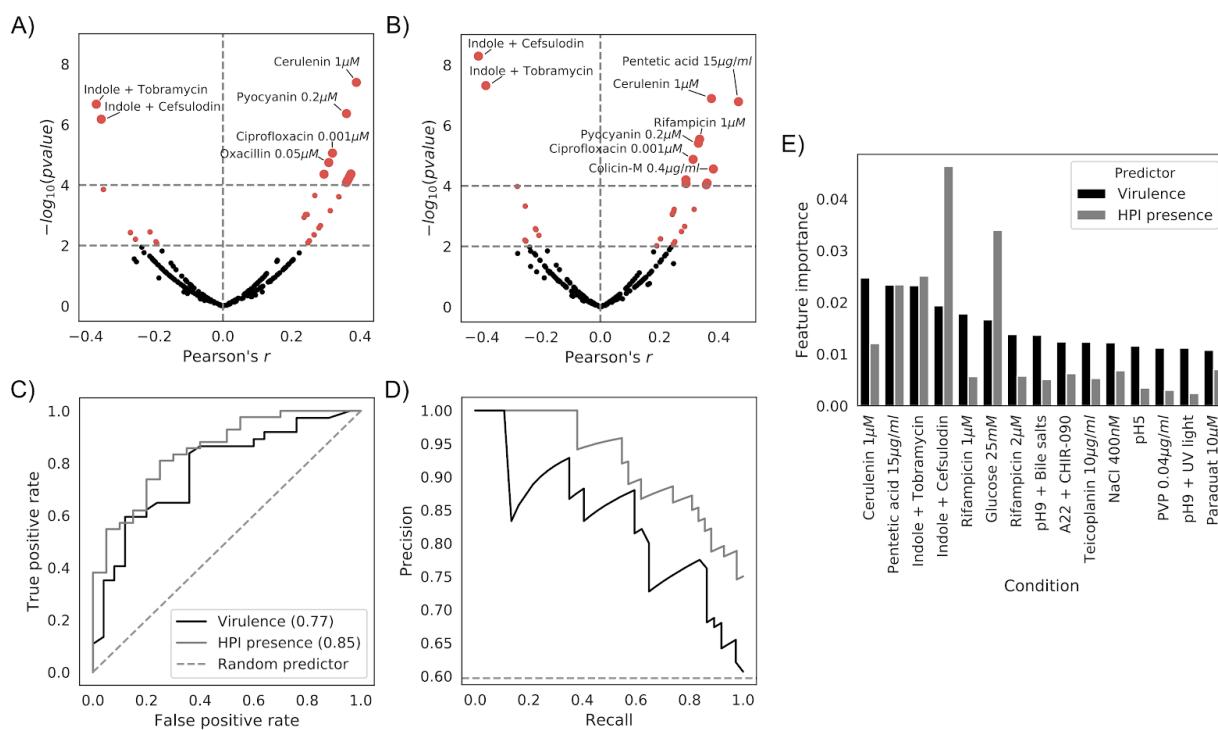
145 The main function encoded by the HPI cassette is iron scavenging through the  
146 expression of the siderophore yersiniabactin<sup>15</sup>, which has been previously validated in  
147 *E. coli* through knockout experiments<sup>13</sup>. In order to investigate other putative functions,  
148 we leveraged a previously-generated high-throughput phenotypic screening in an *E. coli*  
149 strain panel that largely overlaps with the strains used here (186 over 234)<sup>25</sup>. We  
150 observed a relatively high correlation between growth profiles in certain conditions and  
151 both virulence and presence of the HPI cassette (Figure 3A and 3B, Supplementary  
152 Table 3); given the strong association between the two, we observed similar conditions  
153 being correlated.

154 As expected, we found a correlation between growth on the iron-sequestering agent  
155 pentetic acid<sup>30</sup> and both HPI presence and virulence (Pearson's r: 0.47 and 0.36,  
156 respectively). We similarly, observed a correlation between pyocyanin, a redox-active  
157 phenazine compound being able to reduce Fe<sup>3+</sup> to Fe<sup>2+</sup><sup>31</sup>, and both HPI presence and  
158 virulence (Pearson's r: 0.36 and 0.29, respectively)

159 Interestingly, we found similarly strong correlations with growth on sub-inhibitory  
160 concentrations of several antibiotics, such as rifampicin, ciprofloxacin, amoxicillin and  
161 oxacillin, as well as other antimicrobial agents such as cerulenin and colicin. This might  
162 be due to the presence of resistance alleles and/or genes that are strongly associated  
163 with pathogenic strains, or might point to the role of iron homeostasis in intrinsic  
164 resistance to antibiotics<sup>32</sup>. As an example, quinolones bind Fe<sup>3+</sup> on its pyridine ring,  
165 which is also involved in the interaction with its target, DNA gyrase<sup>33</sup>. Cell envelope  
166 permeability can also be modified in response to the presence of iron via  
167 two-component systems, rendering the cell more resistant<sup>32</sup>. On the other hand we  
168 found that growth in presence of indole at 2 mM in association with sub-inhibitory  
169 concentrations of cefsulodin and tobramycin antibiotics, but not with each of these  
170 compounds alone, was negatively correlated with both HPI presence and virulence.  
171 This might indicate a synergy between antibiotics and indole. In lysogeny broth, sub  
172 lethal concentrations of antibiotics increased the endogenous production of indole by  
173 the cells<sup>34</sup> and, at very high concentration (5 mM), indole induces the production of  
174 reactive oxygen species and is toxic for the cells<sup>35</sup>. This toxicity has been shown to be  
175 partly iron mediated due to the Fenton reaction<sup>36</sup>, explaining that cells with increased  
176 import of extracellular iron due to the HPI might be more sensitive to these compounds.  
177 These associations suggest the potential for collateral sensitivities related to both  
178 intrinsic pathogenicity and the presence of the HPI.

179 Given the relatively large number of conditions correlated with both pathogenicity  
180 and HPI presence, we tested whether both features could be predicted from growth  
181 data. We used the commonly-used random forests machine learning algorithm with  
182 appropriate partitioning of input data to tune hyperparameters and reduce overfitting,

183 leading to two classifiers for virulence and presence of the HPI cassette with high  
184 predictive power (Figure 3C and 3D and Methods). We noted that prediction of HPI  
185 presence performs slightly better than virulence, possibly reflecting the complex nature  
186 of the latter phenotype. As expected, we found that conditions with relatively high  
187 correlation with both features have a higher weight in both classifiers (Figure 3E,  
188 Supplementary Table 4), which suggests that a subset of phenotypic tests might be  
189 sufficient to classify pathogenic strains. These results show how phenotypic data can be  
190 used to generate hypotheses over gene function and pathogenesis.



191 **Figure 3. Growth profiles can predict virulence and HPI presence.** A-B) Volcano plots for  
192 the correlation between the strains' growth profiles and: A) virulence levels and B) presence of  
193 the HPI. C-D) Use of the strains' growth profiles to build a predictor of virulence levels and  
194 presence of the HPI. C) Receiver operating characteristic (ROC) curve and D) Precision-Recall  
195 curve for the two tested predictors. E) Feature importance for the predictors, showing the top 15  
196 conditions contributing to the virulence levels predictor.

## 197 Discussion

198 With the steady decline in the price of genomic sequencing and the increasing  
199 availability of molecular and phenotypic data for bacterial isolates, it has finally become  
200 possible to use statistical genomics approaches such as GWAS to uncover the genetic  
201 determinants of relevant phenotypes. Such approaches have the advantage of being  
202 unbiased, and can then be used to confirm previous targeted findings and potentially

203 uncover new factors, given sufficient statistical power. The accumulation of other  
204 molecular and phenotypic data can on the other hand uncover variables correlated with  
205 phenotype, which can be used to generate testable hypothesis on the function of  
206 genomic hits and potential collateral sensitivities associated with them. Given the rise of  
207 both *E. coli* extra-intestinal infections and antimicrobial resistance, we reasoned that the  
208 intrinsic virulence assessed in a calibrated mouse model of sepsis<sup>10,21</sup> is a phenotype  
209 worth exploring with such an unbiased approach.

210 We were able to confirm earlier reports on the importance of the HPI in  
211 extra-intestinal virulence<sup>13–16,37</sup>, which showed the strongest signal in both the *k*-mer and  
212 accessory genome association analysis, and whose importance was validated *in vitro*  
213 and in an *in vivo* model. The distribution of the HPI within the species resulting from  
214 multiple horizontal gene transfers via homologous recombination<sup>38</sup> has probably  
215 facilitated its identification using GWAS. Additional genetic factors might have been  
216 overlooked by this analysis, due to the relatively small sample size; we however  
217 estimate that those putative additional factors might have a relatively low penetrance,  
218 based on our simulations in an independent dataset. As sequencing of bacterial isolates  
219 is becoming more common in clinical settings<sup>39–41</sup>, we expect to be able to uncover  
220 these additional genetic factors in future studies.

221 The association between both the intrinsic virulence phenotype and the presence of  
222 the HPI and previously collected growth data allowed us to generate testable  
223 hypotheses on mechanism of pathogenesis and putative additional functions of the HPI.  
224 In particular we observed a relatively strong correlation between growth on various  
225 antimicrobial agents and both pathogenicity and HPI presence, which confirms the  
226 pressure to acquire resistance for these isolates, but also on the potential role of HPI  
227 and iron homeostasis on antimicrobial resistance<sup>32</sup>. *E. coli* mutants of *fur*, a  
228 transcriptional regulator that represses iron uptake systems, which accumulate high  
229 level of intracellular iron, have been shown to increase resistance to quinolones,  
230 aminoglycoside, tetracycline, rifampicin and amoxicillin<sup>42</sup>. The negative correlation with  
231 growth profiles in the presence of the indole associated to antibiotics points to the  
232 possible deleterious role of iron in the effect of sublethal doses of antibiotics. A vicious  
233 circle is rapidly established as antibiotics increase the production of indole<sup>34</sup>, which in  
234 turn destabilise the membrane<sup>35</sup>, further increasing the penetration of the antibiotics.  
235 The deletion of TonB, an iron transporter, increase resistance to the antibiotic, showing  
236 the role of reactive oxygen species generated by the Fenton reaction in the presence of  
237 iron<sup>36</sup>. Altogether, these data bring new light on the “liaisons dangereuses” between iron  
238 and antibiotics that could potentially be targeted<sup>32</sup>.

239 We also demonstrate how growth data across several conditions can accurately  
240 distinguish pathogenic from non-pathogenic isolates, which could lead to the  
241 development of growth-based tests, which could complement and validate existing

242 diagnostic tools based on molecular and phenotypic data<sup>43-45</sup>. Taken together this  
243 analysis demonstrates how a data-centric approach can increase our knowledge of  
244 complex bacterial phenotypes and guide further empirical work on gene function and its  
245 relationship to intrinsic pathogenicity.

## 246 **Materials and methods**

### 247 **Strains used**

248 The full list of the 234 strains used in the association analysis, together with their main  
249 characteristics is reported in Supplementary Table 1. The genome sequences of all 234  
250 strains is available through Figshare<sup>46</sup>.

251 The construction of the *irp2* deletion mutants of the NILS9 and NILS46 strains was  
252 achieved following a strategy adapted from Datsenko and Wanner<sup>47</sup>. Primers used in  
253 the study are listed in Supplementary Table 5. In brief, primers used for gene disruption  
254 included 44-46 nucleotide homology extensions to the 5'- and 3' regions of the target  
255 gene, respectively, and additional 20 nucleotides of priming sequence for amplification  
256 of the resistance cassette on the template plasmids pKD4. The PCR product was then  
257 transformed into strains carrying the helper plasmid pKOBEG expressing the lambda  
258 red recombinase under control of an arabinose-inducible promoter<sup>48</sup>. Kanamycin  
259 resistant transformants were selected and further screened for correct integration of the  
260 resistance marker by PCR. For elimination of the antibiotic resistance gene, helper  
261 plasmid pCP20 was used according to the published protocol. PCR followed by Sanger  
262 sequencing of the mutants were performed to verify the deletion and the presence of  
263 the expected scar.

### 264 **Yersiniabactin detection assay**

265 Production of the siderophore yersiniabactin was detected and quantified using a  
266 luciferase reporter assay as described elsewhere<sup>13,49</sup>. Briefly, bacterial strains were  
267 cultivated in NBD medium for 24 hours at 37°C. Next, bacteria were pelleted by  
268 centrifugation and the supernatant was added to the indicator strain WR 1542  
269 harbouring plasmid pACYC5.3L. All the genes necessary for yersiniabactin uptake are  
270 located on the plasmid pACYC5.3L, i.e. *irp6*, *irp7*, *irp8*, *fyuA*, *ybtA*. Furthermore, this  
271 plasmid is equipped with a fusion of the *fyuA* promoter region with the luciferase  
272 reporter gene. The amount of yersiniabactin can be quantified semi-quantitatively, as  
273 yersiniabactin-dependant upregulation of *fyuA* expression is determined by luciferase  
274 activity of the *fyuA-luc* reporter fusion.

### 275 **Mouse virulence assay**

276 Ten female mice OF1 of 14-16 g (4 week-old) from Charles River® (L'Arbresle, France)  
277 received a subcutaneous injection of 0.2 ml of bacterial suspension in the neck (2·10<sup>8</sup>

278 colony forming unit). Time to death was recorded during the following 7 days. Mice  
279 surviving more than 7 days were considered cured and sacrificed<sup>10</sup>. In each experiment,  
280 the *E. coli* CFT073 strain was used as a positive control killing all the inoculated mice  
281 whereas the *E. coli* K-12 MG1655 strain was used as a negative control for which all the  
282 inoculated mice survive<sup>21</sup>. For the mutant assays, 20 mice per strain were used to  
283 obtain statistical relevant data. The data was analysed using the lifeline package  
284 v0.21.0<sup>50</sup>.

### 285 **Association analysis**

286 All genome-wide association analysis were carried out using pyseer, version v1.2.0<sup>19</sup>.  
287 All input genomes were re-annotated using prokka, version v1.13.3<sup>51</sup>, to ensure uniform  
288 gene calls and excluding contigs whose size was above 200 base pairs. The core  
289 genome phylogenetic tree was generated using ParSNP<sup>52</sup> to generate the core genome  
290 alignment and gubbins v2.3.1<sup>53</sup> to generate the phylogenetic tree. The strain's  
291 pangenome was estimated using roary v3.12.0<sup>54</sup>. K-mers distributions from the input  
292 genome assemblies were computed using fsm-lite<sup>18</sup>, with a minimum and maximum *k*  
293 value of 9 and 100, respectively. The association between both k-mers and pangenome  
294 and phenotype (expressed as number of mice killed post-infection) was carried out  
295 using the FastLMM<sup>55</sup> linear mixed-model implemented in pyseer, using a kinship matrix  
296 derived from the phylogenetic tree as population structure. For both association analysis  
297 we used the number of unique presence/absence patterns to derive an appropriate  
298 p-value threshold for the association likelihood ratio test (2.90E<sup>-09</sup> and 7.03E<sup>-06</sup> for the  
299 *k*-mers and pangenome analysis, respectively). *K*-mers significantly associated with the  
300 phenotype were mapped back to each input genome using bwa mem v0.7.17-r1188<sup>56</sup>  
301 and betools v.2.27.1<sup>57</sup>, using the pangenome analysis to collapse gene hits to individual  
302 groups of orthologs. A sample protein sequence for each groups of orthologs where at  
303 least one *k*-mer with size 20 or higher was mapped was extracted giving priority to strain  
304 IAI39 when available, given it was the only strain with a complete genome available;  
305 those sample sequences where used to search for homologs in the uniref50 database  
306 from uniprot<sup>58</sup> using blast v2.7.1+<sup>59</sup>. Each group of orthologs was then given a gene  
307 name using both available literature information and the results of the homology search.  
308 Distances between each pair of associated groups of orthologs was computed using the  
309 annotation files, using an equal number of random pairs as background.

### 310 **Power simulations**

311 Statistical power was estimated using an unrelated set of 548 complete *E. coli* genomes  
312 downloaded from NCBI RefSeq using ncbi-genome-download v0.2.9 on May 24th 2018.  
313 Each genome was subject to the same processing as the actual ones used in the real  
314 analysis (re-annotation, phylogenetic tree construction, pangenome estimation). The

315 gene presence/absence patterns were used to run the simulations, in a similar way as  
316 described in the original SEER implementation<sup>18</sup>. Briefly, for each sample size, a  
317 random subset of strains was selected, and the likelihood ratio test p-value threshold  
318 was estimated by counting the number of unique gene presence/absence patterns in  
319 the reduced roary matrix. For each odds ratio tested, a binary case-control phenotype  
320 vector was constructed for the strains subset using the following formulae:

321

$$P_{case|variant} = \frac{D_e}{MAF}$$

322

$$P_{case|novariant} = \frac{\frac{S_r}{S_r+1} - D_e}{1 - MAF}$$

323 Were  $S_r$  is the ratio of case/controls (set at 1 in these simulations),  $MAF$  as the  
324 minimum allele frequency of the target gene in the strains subset, and  $D_e$  the number of  
325 cases. pyseer's LMM model was then applied to the presence/absence vector of the  
326 target gene and the likelihood ratio test p-value was compared with the empirical  
327 threshold. The randomization was repeated 100 times and power was defined as the  
328 proportion of randomizations for each sample size and odds ratio whose p-value was  
329 below the threshold. The *pks2* and *fabG* genes were used as gene targets in the  
330 simulations, and both gave very similar results.

331 **Correlations with growth profiles**

332 The previously generated phenotypic data<sup>25</sup> for 186 over 234 strains were used to  
333 compute correlations with both the number of mice killed after infection and  
334 presence/absence of the HPI. The data was downloaded from the ecoref website  
335 (<https://evocellnet.github.io/ecoref/download/>) and the pearson correlation with the  
336 s-scores was computed together with the correlation p-value. Two predictors, one for  
337 virulence (number of killed mice post-infection) and one for presence of the HPI were  
338 built using the random forest classifier algorithm implemented in scikit-learn v.020.2<sup>60</sup>,  
339 using the s-scores as predictors. The input was column imputed, and 33% of the  
340 observations were kept as a test dataset, using a "stratified shuffle split" strategy. The  
341 remainder was used to train the classifier, using a grid search to select the number of  
342 trees and the maximum number of features used, through 10 rounds of stratified shuffle  
343 split with validation set size of 33% the training set and using the F1 measure as score.  
344 The performance of the classifiers on the test set were assessed by computing the area  
345 under the receiver operating characteristic curve (ROC-curve).

346 **Code and data availability**

347 All input data and code used to run the analysis and generate the plots is available  
348 online at [https://github.com/mgalardini/2018\\_ecoli\\_pathogenicity](https://github.com/mgalardini/2018_ecoli_pathogenicity). Code is mostly based  
349 on the Python programming language and the following libraries: numpy v1.16.1<sup>61</sup>, scipy  
350 v1.2.1<sup>62</sup>, biopython v1.71<sup>63,64</sup>, pandas v0.24.1<sup>65</sup>, pybedtools v0.8.0<sup>66</sup>, dendropy 4.4.0<sup>67</sup>,  
351 ete3 v3.1.1<sup>68</sup>, statsmodels v0.9.0<sup>69</sup>, matplotlib v3.0.2<sup>70</sup>, seaborn v0.9.0<sup>71</sup>, jupyterlab  
352 v0.34.11<sup>72</sup> and snakemake v4.5.0<sup>73</sup>.

### 353 **Ethics statement**

354 All animal experimentations were conducted following European (Directive 2010/63/EU  
355 on the protection of animals used for scientific purposes) and national recommendations  
356 (French Ministry of Agriculture and French Veterinary Services, accreditation A  
357 75-18-05). The protocol was approved by the Animal Welfare Committee of the  
358 Veterinary Faculty in Lugo, University of Santiago de Compostela (AE-LU-002/12/INV  
359 MED.02/OUTROS 04).

### 360 **Acknowledgements**

361 We are grateful to Ivan Matic for discussion on the effect of indole. This work was  
362 partially supported by the “Fondation pour la Recherche Médicale” (Equipe FRM 2016,  
363 grant number DEQ20161136698).

### 364 **References**

- 365 1. Tenaillon, O., Skurnik, D., Picard, B. & Denamur, E. The population genetics of commensal  
366 Escherichia coli. *Nat. Rev. Microbiol.* **8**, 207–217 (2010).
- 367 2. Croxen, M. A. & Brett Finlay, B. Molecular mechanisms of Escherichia coli pathogenicity. *Nature  
368 Reviews Microbiology* **8**, 26–38 (2010).
- 369 3. Russo, T. A. & Johnson, J. R. Medical and economic impact of extraintestinal infections due to  
370 Escherichia coli: focus on an increasingly important endemic problem. *Microbes Infect.* **5**, 449–456  
371 (2003).
- 372 4. Lefort, A. *et al.* Host Factors and Portal of Entry Outweigh Bacterial Determinants To Predict the  
373 Severity of Escherichia coli Bacteremia. *Journal of Clinical Microbiology* **49**, 777–783 (2011).
- 374 5. Burdet, C. *et al.* Escherichia coli bacteremia in children: age and portal of entry are the main  
375 predictors of severity. *Pediatr. Infect. Dis. J.* **33**, 872–879 (2014).
- 376 6. Abernethy, J. K. *et al.* Thirty day all-cause mortality in patients with Escherichia coli bacteraemia in  
377 England. *Clin. Microbiol. Infect.* **21**, 251.e1–8 (2015).
- 378 7. Vihta, K.-D. *et al.* Trends over time in Escherichia coli bloodstream infections, urinary tract infections,  
379 and antibiotic susceptibilities in Oxfordshire, UK, 1998–2016: a study of electronic health records.  
380 *The Lancet Infectious Diseases* **18**, 1138–1149 (2018).
- 381 8. Cassini, A. *et al.* Attributable deaths and disability-adjusted life-years caused by infections with  
382 antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level  
383 modelling analysis. *Lancet Infect. Dis.* **19**, 56–66 (2019).
- 384 9. Baudron, C. R. *et al.* Escherichia coli bacteraemia in adults: age-related differences in clinical and  
385 bacteriological characteristics, and outcome. *Epidemiology & Infection* **142**, 2672–2683 (2014).
- 386 10. Picard, B. *et al.* The link between phylogeny and virulence in Escherichia coli extraintestinal infection.  
387 *Infect. Immun.* **67**, 546–553 (1999).
- 388 11. Johnson, J. R. & Kuskowski, M. Clonal origin, virulence factors, and virulence. *Infect. Immun.* **68**,

389 424–425 (2000).

390 12. Tourret, J., Diard, M., Garry, L., Matic, I. & Denamur, E. Effects of single and multiple pathogenicity  
391 island deletions on uropathogenic *Escherichia coli* strain 536 intrinsic extra-intestinal virulence. *Int. J.*  
392 *Med. Microbiol.* **300**, 435–439 (2010).

393 13. Smati, M. *et al.* Strain-specific impact of the high-pathogenicity island on virulence in extra-intestinal  
394 pathogenic *Escherichia coli*. *Int. J. Med. Microbiol.* **307**, 44–56 (2017).

395 14. Schubert, S., Cuenca, S., Fischer, D. & Heesemann, J. High-pathogenicity island of *Yersinia pestis* in  
396 enterobacteriaceae isolated from blood cultures and urine samples: prevalence and functional  
397 expression. *J. Infect. Dis.* **182**, 1268–1271 (2000).

398 15. Schubert, S., Picard, B., Gouriou, S., Heesemann, J. & Denamur, E. *Yersinia* high-pathogenicity  
399 island contributes to virulence in *Escherichia coli* causing extraintestinal infections. *Infect. Immun.* **70**,  
400 5335–5337 (2002).

401 16. Johnson, J. R. & Russo, T. A. Molecular Epidemiology of Extraintestinal Pathogenic *Escherichia coli*.  
402 *EcoSal Plus* **8**, (2018).

403 17. Earle, S. G. *et al.* Identifying lineage effects when controlling for population structure improves power  
404 in bacterial association studies. *Nature Microbiology* **1**, 1–8 (2016).

405 18. Lees, J. A. *et al.* Sequence element enrichment analysis to determine the genetic basis of bacterial  
406 phenotypes. *Nat. Commun.* **7**, 12797 (2016).

407 19. Lees, J., Galardini, M., Bentley, S. D. & Weiser, J. N. pyseer: a comprehensive tool for microbial  
408 pangenome-wide association studies. *bioRxiv* (2018).

409 20. Jaillard, M. *et al.* A fast and agnostic method for bacterial genome-wide association studies: Bridging  
410 the gap between k-mers and genetic events. *PLoS Genet.* **14**, e1007758 (2018).

411 21. Johnson, J. R. *et al.* Experimental mouse lethality of *Escherichia coli* isolates, in relation to accessory  
412 traits, phylogenetic group, and ecological source. *J. Infect. Dis.* **194**, 1141–1150 (2006).

413 22. Ochman, H. & Selander, R. K. Standard reference strains of *Escherichia coli* from natural  
414 populations. *J. Bacteriol.* **157**, 690–693 (1984).

415 23. Bleibtreu, A. *et al.* The *rpoS* gene is predominantly inactivated during laboratory storage and  
416 undergoes source-sink evolution in *Escherichia coli* species. *J. Bacteriol.* **196**, 4276–4284 (2014).

417 24. Russo, T. A. & Johnson, J. R. Proposal for a new inclusive designation for extraintestinal pathogenic  
418 isolates of *Escherichia coli*: ExPEC. *J. Infect. Dis.* **181**, 1753–1754 (2000).

419 25. Galardini, M. *et al.* Phenotype inference in an *Escherichia coli* strain panel. *Elife* **6**, 1–19 (2017).

420 26. Clermont, O., Christenson, J. K., Denamur, E. & Gordon, D. M. The Clermont *Escherichia coli*  
421 phylo-typing method revisited: improvement of specificity and detection of new phylo-groups.  
422 *Environ. Microbiol. Rep.* **5**, 58–65 (2013).

423 27. Power, R. A., Parkhill, J. & de Oliveira, T. Microbial genome-wide association studies: lessons from  
424 human GWAS. *Nat. Rev. Genet.* **18**, 41–50 (2016).

425 28. Diard, M. *et al.* Pathogenicity-associated islands in extraintestinal pathogenic *Escherichia coli* are  
426 fitness elements involved in intestinal colonization. *J. Bacteriol.* **192**, 4885–4893 (2010).

427 29. Kallonen, T. *et al.* Systematic longitudinal survey of invasive *Escherichia coli* in England  
428 demonstrates a stable population structure only transiently disturbed by the emergence of ST131.  
429 *Genome Res.* (2017). doi:10.1101/gr.216606.116

430 30. Pippard, M. J., Jackson, M. J., Hoffman, K., Petrou, M. & Modell, C. B. Iron chelation using  
431 subcutaneous infusions of diethylene triamine penta-acetic acid (DTPA). *Scand. J. Haematol.* **36**,  
432 466–472 (1986).

433 31. Cornelis, P. & Dingemans, J. *Pseudomonas aeruginosa* adapts its iron uptake strategies in function  
434 of the type of infections. *Front. Cell. Infect. Microbiol.* **3**, 75 (2013).

435 32. Ezraty, B. & Barras, F. The 'liaisons dangereuses' between iron and antibiotics. *FEMS Microbiol. Rev.*  
436 **40**, 418–435 (2016).

437 33. Uivarosi, V. Metal complexes of quinolone antibiotics and their applications: an update. *Molecules* **18**,  
438 11153–11197 (2013).

439 34. Mathieu, A. *et al.* Discovery and Function of a General Core Hormetic Stress Response in *E. coli*  
440 Induced by Sublethal Concentrations of Antibiotics. *Cell Rep.* **17**, 46–57 (2016).

441 35. Garbe, T. R., Kobayashi, M. & Yukawa, H. Indole-inducible proteins in bacteria suggest membrane  
442 and oxidant toxicity. *Arch. Microbiol.* **173**, 78–82 (2000).

443 36. Giroux, X., Su, W.-L., Bredeche, M.-F. & Matic, I. Maladaptive DNA repair is the ultimate contributor  
444 to the death of trimethoprim-treated cells under aerobic and anaerobic conditions. *Proc. Natl. Acad. Sci. U. S. A.* **114**, 11512–11517 (2017).

445 37. Johnson, J. R. *et al.* Contribution of yersiniabactin to the virulence of an *Escherichia coli* sequence  
446 type 69 ('clonal group A') cystitis isolate in murine models of urinary tract infection and sepsis.  
447 *Microb. Pathog.* **120**, 128–131 (2018).

448 38. Schubert, S. *et al.* Role of Intraspecies Recombination in the Spread of Pathogenicity Islands within  
449 the *Escherichia coli* Species. *PLoS Pathog.* **5**, e1000257 (2009).

450 39. Fricke, W. F. & Rasko, D. A. Bacterial genome sequencing in the clinic: bioinformatic challenges and  
451 solutions. *Nat. Rev. Genet.* **15**, 49–55 (2014).

452 40. Quainoo, S. *et al.* Whole-Genome Sequencing of Bacterial Pathogens: the Future of Nosocomial  
453 Outbreak Analysis. *Clin. Microbiol. Rev.* **30**, 1015–1063 (2017).

454 41. Tagini, F. & Greub, G. Bacterial genome sequencing in clinical microbiology: a pathogen-oriented  
455 review. *Eur. J. Clin. Microbiol. Infect. Dis.* **36**, 2007–2020 (2017).

456 42. Nichols, R. J. *et al.* Phenotypic landscape of a bacterial cell. *Cell* **144**, 143–156 (2011).

457 43. Tsalik, E. L., Bonomo, R. A. & Fowler, V. G., Jr. New Molecular Diagnostic Approaches to Bacterial  
458 Infections and Antibacterial Resistance. *Annu. Rev. Med.* **69**, 379–394 (2018).

459 44. Břinda, K., Callendrello, A., Cowley, L. & Charalampous, T. Lineage calling can identify antibiotic  
460 resistant clones within minutes. *bioRxiv* (2018).

461 45. Bradley, P. *et al.* Rapid antibiotic-resistance predictions from genome sequence data for  
462 *Staphylococcus aureus* and *Mycobacterium tuberculosis*. *Nat. Commun.* **6**, 10063 (2015).

463 46. Galardini, M. *Escherichia coli* pathogenicity GWAS: input genome sequences. (2019).  
464 doi:10.6084/m9.figshare.8866259.v1

465 47. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in *Escherichia coli*  
466 K-12 using PCR products. *Proc. Natl. Acad. Sci. U. S. A.* **97**, 6640–6645 (2000).

467 48. Chaverolle, M. K., Ghigo, J. M. & d'Enfert, C. A rapid method for efficient gene replacement in the  
468 filamentous fungus *Aspergillus nidulans*. *Nucleic Acids Res.* **28**, E97 (2000).

469 49. Martin, P. *et al.* Interplay between Siderophores and Colibactin Genotoxin Biosynthetic Pathways in  
470 *Escherichia coli*. *PLoS Pathogens* **9**, e1003437 (2013).

471 50. Davidson-Pilon, C. *et al.* *CamDavidsonPilon/lifelines*: v0.21.0. (2019). doi:10.5281/zenodo.2638135

472 51. Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068–2069 (2014).

473 52. Treangen, T. J., Ondov, B. D., Koren, S. & Phillippy, A. M. The Harvest suite for rapid core-genome  
474 alignment and visualization of thousands of intraspecific microbial genomes. *Genome Biol.* **15**, 524  
475 (2014).

476 53. Croucher, N. J. *et al.* Rapid phylogenetic analysis of large samples of recombinant bacterial whole  
477 genome sequences using Gubbins. *Nucleic Acids Res.* **43**, e15 (2015).

478 54. Page, A. J. *et al.* Roary: rapid large-scale prokaryote pan genome analysis. *Bioinformatics* **31**,  
479 3691–3693 (2015).

480 55. Lippert, C. *et al.* FaST linear mixed models for genome-wide association studies. *Nature Methods* **8**,  
481 833–835 (2011).

482 56. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv*  
483 [*q-bio.GN*] (2013).

484 57. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features.  
485 *Bioinformatics* **26**, 841–842 (2010).

486 58. UniProt Consortium. UniProt: a hub for protein information. *Nucleic Acids Res.* **43**, D204–12 (2015).

487 59. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool.  
488 *Journal of molecular biology* **215**, 403–410 (1990).

489 60. Pedregosa, F. *et al.* Scikit-learn: Machine Learning in Python. *J. Mach. Learn. Res.* **12**, 2825–2830  
490 (2011).

491 61. Van Der Walt, S., Colbert, S. C. & Varoquaux, G. The NumPy array: a structure for efficient numerical  
492 computation. *Comput. Sci. Eng.* **13**, 22–30 (2011).

493 62. Jones, E., Oliphant, T. & Peterson, P. SciPy: Open source scientific tools for Python. <http://www.scipy.org/> (2001).

494 63. Cock, P. J. A. *et al.* Biopython: freely available Python tools for computational molecular biology and  
495 496

497        bioinformatics. *Bioinformatics* **25**, 1422–1423 (2009).

498        64. Talevich, E., Invergo, B. M., Cock, P. J. & Chapman, B. a. Bio.Phylo: A unified toolkit for processing,  
499        analyzing and visualizing phylogenetic trees in Biopython. *BMC Bioinformatics* **13**, 209 (2012).

500        65. McKinney, W. & Others. Data structures for statistical computing in Python. in *Proceedings of the 9th*  
501        *Python in Science Conference* **445**, 51–56 (2010).

502        66. Dale, R. K., Pedersen, B. S. & Quinlan, A. R. Pybedtools: a flexible Python library for manipulating  
503        genomic datasets and annotations. *Bioinformatics* **27**, 3423–3424 (2011).

504        67. Sukumaran, J. & Holder, M. T. DendroPy: a Python library for phylogenetic computing. *Bioinformatics*  
505        **26**, 1569–1571 (2010).

506        68. Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: Reconstruction, Analysis, and Visualization of  
507        Phylogenomic Data. *Mol. Biol. Evol.* **33**, 1635–1638 (2016).

508        69. Seabold, S. & Perktold, J. Statsmodels: Econometric and statistical modeling with python. in  
509        *Proceedings of the 9th Python in Science Conference* **57**, 61 (SciPy society Austin, 2010).

510        70. Hunter, J. D. Matplotlib: A 2D Graphics Environment. *Computing in Science Engineering* **9**, 90–95  
511        (2007).

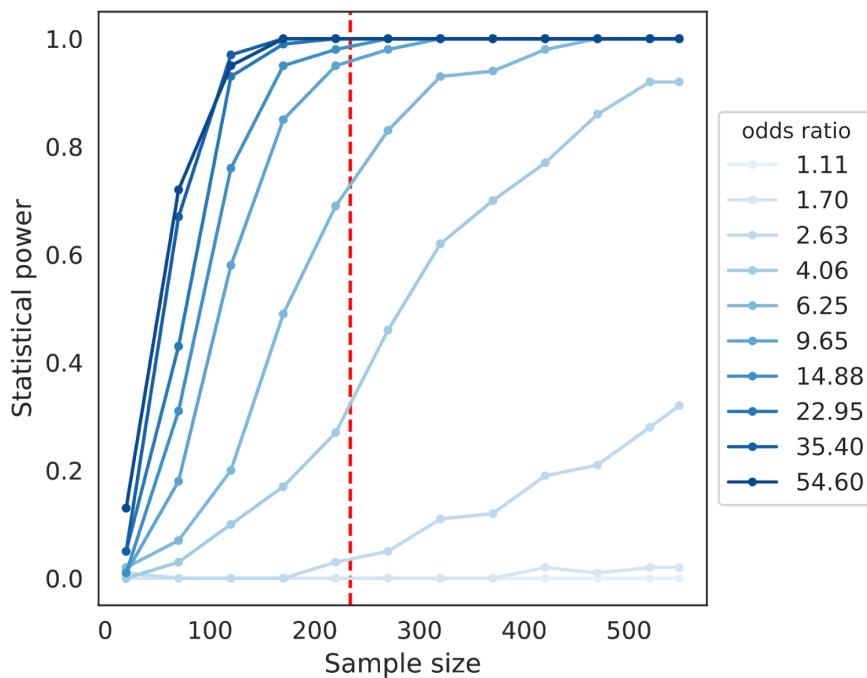
512        71. Waskom, M. *et al.* *mwaskom/seaborn: v0.9.0 (July 2018)*. (2018). doi:10.5281/zenodo.1313201

513        72. Kluyver, T. *et al.* Jupyter Notebooks-a publishing format for reproducible computational workflows. in  
514        *ELPUB* 87–90 (2016).

515        73. Köster, J. & Rahmann, S. Snakemake-a scalable bioinformatics workflow engine. *Bioinformatics* **34**,  
516        3600 (2018).

517

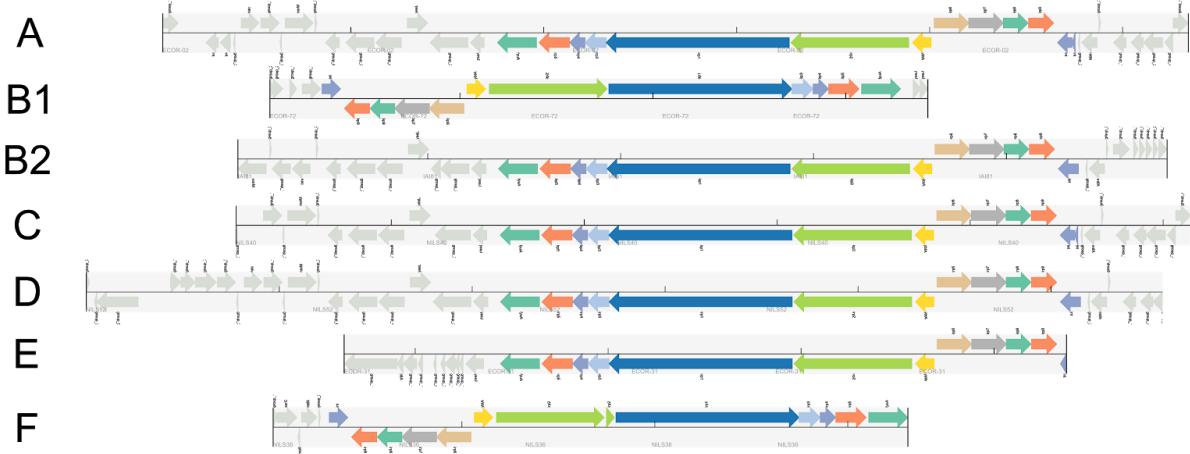
## Supplementary Figures



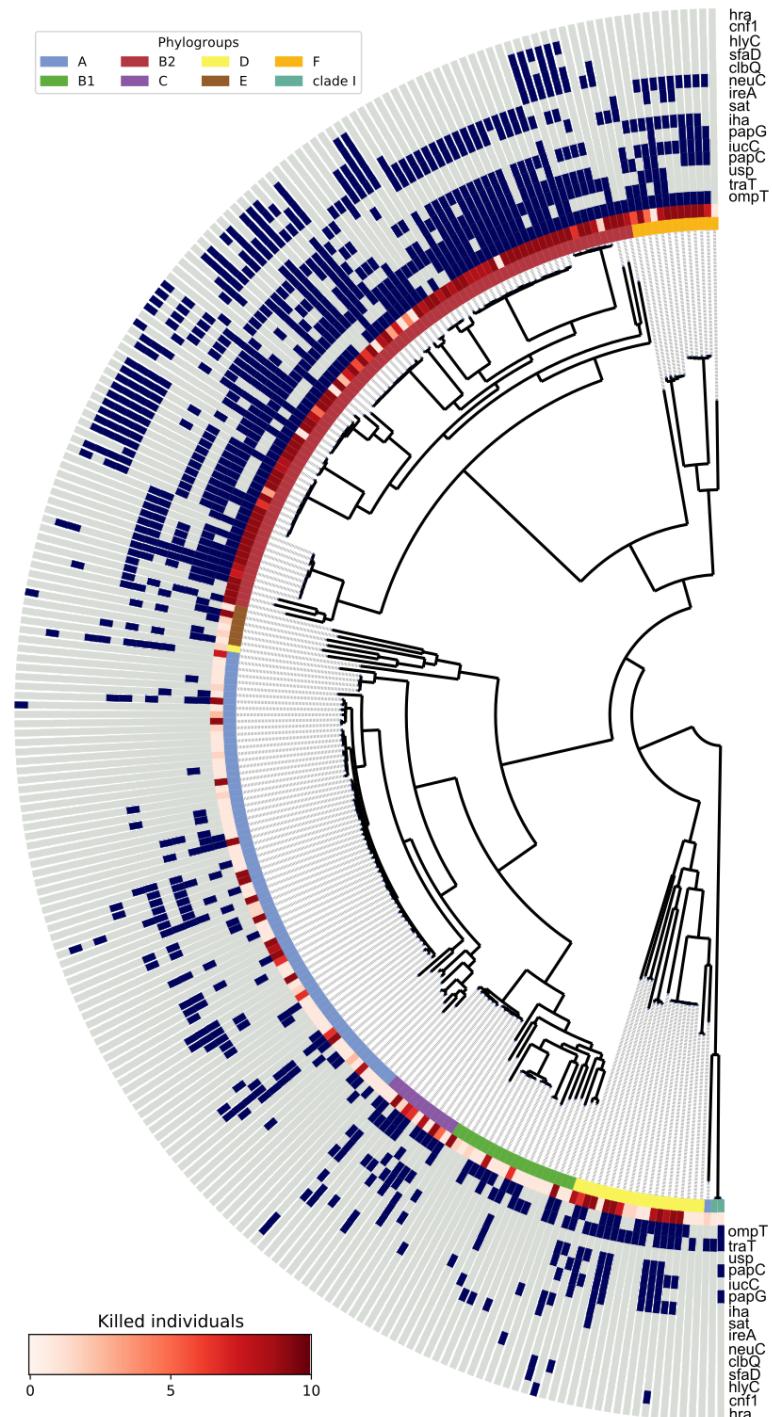
518  
519  
520

**Supplementary Figure 1.** Simulations of statistical power on an unrelated set of complete *E. coli* genomes, using the *pks2* gene as target. The dotted red line indicate the sample size used in the actual analysis.

Phylogroup



521 **Supplementary Figure 2.** HPI structure conservation across strains. One strain per  
522 phylogroup is shown, using the same color scheme as Figure 1E for each gene.



523 **Supplementary Figure 3.** Presence/absence patterns of known virulence factors other  
524 than genes belonging to the HPI. Blue indicates presence, light grey indicates absence.  
525 Phenotypes (number of killed mice) and phylogroup of each strain are reported as in  
526 Figure 1A.

527 **Supplementary Information**

528 **Supplementary Table 1:** Strains' information, including virulence phenotype

529 **Supplementary Table 2:** Survival analysis for NILS9 and NILS46 wild-type and HPI  
530 mutants

531 **Supplementary Table 3:** Correlation between growth on stress conditions (s-scores)  
532 and both virulence and presence of the HPI

533 **Supplementary Table 4:** Feature importance for each growth condition in the random  
534 forests predictor for virulence and HPI presence

535 **Supplementary Table 5:** List of PCR primers used in this study