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Abstract

Trichomes are large epidermal cells on the surface of leaves that are thought to deter
herbivores, yet the presence of trichomes can also negatively impact plant growth and
reproduction. Stomatal guard cells and trichomes have shared developmental origins, and
experimental manipulation of trichome formation can lead to changes in stomatal density.
The influence of trichome formation upon stomatal development in natural populations of
plants is currently unknown. Here, we show that a natural population of Arabidopsis halleri
that includes hairy (trichome-bearing) and glabrous (no trichomes) morphs has differences in
stomatal density that are associated with this trichome dimorphism. We found that glabrous
morphs had significantly greater stomatal density and stomatal index than hairy morphs.
One interpretation is that this arises from a trade-off between the proportions of cells that
have trichome and guard cell fates during leaf development. The differences in stomatal
density between the two morphs might have impacts upon environmental adaptation, in

addition to herbivory deterrence caused by trichome development.
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32 Introduction

33 In Arabidopsis, trichomes are large epidermal cells that protrude from the surface of the

34 leaves and petioles. Trichomes play important roles in both biotic defences and abiotic

35  stress tolerance (Levin, 1973; Mauricio and Rausher, 1997; Handley et al., 2005; Dalin et al.,
36  2008; Sletvold et al., 2010; Sletvold and Agren, 2012; Sato and Kudoh, 2016). However,

37 trichome development appears to impose a fithess cost on growth and reproduction

38  (Mauricio, 1998; Sletvold et al., 2010; Kawagoe et al., 2011; Sletvold and Agren, 2012; Sato

39 and Kudoh, 2016). In addition to trichomes, stomatal guard cells represent another

40  specialized cell type that is present on the leaf surface. Trichome initiation occurs prior to

41  stomatal meristemoid development, and the patterning of trichomes and guard cells appears
42  to be linked (Larkin et al., 1996; Glover, 2000; Bean et al., 2002; Bird and Gray, 2003).

43  Therefore, there might be a trade-off between trichome and stomatal guard cell development

44 during leaf formation (Glover et al., 1998).

45  We wished to determine whether trichome formation might be associated with changes in
46  stomatal patterning in natural populations of plants. To achieve this, we investigated

47  stomatal patterning in a naturally-occurring population of Arabidopsis halleri subsp.

48  gemmifera that includes trichome-forming and glabrous morphs (Kawagoe et al., 2011; Sato
49  and Kudoh, 2016). The glabrous morphs within this population harbour a large transposon-
50 like insertion within the GLABRAL (GL1) gene (Kawagoe et al., 2011). GL1 is also required
51  for trichome formation in A. thaliana, with homozygous gl1 mutants being glabrous

52  (Oppenheimer et al., 1991). Our experiments provide new insights into the relationship

53  between stomatal and trichome patterning under natural conditions.
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54 Methods

55  Study site and experimental model

56  This investigation used a well-characterized population of Arabidopsis halleri subsp.

57 gemmifera that is located beside a small stream in central Honshu island, Japan (Fig. 1A)
58  (35°06’ N, 134°55' E) (Aikawa et al., 2010; Kudoh et al., 2018). Sampling occurred during
59  September 2016 (photoperiod approximately 12 h, with dawn at 05:40 and dusk at 18:10).
60 During this season, A. halleri bore larger rosette leaves that are well-suited for quantification

61  of stomatal density (Fig. 1B).

62  Stomatal density measurement

63  Eight plants of each trichome morph (hairy or glabrous) were selected at the study site, with
64 individuals chosen such that the replicate plants were distributed evenly across the site.

65  Glabrous and hairy morphs were identified by visual inspection of the leaf surface. Stomatal
66  density was measured by obtaining impressions from the adaxial surfaces of 3-5 rosette

67 leaves of each plant. Data were obtained from 58 and 62 leaves of hairy and glabrous

68  plants, respectively. We focused on the adaxial surface because this surface also harbours
69 the majority of the trichomes. Between the times of 12:00 and 13:00, President Plus dental
70 impression paste (Coltene) was applied to the adaxial side of each leaf to create a leaf

71  surface impression (Fig. 1C). Solidified impression paste was removed from leaves and

72  transported to the laboratory for further processing. First, each impression was assigned a
73 randomly-generated number to ensure subsequent steps were performed blind. Each leaf
74 impression was painted with transparent nail varnish (60 seconds super shine, Rimmel) that,
75  after drying, was peeled away from the dental impression paste using transparent adhesive
76  tape (Scotch Crystal). Next, the adhesive tape was used to attach the nail varnish

77  impression to a 0.8 mm — 1 mm thick microscope slide. Leaf impressions were examined

78  using an epifluorescence microscope in white light illumination mode. Images were captured

79  from the centre of each leaf half, away from the midrib, using a Hamamatsu camera and
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Volocity software set to 20x zoom. Two images were captured from each impression, and
the number of stomata and pavement cells was counted in an 800 pm x 800 um square
using the Fiji software to obtain cell density measures. Cell density measures were
expressed as per mm? (multiplication by 1.56). Stomatal index was calculated according to
Equation 1. After all measurements, data were disaggregated according to a
blinding/randomization scheme. The differences between hairy and glabrous plants were
statistically tested by nested analysis of variance, whereby leaves were nested within the
hairy and glabrous morphs. Tests were conducted using the R 3.6.0 software (R Core Team,
2019) and plots generated with the beeswarm R package (v0.2.3) and Inkscape v0.91. No

adjustments were applied to images in Fig. 1.

95
~
Il

X 100
Ss+p

Equation 1. Derivation of stomatal index, where Sl is stomatal index, s is the number of
stomata in the field of view, and p is the number of epidermal pavement cells in the field of

view.

Results

We investigated stomatal patterning in naturally-occurring hairy and glabrous morphs of A.
halleri (Sato and Kudoh, 2016). Approximately half of the A. halleri population at this study
site is glabrous, whilst remaining plants have trichomes (Kawagoe et al., 2011). As trichome
initiation occurs prior to stomatal meristemoid formation (Larkin et al., 1996; Glover, 2000), it
is likely that trichome and stomatal patterning are linked (Bean et al., 2002), so we
hypothesized that this might produce a difference in stomatal density between the two

trichome morphs of A. halleri under natural conditions.

We found that the trichome formation dimorphism was accompanied by a difference in
stomatal density (Fig. 2A; Supplemental Dataset S1). Glabrous morphs had significantly

greater stomatal density compared with hairy-leaved morphs (glabrous: 31.4 + 1.5 stomata
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104 mm? hairy: 23.7 + 1.1 stomata mm’%; + s.e.m) (Fig. 2A; Table S1A; Supplemental Dataset
105 S1). Furthermore, the stomatal index was significantly greater in glabrous morphs (18.13
106  +0.41) compared with hairy morphs (16.11 + 0.46) (Fig. 2B; Table S1B). The pavement cell
107  density did not differ significantly between the morphs (Table S1C). Stomatal density ranged
108  from 17 — 87 stomata mm™ for hairy morphs and 27 — 119 stomata mm for glabrous

109 morphs (Fig. 2A). This stomatal density was lower than for Arabidopsis thaliana, which has
110  reported stomatal densities of 180 — 350 stomata mm™ depending on background accession

111  and growth conditions (Gray et al., 2000; Zhang et al., 2008; Franks et al., 2015).
112  Discussion

113  Glabrous plants had significantly greater stomatal density and stomatal index compared with
114  hairy plants (Fig. 2A; Fig. 2B). As the density of surrounding pavement cells did not vary
115 between the morphs, these differences in stomatal density and index are due to the greater
116  density of stomata in glabrous morphs compared with hairy morphs (Fig. 2B). Our field data
117  are consistent with a laboratory-based study in which transgenic tobacco plants expressing
118  an Antirrhinum myb-like transcription factor, which caused an excess of trichomes, also had
119 significantly reduced stomatal density (Glover et al., 1998). Similarly, the trichome-bearing
120  Col-0 accession of A. thaliana has lower stomatal density than the glabrous C24 accession
121  (e.g. about 115 mm™ for Col-0 and 180 mm™ for C24) (Perazza et al., 1998; Lake and

122  Woodward, 2008). This suggests that in natural populations of A. halleri, there could be a
123  trade-off between trichome and stomatal development. Since the glabrous gl1 mutant of A.
124  thaliana has a significantly greater density of stomatal units compared with the wild type
125 (Berger et al., 1998) and the glabrous phenotype of A. halleri at this study site is associated
126  with an insertion within GL1 (Kawagoe et al., 2011), it is possible that the GL1 haplotype

127  influences the stomatal density within this population of A. halleri.

128 In some cases, there does not appear to be a tradeoff between stomatal and trichome

129  density. For example, elevated CO, decreases stomatal density (Woodward and Kelly,
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130 1995), but might also reduces trichome density (Bidart-Bouzat et al., 2005). Therefore, in
131  future, it could be informative to examine the relationship between stomatal and trichome
132  density under a range of different experimental conditions that apply different types of

133  selection pressure.

134 Interestingly, trichome production appears to impose a fitness cost. For example, glabrous
135 A. halleri plants have 10% greater biomass than hairy plants when grown in the absence of
136  herbivores (Sato and Kudoh, 2016). This cost of herbicide resistance arising from trichome
137  formation also occurs in glabrous and hairy A. lyrata (Lge et al., 2007; Sletvold et al., 2010)
138 and A. thaliana (Mauricio and Rausher, 1997; Mauricio, 1998) under experimental conditions
139 excluding herbivores. Whilst this fithess advantage of glabrous over hairy leaves in the

140  absence of herbivory might be due to trichome production (Mauricio and Rausher, 1997;
141 Mauricio, 1998; Kawagoe and Kudoh, 2010; Sletvold et al., 2010; Kawagoe et al., 2011;

142  Sletvold and Agren, 2012), we suggest that glabrous morphs might also gain an advantage
143 by having a greater density or number of stomata. It has been proposed that increasing the
144  number of stomata could increase carbon assimilation (Lawson and Blatt, 2014). For

145  example, Arabidopsis overexpressing STOMAGEN has greater stomatal density and a 30%
146  increase in carbon assimilation compared with the wild type. However, these lines also have
147  a higher transpiration rates and consequently lower water use efficiency (Tanaka et al.,

148  2013).

149  Optimal stomatal density is important to achieve high photosynthetic rates. A low stomatal
150 density restricts CO; vertical diffusion through the leaf and reduces photosynthetic rates,
151  whilst high-density stomatal clustering diminishes CO, diffusion and causes low carbon
152  assimilation (Lawson and Blatt, 2014). Both A. halleri morphs examined are likely to be
153  within an optimal range of stomatal densities, having evolved and survived under natural
154  conditions. However, the higher stomatal density in the glabrous morph might contribute to
155 its faster growth in absence of herbivory (Sato and Kudoh, 2016). In future, it would be

156 interesting to explore this by measuring the CO, assimilation rate of these trichome morphs
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157  under laboratory and/or natural conditions. It would also be informative to determine whether
158 the stomatal density difference between the two trichome morphs confers any advantages
159  within microenvironments characterized by differences in water or light availability. The lower
160 stomatal density of A. halleri compared with A. thaliana (Gray et al., 2000; Zhang et al.,

161  2008; Franks et al., 2015) might reflect differences in growth conditions. An alternative

162  explanation might relate to genome size, because there appears to be a negative correlation
163 between genome size and stomatal density (Beaulieu et al., 2008), and the genome of A.
164  halleri (250 Mb) is approximately double the size of the A. thaliana genome (125 Mb) (The

165  Arabidopsis Genome Initiative, 2000; Briskine et al., 2017).

166  In summary, we found that glabrous morphs of A. halleri growing under natural conditions
167  had higher stomatal density and stomatal index than a hairy morph. This might contribute to
168 the reported fitness advantage of glabrous plants over hairy plants in absence of herbivores
169 (Sato and Kudoh, 2017). This differing stomatal density phenotype might derive from the
170 common upstream components in the pathways leading to trichome and guard cell

171  development.
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187  Figure legends

188 Figure 1. Field sampling of Arabidopsis halleri for stomatal density. (A) Overview of field
189 site; (B) Rosette form of A. halleri plants during September sampling season; (C) Leaf
190 surface impression acquisition using impression paste. The impression paste is green-

191  coloured and occupies the surface of three rosette leaves.

192  Figure 2. Stomatal density differs between hairy and glabrous morphs within a natural

193  population of Arabidopsis halleri. (A) Stomatal density and (B) stomatal index for hairy and
194  glabrous morphs. Each red point represents one measurement and the centre line of the
195 boxplot indicates the median. Data are mean +/- s.e.m (n = 58 (hairy plants) and n = 62

196 (glabrous plants); analysed by one-way nested ANOVA. * indicates p < 0.05; ** indicates p <

197 0.01.

198 Table S1. Nested ANOVA analysis of (a) stomatal density, (b) stomatal index and (c)
199 pavement cell density. Df is degree of freedom; *, ** and *** indicates significant at p < 0.05,

200 p<0.01and p < 0.001 respectively; NS, not significant at p > 0.05.

201 Dataset S1. Complete stomatal density data collected during experimentation.
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