

1    **Global genome diversity of the *Leishmania donovani* complex**

2

3    Susanne U. Franssen<sup>1\*</sup>, Caroline Durrant<sup>1</sup>, Olivia Stark<sup>2</sup>, Bettina Moser<sup>2</sup>, Tim Downing<sup>1,3</sup>, Hideo  
4    Imamura<sup>4</sup>, Jean-Claude Dujardin<sup>4,5</sup>, Mandy Sanders<sup>1</sup>, Isabel Mauricio<sup>6</sup>, Michael A. Miles<sup>7</sup>, Lionel F.  
5    Schnur<sup>8</sup>, Charles L. Jaffe<sup>8</sup>, Abdelmajeed Nasereddin<sup>8</sup>, Henk Schallig<sup>9</sup>, Matthew Yeo<sup>7</sup>, Tapan  
6    Bhattacharyya<sup>7</sup>, Mohammad Z. Alam<sup>10</sup>, Matthew Berriman<sup>1</sup>, Thierry Wirth<sup>11,12\*</sup>, Gabriele Schönian<sup>2\*</sup>,  
7    James A. Cotton<sup>1\*</sup>

8

9

10    <sup>1</sup> Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom.

11    <sup>2</sup> Charité Universitätsmedizin, Berlin, Germany.

12    <sup>3</sup> Dublin City University, Dublin, Ireland.

13    <sup>4</sup> Institute of Tropical Medicine, Antwerp, Belgium.

14    <sup>5</sup> Department of Biomedical Sciences, University of Antwerp, Belgium.

15    <sup>6</sup> Universidade Nova de Lisboa Instituto de Higiene e Medicina, Lisboa, Portugal.

16    <sup>7</sup> London School of Hygiene and Tropical Medicine, London, United Kingdom.

17    <sup>8</sup> Kuviv Centre for the Study of Infectious and Tropical Diseases, IMRIC, Hebrew University-Hadassah,  
18    Medical School, Jerusalem, Israel.

19    <sup>9</sup> Amsterdam University Medical Centres – Academic Medical Centre at the University of  
20    Amsterdam, Department of Medical Microbiology – Experimental Parasitology, Amsterdam, The  
21    Netherlands.

22    <sup>10</sup> Department of Parasitology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.

23    <sup>11</sup> Institut de Systématique, Evolution, Biodiversité, ISYEB, Muséum national d'Histoire naturelle,  
24    CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.

25    <sup>12</sup> École Pratique des Hautes Études, PSL, Paris, France.

26

27    \*authors for correspondence

28 **Abstract**

29

30 Protozoan parasites of the *Leishmania donovani* complex – *L. donovani* and *L. infantum* – cause the  
31 fatal disease visceral leishmaniasis. We present the first comprehensive genome-wide global study,  
32 with 151 cultured field isolates representing most of the geographical distribution. *L. donovani* isolates  
33 separated into five groups that largely coincide with geographical origin but vary greatly in diversity.  
34 In contrast, the majority of *L. infantum* samples fell into one globally-distributed group with little  
35 diversity. This picture is complicated by several hybrid lineages. Identified genetic groups vary in  
36 heterozygosity and levels of linkage, suggesting different recombination histories. We characterise  
37 chromosome-specific patterns of aneuploidy and identified extensive structural variation, including  
38 known and suspected drug resistance loci. This study reveals greater genetic diversity than suggested  
39 by geographically-focused studies, provides a resource of genomic variation for future work and sets  
40 the scene for a new understanding of the evolution and genetics of the *Leishmania donovani* complex.

41 **Introduction**

42

43 The genus *Leishmania* is a group of more than 20 species of protozoan parasites that cause the  
44 neglected tropical disease leishmaniasis in humans, but also infect other mammalian hosts.  
45 Leishmaniasis is transmitted by phlebotomine sandflies and exists in four main clinical conditions:  
46 cutaneous leishmaniasis (CL), seen as single and multiple cutaneous lesions; mucocutaneous  
47 leishmaniasis (MCL), presenting in mucosal tissue; diffuse cutaneous leishmaniasis (DCL), seen as  
48 multiple nodular cutaneous lesions covering much of the body; and visceral leishmaniasis (VL, also  
49 known as kala-azar), affecting internal organs. Disease prevalence is estimated at 0.9 to 1.6 million  
50 new cases, mostly of CL, and up to 90,000 new cases per year of VL are associated with a 10% mortality  
51 rate (Alvar et al., 2012; Burza et al., 2018). The form of the disease is largely driven by the species of  
52 *Leishmania* causing the infection but is further influenced by vector biology and host factors,  
53 importantly by host immune status (Burza et al., 2018; McCall et al., 2013). In the mammalian host,  
54 parasites are intracellular, residing mainly in long lived macrophages. In the most severe visceral form,  
55 parasites infect the spleen, liver, bone marrow and lymph nodes, leading to splenomegaly and  
56 hepatomegaly. This results in a range of symptoms including frequent anaemia, thrombocytopenia  
57 and neutropenia, and common secondary infections which are often fatal without successful  
58 treatment (for review see: Rodrigues et al., 2016; Burza et al., 2018), although most infections remain  
59 asymptomatic (Ostyn et al., 2011).

60

61 The key species responsible for VL are *L. donovani* and *L. infantum* (see reviews McCall et al., 2013;  
62 Burza et al., 2018), which together form the *L. donovani* species complex. Both species mainly cause  
63 VL, but for each species atypical cutaneous presentations are common in some foci (reviewed in  
64 Thakur et al. 2018; e.g. Guerbouj et al., 2001; Zhang et al., 2014). Post-kala-azar dermal leishmaniasis  
65 (PKDL), is a common sequel to VL that manifests with dermatological symptoms appearing after  
66 apparent cure of the visceral infection. PKDL is mainly seen on the Indian subcontinent and north-  
67 eastern and eastern Africa following infections caused by *L. donovani* (Zijlstra et al., 2003). *L. donovani*  
68 is considered to be largely anthroponotic even if the parasites can be encountered in animals  
69 (Bhattarai et al., 2010). In contrast, *L. infantum* – like most *Leishmania* species – causes a zoonotic  
70 disease, where dogs are the major domestic reservoir but a range of wild mammals can also be  
71 involved in transmission (Díaz-Sáez et al., 2014; Quinnell and Courtenay, 2009). Both species are  
72 widespread across the globe, with major foci in the Indian subcontinent and East Africa for *L.*  
73 *donovani*, the Mediterranean region and the Middle East for *L. infantum*, and China for both species  
74 (Lun et al., 2015; Lysenko, 1971; Ready, 2014). *L. infantum* has also more recently spread to the New

75 World, via European migration during the 15<sup>th</sup> or 16<sup>th</sup> Century (Leblois et al., 2011), where it was  
76 sometimes described as a third species, *L. chagasi*. Leishmaniasis caused by parasites of the *L.*  
77 *donovani* complex differs across and even within geographical locations in the nature and severity of  
78 clinical symptoms (e.g. Guerbouj et al., 2001; Zhang et al., 2014; Thakur et al., 2018) and in the species  
79 of phlebotomine sandflies that act as vectors (Alemayehu and Alemayehu, 2017).

80

81 For this important human pathogen, there is a long history of interest in many aspects of the basic  
82 biology of *Leishmania*, including extensive interest in epidemiology, cell biology and immunology as  
83 well as the genetics and evolution of these parasites (e.g. Simpson et al., 2006; Quinnell and  
84 Courtenay, 2009; Mougneau et al., 2011). *Leishmania* has two unusual genomic features that  
85 influence its genetics, including mosaic aneuploidy and a complex and predominantly clonal life cycle.  
86 Aneuploidy is the phenomenon where individual chromosomes within a cell are of different copy  
87 numbers, and mosaic aneuploidy is where the pattern of chromosome dosage varies between cells of  
88 a clonal population (Bastien et al., 1990; Sterkers et al., 2011). Genome sequencing studies have  
89 shown extensive aneuploidy in cultured *Leishmania* field isolates (e.g. Downing et al., 2011; Rogers et  
90 al., 2014; Zhang et al., 2014; Imamura et al., 2016). Variation in chromosome dosage appears to be  
91 greater in *in vitro* than *in vivo* in animal models (Dumetz et al., 2017) or human tissues (Domagalska  
92 et al., 2019). However, these studies estimate average dosage of chromosomes in a population of  
93 sequenced cells. Only a few studies have directly investigated mosaicism between cells and these  
94 found it to be extensive both *in vitro* (Sterkers et al., 2011; Lachaud et al., 2014) and *in vivo* (Barja et  
95 al., 2017). Reproduction was originally thought to be predominantly clonal and this is still assumed to  
96 be the only mode of reproduction for the intracellular amastigotes found in the mammalian host. A  
97 number of studies have shown that hybridisation can occur during passage in the sandfly vector. This  
98 was demonstrated experimentally (e.g. Akopyants et al., 2009; Romano et al., 2014; Inbar et al., 2019)  
99 also showing evidence of meiosis (Inbar et al., 2019) and in field isolates through recombination-like  
100 signatures (Cotton et al., 2019; Rogers et al., 2014). However, the incidence of sexual reproduction in  
101 natural populations is still unclear (Ramírez and Llewellyn, 2014).

102

103 Despite this research, much remains unclear about the diversity, evolution and genetics of the *L.*  
104 *donovani* species complex. Difficult and laborious isoenzyme typing (Rioux et al., 1990) dominated the  
105 description of *Leishmania* populations for at least 25 years (Schörian et al., 2011) but suffered from a  
106 critical lack of resolution, leading to convergent signals (Jamjoom et al., 2004). More recent typing  
107 schemes, using variation at small numbers of genetic loci (multi-locus sequence typing, MLST) or  
108 microsatellite repeats (multi locus microsatellite typing, MLMT) improved the resolution of

109 *Leishmania* phylogenies and enabled population genetic analyses (Gouzelou et al., 2012; Herrera et  
110 al., 2017; Kuhls et al., 2007; Schönian et al., 2011) but are hard to compare when using different  
111 marker sets (Schönian et al., 2011). In contrast, genome-wide polymorphism data offers much greater  
112 resolution (Downing et al., 2011; Rogers et al., 2014), provides richer information on aneuploidy and  
113 other classes of variants, i.e. SNPs, small indels and structural variants, and enables insights into gene  
114 function from genome-wide studies of selection and association mapping (Carnielli et al., 2018;  
115 Downing et al., 2011). Moreover, advances in DNA sequencing technology together with the  
116 availability of reference genome assemblies for most of the clinically important species (Downing et  
117 al., 2011; González-de la Fuente et al., 2019; Peacock et al., 2007; Real et al., 2013; Rogers et al., 2011)  
118 in freely accessible public databases (Aslett et al., 2010) now make it feasible to sequence collections  
119 of isolates and determine genetic variants genome-wide. Several studies on the *L. donovani* complex  
120 have applied such an approach including foci in Nepal (16 isolates, Downing et al., 2011), Turkey (12  
121 isolates, Rogers et al., 2014), the Indian subcontinent (204 isolates, Imamura et al., 2016), Ethiopia (41  
122 isolates from 16 patients, Zackay et al., 2018) and Brazil (20 and 26 isolates, respectively, Teixeira et  
123 al., 2017; Carnielli et al., 2018). However, genomic studies to date have addressed genome-wide  
124 diversity in geographically restricted regions, leaving global genome diversity in the species complex  
125 unknown.

126  
127 We present whole-genome sequence data from isolates of the *L. donovani* species complex across its  
128 global distribution. Our genome-wide SNP data revealed the broad population structure of the globally  
129 distributed samples from the species complex. *L. infantum* samples from across the sampling range  
130 fall mainly into a single clade, while *L. donovani* is much more diverse, largely reflecting the  
131 geographical distribution of the parasites. As expected, parasites from the New World appeared  
132 closely related to parasites found in Mediterranean Europe. In addition to SNP diversity, we identified  
133 characteristic aneuploidy patterns of *in vitro* isolates shared across populations, variable  
134 heterozygosity between groups, differing levels of within-group linkage suggesting different  
135 recombination histories within geographical groups, and extensive structural diversity. This analysis  
136 reveals a much greater genetic diversity than suggested by previous, geographically-focused whole-  
137 genome studies in *Leishmania* and sets the scene for a new understanding of evolution in the  
138 *Leishmania donovani* species complex.

139 **Results**

140

141 **Whole-genome variation data of 151 isolates of the *L. donovani* complex**

142

143 We generated paired-end Illumina whole-genome sequence data from promastigote cultures of 98  
144 isolates from the *L. donovani* complex. These sequence data resulted in a median haploid genome  
145 coverage ranging between 10 and 88 (median=27) when mapped against the reference genome  
146 assembly of *L. infantum* JPCM5 (MCAN/ES/98/LLM-724; Peacock *et al.*, 2007). These data were  
147 combined with previously published sequence data for parasites from Turkey (N=11; Rogers *et al.*,  
148 2014), Sri Lanka (N=2; Zhang *et al.*, 2014), Spain (N=1; Peacock *et al.*, 2007), Ethiopia (N=6; Zackay *et*  
149 *al.*, 2018) and a subset of the extensive dataset available from the Indian subcontinent (N=33;  
150 Imamura *et al.*, 2016) resulting in a total of 151 isolates (Table S1, visualised at  
151 [https://microreact.org/project/\\_FWIYSTGf](https://microreact.org/project/_FWIYSTGf); Argimón *et al.*, 2016).

152

153 Accurate SNP variants were identified with a genotype quality of at least 10 (median=99), indicating a  
154 <0.1 (median= $\sim 10^{-10}$ ) probability of an incorrect genotype call across 87.8% of the reference genome.  
155 The remaining 12.2% could not be assayed as short reads could not be uniquely mapped to repetitive  
156 parts of the genome. This identified a total of 395,624 SNP sites out of the  $\sim 32$  Mb reference assembly.  
157 We also used these sequence data to infer extensive gene copy-number variation (91.5% of genes  
158 varied in dosage; 7,625 / 8,330 genes) and larger genome structure variation, including copy numbers  
159 of individual chromosomes (aneuploidy) that is common in *Leishmania*. Together, these data  
160 represent the most comprehensive, global database of genetic variation available for any *Leishmania*  
161 species.

162

163 **Evolution of the *L. donovani* complex**

164

165 Phylogenetic reconstruction based on whole-genome SNP variation clearly separated *L. infantum* from  
166 *L. donovani* strains. *L. donovani* separated into five major groups that coincide with geographic origin  
167 (Fig. 1 A-B, S1). While the inferred root of the phylogeny is between *L. infantum* and *L. donovani*,  
168 groups within *L. donovani* showed similar levels of divergence as between the two species, with the  
169 deepest branches within *L. donovani* in East Africa. The largest *L. donovani* group in our collection,  
170 Ldon1, included samples from the Indian subcontinent, and could be further divided into two  
171 subgroups that separate samples from India, Nepal and Bangladesh from three samples of Sri Lankan  
172 origin; both subgroups displayed strikingly little diversity. The large number of isolates in Ldon1 is due

173 to the extensive previous genomic work in this population (Downing *et al.*, 2011; Imamura *et al.*,  
174 2016), which identified this as the ‘core group’ of strains circulating in the Indian subcontinent. The  
175 genetically and geographically closest group, Ldon2, was restricted to the Nepali highlands and also  
176 includes the more divergent sample, BPK512A1 (Lon2 is the ISC1 group of Imamura *et al.*, 2016). The  
177 latter isolate shared sequence similarity with a far more diverse group, Ldon4, of parasites from the  
178 middle East (Iraq and Saudi Arabia) and Ethiopia (Fig. 1 A). Admixture analysis identified three  
179 additional samples (from Sudan and Israel), to be of mixed origin between groups Ldon3 and Ldon4.  
180 The Ldon3 group is restricted to Sudan and northern Ethiopia and an outlier sampled in Malta likely  
181 represents an imported case. Group Ldon5 displayed little diversity and is mainly confined to Southern  
182 Ethiopia and Kenya, with the rift valley in Ethiopia presumably restricting genetic exchange with Ldon3  
183 through different sandfly vectors (Gebre-Michael *et al.*, 2010; Gebre-Michael and Lane, 1996). A single  
184 outlier from this group, LRC-L51p, was sampled in India and again presumably represents an imported  
185 case of African origin.

186  
187 In contrast, most of the samples of *L. infantum* clustered into a single group, Linf1, with relatively little  
188 diversity within the group but a broad geographical distribution including China, Central Asia, the  
189 Mediterranean Region and Latin America (Fig. 1 A-B). Admixture analysis using different numbers of  
190 total populations ( $K$ ) divided this group into two to three subgroups, separating samples from China,  
191 Uzbekistan and a single Israeli isolate, from two groups that both include samples from South America  
192 and the Mediterranean region. The latter two subgroups correspond to MON1 (31 samples of the  
193 largest subgroup; Fig. 1 A, S1) and non-MON1 zymodemes (6 samples from Europe, Turkey and  
194 Panama) typed by Multilocus Enzyme Electrophoresis (MLEE) (Rioux *et al.*, 1990). Therefore,  
195 geography is not the main driver of parasite diversity in *L. infantum*. In contrast to the low diversity  
196 across the wide geographical range of the core *L. infantum* group, the remaining samples of *L.*  
197 *infantum*, from Cyprus and Çukurova in Turkey, are genetically more distinct and showed unusual  
198 positioning in the phylogeny close to the split between *L. infantum* and *L. donovani*. Samples from the  
199 Çukurova region of Turkey (CUK, green) are considered to be a lineage descended from a single  
200 crossing event of a strain related to the *L. infantum* reference strain JPCM5 and an unknown *L.*  
201 *infantum* or *L. donovani* strain (Rogers *et al.*, 2014). Isolates from Cyprus (CH, grey) are also divergent  
202 from the *L. infantum* group: these parasites were identified as *L. donovani* using MLEE, but the  
203 associated pattern of markers (MON-37) has been shown to be paraphyletic (Alam *et al.*, 2009), so its  
204 species identity might be debateable. Our data suggest that the two slightly different Cypriot isolates  
205 (CH32 and CH34) are admixed between the Çukurova and remaining Cypriot strains. Two more isolates

206 (MAM and EP; from Brazil and Turkey) are both highly divergent from any other isolates in the  
207 phylogeny, and appeared to be admixed between the Linf1 group and other lineages.

208

## 209 **Aneuploidy**

210

211 We observed extensive variation in chromosome copy number in our isolated strains *in vitro*, inferred  
212 from read coverage depth, with the pattern of variation being incongruent with the genome-wide  
213 phylogeny (Fig. S2). Aneuploidy patterns are known to vary over very short time scales, even within  
214 strains and upon changing environments (Dumetz et al., 2017; Lachaud et al., 2014; Sterkers et al.,  
215 2011), although consistent patterns of aneuploidy have been observed within small groups of closely  
216 related cultured field isolates (Imamura et al., 2016). We took advantage of the greater diversity and  
217 global scope of our data to investigate somy patterns of cultivated promastigotes for individual  
218 chromosomes across geographically distinct groups. As expected, the majority of chromosomes had  
219 a median somy of two across isolates, apart from chromosomes 8, 9 and 23 and chromosome 31 with  
220 a median somy of three and four, respectively (Fig. S3 A). However, trisomy was widespread with all  
221 chromosomes being overall trisomic in at least two isolates (2%) and at least half of all chromosomes  
222 were trisomic in  $\geq 28$  isolates (19%). In contrast, monosomy was rare – with only four chromosomes  
223 having somy of one in a single isolate each. As previously reported for *Leishmania* (e.g. Akopyants et  
224 al., 2009; Downing et al., 2011; Imamura et al., 2016), chromosome 31 was unusual in being  
225 dominantly tetrasomic (81% of samples) and we observed no somy levels below three. Much of this  
226 pattern – general disomy, with occasional trisomy and sporadic higher dosage for most chromosomes  
227 – was consistent across the four largest groups, as was the high dosage of chromosome 31 (Fig. S3 B).  
228 Similarly, chromosome 23 showed a tendency to trisomy in all four groups, and chromosomes 8 and  
229 9 were dominantly trisomic in three of the groups. Other chromosomes, including 5, 6, 7, 13, 26 and  
230 35, showed different patterns of dominant somies between groups (Fig. 2 A, S3 B).

231

232 As some chromosomes appeared to be more frequently present at high copy numbers in our isolates,  
233 we investigated whether their copy numbers were also more variable. Copy number variability for  
234 each chromosome was estimated by the standard deviation (sd) in somy and was positively correlated  
235 between the four largest groups (Fig. 2 B). Correlations were much higher between three groups from  
236 diverse sampling locations, while correlations to CUK group sampled in the Çukurova province were  
237 lower, suggesting a distinct pattern of aneuploidy variability in this group – perhaps due to its hybrid  
238 origin (Rogers et al., 2014). Given the positive correlations between independent groups, we  
239 investigated chromosome-specific variation in somy using the four independent groups (Fig. 2 C). A

240 few chromosomes including 19, 27, 28 and 34 showed almost no variation, while several  
241 chromosomes showed very high variation in chromosome copy number with the top five  
242 chromosomes being 23, 5, 8, 6 and 26 (Fig. 2 C). This indicated that some chromosomes have higher  
243 propensities for chromosome aneuploidy turnover than others.

244

## 245 **Heterozygosity**

246

247 Samples varied greatly in genome-wide heterozygosity: 70% of the isolates in our collection showed  
248 extremely low heterozygosity (< 0.004; see Material & Methods) corresponding to 23 - 2,057  
249 (median=80) heterozygous sites per sample. The remaining high-heterozygosity samples largely  
250 showed heterozygosities up to ~0.02 (equivalent to 15,281 heterozygous sites per sample) with a few  
251 outliers exceeding this threshold and reaching a heterozygosity of 0.065 in one isolate (MAM, 50,543  
252 heterozygous sites) (Fig. 3 A). For almost all isolates the majority of genome-wide 10 kb windows had  
253 almost no heterozygous sites: only 11 isolates had a median count of heterozygous sites per window  
254 greater than zero (Fig. S4). This predominant homozygosity for the majority of isolates of the *L.*  
255 *donovani* complex was in striking contrast to expectations for sexual populations under Hardy-  
256 Weinberg equilibrium, or for clonally reproducing populations: clonal reproduction is expected to  
257 increase heterozygosity, as single mutations cannot be assorted to form novel homozygous genotypes  
258 (Balloux et al., 2003; De Meeûs et al., 2006; Weir et al., 2016). Most main groups were dominated by  
259 samples of low heterozygosity, with the exception of the Ldon3 group and the CUK group of hybrid *L.*  
260 *infantum* isolates (Rogers et al., 2014). Other high-heterozygosity isolates mainly appeared in  
261 positions intermediate between large groups in the phylogeny, and showed mixed ancestry in the  
262 admixture analysis (e.g. isolates MAM, EP, CH32, CH34, GE, LEM3472, LRC-L740; Fig. 1 A), leading us  
263 to hypothesise that they represent recent hybrids between the distinct, well-differentiated  
264 populations.

265

266 The low heterozygosity together with strong genetic signatures of inbreeding in *Leishmania* had  
267 previously been identified using MLST and microsatellite data, and has generally been attributed to  
268 extensive selfing between cells from the same clone (Ramírez and Llewellyn, 2014; Rougeron et al.,  
269 2009). However, an alternative explanation could be that frequent aneuploidy turnover also reduces  
270 within-cell heterozygosity if an alternate haplotype is lost during somy reduction (Sterkers et al.,  
271 2014). We therefore tested whether the chromosome-specific variation in somy for each group was  
272 negatively correlated with chromosome-specific sample heterozygosity, as a high turnover rate could  
273 reduce within-strain heterozygosity. Linear regressions for the different groups showed negative

274 slopes for three of seven groups but only the slope for the Ldon3 group was significant after multiple  
275 testing correction (Fig. 3 B). For the four groups, Ldon1, Ldon2, Ldon5 and Linf1, where the regression  
276 slope was almost zero, the chromosomes were almost completely homozygous which might make  
277 potential effects undetectable (Fig. 3 A, B). The data for the remaining groups is in accordance with a  
278 reduction in heterozygosity with aneuploidy turnover. However, to establish presence and effect sizes  
279 of a reduction in heterozygosity due to aneuploidy turnover direct experiments and more accurate  
280 estimates of aneuploidy turnover are needed, particularly using *in vivo* parasites.

281

## 282 **Genomic signatures of hybridisation**

283

284 To clarify the relationship between the high heterozygosity of some isolates, their phylogenetic  
285 position and the signatures of admixture, we examined the genomes of all 46 isolates with genome-  
286 wide heterozygosity greater than 0.004 in more detail for signs of past hybridisation (Fig. 3 A, row A1  
287 in Table 1). This threshold was chosen to include the majority of samples that had putative hybrid  
288 ancestry in the admixture analysis, including the Çukurova samples of known hybrid origin (Rogers et  
289 al., 2014). The few isolates with lower heterozygosity but other evidence of admixture were also  
290 investigated (BPK512A1, L60b, CL-SL and OVN3 between groups, and LRC-L1311, LRC-L1312 and LRC-  
291 L1313 between subgroups; rows A2 & B6 in Table 1), but identifying details beyond admixture results  
292 was difficult with only little SNP information available (e.g. Fig. S5 A, S6 D). For the 46 high-  
293 heterozygosity isolates (Table 1), we inspected the distribution of heterozygous sites along each  
294 genome, looked for blocks of co-inherited variants and investigated patterns of allele-specific read  
295 coverage (i.e. sample allele frequency) across each chromosome. We also inferred maxicircle  
296 kinetoplast (mitochondrial) genome sequences: as kDNA is considered to be uniparentally inherited  
297 (Akopyants et al., 2009; Inbar et al., 2013), the phylogeny for these sequences should identify one  
298 parent of any hybrid isolates.

299

300 28 of the 46 high heterozygosity isolates appeared to represent genuine hybrid lineages (rows B1, B2  
301 and B4 in Table 1), and for 17 of these, likely parents could be assigned (row B2 in Table 1). The largest  
302 group with identified parents is the Turkish isolates from Çukurova province (Rogers et al., 2014).  
303 Additionally, two Cypriot isolates (CH32 and CH34) showed patches of homozygosity closely related  
304 to the remainint Cypriot isolates and the Turkish CUK hybrids (Fig. 4, S5). Therefore, CH32 and CH34  
305 likely represent hybrids closely related to the CUK hybrids, but clearly derived from an independent  
306 hybridisation event to the CUK population itself (Fig. 1 A). Another Turkish isolate (EP) appeared to  
307 have a similar evolutionary history with putative parental strains from the Linf1 and the CUK hybrids

308 (Fig. 4). In contrast to previous hybrids, for EP, there were entire homozygous chromosomes that  
309 resembled either of the two putative parental groups (chromosomes 4, 12, 22 and 32 for one and 11,  
310 23 and 24 for the other parent; Fig. 4). Phylogenetic analysis of the kDNA maxicircles further showed  
311 identical sequences to the Cypriot hybrid samples (CH23 and CH34, Fig. S7, Table S2). Additionally, on  
312 two chromosomes, 5 and 31, allele frequency distributions in this isolate were not compatible with a  
313 single, clonal population of cells suggesting the presence of a second but very closely related low  
314 frequency clone in this sample (Fig. S6, S8). We also saw discrete patches of heterozygous and  
315 homozygous variants in two isolates from East Africa (GE and LEM3472) and one from Israel (LRC-  
316 L740) that did not fit into any of the main *L. donovani* groups. These isolates appeared admixed  
317 between the North Ethiopia / Sudan group (Ldon3) and the *L. donovani* group present in the Middle  
318 East (Ldon4) (Fig. 1 A, 4, S5). For sample GE, kDNA further confirmed that one putative parent came  
319 from the Ldon3 group (Fig. S7). All the isolates from the Ldon3 group, were also highly heterozygous  
320 and so potentially hybrids, but we cannot exclude other possible origins for this heterozygosity (Fig.  
321 4, S5, Table 1).

322  
323 While the CUK samples are known to be of hybrid origin between a JPCM5-like *L. infantum* isolate and  
324 an unidentified parasite from the *L. donovani* complex (Rogers et al., 2014), our admixture results did  
325 not suggest hybridisation between genetic groups present in our dataset. This still held when varying  
326 *K* (the specified number of subpopulations) from 2 to 25 (Fig. S9). We therefore took a haplotype-  
327 based approach to increase the power to identify putative parents of these hybrids similar to that in  
328 Rogers et al. (2014), but now compared them to our larger set of isolates. We identified the largest  
329 homozygous regions in the CUK genomes: i.e. those that were either almost devoid of SNP differences  
330 to the JPCM5 reference genome or those that had a high density of fixed differences but lacked  
331 heterozygous sites, and generated phylogenies for these regions (see Material & Methods). Trees for  
332 the four largest regions (155 kb – 215 kb) placed the JPCM5-like parent close to *L. infantum* samples  
333 from China, rather than to the classical MON-1 and non-MON1 Mediterranean subgroups (Fig. S10 A,  
334 S1). Trees for the putative other parent always grouped CUK with CH samples similarly to the  
335 phylogeny of the maxicircle DNA (Fig. S7), suggesting these as closest putative parents to the CUK  
336 group in our sample collection (Fig. S10 B). The phylogenetic origin of the CH samples, however, still  
337 remained uncertain: in these four phylogenies the CH samples clustered twice next to the Ldon4  
338 group, once next to Linf1 and once between both species. A haplotype-based approach as used for  
339 the CUK samples, and polarizing on several different isolates also did not give clear results (data not  
340 shown).

341

342 **Isolates with genetically distinct (sub-)clones**

343

344 Unexpectedly, for 12 of the remaining isolates (rows B3 – B5 in Table 1), many of the heterozygous  
345 sites were present at extreme (high / low) allele frequencies (11 isolates) or at multiple intermediate  
346 frequencies (isolate GILANI), incompatible with the allele frequencies estimated based on  
347 chromosomal somy (Fig. S6, S8). We suspect that these isolates represent a mixture of multiple cell  
348 clones. However, as low frequency variants are more at risk of being false positive SNP calls, we  
349 additionally selected a subset of the highest confidence SNPs to verify the observed frequency  
350 patterns (see Material & Methods). The MAM isolate had the highest heterozygosity in our collection:  
351 it only had 178 homozygous differences to the JPCM5 reference, but 50,534 heterozygous sites, with  
352 a frequency of the reference allele of ~0.92 across all chromosomes (Fig. S6 A). Phylogenies for  
353 inferred haplotypes of these low-frequency variants were closest but not part of the Ldon5 group (Fig.  
354 S11 A), although this was somewhat variable between chromosomes (Fig. S11 B-D). We concluded  
355 that the MAM sample is most likely a mixture between a JPCM5-like *L. infantum* strain at high (~0.92)  
356 and an *L. donovani* related to Ldon5 at low (0.08) sample frequency. Due to the low frequency of the  
357 2<sup>nd</sup> strain it might be that alleles have been missed for SNP calling and therefore the calculated sample  
358 heterozygosity is lower than expected for interspecies F1 crosses (see Fig. S12). Similarly, the few  
359 heterozygous isolates within several *L. donovani* groups, BPK157A1 in Ldon1, Malta33 and GILANI in  
360 Ldon3, SUKKAR2 and BUMM3 in Ldon4 and LRC-L53 in Ldon5 (Fig. 3 A) all appeared to be mixtures of  
361 two clones from within the respective group (Fig. S11) apart from GILANI, which might be a more  
362 complex mixture (Fig. S6). For two of those samples the high number of within sample SNPs is due to  
363 segregating clones at high and low frequency (BPK157A1, LRC-L53 see row B3 in Table 1). For the other  
364 samples (BUMM3, Malta33, SUKKAR2; row B4 in Table 1) the majority of SNPs comes from  
365 heterozygous sites of a putative hybrid with a smaller fraction of SNPs owing to an additional related  
366 low frequency clone (Fig. S6). For isolate BPK157A1, the only sample in this subset re-grown from a  
367 single cell prior to sequencing (Table S1), is it contradictory to conclude that these variants are due to  
368 a mixture of clones. We ruled out false positive SNP calls by identifying 216 of the highest quality SNPs  
369 that show the extreme frequency pattern (Fig. S13; Material & Methods), however, alternate  
370 explanations including incomplete cloning or changes during *in vitro* culture post-cloning also seem  
371 unlikely. Highly heterozygous isolates from *L. infantum* (ISS174, ISS2426, ISS2429 and Inf152 in Linf1)  
372 also had skewed allele frequency distributions (Fig. S6), and therefore likely represent either mixed  
373 clone isolates or samples that have evolved significant diversity during *in vitro* growth. Samples,  
374 ISS174, ISS2426 and ISS2429, showed a strong positive correlation of chromosomal heterozygosity  
375 and somy not found in any other samples (Fig. S14). We speculate that these isolates may have

376 accumulated substantial numbers of new mutations most likely while maintaining relatively stable  
377 chromosome copy number during *in vitro* culture. Consequently, we expect relatively more mutations  
378 on chromosomes with a higher chromosome dosage, resulting in higher heterozygosity of high somy  
379 chromosomes.

380

### 381 **Population genomic characterisation of the groups**

382

383 Sexual recombination is not obligate in the *Leishmania* lifecycle and appears to be rare in many natural  
384 populations (Imamura et al., 2016; Ramírez and Llewellyn, 2014; Rougeron et al., 2009). We thus  
385 examined patterns of linkage disequilibrium (LD) between *Leishmania* populations as a clue to the  
386 frequency of sexual recombination, bearing in mind that LD can be affected by underlying population  
387 structure. LD estimates further depend on the frequency of recombination, the population size and  
388 the size of sample taken from the population (see also Fig. 5 A versus S15). We subsampled larger  
389 groups to identical groups sizes and found strong differences between groups in LD decay with  
390 genomic distance (Fig. 5 A). Linkage was strongest in the Ldon2 group with mean LD estimates around  
391 0.9 regardless of genomic distance between SNPs, even when comparing sites on different  
392 chromosomes. The *L. infantum* groups (Linf1 and the CUK samples) started with high mean LD values  
393 for 1 kb distances above 0.9 and 0.8, respectively, and dropped down to ~0.5 for 100 kb distances and  
394 to ~0.4 and ~0.3 between chromosomes. Ldon3 and Ldon5 groups had the lowest LD estimates: at up  
395 to 1 kb distances LD had mean values of ~0.8 and 0.6 for Ldon3 and Ldon5, respectively, and dropped  
396 to ~0.2 for distances  $\geq$ 50 kb in both groups and remained at those levels between chromosomes. All  
397 of these trends were relatively consistent among three independent subsamples from each of the  
398 larger groups, but the pattern was more complex for Ldon1. Here, the mean LD had a flat distribution  
399 with genomic distance like the Ldon2 group but at a much lower LD level, and showed significant  
400 variation between 3 subsamples (Fig. 5 B): two of the three subsamples showed low but very variable  
401 LD, and the third showed consistently high LD with distance. Low LD replicates were based on samples  
402 with a greatly reduced number of within-replicate SNPs (683 and 685 in R1 and R3 versus 23,303 SNPs  
403 in replicate R2). In the low LD replicates the majority of SNPs were singletons or present in only two  
404 copies, while in replicate R2 the majority of minor alleles were present at four copies (Fig. S16 A).  
405 Mean LD estimates across the entire Ldon1 group were also consistent at high levels above 0.8  
406 independent of genomic distance (Fig. S15). We conclude that the substructure described for samples  
407 from the Indian subcontinent (Imamura et al., 2016) is responsible for varying LD estimates of the  
408 subsamples, with low LD replicates due to sampling only closely-related subgroups that only differ in

409 a small number of isolate-specific variants that are most parsimoniously described by recent  
410 mutations (Fig. 5 B).

411  
412 The groups also differed in their allele frequency distributions (i.e. the site frequency spectra, SFS). In  
413 a diploid, panmictic and sexually recombining population of constant population size neutral sites  
414 should segregate following a reciprocal function (Ferretti et al., 2018; Wright, 1938). While we would  
415 not predict *Leishmania* populations to exactly follow these expectations, most of the groups (Ldon1,  
416 Ldon2, Ldon5 and Linf1) were dominated by low frequency variants (Fig. S16). In contrast,  
417 intermediate frequency variants were frequent in Ldon3 and even dominated variation in the *L.*  
418 *infantum* CUK samples. The CUK group had been suggested to have largely expanded clonally from a  
419 single hybridisation event between diverse strains with only small fractions of subsequent  
420 hybridisation (Rogers et al., 2014). This scenario might explain why polymorphic sites, generated by  
421 the hybridisation of diverse strains and common to the majority of samples can be at intermediate  
422 population frequency. This group history also agrees with stronger LD for the short range due to  
423 shared blocks that may be broken up by rare subsequent hybridisation and recombination events. For  
424 the Ldon3 group increased intermediate frequency alleles combined with a strong decline of LD with  
425 distance might suggest that old variants are segregating in the group at high frequencies, due to  
426 relatively frequent hybridisation between clones within this group.

427  
428 To identify genomic differences between the major groups, we determined the fixation index ( $F_{ST}$ ) for  
429 all SNP variants among pairs of groups, excluding samples identified as between group mixtures (Tab.  
430 1 B3 & B4) or hybrids between groups (Tab. 1 B2, except CUK samples). Most SNP sites segregating  
431 within each pair of groups were found to be population-specific, i.e.  $F_{ST}=1$ , in 10 out of 15 pairs (Fig. 6  
432 A). This confirmed that most groups are well differentiated from each other with limited gene flow  
433 between them. This high level of differentiation allowed us to identify between 6,769 and 26,145  
434 potentially differentially fixed 'marker' SNPs for each group (Fig. 6 B, Tab. S3). These markers can be  
435 useful in diagnosing parasite infections from particular groups, but might not be fixed in populations  
436 identified based on a few isolates only. Despite this differentiation, many variants remained that were  
437 fixed in combinations of groups. Most of these SNPs supported the species split, between *L. infantum*  
438 and *L. donovani*, with 11,228 differentially fixed SNPs (Fig 6 C). Within-group genetic diversity varied  
439 substantially between groups ranging from less than 1 SNP/10kb within the three CH samples to ~16  
440 SNPs/10kb in Ldon4 (Fig. 6 D). Subsampled groups of seven isolates typically had ~3 SNPs/10kb, while  
441 the two more polymorphic groups of *L. donovani* had SNP densities of ~12 and ~14 SNPs/10kb. Most  
442 within-group segregating variation was group-specific: no SNPs segregated within all eight groups. The

443 most widespread polymorphisms are 4 SNPs shared between 6 groups and 25 SNPs segregating in at  
444 least five of the eight groups and might be putative candidates for SNPs under balancing selection (Fig.  
445 S17, Tab. S4).

446

#### 447 **Copy number variation**

448

449 To assess the importance of genome structure variation in *Leishmania* evolution, we identified all large  
450 sub-chromosome scale copy number variants (CNVs) within our isolates (duplications and deletions  
451  $\geq 25$  kb; see Material & Methods). In total, 940 large CNVs were found, an average of  $\sim 6$  per sample.  
452 75% of these large variants had a length  $\leq 40$  kb and only  $\sim 3\%$  were  $> 100$  kb with the largest variant  
453 of 675 kb (Table S5, Fig. S18). Most of these very large variants ( $> 100$  kb), were located on  
454 chromosome 35 (Fig. S19). The frequency of large CNVs varied among chromosomes but was not  
455 associated with chromosome length for duplications (Pearson correlation -0.06, p-value 0.74) and  
456 showed a weak negative correlation for deletions (Pearson correlation 0.32, p-value 0.05) (Fig. S20).  
457 We identified a total of 183 and 62 “unique” duplications and deletions, respectively, when clustering  
458 each variant type across all samples based on chromosomal location (see Materials and Methods,  
459 Table S6). Approximately half the CNVs were located at the chromosome ends, i.e. 22% and 26%  
460 starting within 15 kb of chromosome 5' and 3' ends, respectively. The majority of large CNVs, were  
461 present in only a single sample, but some were much more widespread – the most frequent being  
462 present in 42 different samples and one variant being present in eight different groups (Fig. S21 A).  
463 We were particularly interested in CNVs that were present in multiple groups or both species, as these  
464 must either have been segregating over a long period of time, or have arisen multiple times  
465 independently in different populations. 28% (69 of 245) of all variants were present in both species  
466 (Fig. S21 B, Table S6) and we investigated those in more detail. We excluded terminal CNVs that  
467 showed a gradual coverage increase towards the ends (e.g. Fig. S22) as these have been suspected to  
468 be due to telomeric amplifications (Bussotti et al., 2018). Several other shared CNVs may represent  
469 collapsed repeat regions in the reference genome assembly at which the repeat number varies  
470 between samples or where coverage is close to our CNV coverage calling thresholds (e.g. Fig. S23), so  
471 we inspected these manually. We describe in detail two examples of clear CNVs, one deletion and one  
472 duplication. The 25 kb long deletion on chromosome 27 was present in 15% of all samples and across  
473 four of the different identified groups including both species (Fig. 7 A). It always occurred on a disomic  
474 background resulting in the loss of the allele. The 17 genes present within the deletion were enriched  
475 for the GO term “ciliation-dependent motility” (Fig. 7 C, Table S6). The duplication found on  
476 chromosome 35 was only present in a single sample in each, the Ldon1 and Linf1, group (Fig. 7 B). In

477 Ldon1, it showed a 2-copy increase on a disomic background, suggesting it to be homozygous for a 1-  
478 copy duplication haplotype or heterozygous with one normal and one 2-copy duplication haplotype.  
479 In contrast, the sample from Linf1 has a single copy duplication on a trisomic background. 66 genes  
480 are present in the insertion enriched for several GO categories (Fig. 7 C).

481  
482 To investigate smaller copy number variants, we determined the copy number (CN) for each gene in  
483 every sample by normalising the median gene coverage by the haploid coverage of the respective  
484 chromosome (see Material & Methods). CN variation affected 91.5% of genes (7,625 / 8330; Fig 9 A,  
485 Table S7), but most CNVs are rare (Fig. 8 A). Only 3.6% of all genes (304) showed a median copy  
486 number change ( $\leq -1$  or  $\geq 1$ ) across samples with 103 genes decreased and 201 increased, respectively  
487 (Fig. 8 B). Enrichment tests for the 103 genes with frequently reduced copy number showed GO term  
488 enrichments for the biological processes “cation transport”, “transmembrane transport”, “fatty acid  
489 biosynthesis” and “localization” (median CN change across samples  $\leq 1$ , Table S8). The 201 genes that  
490 were regularly increased showed enrichment for several terms including but not exclusive to  
491 “modulation by symbiont of host protein kinase-mediated signal transduction”, “cell adhesion” and  
492 “drug catabolic process” (median CN change across samples  $\geq 1$ , for full list see Table S8). Only a subset  
493 of 52 genes (0.6%) showed frequently high gene copy number increases (median  $\geq 4$  across all  
494 samples). Enriched GO terms largely overlapped with enrichments of genes including small CN  
495 increases with the additional enrichment of “response to active oxygen species” (Table S8). Those  
496 categories might indicate functions on which there is frequent or strong selection pressure. Median  
497 gene copy number was positively correlated among groups (Fig. 8 C, Pearson correlation for pairwise  
498 comparisons between 0.8 and 0.91). Despite this extensive variation and shared copy number  
499 variation across groups, gene copy number still retained some phylogenetic signal (Fig. 8 D).

500  
501 **Genetic variation for known drug resistance loci**

502  
503 We investigated how genetic variation previously associated with drug resistance is distributed across  
504 our global collection of isolates, including loci involved in resistance to or treatment failure of  
505 antimonial drugs and Miltefosine (Table 2).

506  
507 The best-known genetic variant associated with drug resistance in *Leishmania* is the so-called H-locus:  
508 amplification of this locus is involved in resistance to several unrelated drugs including antimonials  
509 (Callahan and Beverley, 1991; Dias et al., 2007; Grondin et al., 1993; Leprohon et al., 2009; Marchini  
510 et al., 2003). In our dataset, the four genes at this locus had an increased gene copy number in 30% of

511 the samples (CN +1 to +44) and a reduced copy number in 9% (CN -1; Table 2). 36% of all isolates had  
512 a copy number increase of varying degree with identical insertion boundaries that included the genes  
513 YIP1, MRPA and argininosuccinate synthase (Fig. 9 A, S23 A, Table 2, S7). This duplication was only  
514 present in groups Ldon1 and Ldon3 with median increases of approximately +4 and +2, respectively.  
515 This matches the rationale that parasites on the Indian subcontinent (largely Ldon1) have experienced  
516 the highest drug pressure of antimonials in the past and are suggested to be preadapted to this drug  
517 (Dumetz et al., 2018) and therefore have the highest prevalence and extent of CN increase, followed  
518 by isolates from Sudan and Ethiopia (largely Ldon3). Under this scenario, the Pteridine reductase 1  
519 gene at the H-locus may not be relevant for the drug resistance as it does not show an increased gene  
520 CN along with the other genes at that locus (Fig. 9 A). One other isolate, LRC-L51p (Ldon5, India, 1954),  
521 had a much larger duplication in this region including the entire H-locus and spanning >45 kb with an  
522 enormous increase of ~+44 suggesting an independent insertion or amplification mechanism (Fig. S24  
523 A). Four additional isolates showed a copy number increase for only two of the genes at the locus,  
524 with different boundaries but always including the MRPA gene (Fig. S24 B).

525  
526 Differential expression of the Mitogen-activated protein kinase 1 (MAPK1) has previously been  
527 associated with antimony resistance. However, while (Singh et al., 2010) suggested that  
528 overexpression is associated with resistance, (Ashutosh et al., 2012) suggest the opposite effect  
529 potentially implicating an impact of the genetic background. As expression in *Leishmania* is typically  
530 tightly linked with gene copy number (Barja et al., 2017; Iantorno et al., 2017), we summarised MAPK1  
531 CNVs in our dataset (Table 2). 45% of all isolates had an amplified copy number at this locus, including  
532 all isolates of Ldon1 and Ldon3 with the highest copy number increase between 12 and 41 copies in  
533 Ldon1. Only a single *L. infantum* isolate had a reduced copy number of one (Fig. S25 A, Table 2, S7).  
534 Increased copy number of MAPK1 is thus associated with isolates from geographical locations with  
535 high historical antimonial drug pressures such as the Indian subcontinent and to a lesser extend Africa.  
536 Additionally two isolates, BPK164A1 and BPK649A1 in Ldon1 belong to a highly Sb<sup>V</sup>-resistant clade on  
537 the Indian subcontinent (ISC5; Imamura et al., 2016), which might argue that gene copy number  
538 reduction is not the primary cause of expression decrease at this locus (e.g. Marquis et al., 2005).  
539 Another protein, the membrane channel protein aquaglyceroporin (AQP1), is known to be involved in  
540 the uptake of pentavalent antimonials: reduced copy number and expression have been associated  
541 with drug resistance (Andrade et al., 2016; Gourbal et al., 2004; Monte-Neto et al., 2015; Mukherjee  
542 et al., 2013), as has other genetic variation at this locus (Imamura et al., 2016; Monte-Neto et al.,  
543 2015; Uzcategui et al., 2008). In our dataset, copy number at this locus was reduced in 6% and  
544 increased in 35% of all isolates with small effect sizes (CN -2 to -1 and +1 to +3) but at least one copy

545 of the locus was always present (Fig. S25 B, Table 2, S7). This may reflect resistance levels in the  
546 different populations, although direct sequencing from patient tissues has shown that structural  
547 variants might be lost during parasite isolation or subsequent growth *in vitro* potentially influencing  
548 our observations (Domagalska et al., 2019).

549

550 The Miltefosine transporter in *L. donovani* (LdMT) together with its putative  $\beta$  subunit LdRos3 have  
551 been shown to be essential for phospholipid translocation activity and thereby the potency of the  
552 anti-leishmanial drug Miltefosine (Pérez-Victoria et al., 2006). In a drug selection experiment,  
553 Miltefosine resistant parasites showed common and strain-specific genetic changes including  
554 deletions at LdMT and single base mutations (Shaw et al., 2016). Neither LdMT, Ros3 or a hypothetical  
555 protein deleted together with LdMT in a drug selection experiment (Shaw et al., 2016), showed a  
556 reduction in gene copy number across our 151 isolates (Fig. S25 C, Table S7). Moreover, no SNP  
557 variation was present in two codons (A691, E197; Shaw et al., 2016) putatively associated with drug  
558 resistance (Table 2). The Miltefosine sensitivity locus (MSL) was recently identified as a deletion  
559 associated with treatment failure in a clinical study of patients with VL in Brazil (Carnielli et al., 2018).  
560 In the same study, further genotyping of the MSL showed clinal variation in the presence of the locus  
561 ranging from 95% in North East Brazil to <5% in the South East (N=157), while no deletion was found  
562 in the Old World. The entire locus including all four genes (Table 2) was completely deleted in four of  
563 our samples of the Linf1 group including two of the four samples from Brazil (Cha001 1974, WC 2007)  
564 and in the two samples from Honduras (HN167 1998, HN336 1993) (Fig. 9 B, Table S7) with deletion  
565 boundaries coinciding with those reported previously (Carnielli et al., 2018). Another isolate,  
566 IMT373cl1 (Portugal, 2005) showed a deletion of a larger region (90 kb), reducing the local  
567 chromosome copy number from four to two (Fig. 9 B). The sixth sample that showed a copy number  
568 decrease of all four MSL associated genes, only showed a marginal and variable reduction in coverage  
569 and might be better explained by noise in genome coverage (Fig. 9 B).

570

## 571 **Population and species-specific selection**

572

573 We investigated putative species-specific selection, summarizing selection across the genome using  
574 the numbers of fixed vs. polymorphic and synonymous vs. non-synonymous sites for each species  
575 across all genes: The  $\alpha$  statistic, originally by (Smith and Eyre-Walker, 2002), is a summary statistic,  
576 presenting the proportion of non-synonymous substitutions fixed by positive selection and is often  
577 used to summarize patterns of selection in a species. In both, *L. donovani* and *L. infantum*,  $\alpha$  was  
578 negative, with -0.19 and -0.34, respectively, showing an excess of non-synonymous polymorphisms

579 but lacking a clear biological interpretation. Out of 8,234 genes tested for departure of neutrality using  
580 the McDonald-Kreitman test, only two and four genes showed signs of positive selection (p-value  
581 <0.05, FDR=1) and 11 and 12 an excess of non-synonymous differences (p-value <0.05, FDR=1) for *L.*  
582 *donovani* and *L. infantum*, respectively (Fig. S26, Table S10). Interestingly, one of the genes with  
583 putative signs of adaptive evolution in *L. donovani* (LINF\_330040400 v41, LinJ.33.3220 v38) was  
584 previously associated with *in vivo* enhanced virulence and increased parasite burden *in vitro* for *L.*  
585 *major* when overexpressed (Reiling et al., 2010). In our dataset, this gene contained 9 missense, 3  
586 synonymous and 19 upstream / intergenic SNP-variants differentially fixed between *L. donovani* and  
587 *L. infantum* (Table S3), which might provide further candidates for differences in virulence between  
588 both species.

589  
590 While genetic variants can become fixed in different populations by either neutral forces (genetic drift)  
591 or positive selection, we took advantage of the genetic differentiation between groups to search for  
592 group-specific SNPs that might be of biological relevance. We investigated whether particular  
593 functional categories (biological processes in Gene Ontology) were enriched among genes containing  
594 high or moderate effect group- and species-specific SNP variants. While most enrichment terms were  
595 specific to one marker set, the terms “protein phosphorylation”, “microtubule-based movement” and  
596 “movement of cell or subcellular component” were enriched in five, three and two out of the nine  
597 tested SNP sets, respectively (Fig. S27). More group specific enrichments with potentially more easily  
598 interpretable biological implications include 1) “response to immune response of other organism  
599 involved in symbiotic interaction” for Ldon1, 2) “mismatch repair” for Linf1 in response to oxidative  
600 stress and 3) “pathogenesis” for the *L. infantum* – *L. donovani* species comparison (Fig. S27). For the  
601 species comparison, the enrichment of the term “pathogenesis” was due to fixed differences of  
602 putative functional relevance in genes including a protein containing a Tir chaperone (CesT) domain,  
603 a subtilisin protease and a Bardet-biedl syndrome 1 protein that are putative candidates for increased  
604 pathogenicity in *L. donovani* (Table 3, S3). Tir (translocated intimin receptor) chaperones are a family  
605 of key indicators of pathogenic potential in gram-negative bacteria, where they support the type III  
606 secretion system (Delahay et al., 2002). Proteins containing these domains are almost exclusive to  
607 kinetoplastids among eukaryotes. In *L. donovani*, a subtilisin protease (SUB; Clan SB, family S8), has  
608 been found to alter regulation of the trypanothione reductase system, which is required for reactive  
609 oxygen detoxification in amastigotes and to be necessary for full virulence (Swenerton et al., 2010).  
610 The Bardet-biedl syndrome 1 (BBS1) gene in *Leishmania* was shown to be involved in pathogen  
611 infectivity. BBS1 knock-out strains, as promastigotes *in vitro*, had no apparent defects affecting  
612 growth, flagellum assembly, motility or differentiation but showed a reduced infectivity for *in vitro*

613 macrophages and the ability to infect BALB/c mouse of null parasites was severely compromised (Price  
614 et al., 2013).

615

616

617

## 618 **Discussion**

619

620 Our whole-genome sequence data represents much of the global distribution of the *L. donovani*  
621 species complex. Compared to previous genomic studies on the *L. donovani* complex that focused on  
622 more geographically confined populations (Carnielli et al., 2018; Downing et al., 2011; Imamura et al.,  
623 2016; Rogers et al., 2014; Teixeira et al., 2017; Zackay et al., 2018), our sampling revealed a much  
624 greater genetic diversity. We identified five major clades of *L. donovani* that largely reflect the  
625 geographical distribution of the parasites and their associated vector species (Akhoundi et al., 2016).  
626 Some, such as the Middle Eastern group (Ldon4) are within themselves diverse, and in this case  
627 represented by a few samples, suggesting that a deeper sampling of parasites in this region may be  
628 needed. In contrast, our data confirmed that the low diversity of the main genotype group from the  
629 Indian subcontinent (Imamura et al., 2016) is indeed unusual, which might be related to the epidemic  
630 nature of VL on the Indian subcontinent (Dye and Wolpert, 1988). The main *L. infantum* clade is  
631 widespread and displays little diversity, although two subgroups represent the classical MON-1 and  
632 non-MON-1 Mediterranean lineages (Fig. 1 A, S1). Our data highlighted some weaknesses in previous  
633 typing systems for characterising *Leishmania* using MLEE (Rioux et al., 1990) and MLMT (Schönian et  
634 al., 2011, 2008). We confirmed paraphyly of the zymodeme MON-37 across *L. donovani* groups (see  
635 also Alam et al., 2009) and for the zymodemes MON-30 and MON-82 within the Ldon3 group (Fig. S1).  
636 Moreover, the MON-1 zymodeme groups together parasites from the Mediterranean region and  
637 South America but also a sample from the genetically distinct Asian subgroup (Fig. S1). While data  
638 from MLMT (e.g. Kuhls et al., (2007) and Gouzelou et al., (2012) is much more congruent with our  
639 results, we explain diversity within the previously assigned Cypriot population (Gouzelou et al., 2012)  
640 by hybridisation of some of these isolates (Fig. 1 A, 4, S5 A) and also describe hybridisation in other  
641 groups (e.g. LEM3472, GE and LRC-L740) that was not apparent with microsatellite markers (Kuhls et  
642 al., 2007).

643

644 Two regions emerged as apparent hot-spots of diversity in this species complex. The first is the Eastern  
645 Mediterranean, where the high genetic diversity of parasites assigned to *L. infantum* appears to be  
646 driven by hybridisation between *L. infantum* from China and a genotype identified in Cyprus (CH33,

647 35 and 36) (Fig. S10). This gave rise to the type of isolates from Çukurova described previously (Rogers  
648 et al., 2014) and some other hybrid genotypes from Cyprus (CH32 and 34). The phylogenetic origin of  
649 the five Cypriot isolates has been unclear: they were placed in the paraphyletic zymodeme MON-37  
650 of *L. donovani* (Antoniou et al., 2008) but clustering based on microsatellite profiles placed them in a  
651 clade of *L. infantum* between zymodeme MON-1 and non-MON-1 isolates (Gouzelou et al., 2012). Our  
652 data supports a deep-branching clade of CH and CUK isolates distinct from other isolates of *L. infantum*  
653 (Fig. 1 A, S1) but the precise phylogenetic position of this group varies somewhat for different parts  
654 of the genome (Fig. S10 B). The origin of the pure, i.e. “non-hybrid” Cypriot samples (CH33, 35, 36),  
655 however, is not completely resolved: they could be either a distinct evolutionary lineage within the *L.*  
656 *donovani* complex, or ancient hybrids between *L. infantum* and *L. donovani*. The other geographical  
657 regions of high diversity within the *L. donovani* complex is further South, encompassing the horn of  
658 Africa, the Arabian Peninsula and adjacent areas of the Middle East. Some of this diversity has been  
659 reported showing the presence of two clearly distinct groups of *L. donovani*: one in North-East and  
660 the other one in East Africa (Zackay et al., 2018). This genetic differentiation between both  
661 populations corresponds to their geographic separation by the rift valley in Ethiopia with different  
662 ecology and vector species (Gebre-Michael et al., 2010; Gebre-Michael and Lane, 1996) but hybrids  
663 between these populations have also been described (Cotton et al., 2019). More striking is the high  
664 diversity of *L. donovani* lineages in the Arabian Peninsula and the Middle East, including lineages  
665 present on both sides of the Red Sea and hybrids between groups present in this region and Africa  
666 (Ldon4 and other Ldon). The Middle East and adjacent regions may represent a contact zone where  
667 European, African and Asian lineages meet and occasionally hybridise increasing local genetic  
668 diversity. More extensive sampling in both of these ‘hot-spot’ regions would likely further improve  
669 our knowledge of the genetic diversity within the *L. donovani* species complex. Besides these ‘diversity  
670 hot-spots’, many other regions were sparsely sampled for our data collection and are under-explored  
671 by *Leishmania* researchers in general. We have few isolates from the New World, where VL is present  
672 in much of Central America, and northern South America (but see Teixeira et al., 2017; Carnielli et al.,  
673 2018), and almost none from Central Asia, where both *L. infantum* and *L. donovani* may be present.  
674 From China we only have *L. infantum* isolates, but there is likely to be a diverse range of *L. donovani*-  
675 complex parasites present (Alam et al., 2014; Zhang et al., 2013).

676

677 While we identified many novel lineages that are hybrids between major groups present in our study,  
678 it is likely that even with whole-genome variation data we are missing other admixture events  
679 especially within groups: This is because admixture analysis is most suited to identify admixed samples  
680 between the given  $K$  groups, and heterozygosities are most prominent when hybridisation occurs

681 between genetically diverse strains. All of our known hybrid populations had elevated levels of  
682 heterozygosity, but group Ldon3 was highly heterozygous without distinct genomic patterns of  
683 hybridisation (Fig. 3 A), so the generality of the relationship between heterozygosity and hybrid origin  
684 remains unclear. We investigated evidence from the admixture analysis (Fig. 1 A) at a range of values  
685 of the parameter  $K$  (the number of distinct populations present in the data; Fig. S9), also considering  
686 that many of the assumptions of admixture analysis are likely not to hold in *Leishmania* populations.  
687 However, this approach missed the known hybrids of the Çukurova population, which were  
688 consistently identified as a separate, “pure” population (Fig. S9). Therefore, we used an approach  
689 similar to that used by Rogers *et al.* (2014) to identify genome regions that seem to be homozygous  
690 for each of the two putative parents of hybrid groups. While this haplotype-based approach could  
691 identify parents of the Çukurova isolates, it did not clearly resolve the origins of other samples  
692 suggested to be hybrid by the admixture analysis. This could be either because our sample collection  
693 does not include the parental lineage or a close relative, or because these samples are of much older  
694 hybrid origin, so that subsequent recombination has erased the haplotype block structure we are  
695 looking for (e.g. see Rogers *et al.*, 2014). Different approaches are therefore needed to investigate  
696 recombination within populations. We also used the level of linkage disequilibrium as a measure for  
697 the level of recombination to show that the impact of recombination differs greatly between *L.*  
698 *donovani* complex populations. Additionally, we observed major differences in the allele frequency  
699 spectrum in different populations, in agreement with putative recombination differences and the  
700 unique evolutionary history of each group.

701  
702 The variation in coverage between chromosomes and unusual allele frequency distributions in our  
703 isolates (Fig. S6, S8) confirmed the presence of extensive aneuploidy in our samples, as observed for  
704 all *Leishmania* promastigote cultures investigated to date. In our study, this variation in aneuploidy  
705 between samples reflected differences in the average chromosome copy number of a population of  
706 promastigote cells grown *in vitro* for each isolate, and showed no apparent phylogenetic structure.  
707 We assume that this reflects the well-documented mosaic aneuploidy present across *Leishmania*  
708 populations (Barja *et al.*, 2017; Lachaud *et al.*, 2014; Sterkers *et al.*, 2011), where aneuploidy variation  
709 is present between cells within a parasite population. This variation could be selected upon and  
710 quickly change mean observed aneuploidies in a new environment, such as *in vitro* culture. However,  
711 we cannot directly address aneuploidy mosaicism with our data due to pooling cells within a strain for  
712 sequencing. To address this issue in future studies and understand the dynamics of *Leishmania*  
713 aneuploidy in infections and in culture, single-cell approaches seem to be most promising (e.g.  
714 Dujardin *et al.*, 2014).

715

716 Similarly, our data reflects the genetic variability of a set of isolates grown as promastigotes in axenic  
717 culture *in vitro*, a very different environment, and different life stage of the parasite to that present in  
718 patients. This means that we may miss variation present within host parasite populations that are lost  
719 during parasite isolation or subsequent growth, and that our results may be affected by selection to  
720 *in vitro* environments: In particular aneuploidy patterns in vectors and mammalian hosts were shown  
721 to differ from that in culture (Domagalska et al., 2019; Dumetz et al., 2017), and have other variants  
722 in particular during long term *in vitro* adaptation (e.g. Sinha et al., 2018; Bussotti et al., 2018). Given  
723 the breadth of global isolate collection used in our study it was not possible for us to ensure that  
724 common culture conditions were used for all the isolates. A recent approach to directly sequence  
725 *Leishmania* genomes in clinical samples has given some first insights into the effects of parasite culture  
726 *in vitro* and will allow future studies of *Leishmania* genome variation to avoid this potential bias  
727 (Domagalska et al., 2019).

728

729 Changes in gene dosage – of which aneuploidy is just the most striking example – have been shown  
730 to have a profound impact on gene expression in *Leishmania*, which lacks control of transcription  
731 initiation (Campbell et al., 2003). We identified extensive copy number variation, including both very  
732 large structural duplications and deletions and smaller-scale variants affecting single genes. Large  
733 structural variants are particularly common on chromosome 35. Many CNVs appeared too widespread  
734 across different clades to have evolved neutrally. While it is difficult to identify the specific functional  
735 relevance of these variants without phenotypic or functional information, these might be interesting  
736 targets for future functional studies. Additionally, we demonstrated the utility of genome data to  
737 understand functional genetic variation for variants with previously known impacts on phenotypes  
738 such as drug resistance. The deletion at the MSL locus, previously associated with Miltefosine  
739 treatment failure, is restricted to the New World and was considered to have evolved within Brazil  
740 (see also Carnielli et al., 2018) but for the first time we reported this variant in Honduras, suggesting  
741 a geographically wider distribution than previously appreciated. Moreover, varying local frequencies  
742 and copy numbers of the H-locus and the MAPK1 duplication in India and North East Africa suggest  
743 that resistance against antimonials is more widespread on the Indian subcontinent, and may mediate  
744 a higher level of resistance than in other locations.

745

746 Our study provides the first comprehensive view of the globally distributed, whole-genome genetic  
747 diversity of the two most pathogenic species of *Leishmania* and any *Leishmania* species to date, and

748 will be a valuable resource in investigating individual loci to understand functional variation as well as  
749 placing more focused studies into a global context.

750

751

752

753

754 **Material & Methods**

755

756 Choice of samples & sample origin

757 The genetic diversity of 151, mostly clinical isolates, from the *L. donovani* complex, and spanning the  
758 entire global distribution of this species complex was investigated to reveal the complex's whole-  
759 genome diversity on a global scale. This includes 98 isolates that we sequenced specifically for this  
760 study, complemented with whole-genome sequence data of 33 isolates from the Indian subcontinent  
761 (Imamura et al., 2016), 11 from a known Turkish hybrid population (Rogers et al., 2014), 6 from  
762 Ethiopia (Zackay et al., 2018), 2 from Sri Lanka (Zhang et al., 2014) and the whole-genome sequences  
763 of the JPCM5 reference strain (Peacock et al., 2007). All metadata on the 151 isolates used in this  
764 study are summarized in Table S1 (see also [https://microreact.org/project/\\_FWIYSTGf](https://microreact.org/project/_FWIYSTGf); Argimón et al.,  
765 2016). The promastigote cultures and DNA samples came from different *Leishmania* strain collections:  
766 The London School of Hygiene and Tropical Medicine; The Hebrew University, Jerusalem WHO  
767 Reference Centre for the Leishmanias; The Academic Medical Centre (University of Amsterdam),  
768 Medical Microbiology, Section Parasitology; The Bangladesh Agricultural University, Mymensingh; The  
769 Centre National de Référence des Leishmanioses Montpellier; The Istituto Superiore die Sanità Roma;  
770 The Hellenic Pasteur Institute Athens; The Koret School of Veterinary Medicine, Hebrew University,  
771 Jerusalem, Israel; The Coleção de *Leishmania* do Instituto Oswaldo Cruz, Rio de Janeiro; The University  
772 of Khartoum; The Universitat Autònoma de Barcelona; The Institute of Tropical Medicine Antwerp,  
773 and The Charité University Medicine Berlin. Only previously collected isolates from humans and  
774 animals have been used in this study. The parasites from human cases had been isolated as part of  
775 normal diagnosis and treatment with no unnecessary invasive procedures and data on human isolates  
776 were encoded to maintain anonymity.

777

778 Whole-genome sequencing of clinical isolates

779 The 98 isolates new to this study were grown as *in vitro* promastigote culture to generate material for  
780 sequencing as had been done for the 53 remaining sequenced isolates taken from other sources  
781 (Imamura et al., 2016; Peacock et al., 2007; Rogers et al., 2014; Zackay et al., 2018; Zhang et al., 2014).

782 Of all these, most (62%) were not cloned and regrown from a single cell before sequencing; 6% of the  
783 isolates had been cloned and 32% were of unknown status prior to sequencing (Table S1). Genomic  
784 DNA was extracted by the phenol-chloroform method and quantified on a Qubit (Qubit Fluorometric  
785 Quantitation, Invitrogen, Life Technologies). DNA was then sheared into 400–600-base pair fragments  
786 by focused ultrasonication (Covaris Adaptive Focused Acoustics technology, AFA Inc., Woburn, USA).  
787 Standard indexed Illumina libraries were prepared using the NEBNext DNA Library Prep kit (New  
788 England BioLabs), followed by amplification using KAPA HiFi DNA polymerase (KAPA Biosystems). 100  
789 bp paired-end reads were generated on the Illumina HiSeq 2000 according to the manufacturer's  
790 standard sequencing protocol (Bronner et al., 2014).

791

#### 792 Read mapping pipeline

793 Reads were mapped with SMALT (v0.7.4, Ponstingl, 2010) using the parameters: “–x –y 0.9 –r 1 –i  
794 1500” specifying independence of paired-end reads, a minimum fraction of 0.9 of matching bases,  
795 reporting of a random best alignment if multiple are present and a maximum insert size of 1500 bp  
796 against the reference genome JPCM5 of *L. infantum* (MCAN/ES/98/LLM-877, version v38  
797 <http://tritrypdb.org/tritrypdb/>, Aslett et al., 2010). Mapped reads were sorted and duplicate reads  
798 were marked with picard “MarkDuplicates” (v1.92, <https://broadinstitute.github.io/picard/>). For  
799 resulting individual bam files per isolate, indels were called and local realignment was performed with  
800 GATK using the “RealignerTargetCreator” and “IndelRealigner” with default settings (v2.6-4, DePristo  
801 et al., 2011).

802

#### 803 Reference Genome Masking

804 We developed a custom mask for low complexity regions and gaps in the reference genome. To  
805 identify low complexity regions, we used the mappability tool from the GEM library (release3, Derrien  
806 et al., 2012). Gem-mappability was run with the parameters -l 100 -m 5 -e 0 --max-big-indel-length 0  
807 --min-matched-bases 100, specifying a kmer length of 100 bp with up to 5 bp mismatches. This gives  
808 the number of distinct kmers in the genome, and we calculated the uniqueness of each bp position as  
809 the average number of kmers mapping a bp position. Any base with a GEM uniqueness score >1 was  
810 masked in the reference genome including a flanking region of 100 bp at either side. This approach  
811 masked 12.2 % of the 31.9 Mb genome.

812

#### 813 Determination of sample ploidies

814 To determine individual chromosome ploidies per isolate the GATK tool “DepthOfCoverage” (v2.6-4)  
815 was used to obtain per-base read depth applying parameters: “--omitIntervalStatistics

816 --omitLocusTable --includeRefNSites --includeDeletions --printBaseCounts". Results files were masked  
817 using our custom mask (see "Reference Genome Mask"). Summary statistics were calculated per  
818 chromosome, including median read depth. The median read depth for each chromosome was used  
819 to estimate chromosome copy number, somy, for each sample using an Expectation-Maximization  
820 approach previously described in Iantorno *et al.* (2017). For a few isolates where the coverage model  
821 appeared to be overfitting (high deviance values), somy estimates were manually curated by  
822 examining both coverage and allele frequency data. Where allele frequency distributions did not  
823 support high somy values, they were altered so that the majority of chromosomes were disomic and  
824 individual errors were corrected to fit clear somy expectations suggested by the respective allele  
825 frequency spectra.

826

#### 827 Variant calling

828 Variant calling was done following the Genome Analysis ToolKit (GATK) best-practice guidelines (Van  
829 der Auwera *et al.*, 2013) with modifications detailed below. Given the aneuploidy of *Leishmania*, we  
830 considered individual somies per chromosome and isolate: the GATK "HaplotypeCaller" (v3.4-0) was  
831 used with the parameters "--sample\_ploidy SOMY -dt NONE -annotateNDA" and additionally all-sites  
832 files were generated by adding the additional flag "-ERC BP\_RESOLUTION" to the above  
833 HaplotypeCaller command. Individual vcf files (by chromosome and isolate) were processed, filtered  
834 and combined with custom made scripts implementing the following steps: only SNPs outside masked  
835 regions (see "Reference Genome Masking") were extracted; SNPs were hard filtered excluding  
836 genotypes failing to pass at least one of the following criteria: DP >= 5\*SOMY, DP <=  
837 1.75\*(chromosome median read depth), FS <= 13.0 or missing, SOR <= 3.0 or missing,  
838 ReadPosRankSum <= 3.1 AND ReadPosRankSum >= -3.1, BaseQRankSum <= 3.1 AND BaseQRankSum  
839 >= -3.1, MQRankSum <= 3.1 AND MQRankSum >= -3.1, ClippingRankSum <= 3.1 AND ClippingRankSum  
840 >= -3.1. An additional masking was applied, based on the all-sites base quality information output by  
841 GATK HaplotypeCaller: DP >= 5\*SOMY, DP <= 1.75\*(chromosome median read depth) and GQ >= 10.  
842 Resulting samples were combined and SNPs with all reference or missing genotypes were removed.

843

#### 844 Phylogenetic reconstruction

845 For phylogenetic reconstruction from whole-genome polymorphism data, all 395,602 SNPs that are  
846 polymorphic within the species complex and have a maximum fraction of 0.2 non-called sites across  
847 all 151 samples were considered. Nei's distances were calculated for bi-allelic sites per chromosome  
848 with the R package StAMPP (v1.5.1, Pembleton *et al.*, 2013), which takes into account aneuploidy  
849 across samples. Resulting distances matrices of Nei's distances per chromosome were weighted by

850 chromosomal SNP count forming a consensus distance matrix, that was used for phylogenetic  
851 reconstruction with the Neighbor-Joining algorithm implemented in the R package APE (v5.2, Saitou  
852 and Nei, 1987). For rooting of the tree, the phylogenetic reconstruction was repeated using three  
853 additional outgroup samples, of *L. major* (LmjFried, ENA: ERS001834), *L. tropica* (P283, ENA:  
854 ERS218438) and *L. mexicana* (LmexU1103 v1, ENA: ERS003040) (<https://www.ebi.ac.uk/ena>) using a  
855 total of 1,673,461 SNPs. Bootstrap values were calculated sampling 10 kb windows with replacement  
856 for a total of 1000 bootstrap replicates.

857

858 Phylogenetic reconstruction of maxicircles

859 Sequence reads were mapped against the maxicircle DNA of the reference strain, LV9  
860 (MHOM/ET/1967/HU3), of *L. donovani* (TriTrypDB, with SMALT (v0.7.4, Ponstingl, 2010) using  
861 parameters: “-x -y 0.8 -r -1 -i 1500” and duplicates were marked with picard, “MarkDuplicates” (v1.92,  
862 <https://broadinstitute.github.io/picard/>). Local indel realignments were performed on the resulting  
863 alignments with GATK using the “RealignerTargetCreator” and “IndelRealigner” with default settings  
864 (v3.4-0, DePristo *et al.*, 2011) and subsequently filtered for a mapping quality of 20 and proper pairs  
865 using samtools, parameters “-q 20 -f 0x0002 -F 0x0004 -F 0x0008” (v1.3, Li *et al.*, 2009). SNP and Indel  
866 variants were called, hard filtered, selected and transformed to fasta sequences using GATK tools  
867 HaplotypeCaller, VariantFiltration, and FastaAlternateReferenceMaker (v3.4-0, DePristo *et al.*, 2011).  
868 Used parameters include: “--sample\_ploidy 1 -dt NONE –annotateNDA” (HaplotypeCaller), “QD < 2.0,  
869 MQ < 40.0, FS > 13.0, SOR > 4, BaseQRankSum > 3.1 || BaseQRankSum < -3.1”, ClippingRankSum > 3.1  
870 || ClippingRankSum < -3.1, MQRankSum > 3.1 || MQRankSum < -3.1, ReadPosRankSum > 3.1 ||  
871 ReadPosRankSum < -3.1, DP > \$DPmax, DP < \$DPmin (SNP, VariantFiltration), “QD < 2.0 || FS > 200.0  
872 || ReadPosRankSum < -20.0” (Indel, VariantFiltration) and “-IUPAC 1”  
873 (FastaAlternateReferenceMaker). We determined maxicircle coverage of individual isolates using  
874 samtools depth (v1.3, Li *et al.*, 2009). Not all samples contained sufficient maxicircle DNA (likely  
875 depending on the DNA extraction protocol used) (Fig. 28). We therefore only used samples that had a  
876 medium coverage of at least 20, resulting in 116 samples (Fig. S7, Table S2) for subsequent analysis.  
877 As in the repetitive region of the maxicircle high quality mapping was not present, we assessed the  
878 minimum coverage across all 116 “good coverage” samples and based on that chose a region with a  
879 minimum coverage across those samples >=10 for subsequent alignment and phylogenetic  
880 reconstruction (positions 984 to 17162, Fig. S29). Resulting fasta sequences of individual maxicircles  
881 per isolates were aligned using MUSCLE (v3.8.31, Edgar, 2004) with default parameter settings and  
882 the phylogeny was reconstructed with RaxML (v7.0.3, Stamatakis, 2006) using parameters: “raxmlHPC  
883 -f a -m GTRGAMMA -p 12345 -x 12345 -# 100”.

884

885 Gene-feature annotation and GO enrichment analysis

886 All SNPs were annotated with gene features using the software SNPeff (v4.2, Cingolani *et al.*, 2012).  
887 Annotations for the reference genome *L. infantum*, JPCM5, were downloaded from TriTrypDB (v38,  
888 <http://tritrypdb.org/tritrypdb/>; Aslett *et al.*, 2010). Several gene sets of interest were subsequently  
889 tested for Gene ontology (GO) term enrichments for the ontology “biological process”. GO mappings  
890 for *L. infantum* genes were downloaded from TriTryp DB (v38), where 4704 of the 8299 annotated  
891 coding genes were also associated with a GO term. Enrichment of functional categories was tested  
892 using the weightFisher algorithm in topGO (v2.34.0, Alexa *et al.*, 2006) sing all genes annotated in the  
893 “gene to GO” mapping file (v38). GO categories enriched with a p-value <0.05 (test: weightFish) were  
894 subsequently visualised with Revigo (<http://revigo.irb.hr/>, assessed: February 2019, Supek *et al.*,  
895 2011) using default settings and rectangle sizes normalized by absolute p-value.

896

897 Admixture analysis

898 To run ADMIXTURE (v1.23, Alexander *et al.*, 2009), SNP genotype calls were collapsed from polysomic  
899 to disomic for all chromosomes and only biallelic SNPs were included. SNPs were filtered and thinned,  
900 removing SNPs with copies of the minor allele in less than 4 samples and one of two neighbouring  
901 SNPs with a minimum distance < 250 bp. Using a five-fold cross-validation (CV) the optimal values of  
902  $K$  (smallest CV error) was determined to be 8 and 11 but we also explored different  $K$  values. The value  
903 of  $K$  chosen was robust to different CV schemes.

904

905 Haplotype-based analysis of hybridisation in CUK isolates

906 We used SNP calls across all the original 12 CUK isolates from (Rogers *et al.*, 2014) and called fractions  
907 of heterozygous alleles and homozygous differences from the JPCM5 reference for 5 kb windows for  
908 each isolate. Mean heterozygous and homozygous fractions per window were calculated as genomic  
909 regions with either no SNP or increased number of homozygous differences (see also Rogers *et al.*,  
910 2014). Putative parent blocks were identified using consecutive windows with mean heterozygous  
911 fractions < 0.0002 (1 SNP/ 5 kb) and mean homozygous fractions either < 0.0004 (2 SNP/ 5 kb) for the  
912 JPCM5-like parent or > 0.001 (5 SNP/ 5 kb) for the unknown parent. Those thresholds are quite  
913 stringent (Fig. S30), but allowed conservative calling of putative parental haplotype regions. For each  
914 parent, we selected the largest four regions conditioning on at most one block per chromosome  
915 (resulting block sizes from 150 to 215 kb; Fig. S30). Phylogenetic trees for each of the eight regions  
916 were then reconstructed based on polyploid genotypes of all 151 isolates and three outgroups  
917 (LmjFried, *L. major*, ENA: ERS001834; P283, *L. tropica*, ENA: ERS218438; LmexU1103 v1, *L. mexicana*,

918 ENA: ERS003040; <https://www.ebi.ac.uk/ena>) using Nei's distances calculated with StAMPP (v1.5.1,  
919 Pembleton *et al.*, 2013) and the neighbour joining algorithm (R package ape, v5.2) in R (Supek *et al.*,  
920 2011).

921

922 Population genomics characterisation of the groups

923 For the population genomics characterization of the largest groups identified based on the global  
924 phylogeny (Fig. 1 A), isolates that were identified as putative mixtures of clones were removed. These  
925 were BPK157A1 (Ldon1), GILANI (Ldon3), LRC-L53 (Ldon5) and Inf152 (Linf1) and their respective  
926 groups are indicated by an asterisk (\*). Polyploid genotype calls were transformed into diploid calls by  
927 transforming multiploid heterozygous sites into diploid heterozygous sites and polyploid homozygotes  
928 into diploid homozygotes. Linkage disequilibrium for each group was then calculated as genotype  
929 correlations of the transformed diploid calls for each of the identified groups using vcftools (v0.1.14,  
930 parameter: --geno-r2) (Danecek *et al.*, 2011).  $F_{ST}$  between all group pairs was calculated for  
931 polymorphic sites with a minimum fraction of 0.8 called sites across all 151 samples as described in  
932 "Phylogenetic reconstruction" using the R package StAMPP (v1.5.1, Pembleton *et al.*, 2013).

933

934 Genomic characterisation of individual isolates

935 Within isolate genome-wide heterozygosity was calculated using the formula:  
936  $1 - \frac{1}{m} \sum_{j=1}^m \sum_{i=1}^{k_j} p_{ij}^2$  where  $p_i$  is the frequency of the  $i^{th}$  of  $k$  alleles for a given SNP genotype and the  
937  $1^{st}$  summation sums over all  $m$  SNP loci for a given isolate. Here, genotype calls consider the correct  
938 somy for each isolate and chromosome as described above (see "Variant calling"). Isolate specific  
939 allele frequency spectra were obtained using mapped bam files including duplicate identification and  
940 indel realignment as described above (see "Read Mapping Pipeline"). Bam files were subsequently  
941 filtered using samtools view (v1.3, Li *et al.*, 2009) to only keep reads mapped in a proper pair with  
942 mapping quality of at least 20. Filtered bam files were summarised using samtools mpileup (v1.3, Li *et*  
943 *al.*, 2009) with arguments -d 3500 -B -Q 10 limiting the per sample coverage to 3500, disabling  
944 probabilistic realignment for the computation of base alignment quality and a minimum base quality  
945 of 10. The resulting mpileup file was converted to sync format summarising SNP allele counts per  
946 isolate using the mpileup2sync.jar script requiring a minimum base quality of 20 (Kofler *et al.*, 2011).  
947 For the 11 samples with extreme allele frequency spectra, heterozygous SNPs were additionally  
948 filtered for the highest SNP calling quality of 99 ( $\sim 10^{-10}$  probability of an incorrect genotype) and  
949 alternate alleles that were called as homozygous alternate alleles in at least five other isolates to  
950 confirm the presence of the skewed allele frequency spectra (Fig. S13).

951

952 Copy number variation

953 To identify large copy number variants (CNVs), realigned bam files for each sample were filtered for  
954 proper-pairs and PCR or optical duplicates were removed using samtools view (v1.3, Li *et al.*, 2009).  
955 Coverage was then determined using bedtools genomecov (v2.17.0) with parameters: “-d -split”  
956 (Quinlan and Hall, 2010). Large duplications and deletion were identified using custom scripts in R (R  
957 Core Team, 2013): genome coverage was determined for 5 kb non-overlapping windows along the  
958 genome and each window was normalized by the haploid chromosome coverage of the respective  
959 chromosome and sample (i.e. median chromosome coverage divided by somy of the respective  
960 chromosome and sample). Large CNVs were identified through stretches of consecutive windows with  
961 a somy-normalized median coverage  $\geq 0.5$  or  $\leq -0.5$  for duplications and deletions, respectively, a  
962 minimum length of 25 kb and a median normalized coverage difference across windows  $\geq 0.9$  (Table  
963 S5). To identify large CNVs across samples at identical positions and variant type, we grouped CNVs  
964 across samples with identical start and end positions within  $\leq 10$  kb (i.e. up to two 5 kb windows  
965 difference) (Table S6). CNVs of individual genes were determined based on the filtered bam files (see  
966 genome coverages) with bedtools coverage (v2.17.0) using parameters “-d -split” (Quinlan and Hall,  
967 2010) and analysing gene coverages in R (R Core Team, 2013). The coverage of each gene was  
968 approximated by its median coverage and normalized by the haploid coverage of the respective  
969 chromosome and sample (Table S7).

970

971 Measures of selection

972 For all genes with annotated mRNAs in TriTryp DB (v38, Aslett *et al.*, 2010), the longest open reading  
973 frames (ORF) were identified using a custom python script, resulting in 8,234 genes with and 5 without  
974 ORFs. ORFs were then edited for SNP variation in both species using custom python scripts. Numbers  
975 of polymorphic differences within a species versus fixed differences to an outgroup of both, non-  
976 synonymous and synonymous sites, were annotated and tested for significance with Fisher’s exact  
977 test using previously implemented software (Holloway *et al.*, 2007). This was done for each gene and  
978 species always using the respective other species as an outgroup and removing sites polymorphic in  
979 the outgroup. An unbiased version of the  $\alpha$  statistic (Smith and Eyre-Walker, 2002; Stoletzki and Eyre-  
980 Walker, 2011), intended to estimate the proportion of non-synonymous substitutions fixed by positive  
981 selection across genes, was calculated with a custom R script.

982 **Acknowledgements**

983  
984 We are very grateful to Gad **Baneth** from the Koret School of Veterinary Medicine, Hebrew University  
985 of Jerusalem, Israel; Patrick **Bastien** from the Centre National de Référence des Leishmanioses  
986 Montpellier, France; Sayda Hassan **El Safi** from Khartoum University, Khartoum, Sudan; Olga **Francino**  
987 **Martí** from Universitat Auònoma de Barcelona, Spain; Marina **Gramiccia** from the Infectious Diseases  
988 Department Istituto Superiore di Sanità, Rome, Italy; Ketty **Soteriadou** and Evi **Gouzelou** from the  
989 Hellenic Pasteur Institute Athens, Greece; A.K.M. **Shamsuzzaman** from Mymensingh Medical College  
990 and Be-Nazir **Ahmed** from Institute of Epidemiology, Disease Control and Research, Bangladesh;  
991 Vanessa **Yardley** from the London School of Hygiene & Tropical Medicine and Peter **Walden** from  
992 Charité Universitätsmedizin Berlin, Germany, each for providing isolates for this study. We also thank  
993 the *Leishmania* Collection of the **Oswaldo Cruz Foundation**, Brazil and Elisa **Cupolillo** for providing the  
994 isolates MHOM/BR/2003/MAM, MHOM/BR/2007/ARL, MHOM/BR/2007/WC, voucher numbers:  
995 IOC/L2651, IOC/L2935 and IOC/L3015, respectively. Further details of collaborators and their donated  
996 samples are given in Table S1.

997 This project was supported by Wellcome through its core funding of the Wellcome Sanger Institute  
998 (grants WT098051 and WT206194) and by the EU framework program FP7- 222895.

999

1000

1001

1002 **References**

1003  
1004 Akhouni M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, Sereno D. 2016. A Historical  
1005 Overview of the Classification, Evolution, and Dispersion of *Leishmania* Parasites and  
1006 Sandflies. *PLoS Negl Trop Dis* **10**:e0004349. doi:10.1371/journal.pntd.0004349  
1007 Akopyants NS, Kimblin N, Secundino N, Patrick R, Peters N, Lawyer P, Dobson DE, Beverley  
1008 SM, Sacks DL. 2009. Demonstration of genetic exchange during cyclical development  
1009 of *Leishmania* in the sand fly vector. *Science* **324**:265–268.  
1010 doi:10.1126/science.1169464  
1011 Alam MZ, Haralambous C, Kuhls K, Gouzelou E, Sgouras D, Soteriadou K, Schnur L, Pratlong  
1012 F, Schönian G. 2009. The paraphyletic composition of *Leishmania donovani*  
1013 zymodeme MON-37 revealed by multilocus microsatellite typing. *Microbes Infect*  
1014 **11**:707–715. doi:10.1016/j.micinf.2009.04.009  
1015 Alam MZ, Nakao R, Sakurai T, Kato H, Qu J-Q, Chai J-J, Chang KP, Schönian G, Katakura K.  
1016 2014. Genetic diversity of *Leishmania donovani/infantum* complex in China through  
1017 microsatellite analysis. *Infect Genet Evol* **22**:112–119.  
1018 doi:10.1016/j.meegid.2014.01.019

1019 Alemayehu B, Alemayehu M. 2017. Leishmaniasis: A Review on Parasite, Vector and  
1020 Reservoir Host. *Health Sci J* **11**. doi:10.21767/1791-809X.1000519

1021 Alexa A, Rahnenführer J, Lengauer T. 2006. Improved scoring of functional groups from gene  
1022 expression data by decorrelating GO graph structure. *Bioinformatics* **22**:1600–1607.  
1023 doi:10.1093/bioinformatics/btl140

1024 Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in  
1025 unrelated individuals. *Genome Res* **19**:1655–1664. doi:10.1101/gr.094052.109

1026 Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M. 2012.  
1027 Leishmaniasis Worldwide and Global Estimates of Its Incidence. *PLoS ONE* **7**.  
1028 doi:10.1371/journal.pone.0035671

1029 Andrade JM, Baba EH, Machado-de-Avila RA, Chavez-Olortegui C, Demicheli CP, Frézard F,  
1030 Monte-Neto RL, Murta SMF. 2016. Silver and Nitrate Oppositely Modulate Antimony  
1031 Susceptibility through Aquaglyceroporin 1 in *Leishmania* (Viannia) Species.  
1032 *Antimicrob Agents Chemother* **60**:4482–4489. doi:10.1128/AAC.00768-16

1033 Antoniou M, Haralambous C, Mazeris A, Pratlong F, Dedet J-P, Soteriadou K. 2008.  
1034 *Leishmania donovani* leishmaniasis in Cyprus. *Lancet Infect Dis* **8**:6–7.  
1035 doi:10.1016/S1473-3099(07)70297-9

1036 Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J, Glasner C, Feil EJ, Holden MTG,  
1037 Yeats CA, Grundmann H, Spratt BG, Aanensen DM. 2016. Microreact: visualizing and  
1038 sharing data for genomic epidemiology and phylogeography. *Microb Genomics* **2**.  
1039 doi:10.1099/mgen.0.000093

1040 Ashutosh, Garg M, Sundar S, Duncan R, Nakhси HL, Goyal N. 2012. Downregulation of  
1041 Mitogen-Activated Protein Kinase 1 of *Leishmania donovani* Field Isolates Is  
1042 Associated with Antimony Resistance. *Antimicrob Agents Chemother* **56**:518–525.  
1043 doi:10.1128/AAC.00736-11

1044 Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, Depledge DP,  
1045 Fischer S, Gajria B, Gao X, Gardner MJ, Gingle A, Grant G, Harb OS, Heiges M, Hertz-  
1046 Fowler C, Houston R, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Logan FJ,  
1047 Miller JA, Mitra S, Myler PJ, Nayak V, Pennington C, Phan I, Pinney DF, Ramasamy G,  
1048 Rogers MB, Roos DS, Ross C, Sivam D, Smith DF, Srinivasamoorthy G, Stoeckert CJ,  
1049 Subramanian S, Thibodeau R, Tivey A, Treatman C, Velarde G, Wang H. 2010.  
1050 TriTrypDB: a functional genomic resource for the Trypanosomatidae. *Nucleic Acids  
1051 Res* **38**:D457–D462. doi:10.1093/nar/gkp851

1052 Balloux F, Lehmann L, de Meeùs T. 2003. The population genetics of clonal and partially  
1053 clonal diploids. *Genetics* **164**:1635–1644.

1054 Barja PP, Pescher P, Bussotti G, Dumetz F, Imamura H, Kedra D, Domagalska M, Chaumeau  
1055 V, Himmelbauer H, Pages M, Sterkers Y, Dujardin J-C, Notredame C, Späth GF. 2017.  
1056 Haplotype selection as an adaptive mechanism in the protozoan pathogen  
1057 *Leishmania donovani*. *Nat Ecol Evol* **1**:1961. doi:10.1038/s41559-017-0361-x

1058 Bastien P, Blaineau C, Taminh M, Rioux JA, Roizès G, Pagès M. 1990. Interclonal variations in  
1059 molecular karyotype in *Leishmania infantum* imply a ‘mosaic’ strain structure. *Mol  
1060 Biochem Parasitol* **40**:53–61. doi:10.1016/0166-6851(90)90079-2

1061 Bhattacharai NR, Van der Auwera G, Rijal S, Picado A, Speybroeck N, Khanal B, De Doncker S,  
1062 Das ML, Ostyn B, Davies C, Coosemans M, Berkvens D, Boelaert M, Dujardin J-C.  
1063 2010. Domestic Animals and Epidemiology of Visceral Leishmaniasis, Nepal. *Emerg  
1064 Infect Dis* **16**:231–237. doi:10.3201/eid1602.090623

1065 Bronner IF, Quail MA, Turner DJ, Swerdlow H. 2014. Improved Protocols for Illumina  
1066 Sequencing. *Curr Protoc Hum Genet* **80**:18.2.1-42.  
1067 doi:10.1002/0471142905.hg1802s80

1068 Burza S, Croft SL, Boelaert M. 2018. Leishmaniasis. *The Lancet* **392**:951–970.  
1069 doi:10.1016/S0140-6736(18)31204-2

1070 Bussotti G, Gouzelou E, Boité MC, Kherachi I, Harrat Z, Eddaikra N, Mottram JC, Antoniou M,  
1071 Christodoulou V, Bali A, Guerfali FZ, Laouini D, Mukhtar M, Dumetz F, Dujardin J-C,  
1072 Smirlis D, Lechat P, Pescher P, Hamouchi AE, Lemrani M, Chicharro C, Llanes-  
1073 Acevedo IP, Botana L, Cruz I, Moreno J, Jedd F, Aoun K, Bouratbine A, Cupolillo E,  
1074 Späth GF. 2018. *Leishmania* Genome Dynamics during Environmental Adaptation  
1075 Reveal Strain-Specific Differences in Gene Copy Number Variation, Karyotype  
1076 Instability, and Telomeric Amplification. *mBio* **9**:e01399-18.  
1077 doi:10.1128/mBio.01399-18

1078 Callahan HL, Beverley SM. 1991. Heavy metal resistance: a new role for P-glycoproteins in  
1079 *Leishmania*. *J Biol Chem* **266**:18427–18430.

1080 Campbell DA, Thomas S, Sturm NR. 2003. Transcription in kinetoplastid protozoa: why be  
1081 normal? *Microbes Infect* **5**:1231–1240. doi:10.1016/j.micinf.2003.09.005

1082 Carnielli JBT, Crouch K, Forrester S, Silva VC, Carvalho SFG, Damasceno JD, Brown E, Dickens  
1083 NJ, Costa DL, Costa CHN, Dietze R, Jeffares DC, Mottram JC. 2018. A *Leishmania*  
1084 *infanum* genetic marker associated with miltefosine treatment failure for visceral  
1085 leishmaniasis. *EBioMedicine* **36**:83–91. doi:10.1016/j.ebiom.2018.09.029

1086 Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. 2012. A  
1087 program for annotating and predicting the effects of single nucleotide  
1088 polymorphisms, SnpEff. *Fly (Austin)* **6**:80–92. doi:10.4161/fly.19695

1089 Cotton J, Durrant C, Franssen S, Gelanew T, Hailu A, Mateus D, Sanders M, Berriman M, Volf  
1090 P, Miles M, Yeo M. 2019. Genomic analysis of natural intra-specific hybrids among  
1091 Ethiopian isolates of *Leishmania donovani*. *bioRxiv* 516211. doi:10.1101/516211

1092 Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G,  
1093 Marth GT, Sherry ST, McVean G, Durbin R. 2011. The variant call format and  
1094 VCFtools. *Bioinformatics* **27**:2156–2158. doi:10.1093/bioinformatics/btr330

1095 De Meeûs T, Lehmann L, Balloux F. 2006. Molecular epidemiology of clonal diploids: A quick  
1096 overview and a short DIY (do it yourself) notice. *Infect Genet Evol* **6**:163–170.  
1097 doi:10.1016/j.meegid.2005.02.004

1098 Delahay RM, Shaw RK, Elliott SJ, Kaper JB, Knutton S, Frankel G. 2002. Functional analysis of  
1099 the enteropathogenic *Escherichia coli* type III secretion system chaperone CesT  
1100 identifies domains that mediate substrate interactions. *Mol Microbiol* **43**:61–73.  
1101 doi:10.1046/j.1365-2958.2002.02740.x

1102 DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, Angel G  
1103 del, Rivas MA, Hanna M, McKenna N, Fennell TJ, Kernytsky AM, Sivachenko AY,  
1104 Cibulskis K, Gabriel SB, Altshuler D, Daly MJ. 2011. A framework for variation  
1105 discovery and genotyping using next-generation DNA sequencing data. *Nat Genet*  
1106 **43**:491. doi:10.1038/ng.806

1107 Derrien T, Estellé J, Marco Sola S, Knowles DG, Raineri E, Guigó R, Ribeca P. 2012. Fast  
1108 Computation and Applications of Genome Mappability. *PLoS ONE* **7**.  
1109 doi:10.1371/journal.pone.0030377

1110 Dias FC, Ruiz JC, Lopes WCZ, Squina FM, Renzi A, Cruz AK, Tosi LRO. 2007. Organization of H  
1111 locus conserved repeats in *Leishmania (Viannia) braziliensis* correlates with lack of

1112 gene amplification and drug resistance. *Parasitol Res* **101**:667–676.  
1113 doi:10.1007/s00436-007-0528-5

1114 Díaz-Sáez V, Merino-Espinosa G, Morales-Yuste M, Corpas-López V, Pratlong F, Morillas-  
1115 Márquez F, Martín-Sánchez J. 2014. High rates of *Leishmania infantum* and  
1116 *Trypanosoma nabi* infection in wild rabbits (*Oryctolagus cuniculus*) in sympatric  
1117 and syntrophic conditions in an endemic canine leishmaniasis area: Epidemiological  
1118 consequences. *Vet Parasitol* **202**:119–127. doi:10.1016/j.vetpar.2014.03.029

1119 Domagalska MA, Imamura H, Sanders M, Broeck FV den, Bhattarai NR, Vanaerschot M,  
1120 Maes I, D'Haenens E, Rai K, Rijal S, Berriman M, Cotton JA, Dujardin J-C. 2019.  
1121 Genomes of intracellular Leishmania parasites directly sequenced from patients.  
1122 *bioRxiv* 676163. doi:10.1101/676163

1123 Downing T, Imamura H, Decuyper S, Clark TG, Coombs GH, Cotton JA, Hilly JD, de Doncker  
1124 S, Maes I, Mottram JC, Quail MA, Rijal S, Sanders M, Schönian G, Stark O, Sundar S,  
1125 Vanaerschot M, Hertz-Fowler C, Dujardin J-C, Berriman M. 2011. Whole genome  
1126 sequencing of multiple *Leishmania donovani* clinical isolates provides insights into  
1127 population structure and mechanisms of drug resistance. *Genome Res* **21**:2143–  
1128 2156. doi:10.1101/gr.123430.111

1129 Dujardin J-C, Mannaert A, Durrant C, Cotton JA. 2014. Mosaic aneuploidy in *Leishmania*: the  
1130 perspective of whole genome sequencing. *Trends Parasitol* **30**:554–555.  
1131 doi:10.1016/j.pt.2014.09.004

1132 Dumetz F, Cuypers B, Imamura H, Zander D, D'Haenens E, Maes I, Domagalska MA, Clos J,  
1133 Dujardin J-C, De Muylder G. 2018. Molecular Preadaptation to Antimony Resistance  
1134 in *Leishmania donovani* on the Indian Subcontinent. *mSphere* **3**.  
1135 doi:10.1128/mSphere.00548-17

1136 Dumetz F, Imamura H, Sanders M, Seblova V, Myskova J, Pescher P, Vanaerschot M,  
1137 Meehan CJ, Cuypers B, De Muylder G, Späth GF, Bussotti G, Vermeesch JR, Berriman  
1138 M, Cotton JA, Volf P, Dujardin JC, Domagalska MA. 2017. Modulation of Aneuploidy  
1139 in *Leishmania donovani* during Adaptation to Different In Vitro and In Vivo  
1140 Environments and Its Impact on Gene Expression. *mBio* **8**. doi:10.1128/mBio.00599-  
1141 17

1142 Dye C, Wolpert DM. 1988. Earthquakes, influenza and cycles of Indian kala-azar. *Trans R Soc  
1143 Trop Med Hyg* **82**:843–850. doi:10.1016/0035-9203(88)90013-2

1144 Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high  
1145 throughput. *Nucleic Acids Res* **32**:1792–1797. doi:10.1093/nar/gkh340

1146 Ferretti L, Klassmann A, Rainieri E, Ramos-Onsins SE, Wiehe T, Achaz G. 2018. The neutral  
1147 frequency spectrum of linked sites. *Theor Popul Biol* **123**:70–79.  
1148 doi:10.1016/j.tpb.2018.06.001

1149 Gebre-Michael T, Balkew M, Berhe N, Hailu A, Mekonnen Y. 2010. Further studies on the  
1150 phlebotomine sandflies of the kala-azar endemic lowlands of Humera-Metema  
1151 (north-west Ethiopia) with observations on their natural blood meal sources. *Parasit  
1152 Vectors* **3**:6. doi:10.1186/1756-3305-3-6

1153 Gebre-Michael T, Lane RP. 1996. The roles of *Phlebotomus martini* and *P. celiae* (Diptera:  
1154 Phlebotominae) as vectors of visceral leishmaniasis in the Aba Roba focus, southern  
1155 Ethiopia. *Med Vet Entomol* **10**:53–62. doi:10.1111/j.1365-2915.1996.tb00082.x

1156 González-de la Fuente S, Camacho E, Peiró-Pastor R, Rastrojo A, Carrasco-Ramiro F, Aguado  
1157 B, Requena JM, González-de la Fuente S, Camacho E, Peiró-Pastor R, Rastrojo A,  
1158 Carrasco-Ramiro F, Aguado B, Requena JM. 2019. Complete and de novo assembly of

1159 the *Leishmania braziliensis* (M2904) genome. *Mem Inst Oswaldo Cruz* **114**.  
1160 doi:10.1590/0074-02760180438

1161 Gourbal B, Sonuc N, Bhattacharjee H, Legare D, Sundar S, Ouellette M, Rosen BP,  
1162 Mukhopadhyay R. 2004. Drug Uptake and Modulation of Drug Resistance in  
1163 *Leishmania* by an Aquaglyceroporin. *J Biol Chem* **279**:31010–31017.  
1164 doi:10.1074/jbc.M403959200

1165 Gouzelou E, Haralambous C, Amro A, Mentis A, Pratlong F, Dedet J-P, Votypka J, Volf P,  
1166 Ozensoy Toz S, Kuhls K, Schönian G, Soteriadou K. 2012. Multilocus Microsatellite  
1167 Typing (MLMT) of Strains from Turkey and Cyprus Reveals a Novel Monophyletic *L.*  
1168 *donovani* Sensu Lato Group. *PLoS Negl Trop Dis* **6**. doi:10.1371/journal.pntd.0001507

1169 Grondin K, Papadopoulou B, Ouellette M. 1993. Homologous recombination between direct  
1170 repeat sequences yields P-glycoprotein containing amplicons in arsenite resistant  
1171 *Leishmania*. *Nucleic Acids Res* **21**:1895–1901.

1172 Guerbouj S, Guizani I, Speybroeck N, Le Ray D, Dujardin JC. 2001. Genomic polymorphism of  
1173 *Leishmania infantum*: a relationship with clinical pleomorphism? *Infect Genet Evol*  
1174 **1**:49–59. doi:10.1016/S1567-1348(01)00008-9

1175 Herrera G, Hernández C, Ayala MS, Flórez C, Teherán AA, Ramírez JD. 2017. Evaluation of a  
1176 Multilocus Sequence Typing (MLST) scheme for *Leishmania (Viannia) braziliensis* and  
1177 *Leishmania (Viannia) panamensis* in Colombia. *Parasit Vectors* **10**.  
1178 doi:10.1186/s13071-017-2175-8

1179 Holloway AK, Lawniczak MKN, Mezey JG, Begun DJ, Jones CD. 2007. Adaptive Gene  
1180 Expression Divergence Inferred from Population Genomics. *PLOS Genet* **3**:e187.  
1181 doi:10.1371/journal.pgen.0030187

1182 Huang W, Massouras A, Inoue Y, Peiffer J, Rámia M, Tarone A, Turlapati L, Zichner T, Zhu D,  
1183 Lyman R, Magwire M, Blankenburg K, Carbone MA, Chang K, Ellis L, Fernandez S, Han  
1184 Y, Highnam G, Hjelmen C, Jack J, Javaid M, Jayaseelan J, Kalra D, Lee S, Lewis L,  
1185 Munidasa M, Ongeri F, Patel S, Perales L, Perez A, Pu L, Rollmann S, Ruth R, Saada N,  
1186 Warner C, Williams A, Wu Y-Q, Yamamoto A, Zhang Y, Zhu Y, Anholt R, Korbel J,  
1187 Mittelman D, Muzny D, Gibbs R, Barbadilla A, Johnston S, Stone E, Richards S,  
1188 Deplancke B, Mackay T. 2014. Natural variation in genome architecture among 205  
1189 *Drosophila melanogaster* Genetic Reference Panel lines. *Genome Res* gr.171546.113.  
1190 doi:10.1101/gr.171546.113

1191 Iantorno SA, Durrant C, Khan A, Sanders MJ, Beverley SM, Warren WC, Berriman M, Sacks  
1192 DL, Cotton JA, Grigg ME. 2017. Gene Expression in *Leishmania* Is Regulated  
1193 Predominantly by Gene Dosage. *mBio* **8**. doi:10.1128/mBio.01393-17

1194 Imamura H, Downing T, Van den Broeck F, Sanders MJ, Rijal S, Sundar S, Mannaert A,  
1195 Vanaerschot M, Berg M, De Muylder G, Dumetz F, Cuypers B, Maes I, Domagalska M,  
1196 Decuypere S, Rai K, Uranw S, Bhattacharai NR, Khanal B, Prajapati VK, Sharma S, Stark O,  
1197 Schönian G, De Koning HP, Settim L, Vanhollebeke B, Roy S, Ostyn B, Boelaert M,  
1198 Maes L, Berriman M, Dujardin J-C, Cotton JA. 2016. Evolutionary genomics of  
1199 epidemic visceral leishmaniasis in the Indian subcontinent. *eLife* **5**:e12613.  
1200 doi:10.7554/eLife.12613

1201 Inbar E, Akopyants NS, Charmoy M, Romano A, Lawyer P, Elnaiem D-EA, Kauffmann F,  
1202 Barhoumi M, Grigg M, Owens K, Fay M, Dobson DE, Shaik J, Beverley SM, Sacks D.  
1203 2013. The Mating Competence of Geographically Diverse *Leishmania major* Strains in  
1204 Their Natural and Unnatural Sand Fly Vectors. *PLOS Genet* **9**:e1003672.  
1205 doi:10.1371/journal.pgen.1003672

1206 Inbar E, Shaik J, Iantorno SA, Romano A, Nzelu CO, Owens K, Sanders MJ, Dobson D, Cotton  
1207 JA, Grigg ME, Beverley SM, Sacks D. 2019. Whole genome sequencing of  
1208 experimental hybrids supports meiosis-like sexual recombination in *Leishmania*.  
1209 *PLOS Genet* **15**:e1008042. doi:10.1371/journal.pgen.1008042

1210 Jamjoom MB, Ashford RW, Bates PA, Chance ML, Kemp SJ, Watts PC, Noyes HA. 2004.  
1211 *Leishmania donovani* is the only cause of visceral leishmaniasis in East Africa;  
1212 previous descriptions of *L. infantum* and “*L. archibaldi*” from this region are a  
1213 consequence of convergent evolution in the isoenzyme data. *Parasitology* **129**:399–  
1214 409. doi:10.1017/S0031182004005955

1215 Kofler R, Pandey RV, Schlötterer C. 2011. PoPopulation2: identifying differentiation between  
1216 populations using sequencing of pooled DNA samples (Pool-Seq). *Bioinformatics*  
1217 **27**:3435–3436. doi:10.1093/bioinformatics/btr589

1218 Kuhls K, Keilonat L, Ochsenreither S, Schaar M, Schweynoch C, Presber W, Schönian G. 2007.  
1219 Multilocus microsatellite typing (MLMT) reveals genetically isolated populations  
1220 between and within the main endemic regions of visceral leishmaniasis. *Microbes*  
1221 *Infect* **9**:334–343. doi:10.1016/j.micinf.2006.12.009

1222 Lachaud L, Bourgeois N, Kuk N, Morelle C, Crobu L, Merlin G, Bastien P, Pagès M, Sterkers Y.  
1223 2014. Constitutive mosaic aneuploidy is a unique genetic feature widespread in the  
1224 *Leishmania* genus. *Microbes Infect* **16**:61–66. doi:10.1016/j.micinf.2013.09.005

1225 Leblois R, Kuhls K, François O, Schönian G, Wirth T. 2011. Guns, germs and dogs: On the  
1226 origin of *Leishmania chagasi*. *Infect Genet Evol* **11**:1091–1095.  
1227 doi:10.1016/j.meegid.2011.04.004

1228 Leprohon P, Légaré D, Raymond F, Madore É, Hardiman G, Corbeil J, Ouellette M. 2009.  
1229 Gene expression modulation is associated with gene amplification, supernumerary  
1230 chromosomes and chromosome loss in antimony-resistant *Leishmania infantum*.  
1231 *Nucleic Acids Res* **37**:1387–1399. doi:10.1093/nar/gkn1069

1232 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R.  
1233 2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**:2078–  
1234 2079. doi:10.1093/bioinformatics/btp352

1235 Lun Z-R, Wu M-S, Chen Y-F, Wang J-Y, Zhou X-N, Liao L-F, Chen J-P, Chow LMC, Chang KP.  
1236 2015. Visceral Leishmaniasis in China: an Endemic Disease under Control. *Clin  
1237 Microbiol Rev* **28**:987–1004. doi:10.1128/CMR.00080-14

1238 Lysenko Aja. 1971. Distribution of leishmaniasis in the Old World. *Bull World Health Organ*  
1239 **44**:515–520.

1240 Marchini JFM, Cruz AK, Beverley SM, Tosi LRO. 2003. The H region HTBF gene mediates  
1241 terbinafine resistance in *Leishmania major*. *Mol Biochem Parasitol* **131**:77–81.  
1242 doi:10.1016/S0166-6851(03)00174-9

1243 Marquis N, Gourbal B, Rosen BP, Mukhopadhyay R, Ouellette M. 2005. Modulation in  
1244 aquaglyceroporin AQP1 gene transcript levels in drug-resistant *Leishmania*. *Mol  
1245 Microbiol* **57**:1690–1699. doi:10.1111/j.1365-2958.2005.04782.x

1246 McCall L-I, Zhang W-W, Matlashewski G. 2013. Determinants for the development of  
1247 visceral leishmaniasis disease. *PLoS Pathog* **9**:e1003053.  
1248 doi:10.1371/journal.ppat.1003053

1249 Monte-Neto R, Laffitte M-CN, Leprohon P, Reis P, Frézard F, Ouellette M. 2015.  
1250 Intrachromosomal amplification, locus deletion and point mutation in the  
1251 aquaglyceroporin AQP1 gene in antimony resistant *Leishmania (Viannia) guyanensis*.  
1252 *PLoS Negl Trop Dis* **9**:e0003476. doi:10.1371/journal.pntd.0003476

1253 Mougneau E, Bihl F, Glaichenhaus N. 2011. Cell biology and immunology of *Leishmania*.  
1254 *Immunol Rev* **240**:286–296. doi:10.1111/j.1600-065X.2010.00983.x

1255 Mukherjee A, Boisvert S, Monte-Neto RL do, Coelho AC, Raymond F, Mukhopadhyay R,  
1256 Corbeil J, Ouellette M. 2013. Telomeric gene deletion and intrachromosomal  
1257 amplification in antimony-resistant *Leishmania*. *Mol Microbiol* **88**:189–202.  
1258 doi:10.1111/mmi.12178

1259 Ostyn B, Gidwani K, Khanal B, Picado A, Chappuis F, Singh SP, Rijal S, Sundar S, Boelaert M.  
1260 2011. Incidence of Symptomatic and Asymptomatic *Leishmania donovani* Infections  
1261 in High-Endemic Foci in India and Nepal: A Prospective Study. *PLoS Negl Trop Dis*  
1262 **5**:e1284. doi:10.1371/journal.pntd.0001284

1263 Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, Peters N, Adlem E, Tivey A,  
1264 Aslett M, Kerhornou A, Ivens A, Fraser A, Rajandream M-A, Carver T, Norbertczak H,  
1265 Chillingworth T, Hance Z, Jagels K, Moule S, Ormond D, Rutter S, Squares R,  
1266 Whitehead S, Rabbinowitsch E, Arrowsmith C, White B, Thurston S, Bringaud F,  
1267 Baldauf SL, Faulconbridge A, Jeffares D, Depledge DP, Oyola SO, Hilly JD, Brito LO,  
1268 Tosi LRO, Barrell B, Cruz AK, Mottram JC, Smith DF, Berriman M. 2007. Comparative  
1269 genomic analysis of three *Leishmania* species that cause diverse human disease. *Nat Genet* **39**:839–847. doi:10.1038/ng2053

1270 Pembleton LW, Cogan NOI, Forster JW. 2013. StAMPP: an R package for calculation of  
1271 genetic differentiation and structure of mixed-ploidy level populations. *Mol Ecol  
1272 Resour* **13**:946–952. doi:10.1111/1755-0998.12129

1273 Pérez-Victoria FJ, Sánchez-Cañete MP, Castany S, Gamarro F. 2006. Phospholipid  
1274 translocation and miltefosine potency require both *L. donovani* miltefosine  
1275 transporter and the new protein LdRos3 in *Leishmania* parasites. *J Biol Chem*  
1276 **281**:23766–23775. doi:10.1074/jbc.M605214200

1277 Ponstingl H. 2010. SMALT mapper, <https://www.sanger.ac.uk/science/tools/smalt-0.1279>  
[Httpswwwsangeracuksciencetoolssmalt-0.1280](https://www.sanger.ac.uk/science/tools/smalt-0.1280)

1278 Price HP, Paape D, Hodgkinson MR, Farrant K, Doebl J, Stark M, Smith DF. 2013. The  
1279 *Leishmania major* BBSome subunit BBS1 is essential for parasite virulence in the  
1280 mammalian host. *Mol Microbiol* **90**:597–611. doi:10.1111/mmi.12383

1281 Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic  
1282 features. *Bioinformatics* **26**:841–842. doi:10.1093/bioinformatics/btq033

1283 Quinnell RJ, Courtenay O. 2009. Transmission, reservoir hosts and control of zoonotic  
1284 visceral leishmaniasis. *Parasitology* **136**:1915–1934.  
1285 doi:10.1017/S0031182009991156

1286 R Core Team. 2013. R: A Language and Environment for Statistical Computing.

1287 Ramírez JD, Llewellyn MS. 2014. Reproductive clonality in protozoan pathogens—truth or  
1288 artefact? *Mol Ecol* **23**:4195–4202. doi:10.1111/mec.12872

1289 Ready PD. 2014. Epidemiology of visceral leishmaniasis. *Clin Epidemiol* **6**:147–154.  
1290 doi:10.2147/CLEP.S44267

1291 Real F, Vidal RO, Carazzolle MF, Mondego JMC, Costa GGL, Herai RH, Würtele M, de  
1292 Carvalho LM, e Ferreira RC, Mortara RA, Barbiéri CL, Mieczkowski P, da Silveira JF,  
1293 Briones MR da S, Pereira GAG, Bahia D. 2013. The Genome Sequence of *Leishmania*  
1294 (*Leishmania*) *amazonensis*: Functional Annotation and Extended Analysis of Gene  
1295 Models. *DNA Res Int J Rapid Publ Rep Genes Genomes* **20**:567–581.  
1296 doi:10.1093/dnares/dst031

1300 Reiling L, Chrobak M, Schmetz C, Clos J. 2010. Overexpression of a single *Leishmania major*  
1301 gene enhances parasite infectivity in vivo and in vitro. *Mol Microbiol* **76**:1175–1190.  
1302 doi:10.1111/j.1365-2958.2010.07130.x

1303 Rioux JA, Lanotte G, Serres E, Pratlong F, Bastien P, Perieres J. 1990. Taxonomy of  
1304 *Leishmania*. Use of isoenzymes. Suggestions for a new classification. *Ann Parasitol  
1305 Hum Comp* **65**:111–125. doi:10.1051/parasite/1990653111

1306 Rodrigues V, Cordeiro-da-Silva A, Laforge M, Silvestre R, Estaquier J. 2016. Regulation of  
1307 immunity during visceral *Leishmania* infection. *Parasit Vectors* **9**.  
1308 doi:10.1186/s13071-016-1412-x

1309 Rogers MB, Downing T, Smith BA, Imamura H, Sanders M, Svobodova M, Volf P, Berriman  
1310 M, Cotton JA, Smith DF. 2014. Genomic Confirmation of Hybridisation and Recent  
1311 Inbreeding in a Vector-Isolated *Leishmania* Population. *PLOS Genet* **10**:e1004092.  
1312 doi:10.1371/journal.pgen.1004092

1313 Rogers MB, Hillyer JD, Dickens NJ, Wilkes J, Bates PA, Depledge DP, Harris D, Her Y, Herzyk P,  
1314 Imamura H, Otto TD, Sanders M, Seeger K, Dujardin J-C, Berriman M, Smith DF,  
1315 Hertz-Fowler C, Mottram JC. 2011. Chromosome and gene copy number variation  
1316 allow major structural change between species and strains of *Leishmania*. *Genome  
1317 Res* **21**:2129–2142. doi:10.1101/gr.122945.111

1318 Romano A, Inbar E, Debrabant A, Charmoy M, Lawyer P, Ribeiro-Gomes F, Barhoumi M,  
1319 Grigg M, Shaik J, Dobson D, Beverley SM, Sacks DL. 2014. Cross-species genetic  
1320 exchange between visceral and cutaneous strains of *Leishmania* in the sand fly  
1321 vector. *Proc Natl Acad Sci U S A* **111**:16808–16813. doi:10.1073/pnas.1415109111

1322 Rougeron V, Meeûs TD, Hide M, Waleckx E, Bermudez H, Arevalo J, Llanos-Cuentas A,  
1323 Dujardin J-C, Doncker SD, Ray DL, Ayala FJ, Bañuls A-L. 2009. Extreme inbreeding in  
1324 *Leishmania braziliensis*. *Proc Natl Acad Sci* **106**:10224–10229.  
1325 doi:10.1073/pnas.0904420106

1326 Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing  
1327 phylogenetic trees. *Mol Biol Evol* **4**:406–425.  
1328 doi:10.1093/oxfordjournals.molbev.a040454

1329 Schönian G, Kuhls K, Mauricio IL. 2011. Molecular approaches for a better understanding of  
1330 the epidemiology and population genetics of *Leishmania*. *Parasitology* **138**:405–425.  
1331 doi:10.1017/S0031182010001538

1332 Schönian G, Mauricio I, Gramiccia M, Cañavate C, Boelaert M, Dujardin J-C. 2008.  
1333 Leishmanias in the Mediterranean in the era of molecular epidemiology. *Trends  
1334 Parasitol* **24**:135–142. doi:10.1016/j.pt.2007.12.006

1335 Shaw CD, Lonchamp J, Downing T, Imamura H, Freeman TM, Cotton JA, Sanders M,  
1336 Blackburn G, Dujardin JC, Rijal S, Khanal B, Illingworth CJR, Coombs GH, Carter KC.  
1337 2016. In vitro selection of miltefosine resistance in promastigotes of *Leishmania  
1338 donovani* from Nepal: genomic and metabolomic characterization. *Mol Microbiol*  
1339 **99**:1134–1148. doi:10.1111/mmi.13291

1340 Simpson AGB, Stevens JR, Lukeš J. 2006. The evolution and diversity of kinetoplastid  
1341 flagellates. *Trends Parasitol* **22**:168–174. doi:10.1016/j.pt.2006.02.006

1342 Singh R, Kumar D, Duncan RC, Nakhisi HL, Salotra P. 2010. Overexpression of histone H2A  
1343 modulates drug susceptibility in *Leishmania* parasites. *Int J Antimicrob Agents* **36**:50–  
1344 57. doi:10.1016/j.ijantimicag.2010.03.012

1345 Sinha R, C MM, Raghwan, Das Subhadeep, Das Sonali, Shadab M, Chowdhury R, Tripathy S,  
1346 Ali N. 2018. Genome Plasticity in Cultured *Leishmania donovani*: Comparison of Early  
1347 and Late Passages. *Front Microbiol* **9**. doi:10.3389/fmicb.2018.01279

1348 Smith NGC, Eyre-Walker A. 2002. Adaptive protein evolution in *Drosophila*. *Nature*  
1349 **415**:1022–1024. doi:10.1038/4151022a

1350 Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with  
1351 thousands of taxa and mixed models. *Bioinformatics* **22**:2688–2690.  
1352 doi:10.1093/bioinformatics/btl446

1353 Sterkers Y, Crobu L, Lachaud L, Pagès M, Bastien P. 2014. Parosexuality and mosaic  
1354 aneuploidy in *Leishmania*: alternative genetics. *Trends Parasitol* **30**:429–435.  
1355 doi:10.1016/j.pt.2014.07.002

1356 Sterkers Y, Lachaud L, Crobu L, Bastien P, Pagès M. 2011. FISH analysis reveals aneuploidy  
1357 and continual generation of chromosomal mosaicism in *Leishmania major*. *Cell*  
1358 *Microbiol* **13**:274–283. doi:10.1111/j.1462-5822.2010.01534.x

1359 Stoletzki N, Eyre-Walker A. 2011. Estimation of the neutrality index. *Mol Biol Evol* **28**:63–70.  
1360 doi:10.1093/molbev/msq249

1361 Supek F, Bošnjak M, Škunca N, Šmuc T. 2011. REVIGO Summarizes and Visualizes Long Lists  
1362 of Gene Ontology Terms. *PLOS ONE* **6**:e21800. doi:10.1371/journal.pone.0021800

1363 Swenerton RK, Knudsen GM, Sajid M, Kelly BL, McKerrow JH. 2010. *Leishmania* subtilisin is a  
1364 maturase for the trypanothione reductase system and contributes to disease  
1365 pathology. *J Biol Chem* **285**:31120–31129. doi:10.1074/jbc.M110.114462

1366 Teixeira DG, Monteiro GRG, Martins DRA, Fernandes MZ, Macedo-Silva V, Ansaldi M,  
1367 Nascimento PRP, Kurtz MA, Streit JA, Ximenes MFFM, Pearson RD, Miles A, Blackwell  
1368 JM, Wilson ME, Kitchen A, Donelson JE, Lima JPMS, Jeronimo SMB. 2017.  
1369 Comparative analyses of whole genome sequences of *Leishmania infantum* isolates  
1370 from humans and dogs in northeastern Brazil. *Int J Parasitol* **47**:655–665.  
1371 doi:10.1016/j.ijpara.2017.04.004

1372 Thakur L, Singh KK, Shanker V, Negi A, Jain A, Matlashewski G, Jain M. 2018. Atypical  
1373 leishmaniasis: A global perspective with emphasis on the Indian subcontinent. *PLoS*  
1374 *Negl Trop Dis* **12**:e0006659. doi:10.1371/journal.pntd.0006659

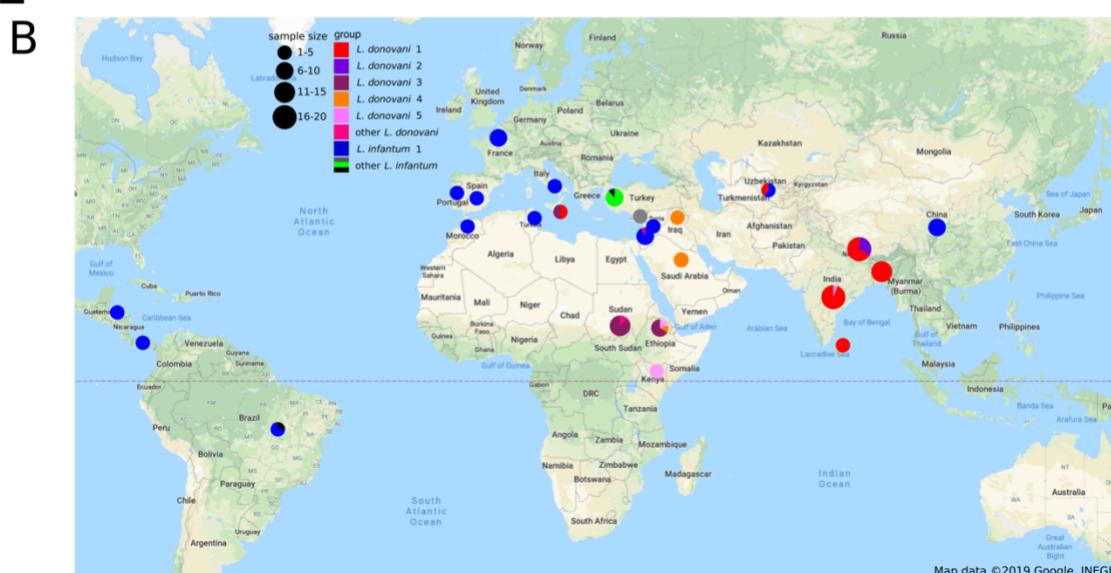
1375 Uzcategui NL, Zhou Y, Figarella K, Ye J, Mukhopadhyay R, Bhattacharjee H. 2008. Alteration  
1376 in glycerol and metalloid permeability by a single mutation in the extracellular C-loop  
1377 of *Leishmania major* aquaglyceroporin LmAQP1. *Mol Microbiol* **70**:1477–1486.  
1378 doi:10.1111/j.1365-2958.2008.06494.x

1379 Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, Jordan  
1380 T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S,  
1381 DePristo MA. 2013. From FastQ data to high confidence variant calls: the Genome  
1382 Analysis Toolkit best practices pipeline. *Curr Protoc Bioinforma Ed Board Andreas*  
1383 *Baxevanis Al* **11**:11.10.1-11.10.33. doi:10.1002/0471250953.bi1110s43

1384 Weir W, Capewell P, Foth B, Clucas C, Pountain A, Steketee P, Veitch N, Koffi M, De Meeûs T,  
1385 Kaboré J, Camara M, Cooper A, Tait A, Jamonneau V, Bucheton B, Berriman M,  
1386 MacLeod A. 2016. Population genomics reveals the origin and asexual evolution of  
1387 human infective trypanosomes. *eLife* **5**:e11473. doi:10.7554/eLife.11473

1388 Wright S. 1938. The Distribution of Gene Frequencies Under Irreversible Mutation. *Proc Natl*  
1389 *Acad Sci U S A* **24**:253–259.

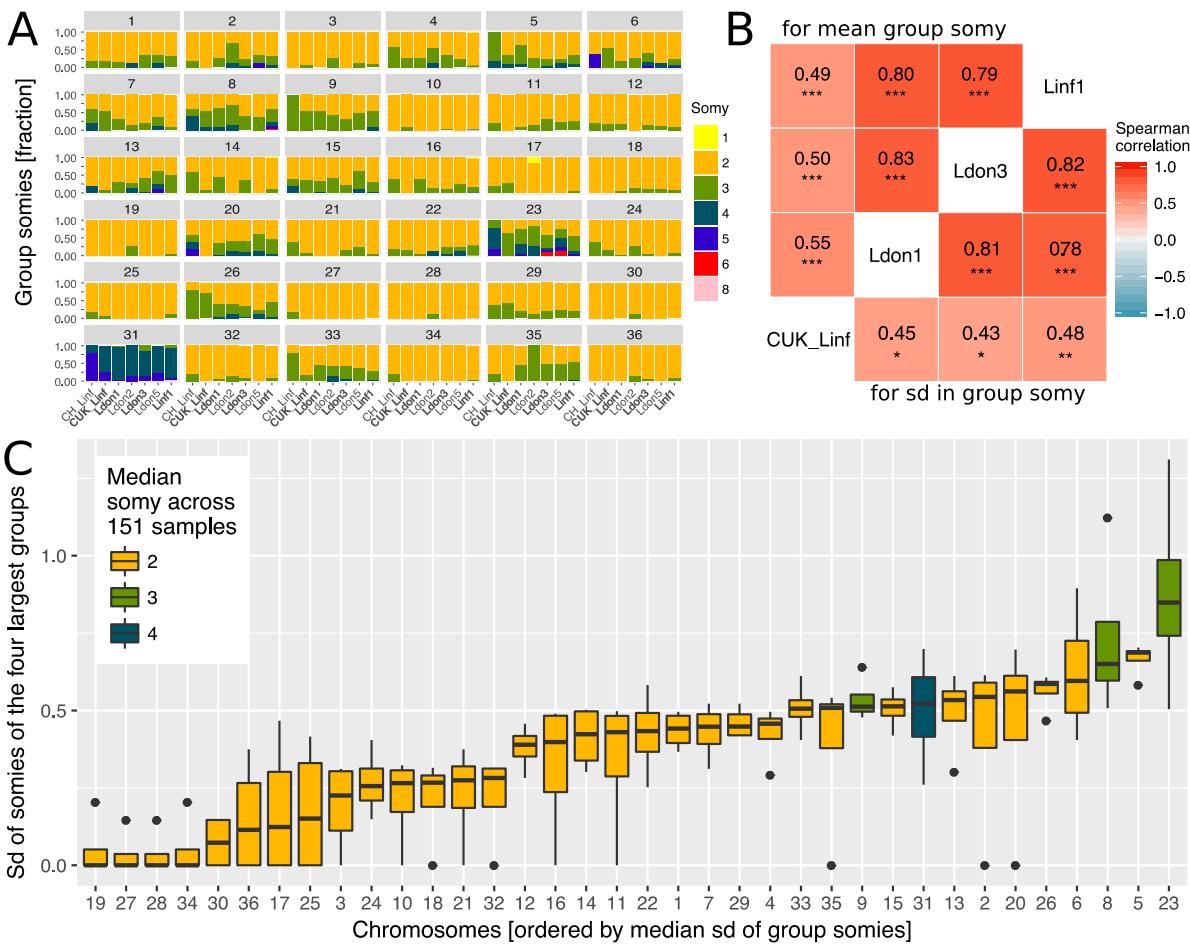
1390 Zackay A, Cotton JA, Sanders M, Hailu A, Nasereddin A, Warburg A, Jaffe CL. 2018. Genome  
1391 wide comparison of Ethiopian *Leishmania donovani* strains reveals differences


1392 potentially related to parasite survival. *PLOS Genet* **14**:e1007133.  
1393 doi:10.1371/journal.pgen.1007133

1394 Zhang C-Y, Lu X-J, Du X-Q, Jian J, Shu L, Ma Y. 2013. Phylogenetic and Evolutionary Analysis  
1395 of Chinese *Leishmania* Isolates Based on Multilocus Sequence Typing. *PLoS ONE* **8**.  
1396 doi:10.1371/journal.pone.0063124

1397 Zhang WW, Ramasamy G, McCall L-I, Haydock A, Ranasighe S, Abeygunasekara P,  
1398 Sirimanna G, Wickremasinghe R, Myler P, Matlashewski G. 2014. Genetic Analysis of  
1399 *Leishmania donovani* Tropism Using a Naturally Attenuated Cutaneous Strain. *PLOS*  
1400 *Pathog* **10**:e1004244. doi:10.1371/journal.ppat.1004244

1401 Zijlstra E, Musa A, Khalil E, El Hassan I, El-Hassan A. 2003. Post-kala-azar dermal  
1402 leishmaniasis. *Lancet Infect Dis* **3**:87–98. doi:10.1016/S1473-3099(03)00517-6  
1403


1404 Figure 1: Sample phylogeny and distribution



1406 Fig. 1: Sample phylogeny and distribution. A) Phylogeny of all 151 samples of the *L. donovani* complex.  
1407 The phylogeny was calculated with neighbour joining based on Nei's distances and rooted based on  
1408 the inclusion of isolates of *L. mexicana* (U1103.v1), *L. tropica* (P283) and *L. major* (LmjFried) (outgroups  
1409 not shown in the phylogeny). Bootstrap values are shown for prominent nodes in the phylogeny as  
1410 black circles for values of 100 and otherwise the respective support value. The groupings shown in the  
1411 outer circles were calculated by admixture with  $K=8$ ,  $K=11$  and  $K=13$  (see Material & Methods). Groups  
1412 labelled with different colours were defined based on the phylogeny and include monophyletic groups  
1413 as well as groups that are polyphyletic and/ or largely influenced by hybridisation (indicated by  
1414 "other"). B) Map of the sampling locations. Groups are indicated by the different colours. Sample sizes  
1415 by country of origin are visualised by the sizes of the circles.

1416 Figure 2: Chromosome-specific somy variability

1417



1418

1419

1420 Chromosome-specific somy variability. A) Somy variability is displayed for the 7 largest groups ( $\geq 5$  isolates) for each chromosome as fractions of isolates with the respective somes. The four largest groups ( $\geq 9$  samples per group) are indicated in bold. B) The heatmap shows the Spearman correlations of chromosome-specific somy statistics between the four largest groups, measured as the mean group somies (upper triangle) and the standard deviation (sd) of chromosome somies (lower triangle), respectively. False discovery rates (FDR) of each correlation are indicated by asterisks (\*:  $<0.05$ , \*\*:  $<0.01$ , \*\*\*:  $<0.001$ ). C) Boxplots show the distribution of variability in chromosome-specific somy across the four largest groups used as independent replicates across the species range. Medians estimate the chromosome-specific variation in somy.

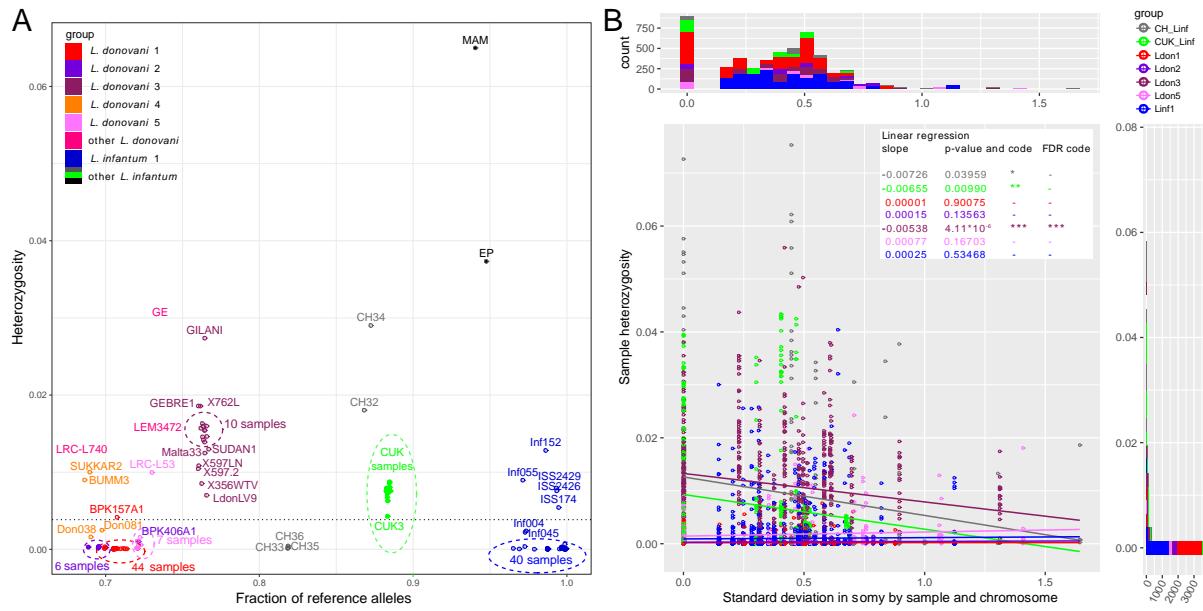
1421

1422

1423

1424

1425


1426

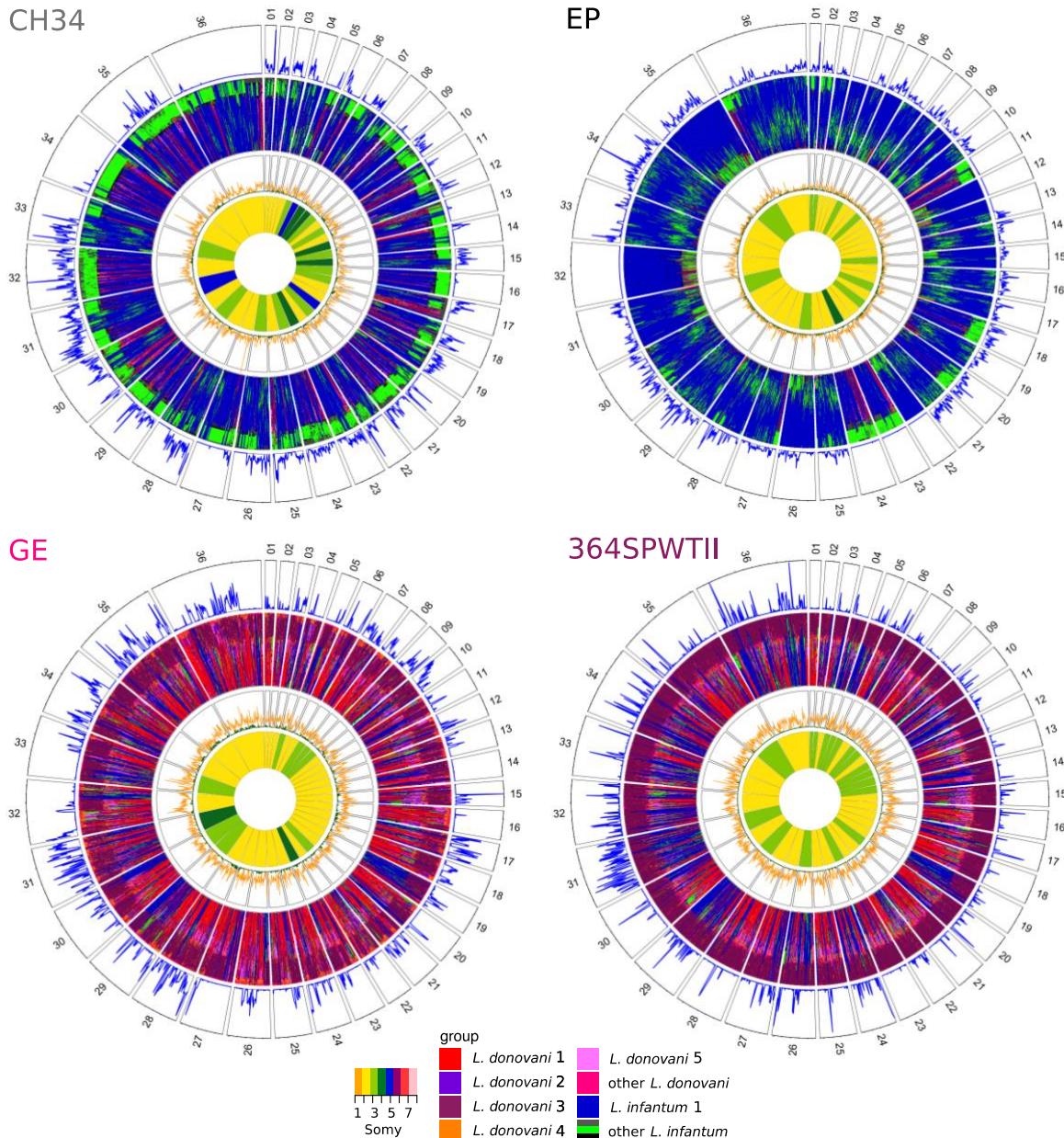
1427

1428

1429 Figure 3: Whole genome sample heterozygosities

1430




1431

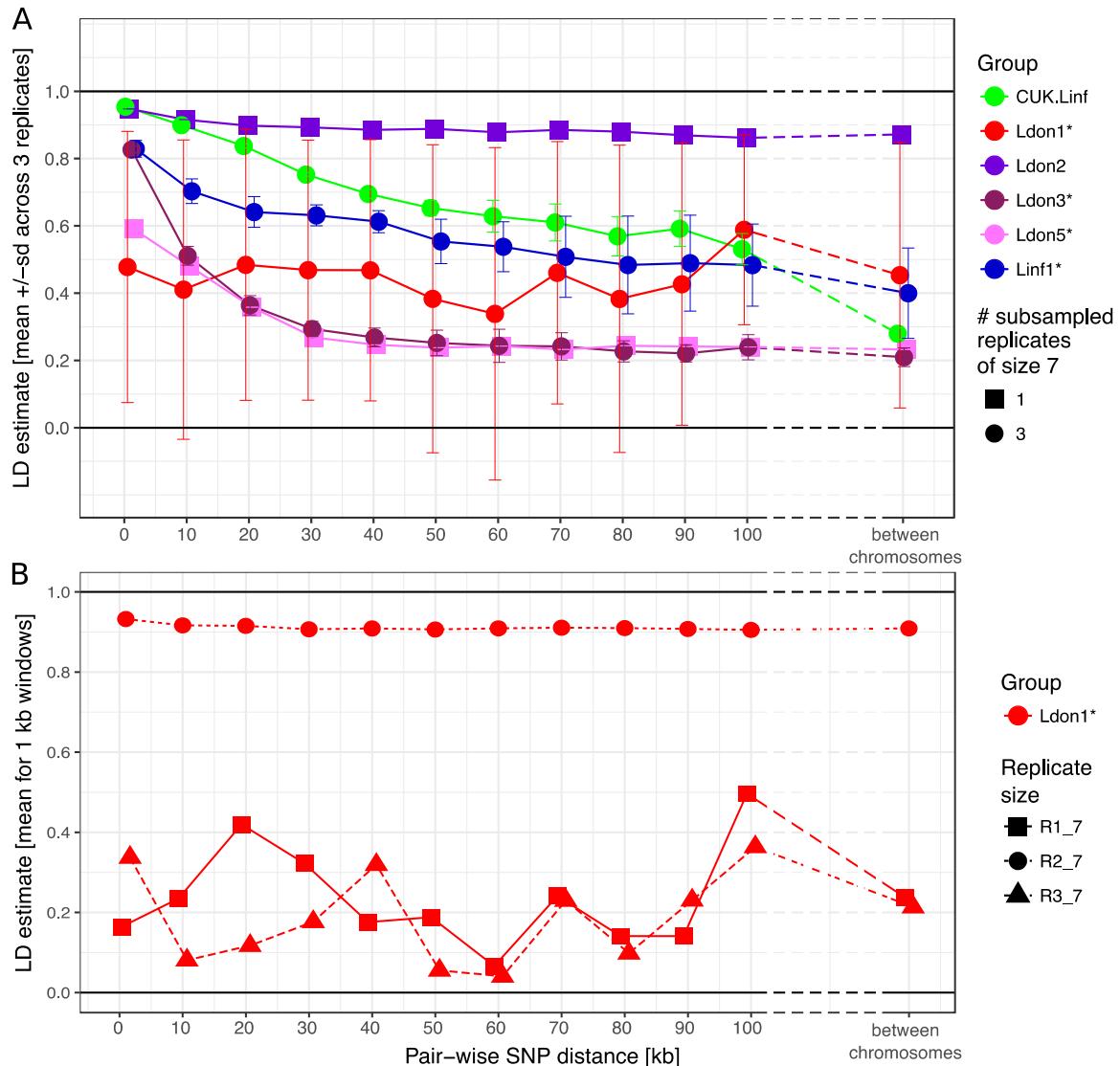
1432

1433 Whole genome sample heterozygosities. A) Whole genome heterozygosities versus fraction of  
1434 reference alleles. The fraction of reference alleles is calculated across all 395,602 SNP loci in the data  
1435 set. Isolate names are written unless they are present in dense clusters indicated by dashed-line  
1436 circles. Groups are indicated by colour as defined in figure 1. The dashed horizontal line at a genome-  
1437 wide heterozygosity of 0.004 was chosen to separate samples with putative recent between-strain  
1438 hybridisation history. B) Relationship between chromosome-specific somy variability and sample  
1439 heterozygosity. The scatterplot describes the relationship between the standard deviation in  
1440 chromosome-specific somy by group (groups with  $\geq 5$  samples) against the chromosome-specific  
1441 sample heterozygosity. Linear regressions were performed for each group. Asterisks indicate  
1442 statistical significance of the estimated regression slope with \*:  $<0.05$ , \*\*:  $<0.01$ , \*\*\*:  $<0.001$  or '-' for  
1443 not significant. Marginal histograms on the top and on the right correspond to the x-values and the y-  
1444 values of the scatterplot, respectively. Groups are indicated by the different colours.

1445 Figure 4: Window based analysis of relatedness

1446




1447

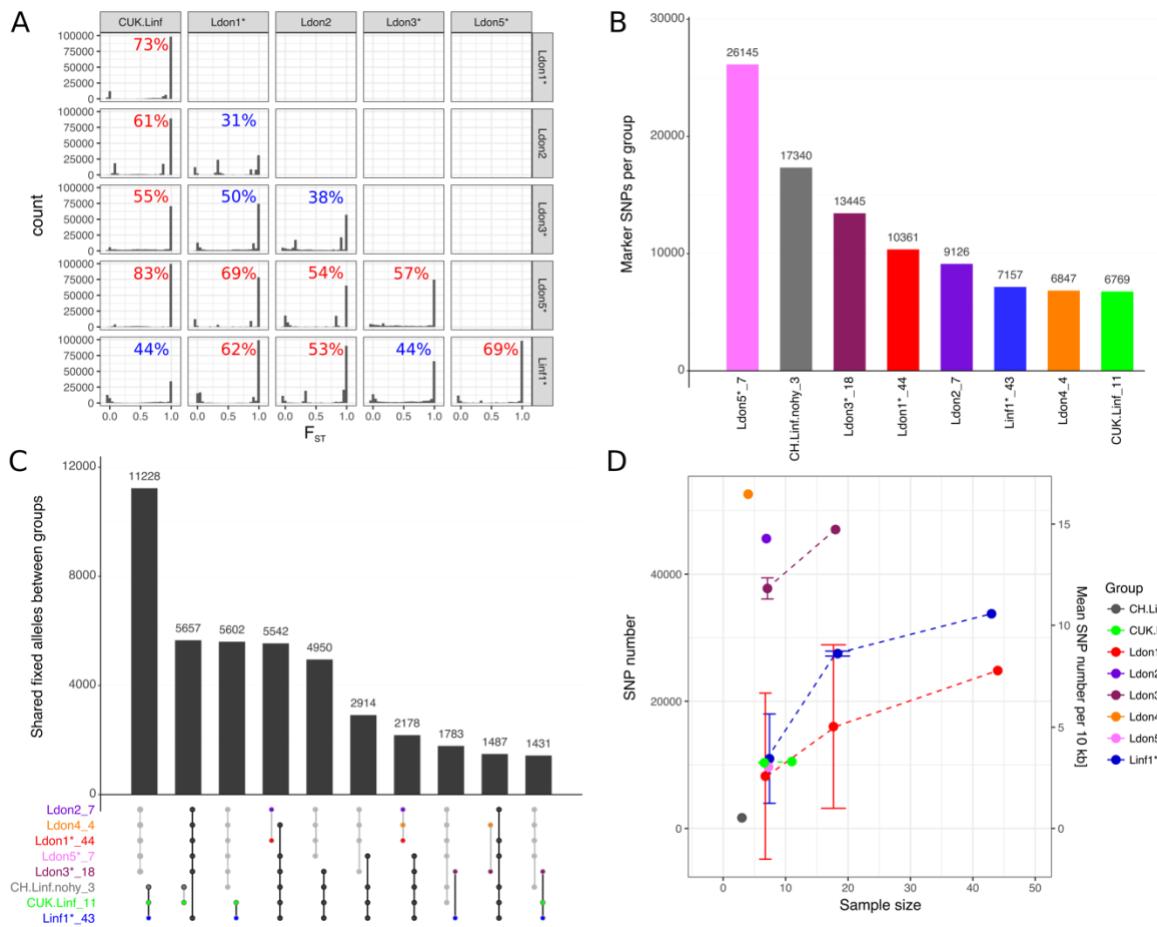
1448

1449 Window-based analysis of relatedness. Each circos plot shows four different genomic features of the  
1450 isolate named in each top left corner. In the four different rings, pies correspond to the different  
1451 chromosomes labelled by chromosome number. The three outer rings show a window-based analysis  
1452 for a window size of 10 kb. Starting from the outer ring, they show: 1. Heterozygosity with the number  
1453 of heterozygous sites ranging from 0 to 98, 146, 90 and 85 sites per window for CH34, EP, GE and  
1454 364SPWTII, respectively, 2. A heatmap coloured by groups of the 60 genetically closest isolates based  
1455 on Nei's D and starting with the closest sample at the outer margin and the 60<sup>th</sup> furthest isolate at the  
1456 inner margin, 3. Nei's D to the closest (green) and the 60<sup>th</sup> closest isolate (orange) scaled from 0 to 1.  
1457 The innermost circle shows the colour-coded somy.

1458 Figure 5: LD decay with genomic distance

1459




1460

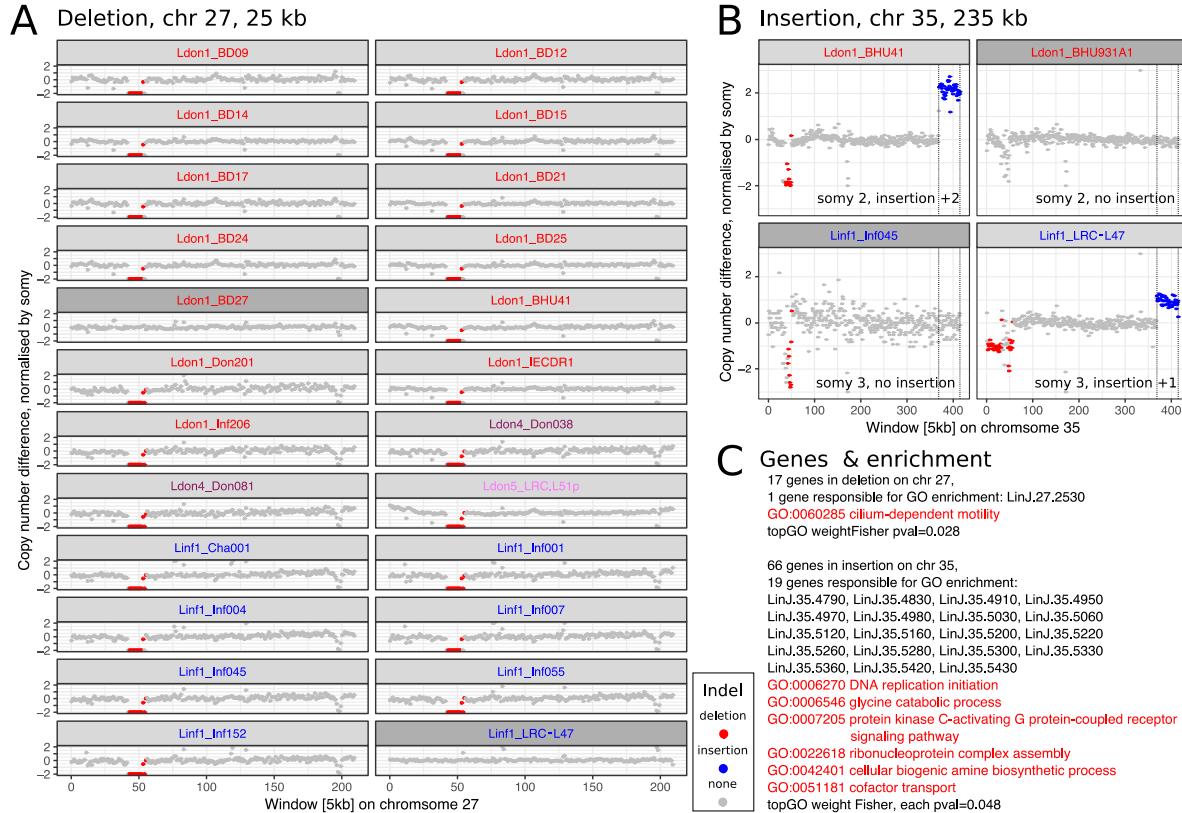
1461

1462 LD decay with genomic distance. A) LD decay was measured for the six largest groups removing  
 1463 isolates that were identified as putative strain mixtures (indicated by \*; see Material & Methods).  
 1464 Groups with more than seven isolates per group were sub-sampled to pseudo-replicates of seven  
 1465 isolates per group three times to make LD estimates comparable between groups. Mean and standard  
 1466 deviation across the three pseudo-replicates are shown where applicable. B) LD decay with distance  
 1467 is shown for the three pseudo-replicates for the Ldon1 group. A and B) Data for individual replicates  
 1468 was calculated as means of 1kb windows for SNP pairs of the stated genomic distance. For LD  
 1469 estimates between chromosomes, 100 SNPs were randomly sampled per chromosome and means  
 1470 across all pair-wise combinations between chromosomes are shown. This procedure was done twice  
 1471 independently but as differences between both such replicates were negligible, only the results of one  
 1472 replicate are shown.

1473 Figure 6: Differentiated and segregating SNPs between and within groups

1474




1475

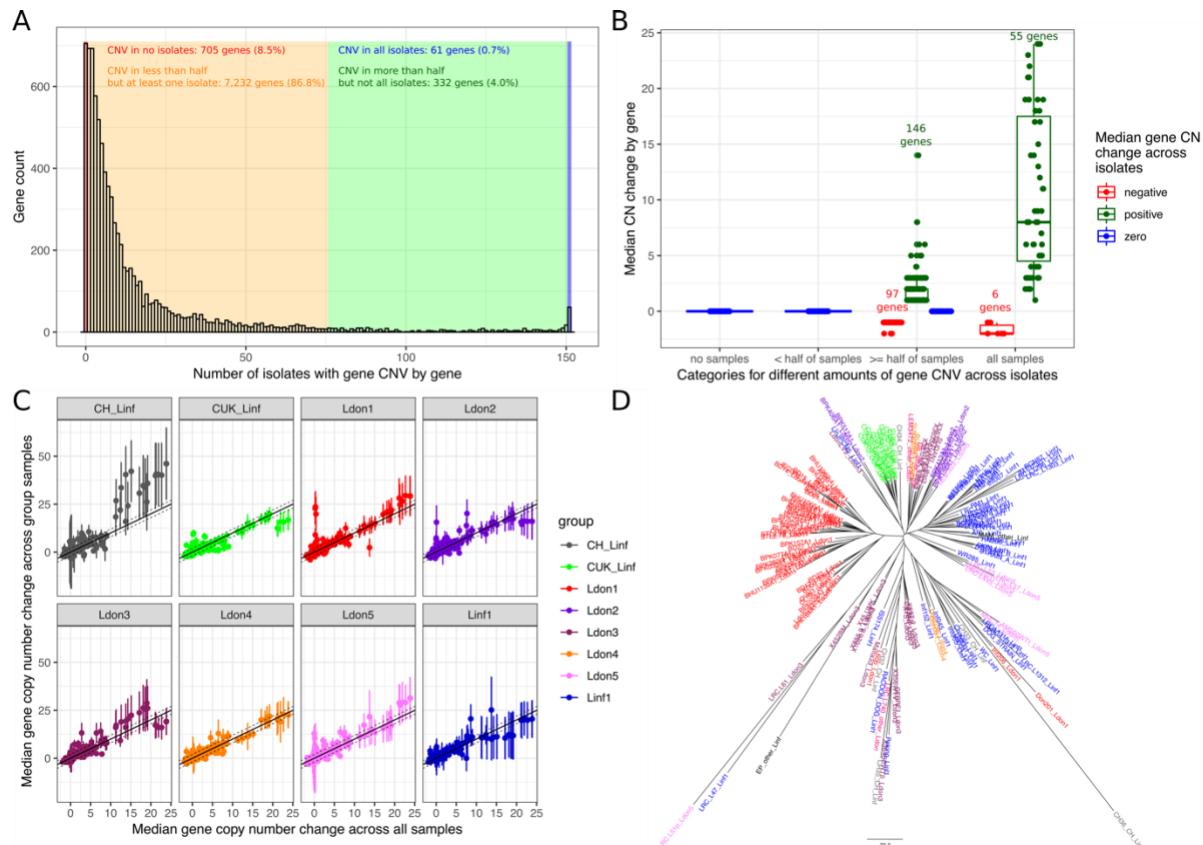
1476

1477 Differentiated and segregating SNPs between and within groups. For this analysis isolates that were  
 1478 shown to be mixtures of clones or hybrids between groups were removed (indicated by '\*', see also  
 1479 Material & Methods). Groups sizes after removal of those isolates are specified in panels A and C. A)  
 1480  $F_{ST}$  values between pairwise group comparisons. The fraction of differentially fixed SNPs ( $F_{ST}=1$ ) for  
 1481 each pairwise group comparison is indicated at the top right corner of each plot. Percentages larger  
 1482 than 50% are coloured in red, otherwise blue. B) The number of marker SNPs for each group, i.e. SNPs  
 1483 that are differentially fixed in one group versus all others. C) Number of SNPs that are differentially  
 1484 fixed between sets of groups. Groups fixed for the same allele are indicated in the bottom panel  
 1485 through connecting points corresponding to the specific groups. Grey and black lines connect sets of  
 1486 groups monomorphic for the alternate and reference allele, respectively. D) Number and density of  
 1487 SNPs segregating in the respective groups. As sample sizes of the different groups vary, figures are  
 1488 also shown for three random sub-samples of the larger groups. Results of sub-sampling are displayed  
 1489 as mean and sd.

1490 Figure 7: Large CNVs that are shared between both species.

1491




1492

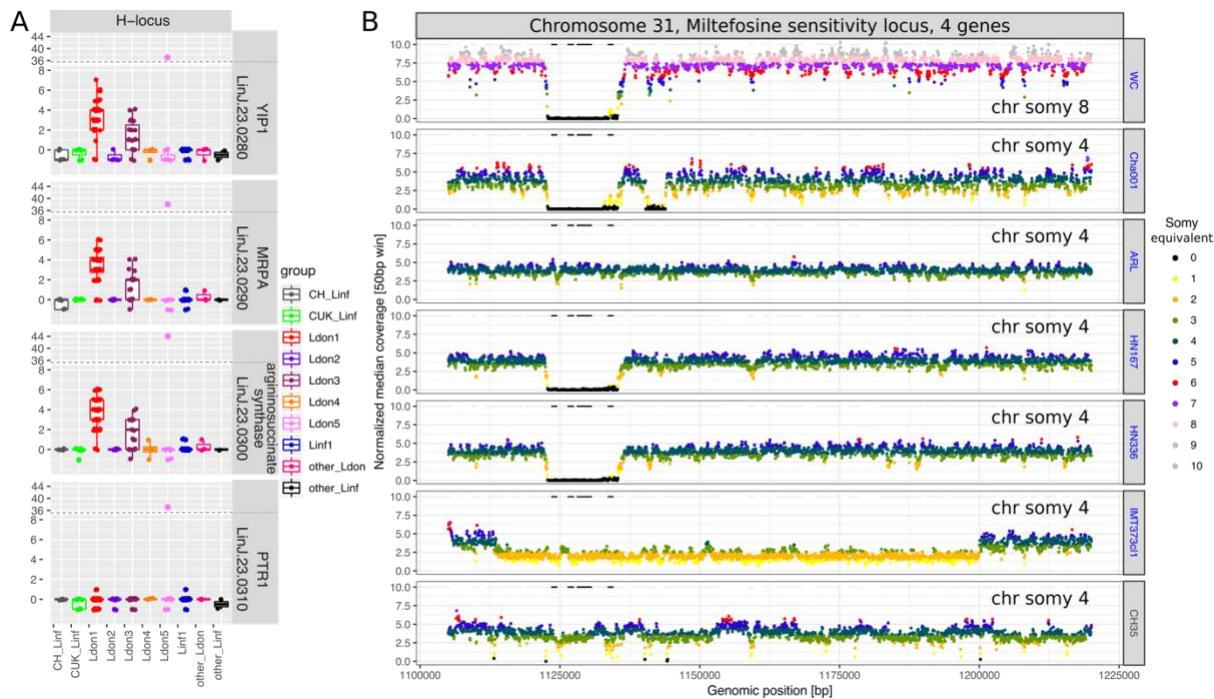
1493

1494 Two large CNVs that are shared between both species. A) Chromosome 27 has a 25 kb long deletion  
1495 that is present in 15% of all samples and four different groups. All chromosomes 27 that have this  
1496 deletion in our dataset are diploid and the deletion results in a loss of this allele in the respective  
1497 sample. B) The duplication on chromosome 35 is 235 kb long and present in one isolate of group Ldon1  
1498 and Linf1, respectively. The insertion is once present on a disomic background with a 2-fold increase  
1499 and once on a trisomic background with a 1-fold increase. For A) and B) a few closely related samples  
1500 not harbouring the respective CNV are also displayed and highlighted in dark grey. Group identities  
1501 are indicated by colours of the isolate name. C) Genes present in the respective CNV along with GO  
1502 enrichment results using topGO (Alexa et al., 2006). Details on both CNVs can be found in table S6:  
1503 unique CNVs with ids 150 and 215, respectively. The CNV characterisation of the corresponding  
1504 isolates can be found in table S5.

1505 Figure 8: Gene copy number variation across groups

1506




1507

1508

1509 Gene copy number variation across groups. A) CN abundances by gene across all 151 isolates. Genes  
 1510 are grouped in four categories (identified by different colours) depending on how many isolates are  
 1511 affected by CN variation in the respective gene. B) Median copy number changes for each gene are  
 1512 shown (individual dots) and summarised for the four different categories also used in sub-figure A  
 1513 including the direction of effect sizes using boxplots. C) Correlations of the median gene copy number  
 1514 across all samples and each respective phylogenetic group. D) Neighbour joining tree using gene CN  
 1515 profiles for each sample.

1516 Figure 9: Copy number variation of putative drug resistance genes

1517



1518

1519

1520 Copy number variation of putative drug resistance genes. A) Copy numbers (CNs) for all four genes on  
1521 the H-locus are shown for all 151 samples across all 10 different (sub-)groups. B) Genome coverage in  
1522 the genomic regions surrounding the MSL in all six samples showing a deletion and one sample with  
1523 no CN reduction. Genome coverage for 50 kb windows is normalised by the haploid chromosome  
1524 coverage and colours indicate the somy equivalent coverage of the respective window. The genes,  
1525 LinJ.31.2370, LinJ.31.2380, LinJ.31.2390 and LinJ.31.2400, are marked as black horizontal lines.  
1526 Colours of the sample names indicate group colours used throughout this study.

1527 Table 1: Summary of the hybrid analysis.

| Category                                                | ID | Description                                                                                                                                                             | Interpretation                                                                                                                                                                                                                                        | # Samples | Fraction of samples | Sample identities                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initial definition of the 53 (35%) putative hybrids     | A1 | "High" genome-wide heterozygosity (>=0.004)                                                                                                                             | initial indicator for putative hybrids                                                                                                                                                                                                                | 46        | 30%                 | BPK157A1, BUMM3, CH32, CH34, CUK10, CUK11, CUK12, CUK2, CUK3, CUK4, CUK5, CUK6, CUK7, CUK8, CUK9, EP, GE, GEBRE1, GILANI, Inf055, Inf152, ISS174, ISS2426, ISS2429, LdonLV9, LEM3472, LRC-L53, LRC-L61, LRC-L740, Malta33, MAM, SUDAN1, SUKKAR2, 1026-8, 1S, 356WTV, 363SKWTI, 364SPWTII, 38-UMK, 383WTI, 45-UMK, 452BM, 597-2, 597LN, 762L, 855-9 |
|                                                         | A2 | "Admixed" between groups (admixture analysis)                                                                                                                           | initial indicator for putative hybrids                                                                                                                                                                                                                | 15        | 10%                 | BPK512A1, CH32, CH34, CL-SL, EP, GE, Inf152, L60b, LEM3472, LRC-L1311, LRC-L1312, LRC-L1313, LRC-L740, MAM, OVN3                                                                                                                                                                                                                                   |
| Detailed investigation of the 53 (35%) putative hybrids | B1 | Heterozygous sites distributed relatively evenly across the genome and allele frequency profiles match coverage based somy estimates                                    | putative patterns of sexual crossing (F1 / F2+), however, cannot be verified without identified putative parents; alternative explanation could be new mutations that are dominating the sample population through a recent bottleneck (e.g. cloning) | 18        | 12%                 | Inf055, GEBRE1, LdonLV9, LRC.L61, SUDAN1, 1026-8, 1S, 356WTV, 363SKWTI, 364SPWTII, 38-UMK, 383WTI, 45-UMK, 452BM, 597-2, 597LN, 762L, 855-9                                                                                                                                                                                                        |
|                                                         | B2 | Evidence for parents between different groups (or between 2 distinct strains as previously shown for the CUK samples) alternating in the genome in a block like pattern | putative patterns of sexual crossing (F2+), i.e. "hybrids"                                                                                                                                                                                            | 16 (+1)   | 10% (11%)           | CH32, CH34, CUK10, CUK11, CUK12, CUK2, CUK3, CUK4, CUK5, CUK6, CUK7, CUK8, CUK9, EP, GE, LEM3472, (LRC-L740)                                                                                                                                                                                                                                       |
|                                                         | B3 | Extreme allele frequency variants only                                                                                                                                  | mixture of two different high versus low frequency clones or low frequency new mutations distributed across haplotypes in the sample                                                                                                                  | 7         | 5%                  | BPK157A1, Inf152, ISS174, ISS2426, ISS2429, LRC-L53, MAM                                                                                                                                                                                                                                                                                           |
|                                                         | B4 | Intermediate peak allele frequency distributions including extreme frequency peaks                                                                                      | mixture of scenarios B1 and B3, i.e. as B3 but high frequency clone has heterozygous sites itself                                                                                                                                                     | 4         | 3%                  | BUMM3, LRC-L740, Malta33, SUKKAR2                                                                                                                                                                                                                                                                                                                  |
|                                                         | B5 | no clear peak pattern of allele frequencies (several peaks at atypical frequencies)                                                                                     | mixture of several clones                                                                                                                                                                                                                             | 1         | 0.01%               | GILANI                                                                                                                                                                                                                                                                                                                                             |
|                                                         | B6 | to few heterozygous sites present to draw further conclusions beyond admixture results                                                                                  | signatures are shadowed by too little segregating variation                                                                                                                                                                                           | 7         | 5%                  | BPK512A1, CL-SL, L60b, LRC-L1311, LRC-L1312, LRC-L1313, OVN3                                                                                                                                                                                                                                                                                       |

1528 Table 2: Summary of genetic variation across 151 isolates of the *L. donovani* complex for previously described loci involved in resistance or treatment failure  
 1529 of antimonial drugs and Miltefosine.

| locus / complex                         | gene id                         |                                 |                                            | gene name                                                 | function prediction                                           | involved in resistance (R) / treatment failure (TF) to drug: | reference                                                                                                         | evidence from reference                                                                                                                                                                                                                   | gene copy number (gene CN)                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------|---------------------------------|---------------------------------|--------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | <i>L. infantum</i> , JPCM5, v41 | <i>L. infantum</i> , JPCM5, v38 | <i>L. donovani</i> ortholog, BPK282A1, v41 |                                                           |                                                               |                                                              |                                                                                                                   |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                |
| H-locus                                 | LINF_230007700                  | LinJ.23.0280                    | LdBPK_230280                               | terbinafine resistance gene (HTBF), (YIP1)                |                                                               | Antimonials (R)                                              | Callahan and Beverley, 1991; Dias et al., 2007                                                                    | The <i>Leishmania</i> H region is frequently amplified in drug-resistant lines and is associated with metal resistance (genes YIP1, MRPA, PTR1).                                                                                          | Genes have an increased CN in 30% (CN +1 to +44), and reduced CN in 9% (CN -1). 37% of all samples have an insertion including at least 3 genes (always YIP1, MRPA and argininosuccinate synthase). These amplifications are in groups Ldon1 (42/45), Ldon3 (13/19) and Ldon5 (1/8). The insertion boundaries in isolates from groups Ldon1 and Ldon3 are shared (Fig. S24 A). |
|                                         | LINF_230007800                  | LinJ.23.0290                    | LdBPK_230290                               | P-glycoprotein A (MRPA); pentamidine resistance protein 1 | ATP-binding cassette (ABC) transporter, ABC-thiol transporter | Antimonials (R)                                              | Callahan and Beverley, 1991; Dias et al., 2007; Leprohon et al., 2009                                             | Increased expression of MRPA is often due to the amplification of its gene in antimony-resistant strains.                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | LINF_230007900                  | LinJ.23.0300                    | LdBPK_230300                               |                                                           | argininosuccinate synthase - putative                         | Antimonials                                                  | Grondin et al., 1993; Leprohon et al., 2009                                                                       |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | LINF_230008000                  | LinJ.23.0310                    | LdBPK_230310                               | Pteridine reductase 1 (PTR1)                              |                                                               | Antimonials (R)                                              | Callahan and Beverley, 1991; Dias et al., 2007                                                                    | see above                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                |
| Mitogen-activated protein kinase, MAPK1 | LINF_360076200                  | LinJ.36.6760                    | LdBPK_366760                               | LMPK, mitogen-activated protein kinase                    | protein phosphorylation                                       | Antimonials (R)                                              | Singh et al., 2010; Ashutosh et al., 2012                                                                         | Conflicting evidence between up- and down-regulation of Mitogen-Activated Protein Kinase 1 between different studies.                                                                                                                     | 45% of all isolates showed an increased CN, with all isolates of Ldon1 and Ldon3 being affected and smaller fractions in other <i>L. donovani</i> groups (Fig. S24 A).                                                                                                                                                                                                         |
| Aqua-glyceroporin, AQP1                 | LINF_310005100                  | LinJ.31.0030                    | LdBPK_310030                               | Aquaglyceroporin 1, AQP1                                  | drug transmembrane transport                                  | Antimonials (R)                                              | Gourbal et al., 2004; Uzcategui et al., 2008; Monte-Neto et al., 2015; Andrade et al., 2016; Imamura et al., 2016 | A frequently resistant <i>L. donovani</i> population has a two base-pair insertion in AQP1 preventing antimonial transport. Increased resistance with decrease in gene CN or expression, while increase leads to higher drug sensitivity. | Gene CN deletions and insertions of small effect sizes (CN -2 to -1 and +1 to +3) are present in 6% and 35% of isolates but never leading to loss of the locus.                                                                                                                                                                                                                |

| locus / complex                              | gene id                         |                                 |                                            | gene name                     | function prediction                                                 | involved in resistance (R) / treatment failure (TF) to drug: | reference                                      | evidence from reference                                                                                                                                                                                                                                                                              | gene copy number (gene CN)                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------|---------------------------------|---------------------------------|--------------------------------------------|-------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              | <i>L. infantum</i> , JPCM5, v41 | <i>L. infantum</i> , JPCM5, v38 | <i>L. donovani</i> ortholog, BPK282A1, v41 |                               |                                                                     |                                                              |                                                |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                   |
| Miltefosine transporter and associated genes | LINF_130020800                  | LinJ.13.1590                    | LdBPK_131590                               | Miltefosine transporter, LdMT | phospholipid transport                                              | Miltefosine (R)                                              | Pérez-Victoria et al., 2006; Shaw et al., 2016 | Gene deletion or different changes in two different strains evolved in promastigote culture for Miltefosine resistance. strain Sb-S: locus deletion and A691P; strain Sb-R: E197D                                                                                                                    | 15 isolates: +1 gene CNV (CUK, Lon1, Ldon2, Ldon3, Ldon5)                                                                                                                                                                                                                                                                                                                         |
|                                              | LINF_130020900                  | LinJ.13.1600                    | LdBPK_131600                               | hypothetical protein          | unknown function                                                    | Miltefosine (R)                                              | Shaw et al., 2016                              | Deleted along with the Miltefosine transporter gene in a single line evolved for Miltefosine resistance in promastigote culture.                                                                                                                                                                     | 3 isolates: +1 gene CNV (Ldon1, Linf1)                                                                                                                                                                                                                                                                                                                                            |
|                                              | LINF_320015500                  | LinJ.32.1040                    | LdBPK_321040                               | Ros3, LdRos3                  | Vps23 core domain containing protein - putative                     | Miltefosine (R)                                              | Pérez-Victoria et al., 2006                    | Putative subunit of LdMT; LdMT and LdRos3 seem to form part of the same translocation machinery that determines flippase activity and Miltefosine sensitivity in <i>Leishmania</i> .                                                                                                                 | 1 isolate: +1 gene CNV (Ldon1)                                                                                                                                                                                                                                                                                                                                                    |
| Miltefosine sensitivity locus, MSL           | LINF_310031200                  | LinJ.31.2370                    | LdBPK_312380                               |                               | 3'-nucleotidase/nuclease - putative                                 | Miltefosine (TF)                                             | Carnielli et al., 2018                         | MSL: a deletion of this locus was associated with Miltefosine treatment failure in Brazil. While the frequency of the MSL was still relatively high in the North-East it was almost absent in the South-East of Brazil, and it was absent in <i>L.infantum</i> / <i>L.donovani</i> in the Old World. | Genes have a reduced CN in 55% (CN -1 to -8) and increased in 4% (CN +1). 4 isolates, show a complete loss of the MSL at identical boundaries: WC, Cha001, HN167 and HN336 (2/4 isolates from Brazil, 2/2 isolates from Honduras). 2 isolates show a reduction of all 4 genes at this locus but with various deletion boundaries: IMT373cl1 (Portugal), CH35 (Cyprus) (Fig. 9 B). |
|                                              | LINF_310031300                  | LinJ.31.2380                    | LdBPK_312380                               |                               | 3'-nucleotidase/nuclease - putative                                 | Miltefosine (TF)                                             | Carnielli et al., 2018                         |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                   |
|                                              | LINF_310031400                  | LinJ.31.2390                    | LdBPK_312390                               |                               | helicase-like protein                                               | Miltefosine (TF)                                             | Carnielli et al., 2018                         |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                   |
|                                              | LINF_310031500                  | LinJ.31.2400                    | LdBPK_312320, LdBPK_312400                 |                               | 3 -2-trans-enoyl-CoA isomerase - mitochondrial precursor - putative | Miltefosine (TF)                                             | Carnielli et al., 2018                         |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                   |

1530 Table 3: Candidate genes putatively involved in pathogenesis associated differences between *L. donovani* and *L. infantum*. Candidates were identified through  
1531 GO enrichment analysis of moderate to high effect variants between both species across our 151 isolates.

1532

| Gene name                       | Gene codes v41 (v38) Tritryp<br>( <a href="http://tritrypdb.org/tritrypdb/">http://tritrypdb.org/tritrypdb/</a> )                 | Annotation                                                                                                                        | Fixed genomic variation between<br><i>L. infantum</i> and <i>L. donovani</i><br>(changes <i>L.inf</i> > <i>L.don</i> )                 | Evidence for pathogenic function                                                                                                                                                                        |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tir chaperone protein           | LINF_040012200 (LinJ.04.0710),<br>LINF_340038600 (LinJ.34.2950)                                                                   | Tir chaperone protein (CestT) family/PDZ domain containing protein - putative,<br>Tir chaperone protein (CestT) family - putative | nt 362A>G; aa Glu121Gly<br>nt 594A>G aa Gln198Gln<br><br>nt 1659A>C; aa Lys553Asn<br>nt 1703A>G; aa Asn568Ser                          | Part of secretion system to deliver virulence effector proteins into the host cell cytosol in gram-negative bacteria; secreted proteins require chaperones to maintain function (Delahay et al., 2002). |
| Subtilisin protease             | LINF_130015300 (LinJ.13.0940 and<br><a href="#">LinJ.13.0930</a> , -strand, are fused in v41 with an extra 54 bp in between them) | subtilisin-like serine peptidase                                                                                                  | nt 2813T>G; aa Phe938Cys<br>nt 3346G>A; aa Gly1116Ser<br>nt 4389G>A; aa Pro1463Pro*<br>nt 5014A>C; aa Ser1672Arg*                      | Shown to be essential for full virulence and involved in detoxification of ROS in <i>L. donovani</i> (Swenerton et al., 2010).                                                                          |
| Bardet-biedl syndrome 1 protein | LINF_350047600 (LinJ.35.4250)                                                                                                     | Bardet-Biedl syndrome 1 protein homolog (BBS1-like protein 1) - putative                                                          | nt 531C>T; aa Ser177Ser<br>nt 580G>A; aa Ala194Thr<br>nt 1038C>A; aa Arg346Arg<br>nt 1221T>C; aa Gly407Gly<br>nt 1310C>T; aa Ala437Val | <i>Leishmania</i> BBS1 knock-out mutants have reduced infectivity for <i>in vivo</i> macrophages and infection of BALB/c mice was severely compromised (Price et al., 2013).                            |

1533 \*Nucleotide (nt) and amino acid (aa) changes in [LinJ.13.0930](#) (v38) have been adapted to positions to its fused version LINF\_130015300 (v41) in this table. Positions for v38  
1534 can be found in table S3.