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Abstract

Goats (Capra hircus) are an economically important livestock species providing meat
and milk across the globe. They are of particular importance in tropical agri-systems
contributing to sustainable agriculture, alleviation of poverty, social cohesion and utilisation
of marginal grazing. There are excellent genetic and genomic resources available for goats,
including a highly contiguous reference genome (ARSI). However, gene expression
information is limited in comparison to other ruminants. To support functional annotation of
the genome and comparative transcriptomics we created a mini-atlas of gene expression for
the domestic goat. RNA-Seq analysis of 22 transcriptionally rich tissues and cell-types
detected the majority (90%) of predicted protein-coding transcripts and assigned informative
gene names to more than 1000 previously unannotated protein-coding genes in the current
reference genome for goat (ARS1). Using network-based cluster analysis we grouped genes
according to their expression patterns and assigned those groups of co-expressed genes to
specific cell populations or pathways. We describe clusters of genes expressed in the gastro-
intestinal tract and provide the expression profiles across tissues of a subset of genes
associated with functional traits. Comparative analysis of the goat atlas with the larger sheep
gene expression atlas dataset revealed transcriptional differences between the two species in
macrophage-associated signatures. The goat transcriptomic resource complements the large
gene expression dataset we have generated for sheep and contributes to the available genomic
resources for interpretation of the relationship between genotype and phenotype in small
ruminants.
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51 Introduction
52
53 Goats (Capra hircus) are an important source of meat and milk globally. They are an
54  essential part of sustainable agriculture in low and middle-income countries, representing a
55  key route out of poverty particularly for women. Genomics-enabled breeding programmes
56  for goats are currently implemented in the UK and France with breeding objectives including
57  functional traits such as reproductive performance and disease resistance (Larroque et al.,
58 2016; Pulina et al., 2018). The International Goat Genomics Consortium (IGGC)
59  (http://www.goatgenome.org) has provided extensive genetic tools and resources for goats
60 including a 52K SNP chip (Tosser-Klopp et al., 2014), a functional SNP panel for parentage
61 assessment and breed assignment (Talenti et al., 2018) and large-scale genotyping datasets
62 characterising global genetic diversity (Stella et al., 2018). In 2017 a highly contiguous
63 reference genome for goat (ARS1) was released (Bickhart et al., 2017; Worley, 2017).
64  Advances in genome sequencing technology, particularly the development of long-read and
65 single-molecule sequencing, meant that the ARS1 assembly was a considerable improvement
66 in quality and contiguity from the previous whole genome shotgun assembly (CHIR 2.0)
67 (Dong et al., 2013). In 2018 the ARS1 assembly was released on the Ensembl genome portal
68  (Zerbino et al., 2018) (https://www.ensembl.org/Capra_hircus/Info/Index) greatly facilitating
69 the utility of the new assembly and providing a robust set of gene models for goat.
70 RNA-Sequencing (RNA-Seq) has transformed the analysis of gene expression from
71  the single-gene to the whole genome allowing visualisation of the entire transcriptome and
72  defining how we view the transcriptional control of complex traits in livestock (reviewed in
73  (Wickramasinghe et al., 2014)). Using RNA-Seq we generated a large-scale high-resolution
74  atlas of gene expression for sheep (Clark et al., 2017). This dataset included RNA-Seq
75  libraries from all organ systems and multiple developmental stages, providing a model
76  transcriptome for ruminants. Analysis of the sheep gene expression atlas dataset indicated we
77  could capture approximately 85% of the transcriptome by sampling twenty ‘core’ tissues and
78  cell types (Clark et al., 2017). Given the close relationship between sheep and goats, there
79  seemed little purpose in replicating a resource on the same scale. Our aim with the goat mini-
80 atlas project, which we present here, was to produce a smaller, cost-effective, atlas of gene
81  expression for the domestic goat based on transcriptionally rich tissues from all the major
82  organ systems.
83 In the goat genome there are still many predicted protein-coding and non-coding
84  genes for which the gene model is either incorrect or incomplete, or where there is no
85 informative functional annotation. For example, in the current goat reference genome, ARS1
86  (Ensembl release 97), 33% of the protein-coding genes are identified only with an Ensembl
87  placeholder ID. Many of these unannotated genes are likely to have important functions.
88 Using RNA-Seq data we can annotate them and assign function (Krupp et al., 2012). With
89 datasets of a sufficient size, genes form co-expression clusters, which can either be
90 ubiquitous, associated with a cellular process or be cell-/tissue specific. This information can
91 then be used to associate a function with genes co-expressed in the same cluster, a method of
92  functional annotation known as the ‘guilt by association principle’ (Oliver, 2000). Using this
93  principle with the sheep gene expression atlas dataset we were able to annotate thousands of
94  previously unannotated transcripts in the sheep genome (Clark et al., 2017). By applying this
95 rationale to the goat mini-atlas dataset we were able to do the same for the goat genome.
96 The goat mini-atlas dataset that we present here was used by Ensembl to create the
97 initial gene build for ARS1 (Ensembl release 92). A high-quality functional annotation of
98  existing reference genomes can help considerably in our understanding of the transcriptional
99  control of functional traits to improve the genetic and genomic resources available, inform
100 genomics enabled breeding programmes and contribute to further improvements in
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101  productivity. The entire dataset is available in a number of formats to support the livestock
102  genomics research community and represents an important contribution to the Functional
103  Annotation of Animal Genomes (FAANG) project (Andersson et al., 2015; FAANG, 2017,
104  Harrison et al., 2018).

105 This study is the first global analysis of gene expression in goats. Using the goat mini-
106  atlas dataset we describe large clusters of genes associated with the gastrointestinal tract and
107  macrophages. Species specific differences in response to disease, or other traits, are likely to
108  be reflected in gene expression profiles. Sheep and goats are both small ruminant mammals
109 and are similar in their physiology. They also share susceptibility to a wide range of viral,
110  bacterial, parasitic and prion pathogens, including multiple potential zoonoses (Sherman,
111 2011), but there have been few comparisons of relative susceptibility or pathology between
112 the species to the same pathogen, nor the nature of innate immunity. To reveal transcriptional
113  similarities and differences between sheep and goats we have performed a comparative
114  analysis of species-specific gene expression by comparing the goat mini-atlas dataset with a
115  comparable subset of data from the sheep gene expression atlas (Clark et al., 2017). We also
116  use the goat mini-atlas dataset to examine the expression of candidate genes associated with
117  functional traits in goats and link these with allele-specific expression (ASE) profiles across
118  tissues, using a robust methodology for ASE profiling (Salavati et al., 2019). The goat mini-
119  atlas dataset and the analysis we present here provide a foundation for identifying the
120  regulatory and expressed elements of the genome that are driving functional traits in goats.
121

122 Methods

123
124  Animals
125 Tissue and cell samples were collected from six male and one female neonatal

126  crossbred dairy goats at six days old. The goats were sourced from one farm and samples
127  were collected at a local abattoir within 1 hour of euthanasia.

128
129  Tissue Collection
130 The tissue samples were excised post-mortem within one hour of death, cut into

131  0.5cm diameter segments and transferred into RNAlater (Thermo Fisher Scientific, Waltham,
132 USA) and stored at 4°C for short-term storage. Within one week, the tissue samples were
133  removed from the RNAlater, transferred to 1.5ml screw cap cryovials and stored at -80°C
134 until RNA isolation. Alveolar macrophages (AMs) were isolated from two male goats by
135  broncho-alveolar lavage of the excised lungs using the method described for sheep in (Clark
136 et al., 2017), except using 20% heat-inactivated goat serum (G6767, Sigma Aldrich), and
137  stored in TRIzol (15596018; Thermo Fisher Scientific) for RNA extraction. Similarly bone
138  marrow derived macrophages (BMDMs) were isolated from 10 ribs from 3 male goats and
139  frozen down for subsequent stimulation with lipopolysaccharide (LPS) (Salmonella
140  enterica serotype minnesota Re 595 (L9764; Sigma-Aldrich)) using the method described in
141  (Clark et al., 2017; Young et al., 2018) with homologous serum. Details of all the samples
142 collected are included in Table 1.

143
144  RNA extraction
145 RNA was extracted from tissues and cells as described in (Clark et al., 2017). For

146  each RNA extraction from tissues approximately 60mg of tissue was processed. Tissue
147  samples were first homogenised in 1ml of TRIzol (15596018; Thermo Fisher Scientific) with
148 CKl14 (432-3751; VWR, Radnor, USA) tissue homogenising ceramic beads on a Precellys
149  Tissue Homogeniser (Bertin Instruments; Montigny-le-Bretonneux, France) at 5000 rpm for
150 20 sec. Cell samples which had previously been collected in TRIzol (15596018; Thermo
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151  Fisher Scientific) were mixed by pipetting to homogenise. Homogenised (cell/tissue) samples
152  were then incubated at room temperature for 5 min to allow complete dissociation of the
153  nucleoprotein complex, 200ul BCP (1-bromo-3-chloropropane) (B9673; Sigma Aldrich) was
154  added, then the sample was shaken vigorously for 15 sec and incubated at room temperature
155  for 3 min. The sample was centrifuged for 15 min at 12,000 x g, at 4°C for 3 mins to separate
156  the homogenate into a clear upper aqueous layer. The homogenate was then column purified
157  to remove DNA and trace phenol using a RNeasy Mini Kit (74106; Qiagen Hilden, Germany)
158  following the manufacturer’s instructions (RNeasy Mini Kit Protocol: Purification of Total
159 RNA from Animal Tissues, from step 5 onwards). An on-column DNase treatment was
160 performed using the Qiagen RNase-Free DNase Set (79254; Qiagen Hilden, Germany). The
161 sample was eluted in 30ul of RNase free water and stored at -80°C prior to QC and library
162  preparation. RNA integrity (RIN®) was estimated on an Agilent 2200 TapeStation System
163  (Agilent Genomics, Santa Clara, USA) using the RNA Screentape (5067-5576; Agilent
164  Genomics) to ensure RNA quality was of RIN® > 7. RIN®and other quality control metrics for
165 the RNA samples are included in Supplementary Table S1.

166
167 RNA-Sequencing
168 RNA-Seq libraries were prepared by Edinburgh Genomics (Edinburgh Genomics,

169  Edinburgh, UK) and run on the Illumina HiSeq 4000 sequencing platform (Illumina, San
170  Diego, USA). Strand-specific paired-end reads with a fragment length of 75bp were
171  generated for each sample using the standard Illumina TruSeq mRNA library preparation
172 protocol (poly-A selected) (Ilumina; Part: 15031047 Revision E). Libraries were sequenced
173 at a depth of either >30 million reads per sample for the tissues and AMs, or >50 million
174  reads per sample for the BMDMs.

175  Data Processing

176 The RNA-Seq data processing methodology and pipelines are described in detail
177  in (Clark et al., 2017). Briefly, for each tissue a set of expression estimates, as transcripts per
178 million (TPM), were obtained using the alignment-free (technically, ‘pseudo-aligning’)
179  transcript quantification tool Kallisto (Bray et al., 2016), the accuracy of which depends on a
180  high quality index (reference transcriptome). In order to ensure an accurate set of gene
181  expression estimates we used a ‘two-pass’ approach to generate this index.

182 We first ran Kallisto on all samples using as its index the ARSI reference
183  transcriptome available from Ensembl (ftp://ftp.ensembl.org/pub/release-
184  95/fasta/capra_hircus/cdna/Capra_hircus.ARS1.cdna.all.fa.gz). We then parsed the resulting
185  data to revise this index. This was for two reasons: 1) in order to include, in the second index,
186  those transcripts that should have been present but were missing (i.e. where the reference
187  annotation was incomplete), and ii) to remove those transcripts that were present but should
188  not have been (i.e. where the reference annotation was poor quality and a spurious model had
189  been introduced). For 1) we obtained the subset of reads that Kallisto could not (pseudo)align,
190 assembled those de novo into putative transcripts, then retained each transcript only if it could
191  be robustly annotated (by, for instance, encoding a protein similar to one of known function)
192  and showed coding potential. For ii), we identified those transcripts in the reference
193  transcriptome for which no evidence of expression could be found in any of the samples from
194  the goat mini-atlas. These were then discarded from the index and the revised index was used
195 for a second ‘pass’ with Kallisto, generating higher-confidence expression level estimates.
196 We complemented the Kallisto alignment-free method with a reference-guided
197  alignment-based approach to RNA-Seq processing, using the HISAT aligner (Kim et al.,
198  2015) and StringTie assembler (Pertea et al., 2015). This approach was highly accurate when
199  mapping to the (ARS1) annotation on NCBI
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200  (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1 ARS1/GCF 0
201 01704415.1 ARSI rna.fna.gz), precisely reconstructing almost all exon (96%) and transcript
202 (76%) models (Supplementary Table S2). We used the HISAT/StringTie output to validate
203  the set of transcripts used to generate the Kallisto index. Unlike alignment-free methods,
204  HISAT/StringTie can be used to identify novel transcript models, particularly for ncRNAs,
205 which we have described separately in (Bush et al., 2018b). Details of all novel transcript
206  models detected are included in Supplementary Table S3.

207
208  Data Validation
209 To identify any spurious samples which could have been generated during sample

210  collection, RNA extraction or library preparation, we generated a sample-to-sample
211 correlation of the gene expression estimates from Kallisto, in Graphia Professional (Kajeka
212 Ltd, Edinburgh, UK).

213
214  Network cluster analysis
215 Network cluster analysis of the goat gene mini-atlas dataset was performed using

216  Graphia Professional (Kajeka Ltd, Edinburgh, UK) (Livigni et al., 2018). In brief, similarities
217  between individual gene expression profiles were determined by calculating a Pearson
218  correlation matrix for both gene-to-gene and sample-to-sample comparisons, and filtering to
219 remove relationships where » < 0.83. A network graph was constructed by connecting the
220 remaining nodes (transcripts) with edges (where the correlation exceeded the threshold
221 value). The resultant graph was interpreted by applying the Markov Cluster algorithm (MCL)
222 at an inflation value (which determines cluster granularity) of 2.2. The local structure of the
223 graph was then examined visually. Transcripts with robust co-expression patterns, i.e. related
224 functions, clustered together forming sets of tightly interlinked nodes. The principle of ‘guilt
225 Dby association’ was then applied, to infer the function of unannotated genes from genes
226  within the same cluster (Oliver, 2000). Expression profiles for each cluster were examined in
227  detail to understand the significance of each cluster in the context of the biology of goat
228  tissues and cells. Clusters 1 to 30 were assigned a functional ‘class’ and ‘sub-class’ manually
229 Dby first determining if multiple genes within a cluster shared a similar biological function
230 based on GO term enrichment using the Bioconductor package ‘topGO’ (Alexa and
231  Rahnenfuhrer, 2010).

232
233  Comparative analysis of gene expression in macrophages in sheep and goats
234 To compare transcriptional differences in the immune response between the two

235  species we focused our analysis on the macrophage populations (AMs and BMDMs). For this
236  analysis we used a subset of data from our sheep gene expression atlas for AMs and BMDMs
237  (+/- LPS) from three male sheep (Clark et al., 2017) (Supplementary Dataset S1).

238 For AMs we compared the gene level expression estimates from the two male goats
239  and three male sheep using edgeR v3.20.9 (Robinson et al., 2010). Only genes with the same
240 gene name in both species, expressed at a raw read count of more than 10, FDR<10%, an
241 FDR adjusted p-value of <0.05, and Log2FC of >=2, in both goat and sheep, were included in
242  the analysis.

243 Differential expression analysis using edgeR (Robinson et al., 2010) was also
244  performed for sheep and goat BMDMs (+/-) LPS separately, using the filtration criteria
245  described above for AMs, to compile a list of genes for each species that were up or down
246  regulated in response to LPS. These lists were then compared using the R package dplyr
247  (Wickham et al., 2018) with system query language syntax. Each list was merged based on
248 GENE ID using the inner join function to only return the observations that overlapped
249  between goat and sheep (i.e. genes which had corresponding annotations in both species).
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250 A dissimilarity index (Dis Index) was then calculated by taking the absolute
251  difference of the Log2 fold change (Log2FC) between sheep and goat using the formula:

252 ABS(Log2FC Sheep-Log2FC Goat)

253 A high Dis_Index indicated that a gene was differently regulated in goat and sheep.
254

255  Allele-specific expression

256 To measure allele-specific expression (ASE), across tissues and cell-types from the

257  goat mini-atlas we used the method described in (Salavati et al., 2019). Briefly, BAM files
258  from the RNA-Seq data, were mapped to the ARSI top level DNA fasta track from Ensembl
259  v96, using HISAT2 as described in (Clark et al., 2017). Any reference mapping bias was
260 removed using WASP v0.3.1 (van de Geijn et al., 2015) and the resultant BAM files
261  processed using the Genome Analysis Tool Kit (GATK) to produce individual VCF files.
262 The ASEreadCounter tool in GATK v3.8 was used to obtain raw counts of the allelic
263  expression profile in the dataset. These raw counts were then tested for imbalance (using a
264  modified negative-beta bionomial test at gene level) at all heterozygote loci (i.e. ASE =
265  Counts refaliele/(Counts refariele™ Counts aieariele) Within the boundaries of the gene using the R
266  package GeneiASE (Edsgird et al., 2016).

267

268 Results and Discussion

269

270  Scope of the goat mini-atlas dataset, sequencing depth and coverage

271 The goat mini-atlas dataset includes 54 mRNA-Seq (poly-A selected) 75bp paired-

272 end libraries. Details of the libraries generated including the age and sex of the animals, the
273  tissues and cell types sampled, and the number of biological replicates per sample are
274  summarised in Table 1. Gene level expression estimates, for the goat mini-atlas, are provided
275 as unaveraged (Supplementary Dataset S2) and averaged across biological replicates
276  (Supplementary Dataset S3) files.

277 Approximately 8.7x10% paired end sequence reads were generated in total. Following
278  data processing with Kallisto (Bray et al., 2016), a total of 18,528 unique protein coding
279  genes had detectable expression (TPM>1), representing 90% of the reference transcriptome
280  (Bickhart et al. 2017). From the set of 17 tissues and 3 cell types we sampled we were able
281  to detect approximately 90% of protein coding genes providing proof of concept that the
282  mini-atlas approach is useful for global analysis of transcription. The average percentage of
283  transcripts detected per tissue or cell type was 66%, ranging from 54% in alveolar
284  macrophages, which had the lowest to 72% in testes, which had the highest. The percentage
285  of protein coding genes detected per each tissue is included in Table 2. Although we included
286 uterine horn as well as uterus and both stimulated and unstimulated BMDMs, our analysis
287  suggests that including only one tissue/cell of a similar type would be the most economical
288 approach to generating a mini-atlas of gene expression for functional annotation.

289 Approximately 2,815 (13%) of the total 21,343 protein coding genes in the goat
290 reference transcriptome had no detectable expression in the goat mini-atlas dataset. These
291  transcripts are likely to be either tissue specific to tissues and cell-types that were not
292  sampled here (including lung, heart, pancreas and various endocrine organs) rare or not
293  detected at the depth of coverage used. The large majority of these transcripts were detected
294  in the much larger sheep atlas, and their likely expression profile can be inferred from the
295  sheep. In addition, for the goat mini-atlas unlike the sheep gene expression atlas we only
296 included neonatal animals so transcripts that were highly developmental stage-specific in
297  their expression pattern would also not be detected. A list of all undetected genes is included
298  in Supplementary Table S4 and undetected transcripts in Supplementary Table S5.

299
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300 Gene Annotation

301 The proportion of transcripts per biotype (IncRNA, protein coding, pseudogene, etc),
302  with detectable expression (TPM >1) in the goat mini-atlas relative to the ARS1 reference
303 transcriptome, on Ensembl is summarised at the gene level in Supplementary Table S6 and at
304  the transcript level in Supplementary Table S7. Of the 21,343 protein coding genes in the
305 ARSI reference transcriptome 7036 (33%) had no informative gene name. Whilst the
306 Ensembl annotation will often identify homologues of a goat gene model, the automated
307 annotation genebuild pipeline used to assign gene names and symbols is conservative. Using
308 the annotation pipeline we described in (Clark et al., 2017) we were able to use the goat mini-
309 atlas dataset to assign an informative gene name to 1114 previously un-annotated protein
310 coding genes in ARS1. These genes were annotated by reference to the NCBI non-redundant
311  (nr) peptide database v94 (Pruitt et al., 2007). A shortlist containing a conservative set of
312 gene annotations to HGNC (HUGO Gene Nomenclature Committee) gene symbols, is
313  included in Supplementary Table S8. Supplementary Table S9 contains the full list of genes
314  annotated using the goat mini-atlas dataset and our annotation pipeline. Many unannotated
315  genes can be associated with a gene description, but not necessarily an HGNC symbol; these
316 are also listed in Supplementary Table S10. We manually validated the assigned gene names
317  on the full list using network cluster analysis and the “guilt by association” principle.

318

319 Network Cluster Analysis

320 Network cluster analysis of the goat gene expression atlas was performed using
321  Graphia Professional (Kajeka Ltd, Edinburgh UK), a network visualisation tool (Livigni et
322 al., 2018). The goat mini-atlas unaveraged TPM estimates (Supplementary Dataset S2) were
323  used for network cluster analysis. We first generated a sample-to-sample graph (r=0.75,
324 MCL=2.2) Supplementary Fig S1, which verified that the correlation between biological
325 replicates was high and that none of the samples were spurious. We then generated a gene-
326  to-gene network graph (Fig 1), with a Pearson correlation coefficient of r=0.83, that
327  comprised 16,172 nodes (genes) connected by 1,574,259 edges. The choice of Pearson
328  correlation threshold is optimised within the Graphia program to maximise the number of
329 nodes (genes) included whilst minimising the number of edges. By applying the MCL
330 (Markov Clustering) algorithm at an inflation value (which determines cluster granularity) of
331 2.2, the gene network graph separated into 75 distinct co-expression clusters, with the largest
332 cluster (cluster 1) comprising of 1795 genes. Genes found in the top 30 largest clusters are
333  listed in Supplementary Table S11. Clusters 1 to 20 (numbered in order of size, largest to
334  smallest) were annotated manually and assigned a functional ‘class’ (Table 3). These
335 functional classes were assigned based on GO term enrichment (Alexa and Rahnenfuhrer,
336  2010) for molecular function and biological process (Supplementary Table S12). Assignment
337 of functional class was further validated by visual inspection of expression pattern and
338 comparison with functional groupings of genes observed in the sheep gene expression atlas
339 (Clark et al., 2017).

340 The largest of the clusters (Cluster 1) contained 1795 genes that were almost
341  exclusively expressed in the central nervous system (cortex, cerebellum) reflecting the high
342  transcriptional activity and complexity in the brain. Significant GO terms for cluster 1
343  included cognition (p=4.6x10"!7) and synaptic transmission (p=2.5x107°). Other tissue-
344  specific clusters; e.g. 4 (liver), 6 (testes), 7 (skin/rumen), 14 (adrenal) and 17 (kidney) were
345  similarly enriched for genes associated with known tissue-specific functions. In each case,
346 the likely function of unannotated protein-coding genes within these clusters could be
347 inferred by association with genes of known function that share the same cell or tissue
348  specific expression pattern. Cluster 9 showed a high level of tissue specificity and included
349  genes associated with skeletal muscle function and development including MSTN which
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350 encodes a protein that negatively regulates skeletal muscle cell proliferation and
351  differentiation (Wang et al., 2012). Several myosin light and heavy chain genes (e.g. MYH1
352 and MYLI1) and transcription factors that are specific to muscle including (MYOG and
353 MYODI) were also found in cluster 9. GO terms for muscle were enriched in cluster 9 e.g.
354 muscle fiber development (p=3.8x10"13) and structural constituent of muscle (p=1.8x10!").
355  Genes expressed in muscle are of particular biological and commercial interest for livestock
356  production and represent potential targets for gene editing (Yu et al., 2016). Cluster 8 was
357 also highly tissue specific and included genes expressed in the fallopian tube with enriched
358 GO terms for cilium movement (p=1.4x10""%) and cilium organization (p=2.3x1015). A
359 motile cilia cluster was identified in the fallopian tube in the sheep gene expression atlas
360 (Clark et al., 2017) and a similar cluster was enriched in chicken in the trachea (Bush et al.,
361 2018a). The goat mini-atlas also included several clusters that were enriched for immune
362 tissues and cell types and we have based our analysis in part upon the premise that the
363  greatest differences between small ruminant species likely involve the immune system.

364

365 Gene expression in the neonatal gastrointestinal tract

366 Three regions of the gastrointestinal (GI) tract were sampled; the ileum, colon and
367 rumen. These regions formed distinct clusters in the network graph. The genes comprising
368 these clusters were highly correlated with the physiology of the tissues. Goats are ruminant
369 mammals and at one-week of age (when tissues were collected) the rumen is vestigial. Even
370 at this early stage of development, the typical epithelial signature of the rumen (Xiang et al.,
371  2016a; Xiang et al., 2016b) was observed. Genes co-expressed in the rumen (clusters 7 and
372 13 — Table 3) were typical of a developing rumen epithelial signature (Bush et al., 2019) and
373  were associated with GO terms for epidermis development (p=0.00016), keratinocyte
374  differentiation (p=1.5x10"'%) and skin morphogenesis (p=8.2x10). Large colon (cluster 12)
375 included several genes associated with GO terms for microvillus organization (p=1x10°) and
376  microvillus (p=6.3x10°) including MYO7B which is found in the brush border cells of
377  epithelial microvilli in the large intestine. The microvilli function as the primary surface of
378 nutrient absorption in the gastrointestinal tract, and as such numerous phospholipid-
379 transporting ATPases and solute carrier genes were found in the large colon cluster.

380 Throughout the GI tract there was a strong immune signature, similar to that
381 observed in neonatal and adult sheep (Bush et al., 2019), which was greatest in clusters 10
382 and 19 (Table 3) where expression was high in the ileum and Peyer’s patches, thymus and
383  spleen. Cluster 10 had a more general immune related profile with higher expression in the
384  spleen and significant GO terms associated with cytokine receptor activity (p=1.3x10®) and T
385 cell receptor complex (p=0.00895). Several genes involved in the immune and inflammatory
386 response were found in cluster 10 including CD74, IL10 and TLR10. The expression pattern
387  for cluster 19 was associated with B-cells including GO terms for B cell proliferation
388  (p=1.4x107), positive regulation of B cell activation (p=4.9x10°) and cytokine activity
389  (p=0.0051). Genes associated with the B-cell receptor complex CD22, CD79B, CD180 and
390 CR2, and interleukins IL21R and IL26 were expressed in cluster 19 (Treanor, 2012). This
391 reflects the fact that we sampled the Peyer’s patch with the ileum, which is a primary
392  lymphoid organ of B-cell development in ruminants (Masahiro et al., 2006).

393 Each of the GI tract clusters included genes associated with more than one cell
394  type/cellular process. This complexity is a consequence of gene expression patterns from the
395 lamina propria, one of the three layers of the mucosa. The lamina propria lies beneath the
396 epithelium along the majority of the GI tract and comprises numerous different cell types
397 from endothelial, immune and connective tissues (Ikemizu et al., 1994). This gene expression
398 pattern, which is also observed in sheep (Clark et al., 2017; Bush et al., 2019) and pigs
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399 (Freeman et al., 2012), highlights the complex multi-dimensional physiology of the ruminant
400 Gl tract.

401
402  Macrophage-associated signatures
403 A strong immune response is vitally important to neonatal mammals. Macrophages

404  constitute a major component of the innate immune system acting as the first line of defense
405 against invading pathogens and coordinating the immune response by triggering anti-
406  microbial responses and other mediators of the inflammatory response (Hume, 2015). Several
407  clusters in the goat mini-atlas exhibited a macrophage-associated signature. Cluster 11 (Table
408 3), contained several macrophage marker genes, including CD68 which is expressed in AMs
409 and BMDMs. The cluster includes the macrophage growth factor, CSF1, indicating that as in
410  sheep (Clark et al., 2017), pigs (Freeman et al., 2012) and humans (Schroder et al., 2012) but
411 in contrast to mice, goat macrophages are autocrine for their own growth factor. GO terms
412  associated with cluster 11 included phagocytosis (p=3.5x107'?), inflammatory response
413  (p=1.4x10"®) and cytokine receptor activity (p=0.00031). Many of the genes that were up-
414  regulated in AMs in cluster 11, including C-type lectins CLEC4A and CLECSA, have been
415  shown to be down regulated in sheep (Clark et al., 2017; Bush et al., 2019), pigs (Freeman et
416 al., 2012) and humans (Baillie et al., 2017) in the wall of the intestine. This highlights
417  functional transcriptional differences in macrophage populations. AMs respond to microbial
418  challenge as the first line of defense against inhaled pathogens. In contrast, macrophages in
419 the intestinal mucosa down-regulate their response to microorganisms as a continuous
420 inflammatory response to commensal microbes would be undesirable.

421 Cluster 11 (Table 3) also included numerous pro-inflammatory cytokines and
422  chemokines which were up-regulated following challenge with lipopolysaccharide (LPS).
423  Response to LPS was also reflected in several significant GO terms associated with this
424  cluster including, cellular response to lipopolysaccharide (p=5.8x107'%) and cellular response
425  to cytokine stimulus (p=9.5x10%). C-type lectin CLEC4E, which is known to be involved in
426  the inflammatory response (Baillie et al., 2017), interleukin genes such as IL1B and 1L27,
427 and ADGREI1 were all highly inducible by LPS in BMDMs. ADGRE1 (EMRI1,F4/80) is a
428  monocyte-macrophage marker involved in pattern recognition which exhibits inter-species
429  variation both in expression level and response to LPS stimulation (Waddell et al., 2018).
430 Based upon RNA-Seq data, ruminant genomes were found to encode a much larger form of
431 ADGREI than monogastric species, with complete duplication of the extracellular domain

432 [44].

433

434  Comparative analysis of macrophage-associated transcriptional responses in sheep and
435  goats

436 Transcriptional differences are linked to species-specific variation in response to

437  disease, and have been widely documented in livestock (Bishop and Woolliams, 2014). For
438 instance, ruminants differ in their response to a wide range of economically important
439  pathogens. Variation in the expression of NRAMP1 (SLC11A1) is involved in the response
440 of sheep and goat to Johne’s disease (Cecchi et al., 2017). Similarly, resistance to
441  Haemonchus contortus infections in sheep and goats is associated with a stronger Th2-type
442  transcriptional immune response (Gill et al., 2000; Alba-Hurtado and Munoz-Guzman, 2013).
443  To determine whether goats and sheep differ significantly in immune transcriptional
444  signatures we performed a comparative analysis of the macrophage samples from the goat
445  mini-atlas and those included in our gene expression atlas for sheep (Clark et al., 2017). One
446  caveat to this analysis that should be noted is that the sheep and goat samples were
447  unfortunately not age-matched and as such differences in gene expression could be an effect
448  of developmental stage rather than species-specific differences. However, as macrophage
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449  samples from both species were kept in culture prior to collection and analysis we would
450  expect the effect of developmental stage to be minimal.

451 We performed differential analysis of genes expressed in goat and sheep AMs
452  (Supplementary Table S13). The top 25 genes up- and down- regulated in goat relative to
453  sheep based on log2FC are shown in Fig 2. Several genes involved in the inflammatory and
454  immune response including, interleukins IL33 and IL1B and C-type lectin CLEC5A were up-
455  regulated in goat AMs relative to sheep. In contrast those that were down regulated in goat
456  relative to sheep did not have an immune function but were associated with more general
457  physiological processes. This may reflect species-specific differences but could also indicate
458  that the immune response in AMs is age-dependent i.e. neonatal animals exhibit a primed
459  immune response while a more subdued response is exhibited by adult sheep whose adaptive
460 immunity has reached full development.

461 Using differential expression analysis (Robinson et al., 2010) we also compared the
462  gene expression estimates for sheep and goat BMDMSs (+/-) LPS, to compile a list of genes
463  for each species that were up or down regulated in response to LPS (Supplementary Table
464  S14A goat and Supplementary Table S14B sheep). These lists were then merged using the
465 methodology described above (see Methods section) to highlight genes that differed in their
466  response to LPS between the two species. In total 188 genes exhibited significant differences
467  between goats and sheep (FDR<10%, Log2FC>=2) in response to LPS (Supplementary Table
468  S15). The genes which showed the highest level of dissimilarity in response to LPS between
469  goats and sheep (Dis Index>=2) are illustrated in Fig 3. Several immune genes were
470  upregulated in both goat and sheep BMDMs in response to LPS stimulation but differed in
471  their level of induction between the two species (top right quadrant Fig 3). 1L33, IL36B,
472  PTX3, CCL20, CSF3 and CSF2 for example, exhibited higher levels of induction in sheep
473 BMDMs relative to goat, and vice versa for ICAMI, IL23A, IFIT2, TNFSF10, and
474  TNFRSF9. Several genes were upregulated in sheep but downregulated in goat BMDMs (e.g.
475  KIT) (top left quadrant Fig 3), and upregulated in goat, but downregulated in sheep (e.g.
476  IGFBP4) (bottom right quadrant Fig 3).

477 Overall the transcriptional patterns in BMDMs stimulated with LPS were broadly
478  similar between the two species. Some interesting differences in individual genes were
479  observed that could contribute to species-specific responses to infection. For instance, 1133
480 and IL23A both exhibited a higher level of induction in sheep BMDMs after stimulation with
481  LPS relative to goat (Fig 3). In humans IL33 has a protective role in inflammatory bowel
482  disease by inducing a Th2 immune response (Lopetuso et al., 2013). An enhanced Th2
483  response, which accelerates parasite expulsion, has been associated with H. contortus
484  resistance in sheep (Alba-Hurtado and Munoz-Guzman, 2013). Conversely, higher
485  expression of IL23A is associated with susceptibility to Teladorsagia circumcincta infection
486  (Gossner et al., 2012). Little is known about the function of IL33 and IL23A in goats. They
487  are members of the interleukin-1 family which play a central role in the regulation of immune
488 and inflammatory response to infection (Dinarello, 2018). Given the similarities in their
489  expression patterns, it is reasonable to assume that these genes are regulated in a similar
490 manner to sheep and involved in similar biological pathways. As such they would be suitable
491 candidate genes to investigate further to determine if they underlie species-specific variation
492  in susceptibility to pathogens (Bishop and Stear, 2003; Bishop and Morris, 2007).

493

494  Expression patterns of genes associated with functional traits in goats

495 The goat mini-atlas dataset is a valuable resource that can be used by the livestock
496  genomics community to examine the expression patterns of genes of interest that are relevant
497  to ruminant physiology, immunity, welfare, production and adaptation/resilience particularly
498 in tropical agri-systems. Several genes, associated with functional traits in goats, have been
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499  identified using genome wide association studies (GWAS). Insulin-like growth factor 2
500 (IGF2), for example, is associated with growth rate in goats (Burren et al., 2016), and was
501 highly expressed in tissues with a metabolic function including, kidney cortex, liver and
502 adrenal gland (Fig 4A). As expected expression of myostatin (MSTN), which encodes a
503 negative regulator of skeletal muscle mass, was highest in skeletal muscle in comparison with
504  the other tissues (Fig 4B). MSTN is a target for gene-editing in goats to promote muscle
505 growth (e.g. Yu et al., 2016). Expression of genes associated with fecundity and litter size in
506  goats, including GDF9 and BMPRI1B (Feng et al.; Shokrollahi and Morammazi, 2018), were
507  highest in the ovary (Fig 4C & D). The ovary included here is from a neonatal goat and these
508 results correlate with similar observations in sheep where genes essential for ovarian
509 follicular growth and involved in ovulation rate regulation and fecundity were highly
510 expressed in foetal ovary at 100 days gestation (Clark et al., 2017).

511 Some genes, particularly those involved in the immune response had high tissue or
512  cell type specific expression. Matrix metalloproteinase-9 (MMP9), which is involved in the
513 inflammatory response and linked to mastitis regulation in goats (Li et al., 2016) was very
514  highly expressed in macrophages, particularly AMs, in comparison with other tissues (Fig
515 4E). Other genes that are important for goat functional traits were fairly ubiquitously
516  expressed. The expression level of Diacylglycerol O-Acyltransferase 1 (DGAT1) which is
517  associated with milk fat content in dairy goats (Martin et al., 2017) did not vary hugely across
518 the tissues sampled (Fig 4F), although there was slightly higher expression in some tissues
519 (e.g. colon and liver) relative to immune tissues (e.g. thymus and spleen). DGAT1 encodes a
520 key metabolic enzyme that catalyses the last, and rate-limiting step of triglyceride
521  synthesis, the transformation from a diacylglycerol to a triacylglycerol (Bell and Coleman,
522 1980). This is an important cellular process undertaken by the majority of cells, explaining
523 its ubiquitous expression pattern. Two exonic mutations in the DGAT1 gene in dairy goats
524  have been associated with a notable decrease in milk fat content (Martin et al., 2017).
525  Understanding how these, and other variants for functional traits, are expressed can help
526  us to determine how their effect on gene expression and regulation influences the observed
527  phenotypes in goat breeding programmes.

528
529  Allele-specific expression
530 Using mapping bias correction for robust positive ASE discovery (Salavati et al.,

531 2019), we were able to profile moderate to extreme allelic imbalance across tissues and cell
532  types, at the gene level, in goats. The raw ASE values for every tissue/cell type are included
533  in Supplementary Dataset S4. We first calculated the distribution of heterozygote sites per
534 gene, as a measure of homogeneity of input sites, and found there was no significant
535 difference between the eight individual goats included in the study (Supplementary Fig S2).
536 Several genes exhibited pervasive allelic imbalance (i.e. where the same imbalance in
537  expression is shared across several tissues/cell types) (Fig 5). For example, allelic imbalance
538  was observed in the mitochondrial ribosomal protein MRPL17 in 16 tissues/cell types (except
539  skeletal muscle and rumen). SERPINH1, a member of the serpin superfamily, was the only
540 gene in which an imbalance in expression was detected in all tissues/cell types. Allelic
541  imbalance was observed in COL4A1 in 11 tissues, and was highest in the rumen and skin
542  samples. COL4A1l has been shown to be involved in the growth and development of the
543  rumen papillae in cattle (Nishihara et al., 2018) and sheep (Bush et al., 2019). The highest
544  levels of allelic imbalance in individual genes were observed in ribosomal protein RPL10A in
545  ileum and SPARC in liver (Fig 5).

546 The ASE profiles were highly tissue- or cell type- specific, with strong correlations
547  between samples from the same organ system (Fig 6). For example, ASE profiles in female
548  reproductive system (ovary, fallopian tube, uterine horn, uterus), GI tract (colon and ileum)
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549  and brain (cerebellum and frontal lobe cortex) tissues were highly correlated. The two tissues
550 showing the largest proportion of shared allele-specific expression were the ovary and liver
551  (Fig 6). This might reflect transcriptional activity in these tissues in neonatal goats during
552  oogenesis (ovary) and haematopoiesis (liver). Future work could determine if these ASE
553  patterns were observed at other stages of development, or whether they are time-dependant.
554 The next step of this analysis would be to analyse ASE at the variant (SNV) level.
555  This would allow us to identify variants driving ASE and determine whether they were
556  located within important genes for functional traits. These variants could then be weighted in
557  genomic prediction algorithms for genomic selection, for example. The sequencing depth
558 wused for the goat mini-atlas is, however, insufficient for statistically robust analysis at the
559 SNV level. Nevertheless, it does provide a foundation for further analysis of ASE relevant to
560 functional traits using a suitable dataset, ideally from a larger number of individuals (e.g. for
561 aseQTL analysis (Wang et al., 2018)) and at a greater depth.

562

563  Conclusions

564

565 We have created a mini-atlas of gene expression for the domestic goat. This

566  expression dataset complements the genetic and genomic resources already available for goat
567  (Tosser-Klopp et al., 2014; Stella et al., 2018; Talenti et al., 2018), and provides a set of
568 functional information to annotate the current reference genome (Bickhart et al., 2017;
569  Worley, 2017). We were able to detect the majority (90%) of the transcriptome from a sub-
570 set of 22 transcriptionally rich tissues and cell-types representing all the major organ systems,
571 providing proof of concept that this mini-atlas approach is useful for studying gene
572  expression and for functional annotation. Using the mini-atlas dataset we annotated 15% of
573 the unannotated genes in ARS1. Our dataset was also used by the Ensembl team to create a

574 new gene build for the goat ARS1 reference genome
575  (https://www.ensembl.org/Capra_hircus/Info/Index).
576 We have also provided transcriptional profiling of macrophages in goats and a

577  comparative analysis with sheep. This provides a foundation for further analysis in more
578 tissues and cell types in age-matched animals, and in disease challenge experiments for
579  example. Prior to this study little was known about the transcription in goat macrophages.
580 While more information is available on goat monocyte derived macrophages (Adeyemo et
581 al., 1997, Taka et al.,, 2013; Walia et al., 2015), there was previously relatively little
582  knowledge available on the characteristics of goat BMDMs. In addition, few reagents are
583 available for immunological studies in goat, with most studies relying on cross-reactivity
584  with sheep and cattle antibodies (Entrican, 2002; Hope et al., 2012). Recently a
585 characterisation of goat antibody loci has been published using the new reference genome
586 ARSI (Schwartz et al., 2018), demonstrating the usefulness of a highly contiguous reference
587 genome with high quality functional annotation for the development of new resources for
588 livestock species. The goat mini-gene expression atlas complements the large gene
589  expression dataset we have generated for sheep and contributes to the genomic resources we
590 are developing for interpretation of the relationship between genotype and phenotype in small
591  ruminants.

592

593  Data Availability

594

595 We have made the files containing the expression estimates for the goat mini-atlas

596 (Supplementary Dataset S2 (unaveraged) and Supplementary Dataset S3 (averaged))
597 available for download through the University of Edinburgh DataShare portal
598  (https://doi.org/10.7488/ds/2591). Sample metadata for all the tissue and cell samples
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599  collected has been deposited in the EBI BioSamples database under project identifier GSB-
600 2131 (https://www.ebi.ac.uk/biosamples/samples/SAMEG330351) according to FAANG
601 metadata and data sharing standards. The raw fastq files for the RNA-Seq libraries are
602 deposited in the European Nucleotide Archive (https://www.ebi.ac.uk/ena)under the
603 accession number PRJEB23196. The data submission to the ENA includes experimental
604 metadata prepared according to the FAANG Consortium metadata and data sharing
605 standards. The BAM files are also available as analysis files under accession number
606 PRJEB23196 (‘BAM file 1’ are mapped to the NCBI version of ARSI and ‘BAM file 2’ to
607 the Ensembl version). The data from sheep included in this analysis has been published
608 previously and is available via (Clark et al., 2017) and under ENA accession number
609 PRJEB19199. Details of all the samples for both goat and sheep are available via the
610 FAANG data portal (http://data.faang.org/home). All experimental protocols are available on
611 the FAANG consortium website at http://www.ftp.faang.ebi.ac.uk/ftp/protocols
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860  Table 1: Details of samples included in the goat mini-atlas.

Tissue/Cell type Organ System No. of Sex
replicates

Adrenal gland Endocrine 4 male
Alveolar macrophage Immune 2 male
BMDM - LPS (0 hours) Immune 3 male
BMDM + LPS (7 hours) Immune 3 male
Cerebellum Nervous system 2 male
Colon large GI tract 4 male
Fallopian tube Reproductive system (female) 1 female
Frontal lobe cortex Nervous system 2 male
Ileum and Peyer's patches GI tract 2 male
Kidney cortex Endocrine 4 male
Liver Endocrine 4 male
Ovary Reproductive system (female) 1 female
Rumen Gastrointestinal tract 2 male
Skeletal muscle - longissimus dorsi Musculo-skeletal 3 male
Skin Integumentary 4 male
Spleen Immune 3 male
Testes Reproductive system (male) 4 male
Thymus Immune 4 male
Uterine horn Reproductive system (female) 1 female
Uterus Reproductive system (female) 1 female
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863  Table 2: The percentage of protein coding genes detected per tissue in the goat mini-
864  atlas dataset.

Tissue Average no. of protein- % of protein-coding
coding genes expressed genes expressed (TPM
(TPM > 1) in this tissue > 1) in this tissue
Adrenal gland 14585 68.34
Alveolar macrophage 11533 54.04
BMDM - LPS (0 hours) 13253 62.1
BMDM + LPS (7 hours) 13042 61.11
Cerebellum 14959 70.09
Colon large 14736 69.04
Fallopian tube 14390 67.42
Frontal lobe cortex 14757 69.14
Ileum & Peyer’s patches 15268 71.54
Kidney cortex 15223 71.33
Liver 13497 63.24
Ovary 14251 66.77
Rumen 13642 63.92
Skeletal muscle - longissimus dorsi 12276 57.52
Skin 14892 69.77
Spleen 14659 68.68
Testes 15359 71.96
Thymus 14484 67.86
Uterine horn 14298 66.99
Uterus 14298 66.99
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866

Table 3: Annotation of the 20 largest network clusters in the goat mini-atlas dataset (> indicates decreasing expression profile).

Cluster Number of  Profile Description Class Enriched GO terms
ID Genes
1 1795 Cortex>cerebellum Brain cognition, neurotransmitter transport, synaptic
transmission
2 1395 Thymus>Spleen>Ileum  Cell-Cycle DNA-dependent DNA replication, DNA repair
3 795 General House Keeping mRNA processing, regulation of RNA splicing
4 505 Liver Oxidative-Phosphorylation oxidation-reduction process, fatty acid oxidation
5 494  General House Keeping RNA binding, nucleolus
6 481 Testes Male Reproduction male meiosis, spermatogenesis
7 449 Skin > Rumen Epithelial skin morphogenesis, keratinocyte differentiation
8 374 Fallopian Tube Motile Cilia motile cilium, ciliary basal body
9 351 Skeletal muscle Muscle muscle fibre development, motor activity
10 337 Spleen>Ileum Immune immune response, B-cell activation, cytokine activity
11 290 Macrophages Immune response to lipopolysaccharide, phagocytic vesicle
12 241 Colon Large Gastrointestinal tract microvillus, actin filament bundle
13 226 Rumen > Skin Gastrointestinal/Epithelial ~ epidermis development, chloride channel activity
14 219 Adrenal Gland Endocrine oxidation-reduction process, sterol metabolic process
15 211 BMDMs Fibroblasts collagen binding, positive regulation of fibroblast
proliferation
16 134 General Ribosomal ribosomal large subunit biogenesis, ribosome
17 133 Kidney Cortex Mesoendonephric sodium ion homeostasis, skeletal system
organogenesis morphogenesis
18 119 Ovary Oogenesis growth factor activity, nucleosome disassembly
19 113  Tleum>Spleen>Thymus Immune B-cell proliferation, cytokine activity
20 108 Uterus, Uterine Horn Organogenesis tissue remodelling, bone morphogenesis
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870 Figure 1: Gene-to-gene network graph of the goat mini-atlas dataset. Each ‘node’
871 represents a gene and each ‘edge’ represents correlations between individual measurements
872  above the set threshold. The graph comprised 16,172 nodes (genes) and 1,574,259 edges
873  (Pearson correlations > 0.83), MCL inflation = 2.2, Pearson Product Correlation Co-efficient
874 =0.83.
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Figure 2: Differentially expressed genes (FDR<10%) between goat and sheep alveolar macrophages. The top 25 up-regulated in goat
relative to sheep (red) and the top 25 down-regulated in goat relative to sheep (blue) are shown.
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Figure 3: Comparative analysis of differentially expressed genes (FDR<10%, Log2FC>=2) in goat and sheep BMDM. The genes which
showed the highest level of dissimilarity in response to LPS between goats and sheep (Dis_Index>=2) are shown. Top right quadrant: genes that
were up-regulated in both goat and sheep but differed in their level of induction between the two species. Top left quadrant: genes that were up-
regulated in sheep but down-regulated in goat. Bottom right quadrant: genes up-regulated in goat, but down-regulated in sheep.
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888  Figure 4: Expression levels (transcripts per million) of genes involved in functional
889 traits in goats to illustrate tissue and cell type or ubiquitous expression patterns. A:
890 IGF2 is associated with growth rate; B: MSTN is associated with muscle characteristics; C:
891  GDFY is associated with ovulation rate; D: BMPRI is associated with fecundity; E: MMP?9 is
892  associated with resistance to mastitis; F: DGAT]1 is associated with fat content in goat milk.
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893
894  Figure 5: Genes exhibiting the largest mean allelic imbalance (i.e. allele-specific

895  expression averaged across all heterozygote sites within each gene) across 17 tissues and one
896  cell type from the goat mini-atlas dataset visualised as a heatmap (red indicating the highest
897 level of mean allelic imbalance and green the least).
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Correlation of static ASE in tissues from goat mini atlas (CC<0.85)
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901 Figure 6: Correlation of ASE profiles shared across tissues/cell types from the goat
902 mini-atlas dataset. Each section represents the genes showing significant allelic imbalance
903  within the tissue. The chords represent the correlation coefficient (CC<0.85) of ASE profiles
904  shared between the samples (i.e. the proportion of genes showing co-imbalance).
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916  Supplemental Figures

917  S1 Figure: Sample-to-sample network graph of the samples included in the goat mini-atlas
918  dataset.

919  S2 Figure: Distribution of heterozygote (bi-allelic) sites per genes for each of the eight
920 individual goats included in the study. The bi-allelic sites were compared to the ARSI
921  Ensembl v96 reference variant call format (VCF) track which includes 22,379 genes and
922  more than 12 million heterozygote sites. On average for each animal 3,004,867 heterozygote
923  loci were examined for allelic imbalance. The ARSI reference (Ref) distribution is shown in
924  blue with the distribution for each individual goat included in this study (male m1-7, female
925  18) overlaid in red.

926

927  Supplemental Datasets

928 S1 Dataset: Gene expression estimates for AMs and BMDMs (+/- LPS) unaveraged across
929  biological replicates for the subset of sheep gene expression atlas dataset included for
930 comparative analysis.

931 S2 Dataset: Gene expression estimates unaveraged across biological replicates for the goat
932  mini-atlas dataset.

933  S3 Dataset: Gene expression estimates averaged across biological replicates for the goat
934  mini-atlas dataset.

935  S4 Dataset: Estimates of allele-specific expression for each sample from the goat mini-atlas
936  dataset using the GeneiASE model.

937

938  Supplemental Tables

939  S1 Table: Quantity and quality measurements of isolated RNA from all tissue and cell-types
940 in the goat mini-atlas dataset.

941  S2 Table: Summary of transcript models generated using the HISAT?2/stringtie pipeline in
942  comparison with gene models in the reference genome ARSI.

943  S3 Table: Novel transcript models generated for goat using the HISAT2/stringtie pipeline.
944  S4 Table: A list of all undetected genes in the goat mini-atlas dataset.

945 S5 Table: A list of all undetected transcripts in the goat mini-atlas dataset.

946  S6 Table: The proportion of transcripts with detectable expression (TPM >1) in the goat
947  mini-atlas relative to the ARS1 reference transcriptome at the gene level.

948 S7 Table: The proportion of transcripts with detectable expression (TPM >1) in the goat
949  mini-atlas relative to the ARS1 reference transcriptome at the transcript level.

950 S8 Table: A short-list containing a conservative set of gene annotations using the goat mini-
951 atlas dataset.

952  S9 Table: The ‘long’ list of genes annotated using the goat mini-atlas dataset.

953  S10 Table: A list of unannotated genes associated with a gene description, but not necessarily
954  an HGNC symbol.

955  S11 Table: Genes included in each cluster from the network cluster analysis of the goat mini-
956 atlas dataset.

957  S12 Table: GO term enrichment of each of the clusters from the network cluster analysis of
958 the goat mini-atlas dataset.

959  S13 Table: Differentially expressed genes in goat and sheep alveolar macrophages.

960 S14 Table: Differentially expressed genes in goat (A) and sheep (B) bone marrow derived
961 macrophages (BMDM) (+/-) LPS.

962  S15 Table: Genes that exhibited significant differences between goats and sheep (FDR<10%,
963  Log2FC>=2) in response to LPS.

964

965
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