

1 **Yellow fever virus spread in Rio de Janeiro and Espírito Santo, 2016-2019: Phylodynamic
2 assessment to improve intervention strategies**

3

4 **Running title:** Spread of YFV in southeast Brazil

5

6 Marta Giovanetti^{1,2*}, Marcos Cesar Lima de Mendonça¹, Vagner Fonseca^{2,3^}, Maria Angélica Mares-
7 Guia¹, Allison Fabri¹, Joilson Xavier², Jaqueline Goes de Jesus⁴, Tiago, Gräf⁴, Cintia Damasceno dos
8 Santos Rodrigues¹, Carolina Cardoso dos Santos¹, Simone Alves Sampaio¹, Flavia Lowen Levy
9 Chalhoub¹, Fernanda de Bruycker Nogueira¹, Julien Theze⁵, Alessandro Pecego Martins Romano⁶,
10 Daniel Garkauskas Ramos⁶, Andre Luiz de Abreu⁷, Wanderson Kleber Oliveira⁸, Rodrigo Fabiano
11 do Carmo Said⁶, Carlos F. Campelo de Alburque⁹, Tilio de Oliveira³, Carlos Augusto Fernandes¹⁰,
12 Shirlei Ferreira Aguiar¹⁰, Alexandre Chieppe¹¹, Patrícia Carvalho Sequeira¹, Nuno Rodrigues Faria⁵,
13 Rivaldo Venâncio Cunha^{12,13}, Luiz Carlos Junior Alcantara^{1,2*}, Ana Maria Bispo de Filippis^{1*}.

14

15 ¹Laboratório de Flavivírus, Instituto Oswaldo Cruz Fiocruz, Rio de Janeiro, Brazil; ²Laboratório de
16 Genética Celular e Molecular, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas
17 Gerais, Brazil; ³KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), College of
18 Health Sciences, University of KwaZuluNatal, Durban 4001, South Africa; ⁴Instituto Gonçalo Moniz,
19 Fundação Oswaldo Cruz, Ministério da Saúde, Salvador-BA; ⁵Department of Zoology, University of
20 Oxford, OX1 3PS, UK; ⁶Coordenação Geral de Vigilância de Arboviroses (CGARB); ⁷Coordenação
21 Geral dos Laboratórios de Saúde Pública/Secretaria de Vigilância em Saúde, Ministério da Saúde,
22 (CGLAB/SVS-MS) Brasília, Distrito Federal, Brazil; ⁸Secretaria de Vigilância em Saúde, Ministério
23 da Saúde (SVS-MS), Brasília, Distrito Federal, Brazil; ⁹Organização Pan-Americana da
24 Saúde/Organização Mundial da Saúde, Brasília, Distrito Federal, Brazil; ¹⁰Laboratório Central de
25 Saúde Pública Noel Nutels (LACEN-RJ), Rio de Janeiro, Brazil; ¹¹Superintendência de Vigilância
26 do Estado, Rio de Janeiro, Brazil. ¹²Fundação Oswaldo Cruz, Bio-Manguinhos, Rio de Janeiro, RJ,

27 Brasil; ¹³Universidade Federal do Mato Grosso do Sul, Faculdade de Medicina, Campo Grande, MS,
28 Brazil

29 [^]Denotes equal contribution.

30

31 ***Correspondence should be addressed to:** giovanetti.marta@gmail.com;
32 ana.bispo@ioc.fiocruz.br; luiz.alcantara@ioc.fiocruz.br

33

34 **Keywords:** Yellow fever, outbreak, southeast Brazil, genomic surveillance, outbreak response

35

36 ABSTRACT

37 The recent re-emergence of yellow fever virus (YFV) in Brazil has raised serious concerns due to the
38 virus' rapid dissemination in the southeastern region. To better understand YFV genetic diversity and
39 dynamics during the recent outbreak in southeastern Brazil we generated 18 complete and near-
40 complete genomes from the peak of the epidemic curve from non-human primates (NHPs) and human
41 infected cases across Espírito Santo and Rio de Janeiro states. Genomic sequencing of 18 YFV
42 genomes revealed the timing, source and likely routes of yellow fever virus transmission and
43 dispersion during the one of the largest outbreaks ever registered in Brazil. We showed that the recent
44 YFV epidemic spillover southwards several times from Minas Gerais to Espírito Santo and Rio de
45 Janeiro states in 2016 to 2019. The quick production and analysis of data from portable sequencing
46 could identify the corridor of spread of YFV. These findings reinforce that real-time and continued
47 genomic surveillance strategies can assist in the monitoring and public health responses of arbovirus
48 epidemics.

49

50 IMPORTANCE

51 Arbovirus infections in Brazil including Yellow Fever, Dengue, Zika and Chikungunya result in
52 considerable morbidity and mortality and are pressing public health concerns. However, our

53 understanding of these outbreaks is hampered by limited availability of real time genomic data. In
54 this study, we investigated the genetic diversity and spatial distribution of YFV during the current
55 outbreak in southeastern Brazil. To gain insights into the routes of YFV introduction and dispersion,
56 we tracked the virus by sequencing YFV genomes sampled from non-human primates and infected
57 patients from the southeastern region. Our study provides an understanding of how YFV initiates
58 transmission in new Brazilian regions and illustrates that near-real time genomics in the field can
59 augment traditional approaches to infectious disease surveillance and control.

60

61 **INTRODUCTION**

62 Yellow fever (YF) is a vector-borne disease that is endemic in tropical areas of Africa and South
63 America (1). The aetiologic agent is the yellow fever virus (YFV), a single-stranded positive sense,
64 RNA virus belonging to the *Flaviviridae* family (2). YFV diversity can be classified into four distinct
65 genotypes, which have been named based on their geographical distribution: East African, West
66 African, South American I, and South American II genotypes (3-6).

67 In the Americas, YFV transmission can occur via two main epidemiological transmission
68 cycles: the sylvatic (or jungle) and the urban (domestic) cycles. In the sylvatic cycle non-human
69 primates (NHPs) are infected through the bite of mosquito vectors such as *Haemagogus* spp. and
70 *Sabettus* spp. (7, 8). However, in the urban cycle, humans can be infected by *Aedes* spp. mosquitoes
71 biting (9). YFV infection in humans shows a wide spectrum of disease severity including
72 asymptomatic infection, mild illness with dengue-like symptoms, including fever, nausea, vomiting
73 and fatigue, and severe disease, including fever with jaundice or hemorrhage and death (10).

74 While eradication is not feasible due to the wildlife reservoir system, large-scale vaccination
75 coverage provides considerable protection against the re-urbanization of YFV transmission (11).
76 However, despite the availability of effective vaccines, YF remains an important public health issue
77 in Africa and South America. In late 2016, a severe re-emergence of YFV epidemic has been reported
78 in southeastern Brazil. The epidemic has evolved to become the largest observed in the country in

79 decades, reaching areas close to the Atlantic rainforest (11, 12). YFV 2016-2017 epidemic in Brazil
80 accounted for 1,412 epizootics, 777 YF human confirmed cases, most of which in southeast Brazil
81 (Minas Gerais n=465; São Paulo n=22, Rio de Janeiro n=25; Espírito Santo n=252 confirmed cases),
82 and 261 human deaths (13). Following this epidemic new cases were reported between 2017-2018
83 and in that period 864 epizootics, 1,376 YF human confirmed cases and 483 human deaths were
84 registered, with the southern states among the most affected by the YFV epidemic (Minas Gerais
85 n=532; São Paulo n=377, Rio de Janeiro n=186; Espírito Santo n=6 confirmed cases) (14). The
86 epidemic persisted in 2018-2019 and accounted for 1,883 NHP notified cases (n=20 confirmed NHP
87 cases) and 12 human confirmed cases, including 5 human deaths from the state of São Paulo. Most
88 of the confirmed epizootic cases was registered in the southeastern states (95%) (São Paulo (n=10);
89 Rio de Janeiro (n=8) and Minas Gerais (n=1) (13-15).

90 Although there is currently no evidence that urban transmission has occurred, the outbreak affected
91 areas highly infested by *Ae. aegypti* and *Ae. Albopictus* where yellow fever vaccination was recently
92 introduced in routinely of immunization program. This condition or behavior raises concern that, for
93 the first time in decades, there might be high risk of YFV urban transmission in Brazil (16). New
94 surveillance and analytical approaches are therefore needed to monitor this threat in real time.
95 Even so, there is limited information from genomic surveillance studies about the genomic
96 epidemiology and the dissemination dynamics of 2016-2019 YFV circulating in Southeast Brazil.
97 Previous studies have shown the spatial and evolutionary dynamics of the current YFV outbreak in
98 different southeastern states, (11) and shed light regarding the possible co-circulation of distinct YFV
99 lineages (17). Nevertheless, there is still limited information about the genomic epidemiology of YFV
100 circulating in Espírito Santo and Rio de Janeiro states from genomic surveillance studies, impairs our
101 understanding of the virus re-introduction, establishment and dissemination in those regions.
102 Thus, to better understand the re-emergence of the recent YFV epidemic in those regions, we analyzed
103 a larger and updated dataset of recently released data of the YFV 2016-2019 epidemic in Brazil,

104 including 18 newly generated complete genomes from human and NHPs from the Southeast states of
105 Espírito Santo and Rio de Janeiro.

106

107 **RESULTS**

108 ***Molecular diagnostics and genome sequencing from clinical samples***

109 Liver, spleen, kidney and blood samples from 14 NHPs and liver and serum samples from 4 human
110 infected cases collected in Rio de Janeiro and Espírito Santo states, Southeast Brazil, between January
111 2017 and April 2018, were tested for YFV RNA using the RT-qPCR assay (18, 19) at the Flavivirus
112 Laboratory at FIOCRUZ Rio de Janeiro (LABFLA/FIOCRUZ).

113 Most confirmed cases in NHPs were from animals of the *Alouatta* genus (42.9%; 6 of 14), followed
114 by *Callithrix* (35.7%; 5 of 14), *Sapajus* (7.1%; 1 of 14) and *Leontopithecus rosalia* (14.3%; 2 of 14).
115 PCR cycle threshold (Ct) values were on average 12.23 (range: 7.2 to 22.4) (**Table 1**).

116 To investigate the source and transmission of YFV and the genetic diversity of the virus circulating
117 in human and NHPs across Rio de Janeiro and Espírito Santo states, we used the MinION handheld
118 nanopore sequencer to generate 18 complete and near complete genomic sequences (average
119 coverage = 89.9%; **Table 2**) using a previously described MinION sequencing protocol (11, 20).

120 New sequences have been deposited in GenBank under accession numbers: MK882599-
121 MK882604; MK882607-MK882613; MK882615; MK882617-MK882619; MK882621. YF samples
122 sequenced in this study were geographically widespread across 6 municipalities of Rio de Janeiro and
123 7 municipalities of Espírito Santo, (**Figure 1A**).

124 Figure 1 panel B shows the number of YFV confirmed cases in the Espírito Santo and Rio de Janeiro
125 states respectively. Epidemiological data revealed two distinct YFV epidemic waves. The first
126 epidemic wave (*wave 1*) is represented by the YFV cases mainly registered in the Espírito Santo state,
127 during the first semester of 2017 (January to April, $n= 252$ cases), although some sporadic cases were
128 reported in the following year (**Figure 1B**). The second wave (*wave 2*), in turn, is represented by YFV
129 cases registered in Rio de Janeiro state during first semester of 2018 (February to May; $n=220$ cases)

130 (**Figure 1B**). Although majority of cases in Rio de Janeiro occurred between February and March
131 2018, we can see that the re-emergence of YFV in that state was detected around March 2017, during
132 epidemic wave 1 that mainly affected Espírito Santo state.

133

134 ***Genetic history of YFV in Southeastern Brazil***

135 To investigate the phylogenetic relationship of YFV strains circulating in the southeastern states of
136 Espírito Santo and Rio de Janeiro we estimated a maximum likelihood (ML) phylogenetic tree for a
137 dataset of 181 reference sequences comprising the four YFV lineages. Our ML phylogeny revealed
138 that, as suspected, the newly generated YFV sequences belong to the South American I (SAI) lineage
139 with high statistical support (bootstrap = 100%), clustering with other Brazilian isolates from the
140 2016-2019 epidemic (**Supplementary Figure 1**).

141 Subsequently, to investigate the dynamic of the YFV infection within the Southeast region, genetic
142 analyses were conducted on a second dataset (dataset 2, $n = 137$), including recently published
143 sequences from the YFV 2016-2019 epidemic in Brazil, belonging to the SA1 lineage. The time-scale
144 of our phylogenetic estimates was consistent with recently studies (17, 21, 22) and confirmed the
145 presence of two distinct lineages circulating in the current YFV epidemic, named hereafter as SA1
146 lineage 1 and SA1 lineage 2 (**Figure 2**). The SA1 lineage 1 comprises sequences from the northern
147 and eastern regions of Minas Gerais, Bahia, Espírito Santo and Rio de Janeiro states and the time of
148 the most recent common ancestor (TMRCA) of this lineage was dated back to September 2016 (95%
149 BCI: July to November 2016). Meanwhile the SA1 lineage 2 comprises sequences from the southern
150 municipalities of Minas Gerais state and sequences from the southeastern state of Sao Paulo and the
151 TMRCA of this lineage was dated back around July 2016 (95% BCI: June to December 2016) (**Fig.**
152 **2**). Moreover, our time-scaled phylogeny showed that the sequences generated in this study clustered
153 together with high support (pp=90 %) within SA1 lineage 1 (**Figure 2**).

154 In order to understand the transmission and the spatio-temporal evolution of the SA1 lineage 1,
155 subsequently we analysed a subset of 81 (Dataset 3) sequences from this lineage (**Supplementary**

156 **figure 2).** We performed a regression of genetic divergence from root to tip against sampling dates
157 that confirmed sufficient temporal signal ($r^2=0.70$) in this dataset. A time-scaled phylogenetic
158 analysis using a Bayesian Markov Chain Monte Carlo (MCMC) framework (23) was then performed
159 to investigate the time of introduction of the YFV into the Espírito Santo and Rio de Janeiro states
160 (**Figure 3 A).** **Figure 3A** showed a zoom of our Bayesian time-scaled phylogeny highlighting the
161 SA1 lineage 1 comprising the 2017-2019 YFV strains from Minas Gerais, Bahia, Espírito Santo and
162 Rio de Janeiro states. Our analysis showed that samples from Espírito Santo were intermixed with
163 sequences from Rio de Janeiro. This suggests that the YFV epidemic in Espírito Santo and Rio de
164 Janeiro was not caused by a single introduction event, as observed in Sao Paulo (17, 21), but resulted
165 from multiples introduction over time.

166 We next used a continuous diffusion model to investigate how the SA1 lineage 1 has been spreading
167 over space and time. We found evidence that YFV disseminated through southeastern Brazilian states
168 using two distinct paths with an average dispersal rate of 0.12 km/day (95% HPD: 0.09 – 0.14
169 km/day). From the northern region of Minas Gerais state, YFV spread to the south region of Bahia
170 state around January 2017 (95% BCI: December 2016 to February 2017) (**Figure 3**), and from the
171 eastern region of Minas Gerais state YFV moved towards Espírito Santo state, (pp=0.99) with
172 introductions estimated around January 2017 (95% BCI: November 2016 to January 2017) (**Figure**
173 **3 Panels A, B).** Since its introduction in the Espírito Santo state, the virus widespread through the
174 neighboring state (**Figure 3**). Our analyses revealed that YFV was likely introduced in Rio de Janeiro
175 state several times between January (95% BCI: December 2016 to February 2017) and March 2017
176 (February 2017 to May 2017), spreading southward from the border with Espírito Santo state and
177 reaching Angra dos Reis municipality, which is located in the southern region of Rio de Janeiro. Our
178 data further suggests that after its first introduction in Rio de Janeiro the virus persisted until 2019,
179 as indicated by the isolate MK533792 sampled, in the municipality of Casimiro de Abreu, in January
180 2019 (12) (**Figure 3 Panel A**).

181

182 **DISCUSSION**

183 In this study, we generated and analysed 18 new YFV complete and near-complete genomic
184 sequences from samples from humans and non-human primates collected in several municipalities in
185 Espírito Santo and Rio de Janeiro states, in 2017-2018.

186 Despite previous studies have already shown the spatial and evolutionary dynamics of the current
187 YFV outbreak in Brazil (11, 12, 17, 21), the shortage of genomic data from Espírito Santo and Rio
188 de Janeiro states hampered the possibility of shed light on the re-emergence, establishment and the
189 corridor of spread of the YFV transmission in those regions.

190 The generated genomic data provides a more detailed understanding of the introduction and
191 progression of YFV SA1 lineage 1 and reveals the timing, source and likely routes of yellow fever
192 virus transmission and dispersion during the largest outbreak in Brazil in decades.

193 According to the Ministry of Health epidemiological bulletin, the YFV re-emergence in the states of
194 Espírito Santo and Rio de Janeiro was confirmed in these states in January and February 2017
195 respectively (13-15).

196 Our estimates indicated that YFV strains from the epidemic first emerged in Espírito Santo
197 state from Minas Gerais around January 2017 (95% BCI: November 2016 to January 2017), which is
198 consistent with epidemiological data (13-15). From the state of Espírito Santo, YFV spread
199 southwards to the great metropolitan area of Rio de Janeiro state. Moreover, our data indicated that
200 the circulation of YFV in Rio de Janeiro may have resulted from multiple and independent
201 introductions events from Espírito Santo state, highlighting a complex dispersion dynamic of the
202 current YFV outbreak in Brazil occurred between January (95% BCI: December 2016 to February
203 2017) and March 2017 (February 2017 to May 2017). Our data further suggest that after its first
204 introduction in Rio de Janeiro the virus persisted until 2019, as indicated by the isolate MK533792
205 sampled in the municipality of Casimiro de Abreu in January 2019 (12). This estimation suggests
206 the YFV have persisted in Rio de Janeiro state for approximately 24 months. This suggest that Rio de
207 Janeiro state possesses the ecological conditions to maintain YFV outside the period of transmission

208 (Dec to May) (12). Ultimately, given the abundance of sylvatic competent vectors (12) and non-
209 human primates (21, 22), this data could indicate that there is some potential for the establishment of
210 an enzootic transmission cycle of yellow fever in Mata Atlantica.
211 Epidemiological data also indicated two distinct YFV epidemic waves (13, 14). The first epidemic
212 wave is represented by the YFV cases mainly registered in Minas Gerais and Espírito Santo state
213 during the first semester of 2017, while the second wave is represented by the YFV cases registered
214 in Rio de Janeiro state during first semester of 2018. Transmission of YFV in areas with susceptible
215 NHPs species typically occurs in time periods characterized by environmental conditions suitable to
216 support higher mosquito abundance (12, 24).
217 As previously suggested (17), we found evidence regarding the circulation of two distinct YFV
218 lineage, that might have been spread to distinct evolutionary and diffusion rates. Using YFV genetic
219 data, we estimate that the YFV SA1 lineage 1 spread at rate of 0.12 km/day (95% HPD: 0.09 – 0.14
220 km/day), that is slightly lower than previously estimates (11, 17). The substantial difference between
221 previously estimates (11, 17) and ours might reflect the larger dataset analyzed in this study, that
222 might explain differences in the rate of YFV spread among different areas as well as different lineage.

223 These findings reinforce that continued genomic surveillance strategies are needed to assist
224 in the monitoring and understanding of arbovirus epidemics, which might help to attenuate public
225 health impact of infectious diseases.

226 In this study we also demonstrate that by analyzing heterochronous datasets with samples
227 collected in different time points and/or locations, phylodynamics becomes a powerful tool to prevent
228 and identify the viral lineage movement, describe trends in epidemic spread and to improve
229 intervention strategies (11, 25, 26).

230 Continued surveillance in human and non-human primates (NHP) in non-epidemic periods in the
231 southeast region will be important in order to quantify the risk of new outbreaks and the establishment
232 of new YFV transmission cycles in the region. In conclusion, our study shows that genomic data

233 generated by real time portable sequencing technology can be employed to assist public health
234 services in monitoring and understanding the diversity of circulating mosquito-borne viruses.

235

236 **MATERIALS AND METHODS**

237

238 ***Sample collection***

239 Human and non-human primate samples were collected, under the guidelines of a national strategy
240 of YF surveillance, for molecular diagnostics by the Flavivirus Laboratory (LABFLA) at Oswaldo
241 Cruz Foundation (Fiocruz) in Rio de Janeiro, Brazil, which is a Brazilian Ministry of Health Regional
242 Reference Laboratory for arboviruses. The majority of samples were linked to a digital record that
243 collated epidemiological and clinical data such as date of sample collection, municipality of
244 residence, neighborhood of residence, demographic characteristics (age and sex) and date of onset of
245 clinical symptoms.

246

247 ***Ethical statement***

248 The project was supported by the Pan American World Health Organization (PAHO) and the
249 Brazilian Ministry of Health (MoH) as part of the arboviral genomic surveillance efforts within
250 the terms of Resolution 510/2016 of CONEP (Comissão Nacional de Ética em Pesquisa, Ministério
251 da Saúde; National Ethical Committee for Research, Ministry of Health). The diagnostic of YFV
252 infection at LABFLA was approved by the Ethics Committee of the Oswaldo Cruz Institute
253 CAAE90249218.6.1001.54248.

254

255 ***RT-qPCR***

256 Total RNA was extracted from tissue and serum samples using MagMAX™ Pathogen RNA/DNA
257 kit (Life Technologies™, Carlsbad CA, USA) in accordance with the manufacturer's instructions.

258 Viral RNA was detected using two previously published RT-qPCR techniques (18, 19).

259 **cDNA synthesis and whole genome nanopore sequencing**

260 Sequencing was attempted on the 18 selected RT-PCR positive samples regardless of Ct value as
261 previously described (11, 20, 26). All positive samples were submitted to a cDNA synthesis protocol
262 (11, 20) using ProtoScript II First Strand cDNA Synthesis Kit. Then, a multiplex tiling PCR was
263 attempted using the previously published YFV primer scheme and 30 cycles of PCR using Q5 High-
264 Fidelity DNA polymerase (NEB) as previously described (20). Amplicons were purified using 1x
265 AMPure XP Beads (Beckman Coulter) and cleaned-up PCR products concentrations were measured
266 using Qubit™ dsDNA HS Assay Kit on a Qubit 3.0 fluorimeter (ThermoFisher). DNA library
267 preparation was performed using the Ligation Sequencing Kit (Oxford Nanopore Technologies) and
268 the Native Barcoding Kit (NBD103, Oxford Nanopore Technologies, Oxford, UK). Sequencing
269 library was generated from the barcoded products using the Genomic DNA Sequencing Kit SQK-
270 MAP007/SQK-LSK208 (Oxford Nanopore Technologies). Sequencing library was loaded onto a
271 R9.4 flow cell (Oxford Nanopore Technologies).

272

273 **Generation of consensus sequences**

274 Consensus sequences for each barcoded sample were generated following a previously published
275 approach (20). Briefly, raw files were basecalled using Albacore, demultiplexed and trimmed using
276 Porechop, and then mapped with *bwa* to a reference genome (GenBank accession number JF912190).
277 Nanopolish variant calling was applied to the assembly to detect single nucleotide variants to the
278 reference genome. Consensus sequences were generated; non-overlapped primer binding sites, and
279 sites for which coverage was <20X were replaced with ambiguity code N. Sequencing statistics can
280 be found in **Table 1**. Accession numbers of newly generated sequences are: MK882599-MK882604;
281 MK882607-MK882613; MK882615; MK882617-MK882619; MK882621.

282

283

284

285 ***Collation of YFV complete genome datasets***

286 Genotyping was first conducted using the phylogenetic Yellow fever typing tool available at
287 <http://www.krisp.org.za/tools.php>. The genome sequences generated here were combined with a
288 dataset comprising previously published genomes from the 2016-2019 YFV epidemic in Brazil
289 (11,12, 17, 21, 22). Two complete or near-complete YFV genome datasets were generated. Dataset 1
290 ($n = 199$) comprised the data reported in this study ($n = 18$) plus ($n = 181$) complete or almost
291 complete YFV genomic sequences (>10,000 bp), retrieved from NCBI in June 2019 and covering all
292 four existing genotypes. Subsequently, to investigate the dynamic of the YFV infection within the
293 Southeast region, genetic analyses were conducted on a smaller dataset (dataset 2) including a larger
294 and updated dataset of recently released data of the YFV 2016-2019 epidemic in Brazil belonging to
295 the SA1 lineage ($n = 137$). Thus, to understand the transmission and the spatio-temporal evolution of
296 the YFV SA1 lineage 1, from this dataset, we generated a subset (dataset 3) that included all identified
297 sequences from that lineage ($n = 81$). Maximum likelihood (ML) phylogenetic trees were estimated
298 using RAxML (27) under a GTR + Γ_4 nucleotide substitution model. Statistical support for
299 phylogenetic nodes was estimated using a ML bootstrap approach with 1000 replicates.
300 In order to investigate the temporal signal in our YFV datasets 2 and 3 we regressed root-to-tip genetic
301 distances from this ML tree against sample collection dates using TempEst v 1.5.1
302 (<http://tree.bio.ed.ac.uk>) (28).
303

304 ***Dated phylogenetics***

305 To estimate time-calibrated phylogenies dated from time-stamped genome data, we conducted
306 phylogenetic analysis using a Bayesian software package (23). Here we used the GTR + Γ_4 nucleotide
307 substitution model and Bayesian Skygrid tree prior (29) with an uncorrelated relaxed clock with a
308 lognormal distribution (30). Analyses were run in duplicate in BEASTv.1.10.4 (23) for 50 million
309 MCMC steps, sampling parameters and trees every 5000th step. A non-informative continuous time
310 Markov chain reference prior on the molecular clock rate was used (31). Convergence of MCMC

311 chains was checked using Tracer v.1.7.1 (32). Maximum clade trees were summarized using
312 TreeAnnotator after discarding 10% as burn-in.

313

314 ***Phylogeographic analyses***

315 To investigate the spread of YFV in Southeast Brazil, we analysed in more detail the SA1 Lineage 1
316 that includes the n=81 sequences (**Figure 2**). We used a skygrid coalescent tree prior (33) and a
317 continuous phylogeographic model that uses a relaxed random walk to model the spatial diffusion of
318 lineages. Dispersal velocity variation among lineages was modelled using a Cauchy distribution (34,
319 35). Virus diffusion through time and space was summarized using 1000 phylogenies sampled at
320 regular intervals from the posterior distribution (after exclusion of burn-in). Sampling location of
321 each geo-referenced YFV sequences from Espírito Santo and Rio de Janeiro state are listed in
322 **Supplementary table 1**. Georeferenced and time-stamped sequences were analysed in BEAST
323 v.1.10.4 (23) using the BEAGLE library (36) to enhance computational speed.

324

325 ***Data availability***

326 New sequences have been deposited in GenBank under accession numbers: MK882599-
327 MK882604; MK882607-MK882613; MK882615; MK882617-MK882619; MK882621.

328

329 **ACKNOWLEDGMENTS**

330 The authors thank all personnel from Health Surveillance System from Rio de Janeiro that
331 coordinated surveillance and helped with data collection and assembly. The authors also thank
332 Ronaldo Lapa e Solange Regina Conceição from the Instituto Oswaldo Cruz (Fiocruz – RJ) for their
333 support. This work was supported by the ZiBRA2 project supported by the Brazilian Ministry of
334 Health (SVS-MS) and the Pan American Organization (OPAS) and founded by Decit/SCTIE/MoH
335 and CNPq (440685/2016-8 and 440856/2016-7); by CAPES (88887.130716/2016-00,
336 88881.130825/2016-00 and 88887.130823/2016-00); by EU's Horizon 2020 Programme through

337 ZIKAlliance (PRES-005-FEX-17-4-2-33). The Flavivirus Laboratory activities was also supported
338 by Faperj (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro) under
339 the grant no. E-26/2002.930/2016, by the International Development Research Centre (IDRC)
340 Canada over the grant 108411-001 and Horizon 2020 through ZikaPlan and ZikAction under the
341 grant's agreement No. 734584 and 734857. MG is supported by Fundação de Amparo à Pesquisa do
342 Estado do Rio de Janeiro - FAPERJ.

343

344 **Author's Contributions**

345 Conception and design: M.G., M.C.L.M., V.F., L.C.J.A.; and A.M.B.F. Investigations: M.G.,
346 M.C.L.M., V.F., J.G.J., J.X., M.A.M.G., A.F., C.D.S.R., C.C.S., S.A.S., F.L.L.C., F.B.N. Data
347 Curation: M.G., V.F., T.G., J.T., N.R.F. L.C.J.A and A.M.B.F. Formal Analysis: M.G., M.C.L.M.,
348 and V.F. Writing – Original Draft Preparation: M.G., M.C.L.M., V.F., L.C.J.A and A.M.B.F.
349 Revision: M.G., T.G., A.C., P.S.C., A.P.M.R., D.G.R., T.O., N.R.F., L.C.J.A and A.M.B.F.
350 Resources: L.C.J.A, A.P.M.R., D.G.R., A.L.A., W.K.O., C.C.A., C.A.F., S.F.A., A.C., R.V.C., and
351 A.M.B.F.

352

353 **Declaration of Interest:** The authors declare no competing interests.

354

355 **FIGURE LEGENDS**

356

357 **Figure 1. Spatial and temporal distribution of YF cases from Espírito Santo and Rio de Janeiro states**
358 **during 2017 and 2019.**

359 A. Map of the states of Espírito Santo (ES) and Rio de Janeiro (RJ), located in south-eastern region of Brazil,
360 and its municipalities. Circles indicate where samples from this study were collected. **B.** Time series of human
361 (H) and Non-human primate YFV cases in ES and RJ states confirmed by serology, reverse transcription

362 quantitative PCR (RT-qPCR), or virus isolation. Below, the dates of sample collection of the virus genomes
363 generated in this study are shown in grey bars.

364

365 **Figure 2. Time scaled phylogenetic tree of the current YF epidemic in Brazil.**

366 Molecular clock phylogeny obtained by combining the 18 new YFV complete genomic generated here (starred
367 tips), plus public available data (n=137) of the YFV 2016-2019 epidemic in Brazil (11; 12; 17; 21-22).
368 Numbers in nodes represent clade posterior probability >0.90. Branch colours represent different sampling
369 locations.

370

371 **Figure 3. Spatio-temporal dynamics of the YFV SA1 lineage 1.**

372 **A.** Molecular clock phylogeny including the clade comprising the 2017-2019 YFV strains from Minas Gerais,
373 Bahia, Espírito Santo and Rio de Janeiro states belonging to the SA1 lineage 1. Numbers along branches
374 represent clade posterior probability >0.90. YFV isolates from Casimiro de Abreu, sampled in January 2019
375 is highlighted in red. Colours represent different locations. **B.** Reconstructed spatiotemporal continuous
376 diffusion of the YFV SA1 lineage 1 outbreak clade. Phylogenetic branches are mapped in space according to
377 the location of phylogenetic nodes (circles). Lines show the cross-state movement of the virus from Minas
378 Gerais followed by movement to the states of Espírito Santo and Rio de Janeiro. Shaded regions show 95%
379 credible regions of internal nodes.

380

381 **Supplementary Information**

382

383 **Supplementary Figure 1.** Molecular phylogenetics of the Brazilian YFV epidemic. Maximum likelihood
384 phylogeny of complete YFV genomes showing the outbreak clade (gray triangle) within the South American
385 I (SA1) genotype. The scale bar is in units of substitutions per site (s/s).

386

387 **Supplementary Figure 2.** Molecular clock phylogeny including the clade comprising the new isolates plus
388 all the YFV strains from the 2017-2019 outbreak belonging to the SA1 lineage 1 clade. Numbers along
389 branches represent clade posterior probability >0.90. Colours represent different locations.

390 **REFERENCES**

391 1. Barrett AD, Monath TP. 2003. Epidemiology and ecology of yellow fever virus. *Adv Virus*
392 *Res* 61:291–315.

393 2. Monath TP, Vasconcelos PF. 2015. Yellow fever. *J Clin Virol* 64:160–173.

394 3. Bryant JE, Holmes EC, Barrett AD. 2007. Out of Africa: a molecular perspective on the
395 introduction of yellow fever virus into the Americas. *PLoS Pathog* 3:75-77.

396 4. Mutebi JP, Wang H, Li L, Bryant JE, Barrett AD. 2001. Phylogenetic and evolutionary
397 relationships among yellow fever virus isolates in Africa. *J Virol* 75:6999–7008.

398 5. Nunes MR, Palacios G, Cardoso JF, Martins LC, Sousa EC Jr, de Lima CP, Medeiros DB,
399 Savji N, Desai A, Rodrigues SG, Carvalho VL, Lipkin WI, Vasconcelos PF. 2012. Genomic
400 and phylogenetic characterization of Brazilian yellow fever virus strains. *J Virol* 86:13263-
401 71.

402 6. Chang GJ, Cropp BC, Kinney RM, Trent DW, Gubler DJ. 1995. Nucleotide sequence
403 variation of the envelope protein gene identifies two distinct genotypes of yellow fever virus.
404 *J Virol* 69:5773-80.

405 7. Dégallier N, Travassos da Rosa AP, Hervé JP, Travassos da Rosa JFS, Vasconcelos PFC,
406 Silva CJM. 1992. A comparative study of yellow fever in Africa and South America. *J Braz*
407 *Assoc Advanc Sci* 44:143–51.

408 8. Mondet B, Travassos da Rosa APA, Vasconcelos PFC. 1996. The risk of urban yellow fever
409 outbreaks in Brazil by dengue vectors *Aedes aegypti* and *Aedes albopictus*. *Bull Soc Pathol*
410 *Exot* 89:107–13.

411 9. Souza RP de, Petrella S, Coimbra TLM, Maeda AY, Rocco IM, Bisordi I, Silveira VR, Pereira
412 LE, Suzuki A, Silva SJDS. 2011. Isolation of yellow fever virus (YFV) from naturally infected
413 Haemagogus (Conopostegus) leucocelaenus (diptera, culicidae) in São Paulo State, Brazil,
414 2009. *Rev Inst Med Trop São Paulo* 53:133–139.

415 10. Ribeiro AF, Cavalin RF, Abdul Hamid Suleiman JM, Alves da Costa J, Januaria de
416 Vasconcelos M, Sant'Ana Málaque CM, Sztajnbok J. Yellow Fever: Factors Associated with
417 Death in a Hospital of Reference in Infectious Diseases, São Paulo, Brazil, 2018. 2019. Am J
418 Trop Med Hyg 20:05- 28.

419 11. Faria NR, Kraemer MUG, Hill SC, Goes de Jesus J, Aguiar RS, Iani FCM, Xavier J, Quick J,
420 du Plessis L, Dellicour S, Thézé J, Carvalho RDO, Baele G, Wu CH, Silveira PP, Arruda MB,
421 Pereira MA, Pereira GC, Lourenço J, Obolski U, Abade L, Vasylyeva TI, Giovanetti M, Yi
422 D, Weiss DJ, Wint GRW, Shearer FM, Funk S, Nikolay B, Fonseca V, Adelino TER, Oliveira
423 MAA, Silva MVF, Sacchetto L, Figueiredo PO, Rezende IM, Mello EM, Said RFC, Santos
424 DA, Ferraz ML, Brito MG, Santana LF, Menezes MT, Brindeiro RM, Tanuri A, Dos Santos
425 FCP, Cunha MS, Nogueira JS, Rocco IM, da Costa AC, Komninakis SCV, Azevedo V,
426 Chieppe AO, Araujo ESM, Mendonça MCL, Dos Santos CC, Dos Santos CD, Mares-Guia
427 AM, Nogueira RMR, Sequeira PC, Abreu RG, Garcia MHO, Abreu AL, Okumoto O, Kroon
428 EG, de Albuquerque CFC, Lewandowski K, Pullan ST, Carroll M, de Oliveira T, Sabino EC,
429 Souza RP, Suchard MA, Lemey P, Trindade GS, Drumond BP, Filippis AMB, Loman NJ,
430 Cauchemez S, Alcantara LCJ, Pybus OG. 2018. Genomic and epidemiological monitoring of
431 yellow fever virus transmission potential 2018. Science 361:894–899.

432 12. Abreu FVS, Delatorre E, Araújo Cunha A, Ferreira-de-Brito A, de Castro MG, Ribeiro I, Dias
433 N, Vargas, Paixão W, Ribeiro MS, Meneguete P, Bonaldo MC, Bello G, Lourenço-de-
434 Oliveira R. 2019. Combination of surveillance tools reveals that Yellow Fever virus can
435 remain in the same Atlantic Forest area at least for three transmission seasons. Memórias do
436 Instituto Oswaldo Cruz 114:19-76.

437 13. Brazilian Ministry of Health 2017. Epidemiological Update Yellow fever.
438 (http://portalarquivos2.saude.gov.br/images/pdf/2017/setembro/06/2017_027.pdf).

439 14. Brazilian Ministry of Health 2017 2018. Epidemiological Update Yellow fever.
440 (<http://portalarquivos2.saude.gov.br/images/pdf/2018/outubro/08/Informe-FA.pdf>).

441 15. Secretaria de Vigilância em Saúde (2019). Monitoramento do Período Sazonal da Febre
442 Amarela Brasil – 2018/2019. Brazil: Ministério da Saúde.

443 16. Shearer FM. 2017. Lancet Infect. Dis 17:1209–1217.

444 17. Delatorre E, de Abreu FVS, Ribeiro IP, Gómez MM, Dos Santos AAC, Ferreira-de-Brito A,
445 Neves MSAS, Bonelly I, de Miranda RM, Furtado ND, Raphael LMS, da Silva LFF, de Castro
446 MG, Ramos DG, Romano APM, Kallás EG, Vicente ACP, Bello G, Lourenço-de-Oliveira R,
447 Bonaldo MC. 2019. Distinct YFV Lineages Co-circulated in the Central-Western and
448 Southeastern Brazilian Regions From 2015 to 2018. Front Microbiol 24;10-1079.

449 18. Drosten C, Göttig S, Schilling S, Asper M, Panning M, Schmitz H, Günther S. 2002. Rapid
450 detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-
451 Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus
452 by real-time reverse transcription-PCR. J Clin Microbiol 40:2323–2330.

453 19. Domingo C, Patel P, Yillah J, Weidmann M, Méndez JA, Nakouné ER, Niedrig M. 2012.
454 Advanced yellow fever virus genome detection in point-of-care facilities and reference
455 laboratories. J Clin Microbiol 50:4054–4060.

456 20. Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD, Gangavarapu K, Oliveira G, Robles-
457 Sikisaka R, Rogers TF, Beutler NA, Burton DR, Lewis-Ximenez LL, de Jesus JG, Giovanetti
458 M, Hill SC, Black A, Bedford T, Carroll MW, Nunes M, Alcantara LC Jr, Sabino EC, Baylis
459 SA, Faria NR, Loose M, Simpson JT, Pybus OG, Andersen KG, Loman NJ. 2017. Multiplex
460 PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly
461 from clinical samples. Nat Protoc 12:1261–1276.

462 21. de Souza RP, Hill SC, Thézé J, Claro I, Aguiar RS, Dellicour D, Abade L, Santos FCP, Cunha
463 MS, Nogueira JS, Salles FCS, Rocco IM, Maeda AY, Vasami FGS, du Plessis L, Silveira PP,
464 Giovanetti M, de Goes J, Quick J, Fernandes NCCA, Guerra J, Réssio MRA, Cirqueira CS,
465 Iglezias SD, Delgado JD, Macedo FLL, Timenetsky MCST, de Paula R, Spinola R, Deus JT,
466 Mucci LF, Tubaki RM, Menezes RMT, Ramos PL, Abreu AL, Cruz LN, Loman N, Bispo A,

467 Pybus OG, Alcantara LVJ, Sabino EC, Faria NR. 2019. Genomic Surveillance of Yellow
468 Fever Virus Epidemic Waves in São Paulo, Brazil, 2017 – 2018. bioRxiv 645341; doi:
469 <https://doi.org/10.1101/645341>.

470 22. Cunha MS, da Costa AC, de Azevedo Fernandes NCC, Guerra JM, Dos Santos FCP, Nogueira
471 JS, D'Agostino LG, Komninakis SV, Witkin SS, Ressio RA, Maeda AY, Vasami FGS,
472 Kaigawa UMA, de Azevedo LS, de Souza Facioli PA, Macedo FLL, Sabino EC, Leal É, de
473 Souza RP. Epizootics due to Yellow Fever Virus in São Paulo State, Brazil: viral
474 dissemination to new areas (2016-2017). Sci Rep. 2019 Apr 2;9(1):5474.

475 23. Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. 2018. Bayesian
476 phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol 4:1-016.

477 24. Possas C, Lourenço-de-oliveira R, Tauil PL, Pinheiro FDP, Pissinatti A, da Cunha RV, et al.
478 Yellow fever outbreak in Brazil: the puzzle of rapid viral spread and challenges for
479 immunisation. Mem Inst Oswaldo Cruz. 2018; 113(10): e180278.

480 25. Gardy JL, Loman NJ. 2017. Towards a genomics-informed, real-time, global pathogen
481 surveillance system. Nature Reviews Genetics. 217; 1:2-256.

482 26. Faria NR, Quick J, Claro IM, Thézé J, de Jesus JG, Giovanetti M, Kraemer MUG, Hill SC,
483 Black A, da Costa AC, Franco LC, Silva SP, Wu CH, Raghwani J, Cauchemez S, du Plessis
484 L, Verotti MP, de Oliveira WK, Carmo EH, Coelho GE, Santelli ACFS, Vinhal LC,
485 Henriques CM, Simpson JT, Loose M, Andersen KG, Grubaugh ND, Somasekar S, Chiu CY,
486 Muñoz-Medina JE, Gonzalez-Bonilla CR, Arias CF, Lewis-Ximenez LL, Baylis SA, Chieppe
487 AO, Aguiar SF, Fernandes CA, Lemos PS, Nascimento BLS, Monteiro HAO, Siqueira IC, de
488 Queiroz MG, de Souza TR, Bezerra JF, Lemos MR, Pereira GF, Loudal D, Moura LC, Dhalia
489 R, França RF, Magalhães T, Marques ET Jr, Jaenisch T, Wallau GL, de Lima MC,
490 Nascimento V, de Cerqueira EM, de Lima MM, Mascarenhas DL, Neto JPM, Levin AS,
491 Tozetto-Mendoza TR, Fonseca SN, Mendes-Correa MC, Milagres FP, Segurado A, Holmes
492 EC, Rambaut A, Bedford T, Nunes MRT, Sabino EC, Alcantara LCJ, Loman NJ, Pybus OG.

493 2017. Establishment and cryptic transmission of Zika virus in Brazil and the Americas.
494 *Nature*. 546:406-410.

495 27. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
496 large phylogenies. *Bioinformatics* 30:1312–1313.

497 28. Rambaut A, Lam TT, Max Carvalho L, Pybus OG. 2016. Exploring the temporal structure of
498 heterochronous sequences using TempEst (formerly Path-O-Gen). *Virus Evol* 2:11-70.

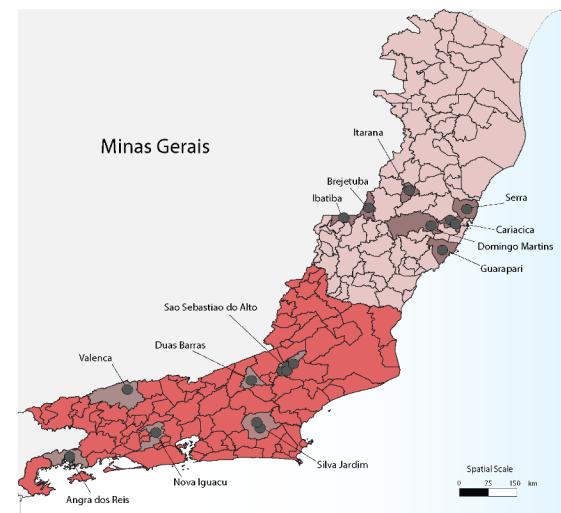
499 29. Shapiro B, Rambaut A, Drummond AJ. 2006. Choosing appropriate substitution models for
500 the phylogenetic analysis of protein-coding sequences. *Molecular biology and evolution* 23:7-
501 9.

502 30. Drummond AJ, Ho SY, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and dating
503 with confidence. *PLoS biology* 54:4-88.

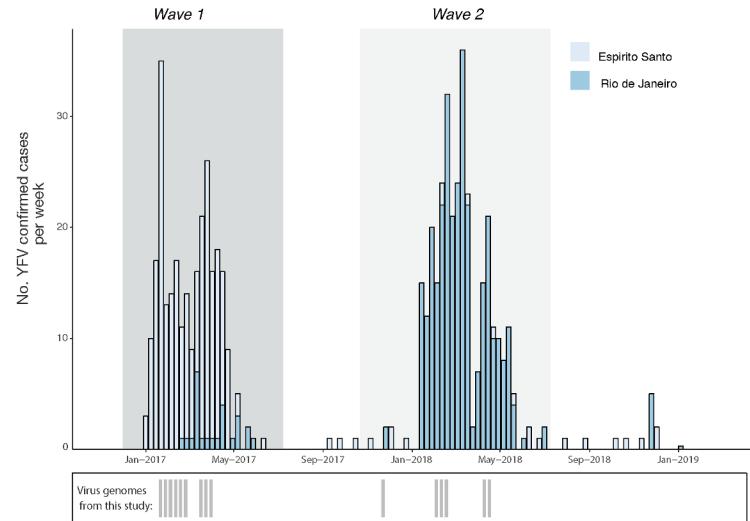
504 31. Ferreira MAR, Suchard MA. 2008. Bayesian analysis of elapsed times in continuous-time
505 Markov chains. *Can J Stat* 78:355-368.

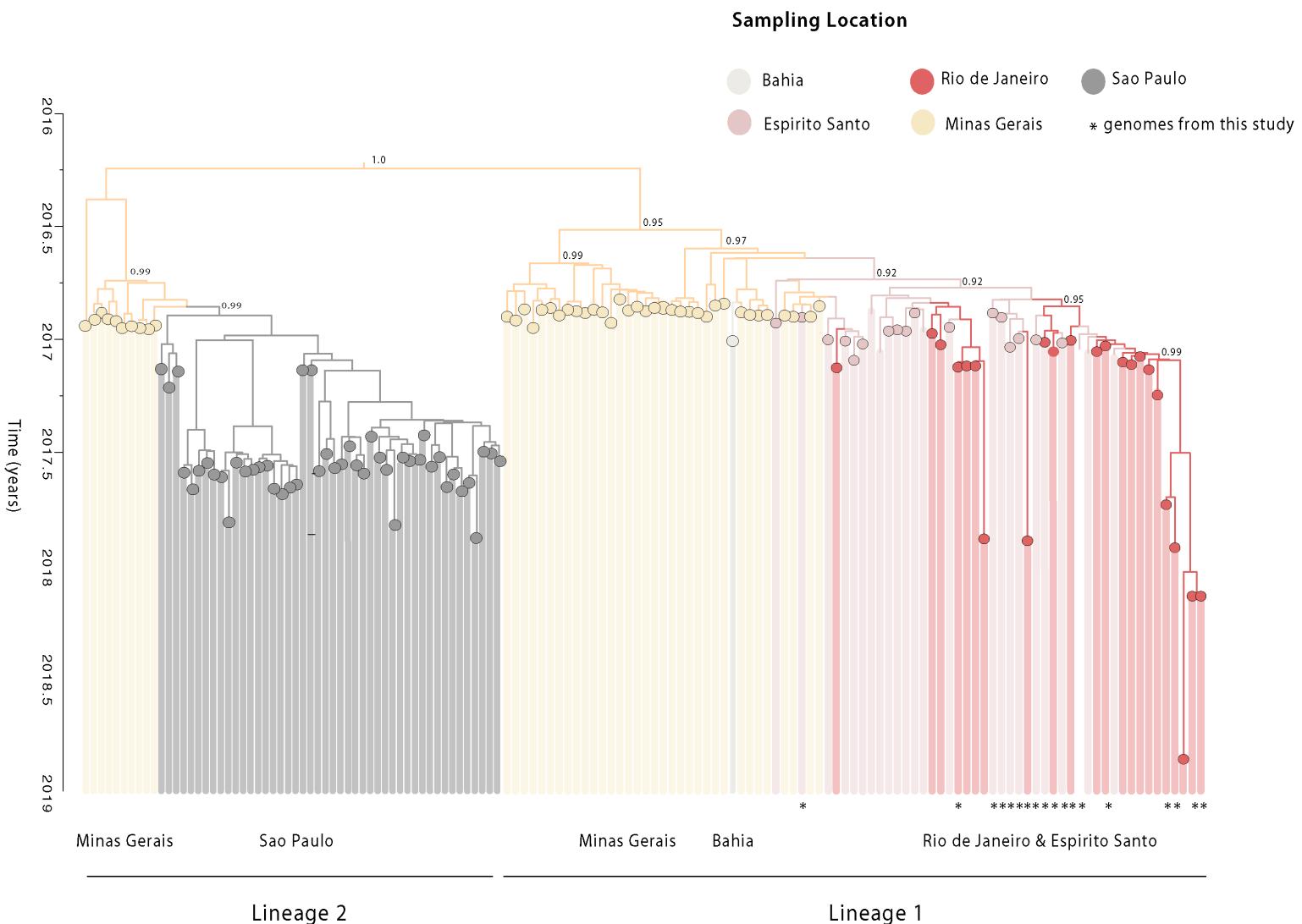
506 32. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarisation in
507 Bayesian phylogenetics using Tracer 1.7. *Systematic Biology* 2:100-250.

508 33. Shapiro B, Rambaut A, Drummond AJ. 2006. Choosing appropriate substitution models for
509 the phylogenetic analysis of protein-coding sequences. *Molecular biology and evolution* 23:7-
510 9.

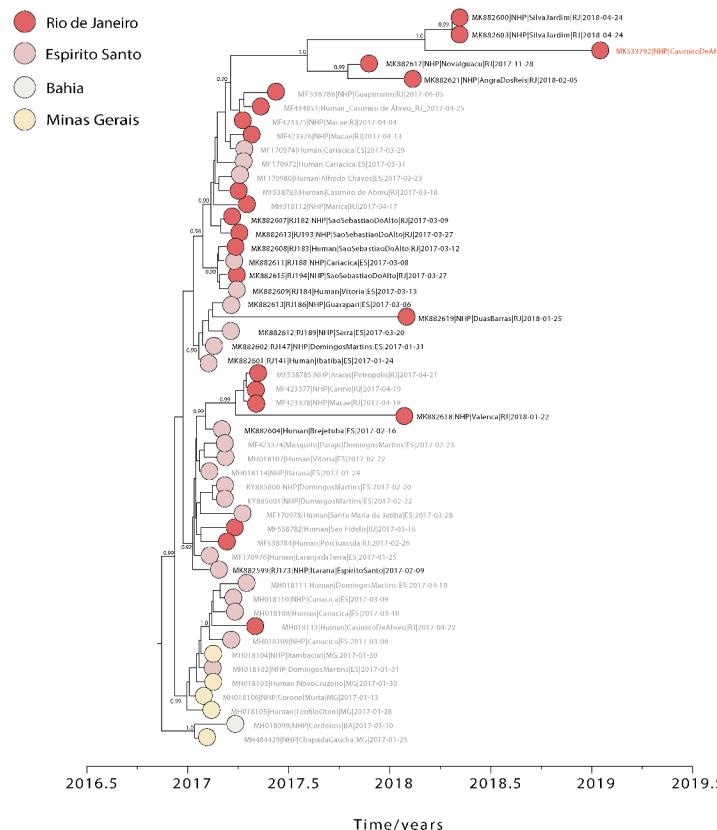

511 34. Lemey P, Rambaut A, Welch JJ, Suchard MA. 2010. Phylogeography Takes a Relaxed
512 Random Walk in Continuous Space and Time. *Mol Biol Evol* 27:1877–1885.

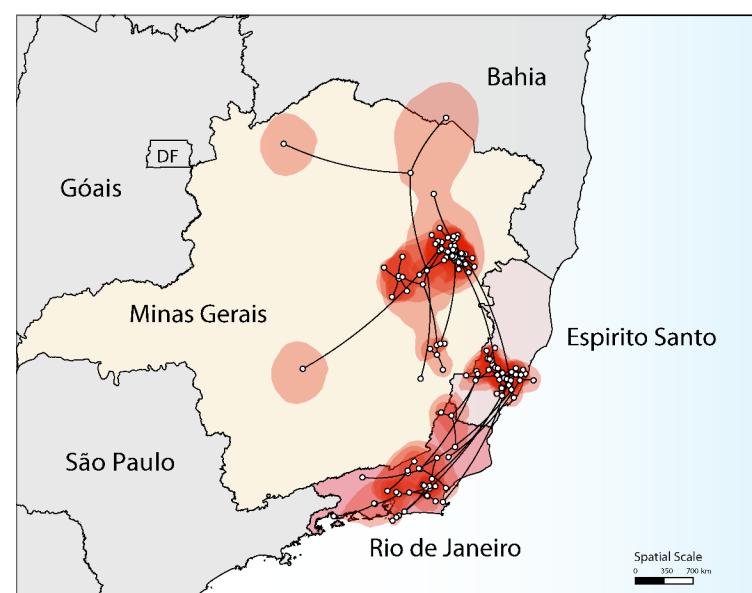
513 35. Pybus OG, Suchard MA, Lemey P, Bernardin FJ, Rambaut A, Crawford FW, Gray RR,
514 Arinaminpathy N, Stramer SL, Busch MP, Delwart EL. 2012. Unifying the spatial
515 epidemiology and molecular evolution of emerging epidemics. *Proceedings of the National
516 Academy of Sciences of the United States of America* 109:15066-15071.


517 36. Ayres DL, Darling A, Zwickl DJ, Beerli P, Holder MT, Lewis PO, Hulsenbeck JP, Ronquist
518 F, Swofford DL, Cummings MP. 2012. BEAGLE: An Application Programming Interface


519 and High-Performance Computing Library for Statistical Phylogenetics. *Syst Biol* 61:170–
520 173.
521
522
523
524

A


B



A

Sampling Locations

B

Table 1. Epidemiological data for the sequenced samples.

ID	CT value	Sample Type	Host	Species	State	Municipality	Collection Date	Age	Sex
RJ182	8,2	Liver	NHP	Alouatta Sp	RJ	São Sebastião Do Alto	09/03/2017	NA	M
RJ193	10,2	Liver	NHP	Alouatta Sp	RJ	São Sebastião Do Alto	27/03/2017	1	M
RJ141	22,4	Serum	Human	-	ES	Ibatiba	24/01/2017	16	M
RJ183	11,2	Serum	Human	-	RJ	São Sebastião Do Alto	12/03/2017	25	M
RJ194	6,5	Liver	NHP	Alouatta Sp	RJ	São Sebastião Do Alto	27/03/2017	15	F
RJ147	21,9	Whole blood	NHP	Alouatta Sp	ES	Domingos Martins	31/01/2017	NA	NA
RJ173	15	Whole blood	NHP	Cebus Sp	ES	Itarana	09/02/2017	NA	NA
RJ184	14,4	Liver	Human	-	ES	Cariacica	13/03/2017	65	M
RJ213	8,1	Liver	NHP	Callithrix Sp	RJ	Valença	22/01/2018	5	F
RJ186	10,9	Liver	NHP	Alouatta Sp	ES	Guarapari	06/03/2017	NA	NA
RJ177	11,5	Serum	Human	-	ES	Brejetuba	16/02/2017	46	M
RJ188	9,9	Whole blood	NHP	Callithrix Sp	ES	Cariacica	08/03/2017	NA	NA
RJ201	13,4	Liver	NHP	Callithrix Sp	RJ	Nova Iguaçu	28/11/2017	2	F
RJ219	11,2	Kidney	NHP	Callithrix Sp	RJ	Angra Dos Reis	05/02/2018	NA	NA
RJ189	13,7	Whole blood	NHP	Alouatta Sp	ES	Serra	20/03/2017	NA	F
RJ216	7,2	Liver	NHP	Callithrix Sp	RJ	Duas Barras	25/01/2018	10	F
LABFLA09	22.1	Spleen	NHP	Leontopithecus Rosalia	RJ	Silva Jardim	24/04/2018	NA	NA
LABFLA10	11.76	Liver	NHP	Leontopithecus Rosalia	RJ	Silva Jardim	24/04/2018	NA	NA

ID=study identifier; Ct=RT-qPCR quantification cycle threshold value; State= RJ-Rio de Janeiro; ES-

Espirito Santo; Municipality=Municipality of residence; F=Female; M=Male; NA= Not Available.

Table 2. Sequencing statistics for the 18 new obtained sequences.

ID	Accession Number	Mapped reads	Average depth coverage	Bases covered >10x	Bases covered > 25x	Reference covered (%)
RJ182	MK882607	21104	961,34	10220	10220	99,31
RJ193	MK882613	2953	133,99	10215	9697	95,95
RJ141	MK882601	11776	523,89	10175	9955	96,17
RJ183	MK882608	1453	67,88	9934	8599	82,52
RJ194	MK882615	1146	55,27	9381	7964	79,84
RJ147	MK882602	3319	148,16	8461	7651	71,19
RJ173	MK882599	1361	63,57	9017	7628	74,68
RJ184	MK882609	1241	57,04	9480	8109	78,23
RJ213	MK882618	2520	116,01	10206	9674	93,01
RJ186	MK882610	4007	190,77	9460	9445	90,36
RJ177	MK882604	22538	1057,4	10227	10219	99,31
RJ188	MK882611	74369	3227,15	10237	10231	99,31
RJ201	MK882617	8679	399,91	9490	9454	90,34
RJ219	MK882621	8894	405,58	10205	9957	96,2
RJ189	MK882612	4840	219,19	9695	9146	89,4
RJ216	MK882619	6807	313,58	10220	9709	93,1
LABFLA09	MK882600	312871	4637,05	10210	9975	89,97
LABFLA10	MK882603	470582	5028,42	9693	9871	99,35

ID=study identifier; Accession number=NCBI accession number.