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Bacterial capsules and lipopolysaccharides are diverse surface polysaccharides (SPs) that serve

as the frontline for interactions with the outside world. While SPs can evolve rapidly, their diversity10

and evolutionary dynamics across di↵erent taxonomic scales has not been investigated in detail.

Here, we focused on the bacterial order Enterobacteriales to carry out comparative genomics of12

two SP locus synthesis regions, cps and kps, using 27,365 genomes from 45 bacterial genera. We

identified high-quality cps loci in 22 genera and kps in 11 genera. Around 4% of SP loci were14

detected in multiple species. We found the SP loci to be highly dynamic genetic entities: their

evolution was driven by high rates of horizontal gene transfer (HGT), both of whole loci and16

component genes, and relaxed purifying selection, yielding large repertoires of SP diversity. In

spite of that, we found the presence of identical or near-identical SP locus structures in distant18

taxonomic backgrounds that could not be explained by recent horizontal transfer, pointing to long-

term selective preservation of locus structures in some populations. Our results reveal di↵erences20

in evolutionary dynamics driving SP diversity within di↵erent bacterial species, with lineages of

Escherichia coli, Enterobacter hormachei and Klebsiella aerogenes most likely to share SP loci via22

recent exchange; and lineages of Salmonella enterica, Citrobacter sakazakii and Serratia marcescens

most likely to share SP loci via other mechanisms such as long-term preservation. In conclusion,24

the evolution of SP loci in Enterobacteriales is driven by a range of di↵erent evolutionary forces

and their dynamics and relative importance varies between di↵erent species.26
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Polysaccharide capsules and lipopolysaccharides (LPS) with an O-antigen, here broadly called surface

polysaccharides (SPs), are the most diverse bacterial cell surface structures. They play a number of im-28

portant biological roles pertaining to bacterial survival, including prevention from desiccation1,2, aiding

transmission and colonisation3,4,5,6, evading immune responses7,8,9,10 or bacteriophage attack11,12,13,14,30

interaction with other microorganisms15,16,17,18, and many others19. As SPs have been found and de-

scribed in most studied phyla across the bacterial kingdom, their importance is recognised across many32

fields of biology, including ecology, medicine, biotechnology and public health19,20,21,22.

The potential for structural hyper-diversity of SPs stems from a heterogeneous ability of forming34

chemical linkage between various sugars into polysaccharide chains. This property was revealed in early

work on bacterial carbohydrates23, and understood in much more detail following the emergence of ge-36

netics as a field24. Epidemiological characterisation of bacterial serotypes25,26,27 played an important

role in building accurate models of the SP genotype-phenotype map in multiple bacterial species28,29,30,38

hence enabling in silico serotyping approaches31,32. Today, we understand that the potential to gener-

ate novel SP diversity is genetically optimised genetically in bacteria: co-location of genes that encode40

sugar-specific enzymes facilitates allele and gene transfer via homologous recombination between di↵erent

bacteria, thus enabling antigenic diversification33.42

Nevertheless, our understanding of SP evolution remains far from complete. SP genetics has predom-

inantly been studied in a small number of medically-relevant bacterial species, with little attention paid44

to comparative evolutionary dynamics or SP sharing between species. For example, it remains unclear

how SP biosynthesis loci have been evolving in the context of di↵erent bacterial population backgrounds46

(whether defined by ecology or phylogeny), whether the long-term impact of horizontal gene transfer

(HGT) on SP loci is the same in di↵erent taxonomic groups, and how selection on SP loci shapes bac-48

terial population structure. These questions are important to answer since capsules and LPS directly

interact with the immune systems of humans and other mammalian hosts, and are targets of current and50

future medical interventions, including glycoconjugate vaccines34 and antibody-35 or phage-based thera-

pies36. A better understanding of the diversity and evolutionary dynamics of bacterial SPs and of their52

role in bacterial adaptation to novel ecological niches could therefore have large public health impacts

in terms of infectious disease management, for instance through the assessment of which serotypes to54

include in a vaccine to minimise the risk of disease reemergence37.

Here we present an analysis of SP locus diversity and evolution in a bacterial order of medical im-56
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portance – Enterobacteriales, which includes the well-known Enterobacteriaceae family (including Es-

cherichia, Salmonella, Klebsiella, Enterobacter) and the related families Erwinaceae (including Erwinia),58

Yersinaceae (including Yersinia and Serratia) and others which were recently removed from the En-

terobacteriaceae family definition38. This group constitutes a good system to study the evolutionary60

genetics of polysaccharide capsules for two main reasons. First, many Enterobacteriales species have a

closely related capsule genetic architecture39, and instances of SP gene sharing between di↵erent genera62

in this order have been noted40,41. Second, in recent years there has been a rapid growth of public genome

collections of Enterobacteriales, largely due to the increasing threat of antimicrobial resistance in the En-64

terobacteriaceae42. Therefore, public repositories potentially include many isolates of Enterobacteriales

species with previously uncharacterised SP genetics. Nevertheless, detailed analyses of polysaccharide66

genetic variation have been confined to a small number of species43,44,45,46,39,47. Here we used a large

collection of 27,365 genomes obtained from NCBI RefSeq covering 45 genera of Enterobacteriales to carry68

out order-wide comparative genomics of two well-characterised SP locus regions, here referred to as cps

and kps, which are involved in the biosynthesis of both capsules and O-antigens in Escherichia coli 4870

and in other species of the Enterobacteriaceae family44,49,50. We explore evolutionary dynamics and hor-

izontal transfer within and between species and genera of Enterobacteriales, yielding the largest-to-date72

systematic analysis of the SP locus genetics in any bacterial family or order.

Results74

Diversity and distribution of SP loci

Screening 27,365 assemblies of Enterobacteriales from 45 genera (see Methods) identified a high quality76

cps locus in 18,401 genomes from 22 genera (counting Escherichia and Shigella as a single genus), and

a high quality kps locus in 2,356 genomes from 11 genera (Supplementary Figure S1). The remaining78

genomes either contained poorly assembled locus sequences or were missing altogether (see Supplementary

Table S1). The supplementary figure S2 shows the frequency of cps and kps in di↵erent genus-groups,80

demonstrating that the vast majority (92%) of genomes with kps also carried cps. The number of unique

SP loci (i.e., comprising unique combinations of protein coding sequences, CDS) detected per genus was82

strongly predicted by sample size (number of genomes analysed per genus), but not the nucleotide diversity

captured by that sample (see Supplementary Text and Supplementary Figure S3), consistent with recent84
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observations in Klebsiella pneumoniae 51. Consequently, we predict large reservoirs of unobserved SP

diversity to be discovered and characterised as more genomes are sequenced. Overall, most locus types86

(groups of highly similar SP loci, defined by clustering with gene content Jaccard distance 6 0.1; see

Methods) and SP locus gene families (LGFs, homology groups identified in SP loci and clustered at88

50% amino acid identity; see Methods) were species specific: in the cps region, 90% of locus types and

61% of locus gene families were found in a single species, while in the kps region it was 93% and 78%,90

respectively. However, we also found the same locus types in multiple species and genera (cps: 9.9% in

multiple species and 3.4% in multiple genera; kps: 16.5% in multiple species and 5.2% in multiple genera),92

suggesting that the evolutionary history of SP loci involves horizontal transfer across genus boundaries

(see Supplementary Figure S4).94

To further explore the diversity and population structure of SP loci, we constructed locus-sequence

similarity networks for the cps and kps loci extracted from the genome set (Fig. 1A). To avoid redundancy,96

we considered a set of loci consisting of single representatives each SP locus structure (i.e., each detected

combination of LGFs) from each species (N = 2,658 cps, N = 333 kps; see Methods). We then defined98

a locus similarity network for a given Jaccard distance threshold, J , where nodes are representative loci

and edges link all loci whose gene content similarity is equal or greater than S = 1�J . For the networks100

shown in Figure 1A, the similarity threshold was chosen to maximise the clustering coe�cient (see Fig.

1B), which measures the degree to which nodes in a graph tend to cluster together. The large majority102

of communities (i.e., clusters of linked nodes with similar gene content) in each network comprise SP

loci from the same genus; however many genera had SP loci that were divided into multiple unconnected104

communities. Many between-genus links were also observed (14% in the cps network and 2% in the kps

network), which did not disappear even for S = 1 (5% for cps and 2% for kps; see Fig. 1B and Methods),106

indicating the presence of SP loci with identical gene content in distinct bacterial genera.

We observed a large heterogeneity in LGF sharing between genera: some genus pairs shared large108

numbers of SP genes while others shared none (see Fig. 1C). These LGF sharing patterns however

showed no clear association with taxonomic relationships between the genera in question, and indeed110

some of the strongest LGF sharing occurred between members of di↵erent families (e.g., Shimwellia

(Enterobacteriaceae), Tatumella (Erwinaceae) and Rahnella (Yersinaceae) shared very similar cps gene112

complements; Erwinia (Erwinaceae) shared very similar kps gene complements with members of the

Enterobacteriaceae family; see Fig. 1C). Overall, we found only weak correlation between the genome-114
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wide genetic distance between genera (based on average nucleotide identity, ANI across non-redundant

representative genomes) and the Jaccard similarity S between sets of LGFs detected in those genera116

(Pearson rank correlation; cps: ⇢ = 0.18, p < 0.02; kps: ⇢ = 0.29, p < 0.05; see Supplementary Figure

S5).118
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Figure 1. Population structure of SP loci is weakly correlated with the order population structure. (A) SP
locus sequence similarity networks (SSNs). Each node corresponds to a unique locus genetic structure per species (n=2658
nodes for cps, n=333 nodes for kps; only the largest network clusters are shown). Colours correspond to bacterial genera
in which loci were found (9 most common genera and ‘Other’). Edges of the network link all nodes a and b for which the
similarity threshold S(a, b) = 1� J(a, b) maximises the clustering coe�cient (dashed lines in B), namely S(a, b) > 0.362
for cps and S(a, b) > 0.210 for kps. Connected components in this graph define locus families, while connected
components of near-identical locus structures (S > 0.9) define locus types. (B) E↵ect of the similarity threshold on SP
locus clustering. (C) SP locus gene sharing between genera. Dendrograms are neighbour-joining trees based on
whole-genome genetic distance between representative (non-redundant) members of each genus; heatmaps show the
proportion of SP locus gene families (LGFs, defined at 50% clustering threshold) that are shared between each pair of
genera. In this figure, the most prevalent LGFs (present in > 20% of all isolates) were removed from the calculation of the
locus similarity to amplify the signal from the low-to-middle frequency protein families.
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Mechanisms of locus type sharing between divergent strains

To better understand the dynamics of locus type sharing between divergent strains, we calculated a120

probability of sharing the same locus type between representative isolates from di↵erent L0.004 lineages as

a function of genome distance. (Representative isolates were chosen as unique combinations of ribosomal122

sequence type and unique locus structure, L0.004 lineages were defined as complete-linkage clusters distinct

at the 0.4% genome distance threshold, and genome distance was calculated based on estimated ANI124

values; see Methods.) Results are shown in Figure 2A. As expected, the probability of locus type sharing

decreased with genome distance for both cps and kps (with the exception of kps around 8% genome126

divergence, driven by a high proportion of shared locus types between di↵erent species of Cronobacter),

followed by a long tail expected from Fig. 1. We hypothesised that many instances of locus sharing may128

be driven by recent horizontal exchanges of the whole (or nearly-whole) locus via HGT. To address this,

we extracted all pairwise genome combinations belonging to di↵erent L0.004 lineages that shared a locus130

type, and compared genome vs SP locus genetic distance between each pair. While whole-genome and

SP locus distances were strongly correlated (cps: R2 = 0.90, p < 10�16; kps: R2 = 0.71, p < 10�16), for132

many pairs the SP locus genetic distance was smaller than the whole-genome genetic distance, as would

be expected from HGT-driven locus exchanges (Figure 2B). To examine to what extent locus type sharing134

between L0.004 can be explained by recent horizontal locus exchanges, we calculated, for each locus-type-

sharing pair, where the SP locus genes ranked within the distribution of pairwise distances between136

protein sequences for all CDS shared by that pair (see Methods). We reasoned that, if the SP locus has

recently been exchanged (directly or indirectly) between a pair of lineages via recombination, the SP locus138

genes should rank amongst the most genetically similar CDS for that pair (see also Supplementary Figure

S6). We considered locus-type-sharing lineage pairs in which the SP loci rank in the top 5% most similar140

CDS for that pair as likely resulting from horizontal exchange of the SP locus between lineages since

their divergence (blue); and those locus-type-sharing pairs in which the SP loci rank in the bottom 60%142

most similar CDS for that pair as evidence of absence of recent exchange (red); the remaining cases we

considered unresolved (grey). Using such criteria, we found 700 pairwise instances of locus type sharing144

between species, and 216 between genera, that were attributable to recent exchange a↵ecting the cps

locus region; plus 19 and 2 cases, respectively, a↵ecting the kps locus region (see Fig. 3). Instances of146

locus type sharing via absence of recombination are shown in Supplementary Figure S7.

Figure 2C shows the relative contribution of the three categories to locus type sharing as a function of148
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genome distance. We found that recent locus exchange can explain as much as 50% of locus type sharing

cases for genomic distance of up to around 10%, and even some cases for distance > 10%. The estimated150

probability of locus type sharing via recent exchange was greatest within species, but greater than zero

even between species and between genera (again except for Cronobacter-driven between-species exchanges152

in the kps locus; see Figure 2D). For closely related genomes, the majority of locus type sharing fell into

the grey category, highlighting the limited statistical power to detect recent exchange between recently154

diverged backgrounds (Fig. 2C). Conversely, locus type sharing between distant lineages (> 10%) was

predominantly not attributable to recent exchange (Fig. 2B and 2C). Such occurrences could arise through156

vertical inheritance of SP loci over long evolutionary periods, or by independent acquisition of divergent

forms of the same locus type by di↵erent lineages (see Supplementary Figure S8 for an illustration of158

these scenarios). Whatever the mechanism, presence of the same locus types in highly divergent lineages

is suggestive of a form of stabilizing selection that preserves the structure of SP loci over time, resisting160

genetic change in spite of high rates of HGT.

For instances of locus sharing where we could reject the hypothesis of recent exchange, SP locus162

gene distance generally exceeded genome distance (i.e., most red points in Fig. 2B lie above the dotted

line y = x). The slopes of the regression lines for these points (46% of lineage pairs sharing cps locus164

type, 35% of lineage pairs sharing kps locus type) were significantly greater than 1 (black lines in Fig.

2B; cps: ↵ = 1.42, 95% CI [1.42,1.43]; kps: ↵ = 2.20, 95% CI [2.18,2.22]). The SP locus genes also166

had more non-synonymous substitutions than other CDS in the Enterobacteriales genomes (42.7% of all

substitutions in SP locus genes were non-synonymous compared with 26.3% for other CDS, p < 10�15),168

suggesting comparatively relaxed purifying selection at the SP loci. These observations could reflect an

overall accelerated evolutionary rate in SP locus genes, or the acquisition of highly divergent gene copies170

by HGT. To address these biases, we calculated the proportions of non-synonymous substitutions on the

branches of each gene tree (thus accounting for the e↵ect of potentially distant origins of alleles), and172

binned these values by branch lengths across all HG trees (Fig. 2E). Across almost all branch length

ranges, the SP locus genes had a higher proportion of non-synonymous substitutions than other CDS,174

supporting weaker purifying selection at SP locus genes irrespective of di↵erences in overall evolutionary

rate.176
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Figure 2. SP locus type sharing between distant members of the Enterobacteriales. (A) Estimated
probability of sharing a locus type between representative isolates from di↵erent L0.004 lineages as a function of their
genome distance based on average nucleotide identity (ANI). Curves were calculated by considering n = 20 ANI distance
ranges; and for all isolate pairs with genomic distance within that range, calculating the proportion of all pairs that share
the SP locus type. Shaded areas indicate the 95% confidence intervals obtained by bootstrap, based on random isolate
sampling with replacement repeated 1,000 times; solid line shows median value of the bootstrap distribution. (B) Pairwise
genetic distance between SP loci (y) and bacterial host genomes (x), using estimated ANI, for all isolates from di↵erent
L0.004 lineages that share a locus type. Data points (strain pairs) were assigned to categories: evidence of recent locus
exchange (blue), evidence of no recent locus exchange (red) or unresolved cases (grey), based on the relative distance of
SP locus genes vs genome-wide CDS (see Methods). Dashed line is y = x, solid line is the linear fit to all red points. (C)
Relative contribution of recent exchange presence (blue), recent exchange absence (red) and unresolved case (grey) to
locus type sharing as a function of genome distance. (D) Estimated probability of locus type sharing via one of the three
categories by taxonomic level. Values were calculated as in panel C-D, but stratified by taxonomic level rather than
evolutionary distance range. (E) Proportion of total substitutions per gene tree branch that are non-synonymous, for SP
locus genes (green) and other genome-wide CDS (orange); stratified by branch length ranges (x-axis). Bars indicate 95%
confidence intervals (using one sample test of proportions).
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Figure 3. Network of SP locus type sharing via recombinational exchange. Recombinational exchange of SP
locus was defined as explained in the main text (blue points in Figure 2). Nodes represent bacterial species-groups, and
their size is scaled according to the number of isolates in the representative dataset with the corresponding locus region
(cps or kps). Edges represent cases of detected locus exchanges, and their thickness is scaled depending on the number of
detected cases of sharing. Using such definitions, we found 700 cases of shared cps loci between di↵erent enteric species
and 216 cases between di↵erent genera (694 and 216 when excluding ‘Other’ category, respectively). For the kps locus, we
found 19 between-species sharing cases and 2 between-genus sharing cases (same when excluding ‘Other’ category).
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SP locus evolution within species

Next we examined patterns of SP locus type sharing between lineages of the same species. Figure 4A178

shows the probability of the same locus type being present in two genomes (i.e., Hunter-Gaston diversity

index52) whose distance is below a given threshold, across a range of thresholds from 10�4 to 0.3. For180

closely related genomes the probability was close to 1, but dropped o↵ dramatically above 1% divergence,

reaching di↵erent plateau probabilities in di↵erent species. For the two species with su�cient numbers182

of both cps and kps (E. coli and C. sakazakii), the two SP locus curves were similar within each species

(Fig. 4A). The plateau probabilities could be influenced by sampling; in particular, over-sampling of some184

lineages, which is a common feature of public genome repositories, would lead to an over-estimate of the

plateau probabilities. To mitigate this bias, we calculated for each species the probability that genomes186

from two di↵erent lineages share a locus type (Fig. 4B), using a resampling approach and two alternative

thresholds to define lineages (L0.004 or L0.01). These measures were not significantly correlated with188

the sample size per species (labelled in Fig. 4B) (Spearman rank correlation for L0.004: p = 0.10, L0.01:

p = 0.57), but confirmed significant di↵erences in SP locus-sharing patterns between di↵erent species,190

with probability values ranging from 4.65% (95% CI: 4.32%, 5.01%) in E. coli to 56.3% (95% CI: 36.5%,

75.5%) in K. aerogenes.192

To assess the contribution of recent exchange to locus-type-sharing between lineages, we considered

only those species in which locus-type-sharing was observed for at least 100 lineage pairs, and calculated194

the proportion of L0.004 or L0.01 lineage pairs in which locus type sharing was attributable to one of

the three categories in Figure 2: recent exchange (blue), no recent exchange (red) or unclear (grey);196

see Fig. 4C. (See also Supplementary Figures S9-S12.) Using this approach, we found that in several

species, including K. aerogenes, E. hormaechei and E. kobei and E. coli, recent locus exchange was198

the predominant mechanism of locus type sharing between di↵erent bacterial lineages. By contrast,

in S. enterica, S. marcescens and C. sakazakii, locus type sharing could be rarely explained by recent200

locus exchange, hence pointing to vertical inheritance or independent acquisition as potential mechanisms.

Finally, inK. pneumoniae both recent exchange and lack thereof contributed equally to locus type sharing.202

These results point to important di↵erences in the evolutionary dynamics of SP locus sharing between

di↵erent species, and are consistent with previous studies of antigen variation in some individual species.204

For example, frequent exchange of K and O antigen loci has been observed within E. coli lineages53,54,

whereas O antigen (cps) loci are maintained in S. enterica lineages to the point that lineage typing has206
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been proposed as a substitute for serotyping44. In K. pneumoniae, the cps K locus is a hotspot for

recombination in many lineages, but in others is conserved for long evolutionary periods51. Our results208

thus highlight that di↵erent populations of Enterobacteriales not only experience a variation of forces

acting on the SP locus, but also that these forces vary in relative magnitude between populations.210
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Figure 4. Intra-species patterns of SP locus exchange and maintenance vary between species. (A)
Probability of locus type sharing in each species, as a function of the maximum genomic distance (only genome pairs of a
given distance or less are compared). Results are shown for the 18 species in which our dataset includes at least 5 L0.01

lineages with mean >2 isolates per lineage. The values plotted are the median bootstrap values when resampling all
isolates with replacement n = 100 times for a given genome distance. (B) Estimated SP locus type sharing probability
between isolates belonging to di↵erent L0.004 and L0.01 lineages. Error bars denote 95% confidence intervals obtained by
bootstrap (resampling isolates with replacement within the species n = 1000 times). Green squares show the plateau
probability value from panel A, and species are sorted by sample size. Values in parentheses next to each species name are
the number of genomes and the number of locus types for this species, respectively. (C) Relative contribution of the three
categories from Figure 2 (blue: recent exchange, red: no recent exchange, grey: unresolved) to SP locus type sharing
between lineages. Only species in which we found >100 pairs of lineages sharing SP locus types are displayed. Values
shown represent median of the bootstrap distribution sampled n = 1000 times.
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Evolutionary dynamics of individual SP locus genes

The cps and kps loci follow the typical structure of SP loci, comprising a core complement of genes212

required for SP expression, regulation and export (at the ends of the locus) and a variable complement

of genes coding for assembly of oligo- and polysaccharides (in the middle of the locus). In addition214

to relocation of whole SP loci into new chromosomal backgrounds via HGT (explored in detail above;

see Figure 3), evolution of SP loci involves diversification of the individual component genes through216

substitutions and recombination, as well as gain and loss of sugar transferase and synthesis genes to

form new locus structures with di↵erent gene complements. To explore gain and loss of individual LGFs218

over short time scales, we inferred neighbour-joining trees for each L0.004 lineage, and used the GLOOME

software to infer the ancestral patterns of SP locus gene gains and losses on each tree using maximum220

parsimony (see Methods). The results reveal many instances of gain or loss of small numbers of genes

(1-3) within individual bacterial lineages (Fig 5A), demonstrating that evolution of locus genetic content222

can occur on relatively short epidemiological timescales. Interestingly, we did not observe any significant

relationship between this measure of individual gene mobility (gain/loss) rate and the relative position of224

the genes in the locus (see Supplementary Figure S13). This is in contrast to previous observations that

the central sugar processing genes are subject to higher frequencies of homologous recombination in K.226

pneumoniae 46 (and in the Gram-positive S. pneumoniae 55), although this could be due to insu�cient

power given the sample size and short timescales captured in our gene gain/loss analysis. We did however228

observe clusters of co-evolving LGFs (Figure 6), which were strongly associated with co-mobility in the

population (i.e., sharing similar patterns of gain/loss; see Supplementary Figures S14 and S15), consistent230

with evolution of SP loci through reassortment of modular gene sets to create new locus types.

A large proportion of LGFs were found in diverse taxonomic backgrounds (Fig 5B): amongst all LGFs232

with at least two unique sequences, 55% (37%) of the cps (kps) LGFs were found in at least two species

and 35% (20%) were found in at least two genera. We also found identical cps and kps LGF sequences234

in multiple species, indicating recent horizontal transfer of SP locus genes between diverse taxa. We hy-

pothesised that di↵erent LGFs frequently move between di↵erent genetic backgrounds. To assess this, we236

quantified such moves as rates of jump (jump-rates) between species for individual LGFs using ancestral

state reconstruction to model bacterial species as a discrete trait on each individual gene tree (for LGFs238

with >100 sequences), and measured the frequency of state transitions (i.e. species changes) per branch

length (see Methods). The distribution of species-jump-rates for the most diverse LGFs (>100 sequences240

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/709832doi: bioRxiv preprint 

https://doi.org/10.1101/709832
http://creativecommons.org/licenses/by-nc/4.0/


15

each; i.e. points above the dashed line in Fig. 5B) is shown as blue points in Figure 5C. The species-

jump-rates were compared to locus-jump-rates, which were calculated as jump-rates between diverse locus242

families (connected components in Figure 1A), and are shown as red points in Fig. 5C. We found a much

greater variance in locus-jump-rates than in species-jump-rates. The flanking kpsFEDU genes in the kps244

locus and galF/gnd/ugd genes in the cps locus were more likely to jump between locus families than

between species. Amongst LGFs with the highest jump-rate, we found five genes with unknown function.246

Using hhsuite
56, we found that two of those genes had resemblance to distant enzyme protein sequences

(phosphomannomutase and 5-formyltetrahydrofolate cyclo-ligase) in the UniProt database. These un-248

known genes could thus represent components of uncharacterised polysaccharide biosynthesis pathways;

but may also potentially represent unknown mobile genetic elements (see Supplementary Table S2).250
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Figure 5. SP loci evolve via horizontal movement of individual locus gene families (LGFs). (A) Number of
gene gains or losses per branch vs. branch lengths, across all L0.004 lineage trees (see Methods). The violin plot on the
right-hand-side shows the marginal distribution of the number of gains/losses, dominated by zero (reflecting within-locus
exchanges of small numbers of genes) and with a long tail (reflecting occasional whole-locus exchange events), detected
within bacterial lineages. (B) Each point corresponds to one LGF with minimum two sequences (n = 3118 for cps and
n = 285 for kps). Plot shows the number of species in which a given LGF was found vs the number of unique sequences in
that LGF. (C) Species-jump-rates (blue) and locus-family-jump-rates (red) for LGFs with >100 sequences (above the
dashed line in panel A). Bars indicate 95% confidence intervals obtained by bootstrapping (see Methods). LGFs are
labelled with the most common gene name, kps LGFs are highlighted in red. Locus families were defined as connected
components in Figure 1.
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Figure 6. Co-evolution between locus gene families (LGFs). LGFs with pairwise co-evolutionary coe�cient
CVij > 0.5 and co-occurring in least 200 isolates are linked in the network. Nodes are scaled to indicate the number of
isolates in which each LGF was found, coloured to represent the number of genera, and labelled with the most common
gene name annotated for members of that LGF.
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Discussion

To our knowledge we present the first systematic analysis of SP locus evolution across Enterobacteriales,252

or indeed any bacterial order. Previous studies focusing on individual SP loci, or the distribution of SP

loci within individual species groups, have occasionally reported instances of individual loci transferring254

across species or genus bounds. However this study provides a unique view of evolutionary dynamics of SP

loci across multiple scales. By examining the largest-to-date collection of SP loci in the Enterobacteriales,256

we showed that our two query locus regions are widespread across the order: cps (kps) locus region was

detected in 22 (11) genera belonging to 5 (3) bacterial families. Importantly, we show that at least one258

third of all SP locus gene families (LGFs) were detected in multiple species, and that most common

gene families showed evidence of frequent jumps between species and locus families. This promiscuous260

distribution of SP LGFs is consistent with our observation of many cases of horizontal transfer of whole

SP loci between bacterial lineages, species and genera. In addition, we found frequent alterations of the262

LGF content of the SP loci within closely related bacterial lineages, often through gain/loss of a small

number of genes. Altogether, our study on the global SP diversity in Enterobacteriales provides robust264

evidence for SP loci being a major evolutionary hotspot, complementing evidence from previous separate

reports on various members of this and other bacterial groups51,57,58,55.266

The inter-species view of SP genetics also highlights the range of possible factors that can shape

the diversity and distribution of bacterial SPs. It is by now widely accepted that the SP loci are, at268

least in some bacterial populations, under strong diversifying selection33. Indeed, diversifying selection

is consistent with the enormous observed and predicted reservoirs of genetic diversity at SP loci (Fig. S3)270

and high rates of HGT as it would favour novel locus types arising over time, for example via negative

frequency-dependent selection. However, such form of selection would not explain the presence of identical272

or near-identical loci in distant genomes where we found evidence of no recent locus exchange (Fig. 2C).

Such cases, particularly those occurring between divergent taxonomic backgrounds, are suggestive of a274

form of stabilising selection that preserves the genetic structure of the SP locus over long periods of

time. This could occur via positive frequency-dependent selection when some locus types are strongly276

favoured in certain ecological niches. A notable example are O-antigens in S. enterica 59 that exhibit

high antigenic specificity for particular hosts or environments as they provide protection from predatory278

protists; incidentally, S. enterica was a species in which we detected one of the strongest signals of cps
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locus preservation (c.f., Figure S12). However, there might be also other reasons for finding near-identical280

but diverse locus structures in diverse genomes, including mechanistic factors (e.g., ecological separation

or physical barriers to recombination) or simply chance, and the role of such factors cannot be excluded,282

particularly over the shorter time scales.

Notably, our pan-order study showed that evolutionary dynamics shaping SP loci varied substantially284

between di↵erent bacterial populations, which may be related to the di↵erent ecologies exhibited by

di↵erent members of the Enterobacteriales, thus expanding the scope of previous observations within a286

single species60. The datasets currently available are not su�cient in size or ecological data/sampling to

delve into the specific relationships between ecology and SP locus dynamics in Enterobacteriales, however288

our study provides an initial quantification of the e↵ect of evolutionary processes like gene exchange and

retention in shaping bacterial gene repertoires, and sets out an approach that could be applied in future290

to studying more directly the interaction between bacterial ecology and evolution.

Our approach has two important caveats, which we deemed to address in our methodology. First,292

while we imposed multiple measures to control for the quality of the analysed genome assemblies (genome-

based taxonomic assignment, discarding of low-quality genome assemblies and those with low quality SP294

locus assemblies), it is still conceivable that the dataset includes assemblies that result from mixed or

contaminated genome data. Hence we have taken a ‘safety in numbers’ approach, whereby all conclusions296

drawn from the obtained data are made based on statistical trends, not individual observations. Second,

the genome set that we sourced from GenBank includes a mixture of single isolates and collections,298

sequenced for a variety of reasons and using various di↵erent sampling strategies. To mitigate the e↵ect of

sampling bias on our estimated parameters, we attempted to minimise it by down-sampling highly similar300

groups of isolates to single representatives, and estimated parameter uncertainty through resampling

isolates with replacement (see Methods).302

Altogether, our study paints a picture of the evolutionary process shaping SP diversity in Enterobac-

teriales. It provides support for the idea that SP biosynthesis loci are diversity-generating machines,304

optimised to produce novel phenotypes while minimising the fitness cost of producing sub-optimal com-

binations33. Diversity generated in such recombination hotspots is subject to action of various evolu-306

tionary forces that may di↵er from those shaping the structure of the underlying bacterial populations

within which they occur. Encapsulation has been previously associated with an increased environmental308

breadth61 and increased rates of genetic exchanges62. Our data provide clear evidence that SP loci are
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also hotspots for HGT at multiple levels, including transfer of whole loci and of subsets of component310

genes, between lineages of the same species but also across species and genus boundaries, consistent with

the action of elevated diversifying selection when compared to the rest of the genome. However, we also312

show that this is balanced by strong evolutionary constraints on SP loci, which we detect in the form

of co-evolution of individual component genes, as well as long-term preservation of similar locus struc-314

tures in distantly related backgrounds. SPs are at the forefront of most bacterial encounters with novel

environmental challenges (e.g., host immunity, microbial or bacteriophage communities). It can thus be316

expected that keeping up with these challenges requires an unusually high genetic flexibility, as exhibited

by SPs, to be able to rapidly generate novel types.318
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Methods

Isolate collection and species assignment320

The main dataset consisted of 27,476 genomes from NCBI RefSeq (April 2018) belonging to the 53 genera defined as Enter-

obacteriaceae by the UK Standards for Microbiology Investigations63: Arsenophonus, Biostraticola, Brenneria, Buchnera,322

Budvicia, Buttiauxella, Calymmatobacterium, Cedecea, Citrobacter, Cosenzaea, Cronobacter, Dickeya, Edwardsiella, Enter-

obacter, Erwinia, Escherichia, Ewingella, Gibbsiella, Hafnia, Klebsiella, Kluyvera, Leclercia, Leminorella, Levinea, Lons-324

dalea, Mangrovibacter, Moellerella, Morganella, Obesumbacterium, Pantoea, Pectobacterium, Phaseolibacter, Photorhabdus,

Plesiomonas, Pragia, Proteus, Providencia, Rahnella, Raoultella, Saccharobacter, Salmonella, Samsonia, Serratia, Shigella,326

Shimwellia, Sodalis, Tatumella, Thorsellia, Trabulsiella, Wigglesworthia, Xenorhabdus, Yersinia and Yokenella. Note that

the definition of Enterobacteriaceae has now been updated to include a subset of these genera, with the rest assigned to328

new families within the order Enterobacteriales38; hence our analysis can be considered a screen of Enterobacteriales, which

uncovered SP loci in the related families Enterobacteriaceae, Erwinaceae and Yersinaceae. False species assignment was330

corrected using BacSort (github.com/rrwick/Bacsort) – a method that constructs a neighbour-joining tree of all isolates

and manually curates monophyletic clades at the species level. Genetic distance was calculated as one minus average nu-332

cleotide identity (1-ANI) for all pairs of genomes, where ANI was estimated using kmer-db
64 with ‘-f 0.02’ option (which,

for a genome size of 5Mb, corresponds to Mash65 with sketch size 105), following by neighbour-joining tree construction334

using rapidNJ66. We removed (i) isolates belonging to genera of Arsenophonus and Sodalis as these genera were rare

and did not form monophyletic clades (n = 6); (ii) isolates with a temporary genus name Candidatus that could not be336

curated using BacSort (n = 6); (iii) isolates which could not be assigned to any of the 53 genera. The resulting 27,383

isolates were classified into 45 genera, and assigned into 39 monophyletic genus-groups with the following joint groups:338

Buchnera/Wigglesworthia, Erwinia/Pantoea, Escherichia/Shigella, Klebsiella/Raoultella, Proteus/Cosenzaea and Serra-

tia/Gibbsiella. For some isolates, especially those descending from rare species in the dataset, species name-reconciliation340

was problematic. Hence, new species categories (i.e., operational taxonomic units) were defined based on the structure of

the distance tree. Monophyletic species groups retained the original species names (e.g., Klebsiella pneumoniae), while342

polyphyletic groups within a genus were split into monophyletic clades with a new unique name (e.g., Citrobacter unknown

C1; in this paper we refer to these as species-groups, genome assignments are given in Supplementary Table S1). The344

remaining isolates (n = 52) were assigned to the category ‘Other’.

Quality control of assemblies346

Genome assemblies submitted to RefSeq undergo quality control to avoid inclusion of poor quality sequence data in the

NCBI public repository67. However, to minimise the risk of finding artificial SP loci due to potential misassemblies, we348

carried out a further quality check based on consistency of genome summary statistics within groups of related isolates.

First, we used hierarchical clustering with complete linkage based on whole-genome distances and a distance cut-o↵ of 0.15350

(corresponding to an approximate inter-genus di↵erence) to group all isolates into genetically related clusters. Then, in all

clusters with 20 isolates or more, we investigated the total genome length distribution and the GC-content distribution,352

looking for any isolates found outside the 99% confidence interval of these variables assuming they are normally distributed.
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Any outliers (i.e., genomes that were unusually long/short and that had unusually high/low GC content) were then removed354

provided that the assembly quality metrics fulfilled the following conditions: N50 < 10000 and Ncontigs > 800. Third, all

isolates belonging to the remaining, small clusters were pooled together and their GC-content and total genome length356

plot revealed two subgroups of isolates (see Supplementary Figure S16). The first group comprised only high quality

(completed) genomes from the Buchnera/Wigglesworthia genus-group, the small size of which is expected due to ancestral358

genome reduction in these host-associated organisms68. The second group was screened in the same way as individual

clusters before but instead looking at outliers from the non-parametric 95% confidence interval. However, none of these360

outliers exhibited poor quality assemblies assuming the definition above, and all were kept. Altogether, we removed 18

isolates from the dataset, thus producing a dataset of 27,365 isolates.362

Detection of SP loci

The cps locus. The cps locus was defined by the presence of flanking genes galF and gnd and/or ugd, and is associated

with the synthesis of group 1 and 4 capsules48. A cps locus reference database was created by combining reference loci

previously identified in Escherichia 45,69 and Shigella 43 (typically called O antigen loci), Salmonella 44 (O antigen loci),

and Klebsiella 46 (K antigen loci), amounting to 348 reference locus sequences (duplicate loci containing identical sets of

homologous genes were removed). Next, all 27,365 isolates were scanned for the presence of a cps locus using an approach

similar to the one previously described46. Briefly, for each assembly, we searched for a best match among all reference

sequences using blastn. Given such best match, we defined C (percentage of the best match found in the assembly), Nm

(number of best match genes missing in the detected locus), Ne (number of extra genes present in the detected locus), and

Nc (number of contigs on which locus was found). The best match was defined as a good match if any of the following

conditions was met:

8
>>>>>>><

>>>>>>>:

C = 100, Nm = 0, Ne = 0, Nc 6 3, or

C > 99, Nm 6 1, Ne 6 1, Nc 6 2, or

C > 95, Nm 6 2, Ne 6 2, Nc 6 1, or

C > 99, Nm = 0, Ne 6 2, Nc 6 2

If the condition was not met but Nc = 1, we extracted the locus and reannotated it using Prokka
70 with a custom gene364

database. The locus was defined as missing if (i) the only genes detected were core genes (galF/gnd/ugd) or other sugar-

synthesis genes (rmlACBD, manBC, fcl, gmd, galE, glm, rmd); (ii) if there was a single contig with only core genes; (iii)366

if no core genes were found. In the first round, all new loci present in a single contig were extracted, and loci without gene

duplications or stop codons and with all core genes present were added to the reference database, altogether comprising 994368

reference sequences. In the second round, all loci which had a good best match, as defined above, or new loci in a single

contig (Nc = 1) were extracted. Loci had transposons removed using ISFinder (e-value threshold of 10�20), and frameshift370

mutations corrected using Decipher R package71. According to those definitions, 3,275 isolates were missing the cps locus,

and 18,401 had the locus, which was then extracted.372

The kps locus. The kps locus was defined by the presence of flanking genes kpsF, kpsE, kpsD, kpsU, kpsC, kpsS,

kpsT and kpsM (group 2 capsules) and kpsD, kpsM, kpsT, kpsE, kpsC and kpsS (group 3 capsules), as reviewed in48. The374
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initial reference sequence database consisted of six sequences from Escherichia coli 72. Locus extraction was performed in

the same way as with the cps locus, except that the locus was defined missing in the case of absence of any of the three376

genes kpsM, kpsT, kpsC, and the extended reference database had 106 sequences. With those definitions, 24,759 isolates

were missing the kps locus, and 2,356 had the locus extracted.378

Locus gene families and locus types

Coding sequences within all detected loci were clustered into locus gene families (LGFs), separately for the cps and kps

locus regions. The clustering was done using mmseqs2
73 with default settings and the 50% sequence identity threshold at

the protein level (‘--min-seq-id 0.5’ option). For each pair of loci from isolates i1 and i2, a Jaccard distance (J) was

calculated between the SP loci in both isolates as

J(i1, i2) = 1� U(i1, i2)/I(i1, i2),

where U(i1, i2) is the number of LGFs in a union of all LGFs in both loci and I(i1, i2) is the number of LGFs in an intersect380

of all LGFs in both loci. Locus types were defined by connected components of a locus similarity network clustered at

J 6 0.1. A representative set of loci for all Enterobacteriales was chosen as single representatives of all loci within each382

species. This led to a set of 2,658 cps loci and 333 kps loci (the set used in Fig. 1).

Definition of wihtin-species lineages384

We defined bacterial lineages Lx by using a hierarchical clustering approach with complete linkage at the whole-genome

distance threshold x. Depending on the analysis, we used two di↵erent lineage definition thresholds, x = 0.004 and x = 0.01386

(note that an evolutionary distance cut-o↵ of 5% has been proposed as a criterion for delineating bacterial species74).

Detection of ribosomal sequence types (rST)388

We identified ribosomal sequence types (rST) for each isolate in reference to a standard typing scheme 75, using a custom

procedure implemented in a R script. First, we used blastn (with megablast option) to search all unique ribosomal sequences390

similar to the reference alleles of the 53 ribosomal gene loci with an e-value threshold of 10�10 in each genome assembly,

with the top hit for each locus recorded. Each isolate was then assigned a combination of 53 numbers, corresponding to an392

allele index at each ribosomal gene. Isolates with more than five missing alleles were regarded as with an unknown rST.

Finally, isolates with identical allele combinations (disregarding the missing loci) were clustered into rSTs. The detected394

rSTs were used to define representative datasets by: (i) identifying unique combinations of rST and locus type Ci (for

i = 0, 1 or 2), and (ii) for each unique rST/locus type combination choosing the isolate with the greatest n50 value.396

Identification of recent locus exchanges in pairs of genomes

We aimed to detect recent locus exchanges between pairs of genomes sharing locus types (using the C1 definition). A398

simple pairwise genome search yielded over six million pairs sharing the locus type in the cps region. As the large majority
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of these pairs were isolates belonging to the same clonal family (and thus most likely sharing the locus through common400

ancestry), we filtered this dataset in two steps. First, we only considered genome pairs belonging to di↵erent lineages (under

the L0.004 definition). Second, we only considered a single representative of a combination of rST and a C1 locus type (as402

defined above). This resulted in 7,010 isolates forming 98,882 pairs, and in 1,117 isolates forming 24,001 pairs for the cps

and kps loci, respectively. Of these, we shortlisted those pairs where the estimated cps evolutionary distance was lower than404

the genomic evolutionary distance, resulting in 90,182 pairs and 21,051 pairs sharing a cps or kps locus type, respectively.

For each pair, we then downloaded predicted coding regions in the relevant assembly from NCBI RefSeq76 and, when406

unavailable, we predicted them using Prodigal
77 with default settings, and removed all protein sequences previously found

in the cps or kps regions. Next, we used mmseqs2 with 10�50 e-value threshold to: (a) align SP locus protein sequences in one408

genome against those in the other genome, (b) all other protein sequences in one genome against those in the other genome.

If a protein in one genome gave a hit to multiple proteins in the other genome, only the most similar sequence was retained.410

Then, we created a distribution of the genome protein sequence comparison by (a) randomly sampling np protein sequences

(where np is the number of homology groups common to both loci), (b) calculating the mean percentage similarity between412

them, and (c) repeating this process 10,000 times. The locus type was considered recently exchanged via recombination

if the locus proteins were amongst the top 5% of the most similar sets of proteins (see also Supplementary Figure S6).414

Conversely, if the locus proteins were in the bottom 40% of the most similar sets of proteins or the locus evolutionary

distance was greater or equal to the whole-genome locus distance, the locus was considered selectively maintained.416

Quantification of purifying selection

Among all representative isolates (see above), 7,417 isolates had a cps or kps locus. The coding sequences from those418

isolates were then clustered using mmseqs with default settings and ‘--min-seq-id 0.5’ option to find family-wide homology

groups (HGs). For computational purposes, we only focused on the clusters with 100 sequences or more, hence resulting420

in a total of 36,095,186 proteins clutered into 28,641 HGs. Gene sequences assigned to each HG were then aligned at the

protein level with mafft
78 with default settings and reverse aligned with pal2nal

79. Maximum likelihood tree for each422

HG was created using FastTree
80 with ‘--gtr --gamma’ options, and midpoint rooted. Ancestral SNPs were recovered

using ClonalFrameML81 with the ‘-imputation only’ option, allowing us to recover all independent synonymous and non-424

synonymous substitutions that occurred over each branch of each HG phylogeny. Next, all proteins were aligned against the

representative cps and kps proteins with mmseqs align with an e-value threshold of 10�32. HGs in which 90% of proteins426

had hits to one of the protein categories in the reference genome (‘SP locus’ or ‘other’) were assigned to that category,

otherwise ignored. 28,307 HGs were thus assigned to the ‘other’ category, 261 HGs were assigned to the ‘SP locus’ category,428

and 73 HGs were discarded.

Calculation of jump-rates between bacterial species430

All nucleotide sequences assigned to a given locus gene family (LGF) were aligned with mafft with default settings. Next,

a maximum likelihood tree was build using FastTree with ‘--gtr --gamma’ options and midpoint rooted. We then used the432

asr max parsimony() function from R package castor to infer bacterial species as ancestral states at internal nodes of the

tree82, and considered resolved states as those with marginal likelihood assigned to a single species of at least 0.95. Next,434
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we considered all tree edges with resolved states at the upstream and downstream nodes, and these were divided into those

where there was a change in species along this branch (species jump) and those where there was no change (no jump).436

The species jump rate was calculated as the ratio of the number of branches with detected species jump to the summed

branch lengths of all considered tree edges. To account for uncertainty in tree inference, for each alignment we generated438

100 bootstrap trees. To account for uncertainty in the number of sequences within each LGF, for each tree we randomly

subsampled (with replacement) branches of that tree 100 times. The species-jump rate was estimated for each LGF tree in440

the overall 104 bootstrap sample and the median and 95% confidence intervals of the obtained distribution were reported.

The locus-wide species-jump rates were calculated in the same way based on concatenated alignments of all LGF present in442

all isolates for a given SP locus. In that calculation, isolates with less than three low-to-middle frequency genes (20% cuto↵)

were discarded as in these cases locus-family assignment may have been problematic leading to false-positive locus-family444

jumps.

Estimation of SP gene flow within lineages446

To quantify SP gene flow within bacterial populations, we first identified, for both cps and kps locus, a subset of isolates

where the locus was identified in a single contig. This was done to avoid mistaking gene absence due to inability to assemble448

the full locus with gene absence due to actual gene gain or loss. We then considered a dataset of single representatives

of the rST and C0 locus types. Then, for each lineage defined at the L0.004 level, we generated a neighbour-joining tree450

based on pairwise whole-genome distances using rapidNJ
66 as well as a LGF presence/absence matrix. We then considered

lineages which contained at least 10 isolates and at least 3 accessory LGFs (i.e., at least three gene families were gained or452

lost in that lineage). The tree and the LGF presence/absence matrices were then used as inputs for GLOOME
82 to infer the

gene gains and losses at each branch of the tree using the maximum parsimony model. Co-mobility coe�cient of a pair of454

LGFs, i and j, was calculated as a co-occurrence of gain or loss events between i and j, namely as a proportion of a sum

of all branch lengths in which i and j were found to be co-gained or co-lost to the sum of all branches in which i or j were456

found to be gained or lost.

Identification of co-evolving capsule genes458

Co-evolution coe�cient CVij between LGFs i and j was estimated as CVij = CV J
ijRij , where CV J

ij is a co-occurrence

coe�cient calculated as a Jaccard index of the number of isolates with LGF i present and those with LGF j present, and460

Rij is a correlation coe�cient reported by the Mantel test using matrices of pairwise distances between sequences from

co-occurring LGFs. Mantel test calculation was performed using ecodist R package83 using Kimura 2-parameter distance462

measures.

Transparency of the study464

The data generated in this study (extracted nucleotide and protein locus coding sequence and genome phylogeny of all

isolates) can be found under the following links:466

• https://figshare.com/s/d3790c3b3acf63c65e46
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• https://figshare.com/s/9373af4f2566cd6ffe37468

• https://figshare.com/s/bb8d893f9b41426fdace

The software used to identify SP locus sequences in cps and kps regions in Enterobacteriales genomes, as well as all locus470

reference sequences used in this study, are available at: https://github.com/rmostowy/fastKaptive.

Glossary472

SP surface polysaccharide

HGT horizontal gene transfer

LPS lipopolysaccharide

ANI average nucleotide identity

CDS coding sequence

LGF locus gene family
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