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Summary 

The extraction of accurate physiological parameters from clinical samples provides a unique perspective 

to understand disease etiology and evolution, including under therapy. We introduce a new proteomics 

framework to map patient proteome dynamics in vivo, either proteome wide or in large targeted panels. 

We applied it to ventricular cerebrospinal fluid (CSF) and could determine the turnover parameters of 

almost 200 proteins, whereas a handful were known previously. We covered a large number of neuron 

biology- and immune system-related proteins including many biomarkers and drug targets. This first 

large data set unraveled a significant relationship between turnover and protein origin that relates to 

our ability to investigate the central nervous system physiology precisely in future studies. Our data 

constitute a reference in CSF biology as well as a repertoire of peptides for the community to design 

new proteome dynamics analyses. The disclosed methods apply to other fluids or tissues provided 

sequential sample collection can be performed. 
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INTRODUCTION 

Clinical proteomics mostly relies on the absolute quantification of targeted proteins or on global 

proteome quantification(Doherty and Whitfield, 2011; Meyer and Schilling, 2017). Although highly 

successful, this type of analysis does not reveal the synthesis and clearance rates behind the observed 

abundance. Detailed and tissue-specific knowledge of individual protein turnover constitutes a 

complementary perspective that provides a unique insight in protein regulation. For instance, protein 

turnover abnormalities were related to disease pathophysiology in certain cases: amyloid-β (Aβ) and Tau 

in Alzheimer disease(Mawuenyega et al., 2010; Sato et al., 2018) (AD), the superoxide dismutase [Cu-Zn] 

(SOD1) in amyotrophic lateral sclerosis(Crisp et al., 2015), or the retinol-binding protein 4 (RBP4) in type 

1 diabetes(Jourdan et al., 2009). Other authors employed large-scale turnover mapping to identify the 

regulated processes involved in zebrafish heart morphogenesis(Konzer et al., 2013) or tissue remodeling 

during early-stage human heart failure(Lam et al., 2014).  

Turnover data are commonly obtained by mass spectrometry (MS) and hence isotopic tracers are 

employed to label the newly synthesized proteins. The ratio of labeled versus unlabeled protein peptide 

abundances (Fig. 1a) is called the relative isotope abundance (RIA). Usually, a time course is realized to 

acquire RIA curves from which synthesis and/or degradation rates can be learnt through mathematical 

modeling. The tracer is typically introduced in animal or patient diet, or in cell culture media. Commonly 

used tracers(Claydon and Beynon, 2012) are 13C6-labeled amino acids, e.g. leucine (Leu) or 

phenylalanine, [2H2]O, or 15N. Different tracing protocols exist and a common choice consists in 

delivering the tracer continuously over a rather long period of time (weeks). Labeling thus reaches 

saturation in most proteins but the longest-lived ones(Hammond et al., 2016; Price et al., 2010). Other 

protocols, which could be regarded as pulse-chase experiments, provide the tracer over a limited period 

and keep collecting samples afterwards(Bateman et al., 2006). In every case, performing in vivo 

experiments in tissues causes the measured turnover to be the net result of multiple phenomena and 

not just a physical property of the proteins. The observed turnover results from local synthesis and 

degradation (molecular biology) as well as passive and active transport across tissues (physiology). 

Moreover, for a given protein, its turnover may vary in different tissues. Depending on the tracing 

protocol, different abilities to separate local versus remote contributions might be achieved. 

Limited in vivo data are available in human. Initial efforts aimed at characterizing the total protein 

dynamics upon uptake of isotopically labeled aminoacids(Waterlow, 1995). More recent work taking 

advantage of progresses in proteomics determined protein turnover at the single protein level(Bateman 

et al., 2006; Crisp et al., 2015; Jourdan et al., 2009; Wildsmith et al., 2012), in small- to medium-size 

panels(Jaleel et al., 2006; Price et al., 2012), or proteome wide(Lam et al., 2014) with a strong bias 

towards plasma. The protocol called stable isotope labeling kinetics(Bateman et al., 2006) (SILK) was 

introduced to follow Aβ in the cerebrospinal fluid (CSF). A 13C6-Leu tracer was intravenously injected 

during 9 hours while CSF was sequentially collected over 24 hours or more. It is a thus pulse-chase 

protocol. SILK allowed its authors to determine the turnover of AD molecular actors such as Aβ 

peptides(Bateman et al., 2006), tau proteins(Sato et al., 2018), and ApoE(Wildsmith et al., 2012). One 

major finding was AD association with a reduced CSF clearance of Aβ. This observation drew attention to 

the glymphatic system impacting CSF circulation(Boespflug and Iliff, 2018) and was essential to model 

the kinetics of amyloid accumulation over the evolution of the disease(Jack and Holtzman, 2013). SILK 

was also used to confirm the on-target effect of an anti-AD drug(Bateman et al., 2009). 
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In this work, we introduce whole proteome SILK (wpSILK), a novel proteomics framework to perform 

SILK-like experiments on a large scale. In a first instance, we eliminated any affinity purification step and 

integrated peptide liquid chromatography (LC) to deal with sample complexity and to perform analyses 

proteome wide by high-resolution MS (HRMS) profiling. In a second instance, we followed targeted 

peptides by multiple reaction monitoring(Meyer and Schilling, 2017) (MRM). A sophisticated 

bioinformatics pipeline including mathematical modeling was developed to process the complex wpSILK 

data. We demonstrated the potential of wpSILK on ventricular CSF, a fluid of paramount clinical 

relevance, obtaining the turnover parameters of ~200 proteins. Our data constitute the largest 

reference of this kind. Furthermore, they provide a vast repertoire of easily MS-detectable peptides 

amenable to turnover experiments that cover a broad range of central nervous system (CNS) functions, 

known biomarkers, and drug targets. Finally, we tried to dissect the relationship between observed 

turnover and local versus remote protein origin. Our results have the potential to speed up 

pharmacokinetic/pharmacodynamic (PK/PD) modelling of therapeutic targets related to neurological 

diseases. 
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RESULTS 

Sample analysis and data generation 

Ventricular CSF and blood were collected from three post subarachnoid hemorrhage patients over a 24-

36 hours period with intravenous injection of 13C6-Leu according to SILK published procedure(Bateman 

et al., 2006). The experiment started 8 to 19 days after initial, medical ventricular drainage and 

normalization of CSF clinical chemistry analysis (normal CSF protein content lies in the 0.2-0.4 g/L 

range(Roche et al., 2008)). Patient data are reported in Table S1 and patient 1, who was chosen for 

HRMS profiling, had the largest post drainage delay. The other two patient samples were used for the 

MRM variant of wpSILK to confirm 26 selected proteins. CSF and plasma free 13C6-Leu concentrations 

were estimated by UPLC-MS/MS at different time points (Table S2) and matched previously reported 

values(Bateman et al., 2006). 

Patient 1 CSF samples were submitted to wpSILK HRMS workflow (Fig. 1b). Briefly, each sample was split 

in 3 aliquots and digested (LysC and trypsin). Strong cation exchange (SCX) LC was used to obtain 6 

fractions for each. Fractions 5 and 6 were regrouped and eventually discarded due to very limited 

peptide content (Fig. S1). The other 4 fractions were submitted to LC-MS profiling by first pooling the 3 

identical SCX fractions of each aliquot and injecting this pool 3 times for better proteome coverage. A 

few injections were repeated due to poor LC (Fig. S2). In parallel, we generated a peptide reference 

library by pooling identical SCX fractions over all the time points (Fig 1b), which were submitted 6 times 

each to LC-MS-MS/MS. Mascot peptide identifications (<1% FDR) were imported in Skyline 

software(Pino et al., 2017). In total, we found 4,558 peptides present in 1,001 proteins and 3,196 

peptides from 860 proteins were Leu-containing. Skyline was applied extract primary quantitative data 

from LC-MS, i.e. peptide identity, SCX fraction number, retention time, charge state, nominal and 13C6-

Leu-shifted masses, and peak areas resulting in a large tabular export of 3,044,088 rows (Table S3). Time 

dependent incorporation of 13C6-Leu in a peptide could be followed by computing RIAs at each time 

point. 

 

Peptide selection and protein model construction 

The limited duration and amounts of 13C6-Leu injection due to obvious patient safety considerations 

precluded full labeling of proteins. Consequently, heavy (13C6-Leu labeled) peptide signals were 10 to 

100 times weaker than their light (unlabeled) counterparts. Moreover, untargeted HRMS profiling and 

subsequent peptide identification against a reference peptide library may yield wrong assignments. Data 

processing hence had to ensure that true RIA curves were extracted from Skyline export. Our algorithm 

follows the general line of bottom-up quantitative proteomics with peptide-level filters and protein-level 

modeling based on unique – non-shared – peptides only (Fig. 1c). Considering occasional low heavy 

peptide signals and Skyline peak misassignments, we found that RIA were more accurately computed 

using the most intense isotopic peak only, e.g. 𝐴1
′ /(𝐴1

′ + 𝐴1) referring to Fig. 1a. Initial filters were 

applied to eliminate incomplete or too weak signals. RIA curves from the same peptide in distinct 

fractions or at different charge states were treated separately, as independent observations. While some 

peptides gave rise to convincing RIA curves, e.g. Fig. 1d, many adopted dubious shapes (Fig. S3). We 

thus reasoned that a mathematical model of 13C6-Leu incorporation might help eliminating ill-shaped 

curves and noisy data. Moreover, such a model is necessary to extract turnover parameters. 
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The so-called 2-compartment model, where tracers from a fee pool integrate a protein-bound pool, has 

been shown to fit turnover dynamics data accurately(Guan et al., 2012; Rahman et al., 2016). 

Considering the specifics of SILK, i.e. tracer injection over a limited period of time and free tracer 

concentration in the range 10-15% as opposed to saturation, we generalized this model. We also wrote 

the model in a novel fashion, better separating the role of the parameters. Mathematical details, 

differences with respect to previous literature, and the overall data processing algorithm are provided in 

Supplemental Information (SI). We only introduce the general principle here. A function 𝑓(𝑡) 

representing 13C6-Leu injection is introduced, its value is 0 (no injection) or 1 (injection), i.e. 𝑓(𝑡) = 0 if 

𝑡 ≤ 0 or t > 9, and 𝑓(𝑡) = 1 otherwise. Denoting 𝐴 = 𝐴𝐿 + 𝐴𝐻 the sum of light (unlabeled) and heavy 

(labeled) free Leu abundance, we can define the free ratio 𝛼 =
𝐴𝐻

𝐴𝐿+𝐴𝐻
. Similarly, the protein-bound total 

Leu abundance is 𝑃 = 𝑃𝐿 + 𝑃𝐻, with bound ratio 𝛽 =
𝑃𝐻

𝑃𝐿+𝑃𝐻
. Assuming a rate 𝜆 of free 13C6-Leu 

availability and protein appearance/clearance rate 𝑘𝑐, we obtain the dynamical system:  

{
𝛼′ = (𝜆𝑓(𝑡) − 𝛼)𝑘𝑐
𝛽′ = (𝛼 − 𝛽)𝑘𝑐

 .         (1) 

The absence of 13C6-Leu at 𝑡 = 0 imposes 𝛼(0) = 0 = 𝛽(0). The first equation features entrance of new 

tracers in the free pool and exit into the bound pool, while the second one features corresponding 

entrance in the bound pool and protein degradation. Note that according to the introduction, we talk 

about appearance and clearance rates instead of the sole synthesis and degradation rates. Also, the 

model is written assuming a steady-state, which imposes that appearance and clearance occur at the 

same rate 𝑘𝑐. Model parameters were fit by minimizing squared-differences between experimental RIA 

values and 𝛽(𝑡), an example is featured in Fig. 1d. 

The application of the model to Skyline output allowed us to impose obvious morphological filters, e.g. 

𝛽(𝑡) and 𝛼(𝑡) both increasing initially, maximum of 𝛽(𝑡) not reached before 9h, and sufficient 

correlation between 𝛽(𝑡) and experimental RIAs. To estimate the FDR associated with peptide 

observations we processed peptides devoid of Leu identically. We estimated a global FDR of 7.3%, which 

dropped to 0.6%, respectively 0%, when 2, respectively 3 or more, observations were available for a 

single protein (Fig. 1e). At this FDR we selected 965 observations, covering 579 distinct peptides and 235 

proteins. Out of these 579 peptides, 532 were unique, i.e. not shared by multiple proteins, and served as 

the basis of protein turnover calculations for 196 distinct proteins. Peptides from precursors of 

complement C4 isotypes A and B were found with a large number of selected observations (23), none of 

which were unique and neither C4A nor C4B were counted. We added C4A to our list as a representative 

of both isotypes, which raised the total of distinct proteins to 197. Among these 197 proteins, 86 were 

detected with a single observation at 7.3% FDR, an acceptable risk given the unique nature of the data. 

The remaining 111 proteins were associated with high-confidence turnover information (Fig. 1f). 

When more than one observation were available, we integrated them. Although isoforms or chains 

might display different turnovers(Doherty et al., 2012; Wildsmith et al., 2012), most of the observed 

variability was expected to be experimental. We implemented a robust algorithm, where all the 

observations of unique peptides were first combined and fit with our model (Eq. (1)). Then, outlier 

observations were eventually discarded and the integrated model recomputed. A typical example is 

featured in Fig. 1g. Finally, to obtain estimates of model parameter standard deviations, including 1-
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observation proteins, we employed a bootstrap procedure(Davison and Hinkley, 1997).  Details of the 

overall procedure, parameter tables as well as plots for all the selected proteins are provided in SI. 

The found protein CSF dynamics were very diverse (Fig. 2). The distribution of half-lives consisted of a 

bulk of rather short-lived proteins followed by other proteins harboring slower clearance rates (Fig. 2a). 

Many proteins displayed an increase of their labeled proportion over the whole experiment duration, 

e.g. KLK6 or ALB (Fig. 2e-f) despite a tracer injection stop at 9h. 

 

Validation of selected proteins in additional patients 

To confirm wpSILK HRMS results we exploited the MRM variant of our framework on 26 chosen 

proteins. MRM was executed on the CSF samples directly, without prior SCX peptide separation (SI). The 

mathematical model was applied successfully to MRM data (Fig. 3a-b) and the various peptide selection 

filters applied identically. Starting with patient 1, we found MRM RIA curves highly similar to HRMS data 

(Fig. 3c-e) for all the proteins but two, C9 and GC (Fig. 3f-g). The amplitude of the curves were not 

preserved, reflecting differences in the MS technology, but the shape of the curve governed by the 

clearance rate 𝑘𝑐 was well-preserved. The new parametrization of the 2-compartment model we 

introduced in Eq. (1) facilitated the estimation of close 𝑘𝑐 from similar curves but different amplitudes, 

yielding reproducible estimations of the turnover parameter 𝑘𝑐 (Fig. 3h). The parameter 𝜆, more related 

to the amplitude was nonetheless correlated (Fig. 3i). Protein dynamics from patients 2 and 4 (Fig. 3c-g), 

were also close and we could estimate inter-individual turnover parameter 𝑘𝑐 variability in the range 10-

20% for most proteins (Fig. 3j), 𝜆 being more variable (Fig. 3k) and reflecting potential variation in 13C6-

Leu patient labelling efficiencies. The 26 protein model parameters are reported in Table S4. 

 

Dynamic proteome composition 

Among the 197 proteins for which we obtained turnover parameters, 185 were known CSF proteins and 

190 known plasma protein. We used as reference plasma proteome the union of the plasma proteome 

database(Nanjappa et al., 2014) (PPD) and proteins annotated as plasma in UniProtKB/Swissprot. 

Similarly, we defined a reference CSF proteome by taking the union of CSF proteins reported in two 

comprehensive lists(Barkovits et al., 2018; Fernandez-Irigoyen et al., 2015). Potentially novel CSF 

proteins were (HUGO symbols for short) CEP290, FBXW10, KSR2, LOX, SH2D3A, SIK2, SPEN, TMEM212 

and immunoglobulins (IGHV3-43, IGHV3-74, IGKV3D-15, IGKV4-1). FBXW10, SH2D3A, and TMEM212 

were also absent from our reference plasma proteome. By compiling annotations from Reactome, 

KEGG, and GOBP, we classified our 197 proteins in general categories and more detailed functions (Fig. 

4a-b). We covered mainly neuron biology-associated proteins (56), the immune system (44), the 

extracellular matrix (ECM) (37), intracellular proteins (34) likely reflecting cell leakage, and hemostasis 

(26). 

Neural tissue development and renewal proteins were comprised of different subcategories, e.g. 

apolipoproteins involved in lipid delivery, growth factors such as IGF-2 and proteins related to IGF 

transport and uptake, secretogranins, or proteins responsible for small molecule transport such as 

albumin, transferrin, transthyretin, vitamin D binding protein, and alpha-1-acid glycoprotein 1 involved 

in drug uptake for instance. Multiple neuropeptides were also profiled, among which the proprotein 
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convertase subtilisin/kexin type 1 inhibitor (PCSK1N), proenkephalin, prosaposin (PSAP), out at first 

homolog, neural EGFL like 2, chromogranins A and B, etc. Neuronal tissue homeostasis was represented 

by the amyloid beta precursor protein (APP), cystatin C, follistatin like 1, and calsyntenin 1 among 

others. Intracellular and extracellular matrix proteins (ECMs, fibulins, VTN) were likely waste or debris of 

dead or damaged cells in majority. The dynamics of their clearance informs us on the ability of the CSF – 

and the CNS - to normally eliminate them, deviation from these rates might reflect pathological states. 

Interestingly, we could identify distinct dynamics of the precursor and processed peptides of the 

myelinotrophic and neurotrophic factor PSAP involved in lysosomal degradation of sphingolipids (Fig. 4c-

d) and the prohormone convertase 1 inhibitor PCSK1N (Fig. S4). In some cases, peptides from the same 

protein display very different dynamics as exemplified by SPP1 (SupFig. 5). Its peptides segregate 

according to primary sequence positions coherently, which might suggest the existence of undescribed 

post-translational processing of this proteins that plays a major role in tumor progression and 

inflammation(Castello et al., 2012). We also obtained different turnover parameters for the components 

of the complement system, which might reflect overall control through the shortest-lived components 

(C1QB, C1QC, C1R, C1S, and C9). Similarly, at the level of a protein complex, FGA has a much higher 

clearance rate than FGG and might control the fibrinogen assembly in a rate-limiting fashion (SI). 

 

A repertoire of CSF proteotypic turnover biomarkers 

Our data provide a large repertoire of CSF peptides that yielded high-quality MS signals compatible with 

dynamics profiling. More than 100 of the corresponding proteins harbor mutations or display altered 

expression in one or several diseases (Table S5). Among them, neurological diseases including Alzheimer 

(APOE, APP), spinocerebellar ataxia (FAT2), leukoencephalopathy (CSF1R, HTRA1, RNASET2, PSAP) and 

various disorders (AHSG, ATP6AP2, CEP152, CHI3L1, CTSD, DST, RELN, RPS23) are well represented. We 

also found proteins responsible for amyloidosis (FGA, GSN, LYZ, APOA2, APP, B2M, CST3), a situation 

where the investigation of the protein fate, i.e. the balance between production, aggregation, and 

clearance, is essential to understand the underneath pathophysiology(Bateman et al., 2006). We noticed 

16 proteins (ADAM9, CEP290, C3, C4a, C9, CFB, CFH, CFI, CST3, DCN, EFEMP1, HTRA1, IGFBP7, LTBP2, 

RBP4, TGFBI), which are linked to eye diseases, and in particular macular degeneration. We also 

surveyed the clinical trial database (clinicaltrials.gov) and found 23 proteins that are the direct targets of 

tested therapies (Table S6), 4 of them for diseases affecting the CNS and targets for future AD therapy 

(APP, CD14, MMP9, SERPING1). 

Thanks to omics approaches, networks of proteins considered as potential biomarkers for specific 

pathologies were assembled. We mapped our protein list using the “Diseases and Functions Annotation” 

Ingenuity® tool and found a large number of additional Alzheimer disease proteins: A2M, AGT, ALB, 

APOA1, APOA2, APOA4, APOD, C1R, C4A/C4B, C7, C9, CD14, CFB, CFD, CHI3L1, CHL1, CLEC3B, CLU, CST3, 

CTSD, CXCL12, GC, GM2A, HP, HPX, HRG, HTRA1, IGF2, IGFBP2, IGFBP6, IGHA2, IGHG1, IGHM, IGKC, 

KNG1, MMP9, PENK, PLG, PLTP, PROS1, PSAP, PTGDS, RELN, RNASET2, SERPINA1, SERPINA3, SERPINC1, 

SPARC, TIMP1, TTR. Many of them are in fact believed to play a role in the production and regulation of 

Aβ peptides. For example, MMP-9 (Fig. 2b), involved in neuronal plasticity, acts as α-secretase therefore 

reducing Aβ production(Talamagas et al., 2007). ApoE, ALB (Fig. 2f), A2M are described as Aβ carrier. 

CD14 protein (Fig. 2d), which is a receptor for TREM2, a recently identified genetic risk factor of AD is a 
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marker of microglial cells that mediate the phagocytosis of the amyloid component(Bate et al., 2004) 

and contribute to neuroinflammation. 

A general relationship between turnover and protein origin 

The CSF is relatively poor in cells and most proteins are imported from the blood or the CNS with a 

double origin for many of them. We continued our analysis by investigating the relationship between 

the tissue of origin of a protein and its turnover. Due to protein transport in the body, we reasoned that 

mRNA expression was a better locator of synthesis compared to tissue protein abundance. The 

Genotype-Tissue Expression (GTEx) project(GTEx Consortium, 2013) served as reference. A majority of 

our 197 proteins were of CNS or liver origin. We grouped GTEx tissues to obtain CNS, liver, and other 

tissues median transcripts per million (TPM) for each gene (SI). Selecting the top 25 CNS and liver 

transcripts, removing common selections, left us with 22 CNS and 22 liver genes. The corresponding CNS 

proteins displayed significantly shorter half-lives (Fig. 4e) suggesting a potential general trend. We hence 

grouped the whole set of 197 proteins after their half-life in 3 bins: quartiles 1, 4, and 2&3. Comparing 

the ratio of CNS over liver transcript abundance in these 3 groups revealed significant association with 

half-life (Fig. 4f). To complete this analysis we reprocessed published plasma data(Price et al., 2012) with 

our mathematical model and algorithm (SI). For the 41 proteins that were shared by our CSF data and at 

least 2 out of 3 patients of the plasma study, we observed shorter half-life in the CSF (Fig. 4g). This 

significant trend was even stronger for CSF proteins absent from the plasma study, in agreement with 

Fig. 4f. 

We believe that the relationship between half-life and protein origin results from the combined effect of 

CSF renewal on the one hand, and plasma and other tissues acting as a reservoir on the other hand. The 

CSF is mostly produced by the choroid plexus and reabsorbed by arachnoid granulations, its renewal 

occurs 3-4 times/day. Proteins entering the CSF, from the CNS or the plasma, experience this flow which 

adds to protein degradation. Remarkably, median half-life of our 197 proteins is 7.4 hours, a value 

compatible with CSF renewal rate. Nonetheless, a dissymmetry is created with proteins not produced in 

the CNS due to the aforementioned reservoir effect, which might even be amplified by frequent higher 

protein plasma concentrations compared to CSF values. The reservoir effect hides or changes CNS 

clearance rates of proteins that are not present in the CNS predominantly or not blocked at the CSF 

barrier resulting in apparent continuous supply of labelled proteins. One could hypothesize that stability 

could be different for proteins produced in the liver due to the necessity to travel a long way. This 

nonetheless contradicts murine data, where brain proteins were found more stable than liver 

proteins(Price et al., 2010), an observation we could confirm reanalyzing these data and considering 

proteins detected in brain, blood and liver to limit the contribution of intracellular proteins (Fig. S6).  

 

DISCUSSION 

To be able to link molecular biology and physiology in a global picture is a very desirable goal. This is the 

foundation of many past and current efforts and tremendous progresses have been achieved. 

Nevertheless, to fully embrace the complexity of the relationship between locally occurring molecular 

interactions and the interplay of several tissues remains an immense challenge. In this report we 

contributed what we believe could be an important tool to address that task. We propose a 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/710418doi: bioRxiv preprint 

https://doi.org/10.1101/710418
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

methodological framework (wpSILK) to in vivo interrogate clinical samples for protein turnover in a 

highly multiplexed, targeted fashion employing MRM or proteome wide through HRMS. It required the 

development of innovative bioinformatics and mathematical modeling, which were shown to be 

applicable to already published data sets in addition to ours. Recent MS instrument developments such 

as applications ion mobility or further improvements might ultimately alleviate the need for 

chromatography or allow to analyze all the time points at once exploiting isobaric tagging. In such a 

case, wpSILK implementation would be similar to the MRM variant we presented and mathematical 

modeling would remain identical. 

We aimed at characterizing human ventricular CSF in vivo with wpSILK and we could obtain CSF turnover 

parameters for 197 proteins, which is a significant increase over previously existing data covering a 

handful of proteins(Bateman et al., 2006; Crisp et al., 2015; Sato et al., 2018; Wildsmith et al., 2012) (Aβ, 

APOE, SOD1, tau) to the best of our knowledge. We further showed result reproducibility across a panel 

of 26 proteins in the same patient and two additional individuals with an orthogonal MS technology 

(MRM). This panel provided a first estimate of inter-individual turnover variability (10-20%) for late-sixty 

females. Among previous data, only APOE was also present in our study, we found a turnover parameter 

𝑘𝑐 in the range 3-5.5%/day for APOE, whereas previous values in younger (22-49 years old) males were 

in the 1.5-2%/day range. Overall, the inter-individual variability we observed in turnover is compatible 

with what was reported for APOE, SOD1, and tau (17-40%). 

The opportunity to analyze a first large CSF turnover data set unraveled significant correlation between 

CSF clearance rates and the origin of proteins present in this fluid, i.e. CNS versus peripheral. We could 

support this discovery integrating published human(Guan et al., 2012; Wang et al., 2014) and 

murine(Price et al., 2010) data. CNS synthesized proteins tended to be cleared faster, which we believe 

is related to CSF renewal and peripheral tissues (blood, liver, etc.) acting as a reservoir. CSF renewal 

impacts the clearance of every protein present in the CSF, whereas protein entering the CSF through its 

barrier with blood experience a concomitant reservoir effect. The latter mechanism provides labeled 

proteins to CSF for a longer time due to peripheral tissues larger volumes, frequent higher 

concentrations, and delays metabolizing free 13C6-Leu and exporting the labeled proteins towards the 

CSF. That is, the obtained turnover data accurately reflect CSF physiology but access to CNS turnover 

parameters might be limited for proteins that are not CNS-specific, especially if they have a longer half-

life. This observation has consequences on the choice of the tracing protocol suggesting that continuous 

tracing protocols might tend to bias in vivo CSF-inferred CNS dynamics with average body dynamics. This 

is especially true for biomarkers with multiple indications in the CNS and at other organs, e.g. 

transthyretin (TTR) for AD(Velayudhan et al., 2012) and malnutrition or protein metabolic 

impairment(Ingenbleek and Bernstein, 2015). Pulse-chase tracing should be preferred to more 

accurately approach CNS physiology. 

Our complete data set constitutes a broad and diverse repertoire of proteotypic peptides amenable to 

turnover analyses from which the community could compose panels of MRM peptides to conduct 

research on CNS pathologies or biology. In some cases (PSAP and PCSK1N), we were able to distinguish 

between propeptides and active chain dynamics to follow enzymatic processing and maturation. This 

knowledge represents a veritable asset for the community, notably when the metabolism of a specific 

protein will be at the center of the investigation. This is the case in therapeutic research to evaluate the 

on-target effect of a pharmaceutical agent as exemplified on a secretase inhibitor acting on Aβ 

production(Bateman et al., 2009). 
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ONLINE METHODS 

Human samples 

Samples were generated following the clinical protocol “In Vivo Alzheimer Proteomics (PROMARA)” 

(ClinicalTrials Identifier: NCT02263235), which was authorized by the French ethical committee CPP Sud-

Méditerranée IV (#2011-003926-28) and by the ANSM agency (#121457A-11). Patients hospitalized in 

neurosurgery unit having in place a temporary ventricular derivation of the CSF were enrolled. The 

labelling protocol was taken from SILK original publication(Bateman et al., 2006). Briefly, 13C6-Leu 

prepared in accordance with the European Pharmacopeia [19] was intravenously administered. After a 

10min initial bolus at 2 mg/kg, a 8h50 infusion at 2 mg kg/h was performed.  Three to 4 mL of ventricular 

CSF samples were collected at times: 0, 3.02, 6.47, 9.22, 10.17, 12.3, 15.22, 18.13, 21.13, and 24.47 

hours. At times 0 and 9, 3 mL of plasma EDTA were also collected. CSF and blood were aliquoted in 

polypropylene tubes of 1.5 mL and stored at -80°C until further analysis. 

Proteomics and bioinformatics 

Proteomics main steps were briefly mentioned in the Results Section and depicted in Fig. 1b. The main 

steps of the bioinformatics pipeline as well as the mathematical modeling approach are also covered in 

the Results Section and in Fig. 1. Full details for proteomics and bioinformatics are provided as SI. 
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FIGURES 

 

Figure 1. SILK principle. 

(a) Principle of RIA calculation. (b) Proteomics workflow: 1, tracer injection for 9 hours; 2, split of each 

sample in 3 aliquot to increase MS coverage; 3, peptide SCX separation; 5, LC-MS profiles of each 

fraction of each aliquot at every time point; 6, extraction of MS peaks after the peptide library. The (c) 

Bioinformatics workflow. (d) Typical example of a RIA curve featuring gradual incorporation before 

clearance for a clusterin peptide. The size of the dots represents the labelled peptide MS signal intensity 

(arbitrary scale). (e) False discovery rate estimation of the selected observations (one peptide in a 

specific fraction and at a specific charge state). (f) Number of proteins whose mathematical model was 

built on 1, 2, etc. observations. (g) Example of a protein mathematical model for clustering (observations 

are denoted fraction_peptide_charge).  
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Figure 2. Overview of the observed dynamics. 

(a) Histogram of observed half-lives with selected examples indicated. (b-f)  Representative examples of 

distinct dynamics: Matrix metalloproteinase-9 (MMP9); Fibulin-1 (FBLN1), Monocyte differentiation 

antigen CD14; Kallikrein-6 (KLK6); and Serum albumin (ALB). 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/710418doi: bioRxiv preprint 

https://doi.org/10.1101/710418
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

Figure 3. Validation of selected proteins by triple-quad MRM.  

(a) Two clusterin peptides targeted in MRM. (b) Neuropilin 2 MRM data in patient 2 who was followed 

over 41.5 hours. (c) Clusterin dynamics in 3 patients, including HRMS and MRM data in patient 1. 

Original, non-aligned RIA reported in the insert. (d) Serum albumin. (e) Cystatin-C. (f,g) Only 2 cases of 

strong disagreement between HRMS and TQ data (vitamin D-binding protein, GC, and complement 

component C9). (h,i) Reproducibility of patient 1 turnover parameters between HRMS and MRM data. 

Pearson correlation, GC and C9 data excluded (red dots). Pearson’s correlation coefficient and P-value 

by transforming to a Student’s 𝑡 distribution. (j,k) Relative variability of turnover parameters between 

the 3 patient MRM data (left, all proteins), and omitting GC and C9 (right).  
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Figure 4. Dynamic proteome composition and relationship with synthesis location. 

(a,b) General and more detailed categories of proteins for which turnover was determined. (c,d) Mature 

chain Saposin-C versus propeptide Prosaposin dynamics. (e) Top 22 proteins expressed in the CNS and 

the liver (GTEx database(GTEx Consortium, 2013)) display very different stability (**P<0.01, 

Kolmogorov-Smirnov (KS) test). (f) Significant trend over the entire data set relating the CNS/liver TPM 

ratios(GTEx Consortium, 2013) to the first (<0.23), second and third (<0.92), and fourth (<9.56) quartiles 

of half-lives. (***P<0.005, ****P<10-5, KS test). (g) Price et al., human plasma(Price et al., 2012) half-

lives (left) versus the same protein in our CSF data (middle) and our CSF protein not present in the 

plasma data (right, KS test). 
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