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Summary

Oat ranks sixth in world cereal production and has a higher content of health-promoting
compounds compared to other cereals. However, there is neither a robust oat reference
genome nor transcriptome. Using deeply sequenced full-length mRNA libraries of oat cultivar
Ogle-C, a de novo high-quality and comprehensive oat seed transcriptome was assembled.
With this reference transcriptome and QuantSeq 3 mRNA sequencing, gene expression was
quantified during seed development from 22 diverse lines across six time points. Transcript
expression showed higher correlations between adjacent time points. Based on differentially
expressed genes, we identified 22 major temporal co-expression (TCoE) patterns of gene
expression and revealed enriched gene ontology biological processes. Within each TCoE set,
highly correlated transcripts, putatively commonly affected by genetic background, were
clustered, and termed genetic co-expression (GCoE) sets. 17 of the 22 TCoE sets had GCoE
sets with median heritabilities higher than 0.50, and these heritability estimates were much
higher than that estimated from permutation analysis, with no divergence observed in cluster
sizes between permutation and non-permutation analyses. Linear regression between 634
metabolites from mature seeds and the PC1 score of each of the GCoE sets showed
significantly lower p-values than permutation analysis. Temporal expression patterns of oat
avenanthramides and lipid biosynthetic genes were concordant with previous studies of
avenanthramide biosynthetic enzyme activity and lipid accumulation. This study expands our
understanding of physiological processes that occur during oat seed maturation and provides
plant breeders the means to change oat seed composition through targeted manipulation of key
pathways.
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Introduction

Oat ranks sixth in world cereal production (USDA, 2019), and has a high content of health-
promoting compounds in comparison to other cereals. Historically, oat was used primarily as
animal feed (Hoffman, 2011), but recently it has been increasingly used as a human food
because of health benefits associated with lipids, functional proteins, and dietary fibers such as
B-glucan (Rasane et al.,, 2013). Oat also produces unique phenolic compounds known as
avenanthramides (Avns), which have been reported to modulate signaling pathways associated
with cancer, diabetes, inflammation, and cardiovascular diseases (Tripathi et al., 2018).

Despite worldwide production of this nutrient rich food, genomic studies in oats have lagged
behind other cereal grains. A robust and comprehensively annotated oat reference genome is
not yet available, and a limited number of oat transcriptome analyses have been published.
Differential gene expression (DGE) analyses for salinity stress tolerance (Wu et al., 2017) and
responses under phosphorus deficit (Wang et al., 2018) have been conducted in seedlings and
roots, respectively. The first de novo seed transcriptome assembly was generated by Gutierrez-
Gonzalez et al. (2013). However, this version of the transcriptome included only 412 of 1440
(28.6%, Table S1) complete BUSCO plant genes (Waterhouse et al., 2018).

Investigation of the transcriptome through time is useful for understanding physiological
processes occurring during seed maturation and for conducting genetic improvement. Much
effort has been made to understand biological processes underlying observed temporal gene
expression patterns, including transcriptome studies in maize (Li et al., 2014; Yi et al., 2019),
wheat (Li et al., 2018; Wan et al., 2008) and barley (Zhang et al., 2016). However, in each case,
only one cultivar was examined, which may reflect genotype-dependent or genotype-specific
results and thus, may have limitations for plant improvement. To date, no global/temporal gene
expression studies of developing seed have been conducted in oat.

Analysis of Avns and lipid biosynthetic genes through time can facilitate an understanding their
metabolism. Three genes encoding 4-coumaroyl-CoA 3-hydroxylase (CCoA3H), caffeoyl-CoA
3-O-methyltransferase (CCoAOMT) and hydroxyanthranilate hydroxycinnamoyltransferase
(HHT) were cloned by Yang et al. (2004), and are key genes involved in Avns biosynthesis in
oat (Collins, 2011). Oat grain has higher oil content than wheat or barley (Banas et al., 2007,
Liu, 2011), and, unlike other cereals, the majority of oat lipids (86-90%) are found in the
endosperm (Banas et al., 2007). However, oat lipid biosynthetic genes have yet to be cloned,
and neither Avn nor lipid biosynthetic gene profiles have been investigated.

High throughput sequencing, de novo transcriptome assembly and quantification technologies
are continually improving (Grabherr et al., 2013; Patro et al., 2017) making it possible to
quantify transcript expression with high precision in non-model species, even when a reference
genome sequence is not available. Furthermore, the 3' mRNA sequencing technology enables
the generation of gene expression profiling data for hundreds of samples with high precision
and reasonable cost (Kremling et al., 2018; Moll et al., 2014; Tzfadia et al., 2018). Here, we
generated full-length transcript RNA sequences for developing seed of the oat cultivar Ogle-C
(cv. Ogle-C) using both lllumina HiSeq 2000 and MiSeq sequencing platforms, together with
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QuantSeq 3 mRNA sequencing data of developing seeds from 22 oat cultivars in two
environments across six developmental time points. Our objectives were to: (i) generate a high-
quality and comprehensive de novo oat seed transcriptome; (ii) identify global temporal gene
expression patterns and reveal biological processes behind them; (iii) estimate heritabilities of
identified temporal gene expression! sets and evaluate their potential usefulness in plant
breeding; and (iv) describe the temporal expression patterns of Avns and lipid biosynthetic
genes.

" The term gene expression is used to indicate transcript abundance in this study.
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Results

Validating the assembled oat transcriptome

The set of longest isoforms from each Trinity “gene” consisted of 134,418 transcripts (Figure 1).
We aligned the Trinity longest isoform set against the Brachypodium distachyon
(UP0O00008810), Hordeum vulgare (UP000011116), and Triticum aestivum (UP000019116)
predicted proteomes (Uniprot 2019) using NCBI blastx (Camacho et al., 2009), retaining 48,740
(36.26%) transcripts with at least one hit with an E-value < 109, The remaining 85,678
transcripts were aligned to scaffolds of the hexaploid oat genome v1.0 (Avena sativa v1.0,
http://avenagenome.org/) using GMAP (Wu and Watanabe, 2005); 71,982 (53.55%) transcripts
aligned with > 85% identity and > 85% coverage and 13,696 (10.19%) not aligning. The
unaligned transcripts were queried using NCBI blastx against UniRef100 at E-value < 1073.
3,879 transcripts were found to have at least one match, with 918 transcripts mapping to
Viridiplantae (green plant) proteins and the remaining 2,961 transcripts mapped to non-
Viridiplantae proteins. The 2,961 transcripts were excluded in the downstream analysis due to
likely contamination. Therefore, our final representative transcriptome assembly (RTA)
contained 131,457 transcripts (Appendix S1).

56,877 (42.27%) and 27,278 (20.75%) transcripts of the RTA were longer than 500 and 1000
nucleotides (nt), respectively (Table 1, Figure S1). The N50, median and average transcript
lengths were 1205, 433 and 757 nt, respectively. The RTA sums to a 99,539,633 nt assembly
length.

We used BUSCO (Waterhouse et al., 2018) database to validate representation of protein-
coding sequences in the RTA. Using the BUSCO plants set (embryophyta_odb9), 1212 of the
1440 BUSCO genes were complete in the RTA with 1188 genes single-copy and 24 duplicated
(Table S1); 148 BUSCO genes were fragmented and 80 were missing (10.3% and 5.5% of the
total, respectively).

Principal components analysis (PCA) of samples

Developing seeds of 22 cultivars (Table S2) were collected at 8, 13, 18, 23, 28 and 33 days
after anthesis (DAA) and expression abundances determined using 3 mRNA Quant-Seq (Moll
et al., 2014). Of the 528 potential samples (22 lines x 6 time points x 2 sites x 2 replicates), we
successfully sampled 419. From these 419 samples, 22 with less than 0.5 million mapped
reads and 71,642 (53.30%) transcripts with less than two mapped reads in at least ten samples
were removed. After this filtering, 397 samples (59,815 transcripts) were retained (Appendix
S2). We performed PCA based on 500 transcripts with the highest variance. The second
principal component separated the 397 samples into two distinct clusters with 71 and 326
samples (Figure S2). We could not identify the cause of this clustering. The PCA of the 326
samples showed the first principal component, explaining 64% of the variance, was driven by
sampling time (Figure 2). Within the 326 samples, the average Pearson correlation coefficients
of biological replicates were 0.874, 0.884 and 0.875 from Greenhouse samples, Field samples
and among samples across the sites (Figure S3), respectively.
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Pairwise correlation of transcript expression and number of differentially
expressed transcripts (DETs) between adjacent time points

Using the 326 samples, we performed pairwise correlation analysis and differential gene
expression analysis between time points (Appendix S3). This analysis showed high correlation
between adjacent time points, with decreasing correlation as time increased (Figure 3a). For
example, the transcriptome expression of 8DAA had correlation coefficients of 0.959, 0.917,
0.817, 0.781, and 0.777 at 13DAA, 18DAA, 23DAA, 28DAA and 33DAA, respectively. This
analysis also split the six time points into two groups. Transcriptome expression at 8DAA,
13DAA, and 18DAA showed higher correlation with each other than with later time points.
Likewise, expression at 23DAA, 28DAA, and 33DAA showed higher correlation than with earlier
time points. The lowest correlation between adjacent time points happened between 18DAA
and 23DAA.

DETs analysis between adjacent time points showed that the greatest number of DETs
occurred between 18-23 DAA, and lowest number of DETs occurred between 28-33 DAA
(Figure 3b). The maximum DETs occurred between early and middle stages of development,
with many fewer DETs observed at later stages. We observed 8986 DETs between 8-13DAA,
of which 4805 were also differentially expressed between 13-18DAA, while 8477 distinct
transcripts were differentially expressed between 13-18DAA.

Gene category (GO) over-representation analysis for DETs between adjacent time
points

For DETs identified in each time interval, GO enrichment analysis (Appendix S4) was
performed with all transcripts having at least one GO term as background set (Young et al.,
2010). The time interval of 13-18DAA had the highest number of over-represented GO
categories at a false-discovery rate (FDR) adjusted p-value of 0.01 across all three domains of
biological process, cellular compartments and molecular function (Figure S4), followed by 8-
13DAA and 18-23DAA. Few GO categories were over-represented at 23-28DAA and 28-
33DAA.

Generally, different GO categories were enriched for different time intervals, indicating the
changing landscape of underlying processes. The common over-represented GO categories
found between time intervals 8-13DAA and 13-18DAA were mainly related to peptide
biosynthesis, amide biosynthesis and translation (Figure S4a). The common over-represented
GO terms between time intervals of 13-18DAA and 18-23DAA related mainly to photosynthesis
(Figure S4a,c). Oxidation-reduction (GO:0055114) was over-represented in all time intervals
except 28-33DAA (Figure S4a), which is the very end of the sampled seed development stage.
In contrast, nutrient reservoir activity(GO:0045735) was over-represented only in 28-33DAA
(Figure S4c).

Global temporal co-expression(TCoE) patterns

We used 25,971 total DETs between five pairs of adjacent time points to explore global TCoE
patterns. Transcripts were clustered according to differential expression patterns. In theory,
there are 3°=243 possible expression patterns considering that there are three states (up-
regulated, down-regulated, and no change) in each of the five time intervals. We observed only
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80 expression patterns (Figure S5) with a very skewed frequency such that the top 20 patterns
contain 91% of the transcripts (Figure 4). A permutation test including 1000 permutations to
simulate the null hypothesis that expression change in one time period is independent of that in
other time periods showed a minimum number of 91 expression patterns compared to the
observed 80 patterns, and a maximum of 84% of transcripts in the top 20 patterns compared to
the observed 91% of transcripts. Relative to the permutation test, we observed far more
transcripts whose expression changed in only one direction (either only going up or only going
down over time) than would be expected: 79.7% of observed DETs change in only one
direction compared to an null-hypothesis expectation of 50.0%. Among transcripts whose
expression did reverse directions, we observe fewer transcripts going down then up (41.8%)
than expected (45.7%). Both deviations were beyond the maxima from 1,000 permutations of
the null hypothesis. Changes of state that included 13DAA or 18DAA were associated with the
6 largest (15249, 58.72% DETs associated) patterns, where one-step-up-at-18DAA (n = 5,006)
and one-step-down-at-18DAA (n = 2,885) were the largest. Interestingly, we found transcript
numbers in symmetrical expression patterns to be similar. For example, the expression pattern
of one-step-up-at-8DAA (Top-8) is symmetrical to one-step-down-at-8DAA (Top-10), and they
contain a comparable number of transcripts (928 and 878, respectively). We also found that the
number of transcripts in an expression pattern was predicted by the number of differential
expression events in the pattern (e.g., "One-step-up-at-8DAA (Top-8)", "Up-at-13DAA-down-at-
18DAA (Top-19)", and "Three-steps-up-at-8DAA (Top-9)" have one, two, and three differential
expression events, respectively. Figure $6). Thus, the number of transcripts in an up-regulated
pattern was well explained by the number of transcripts in its symmetrical down-regulated
pattern and by its number of differential expression events.

Gene ontology analysis for identified TCoE sets

For the groups of genes identified by temporal clustering, 8 of the 22 patterns exhibited
significant GO enrichment (Figure S7). The One-step-down-at-8DAA (Top-10) pattern
exhibited GO enrichment for tRNA aminoacylation (protein translation), amino acid activation
and tRNA aminoacylation. Two-steps-down-at-8DAA (Top-15) was associated with cellular
localization and intracellular protein transport processes. GO terms enriched for the Three-
steps-down-at-8DAA (Top-7) included nucleosome assembly and protein-DNA complex
assembly related processes. GO terms enriched for the One-step-up-at-13DAA (Top-3)
included a group of complex processes related to peptide biosynthesis, translation, rRNA and
ncRNA processing/metabolic and nucleic acid metabolic processes. GO terms enriched for the
Two-steps-up-at-13DAA (Top-5) included a group of processing/metabolic procedures related
to rRNA, ncRNA, mRNA and tRNA. GO terms enriched for the Two-steps-down-at-13DAA
(Top-4) included a group of processes related to photosynthesis. GO terms enriched for the
One-step-up-at-18DAA (Top-1) included a group of processes related to regulation of biological
process, gene expression, cellular process, metabolic process etc. GO terms enriched for the
Up-at-step-8DAA-down-at-13DAA (Top-17) related to regulation of photosynthesis.

Heritability estimation of the 22 TCoE sets
As we had both temporal and genetic breadth in our design, we estimated the heritability of our
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222 transcriptome, a novelty compared to previous studies (Li et al., 2014, 2018; Wan et al., 2008;
223 Yi et al., 2019; Zhang et al., 2016). Within a TCoE set, we asked two questions: (i) which
224  transcripts are strongly correlated with each other across genotypes such that they are similarly
225  affected by genetic background? And (ii) Is sufficient variation in transcript expression
226  explained by genotype so that it potentially can be manipulated by plant breeders to change oat
227  seed composition?

228  With these aims, we created subclusters (varying in number from 4 to 13) within each TCoE set
229  based on the adjusted gene expression matrix of the full set of 397 samples with more than half
230  million mapped reads (see Methods for details). We termed such subclusters genetic co-
231  expression (GCoE) sets. Within each GCoE set, we calculated the PC1 score for each of the
232 22 oat lines, and estimated the additive genetic variance of that score. We applied the same
233 procedure to 50 permuted data sets. Heritabilities estimated from GCoE sets of the 22 TCoE
234  sets (real data) were much higher than those estimated from permuted datasets (Figure 5). A
235 majority of TCoE sets had highly heritable GCoE sets. Fifteen TCoE sets had GCoE sets with
236  median heritablity exceeding 0.75; two had median heritabilities of GCoE sets between 0.5 and
237  0.75; three had median heritabilities of GCoE sets between 0.25 and 0.50. Two TCoE sets had
238  GCoE sets with median heritability less than 0.25.

239  To test whether the distribution of GCoE set sizes of the 22 TCoE sets differed from that
240  expected under the null distribution, we performed permutation analyses. We calculated
241  Mahalanobis distance of cluster sizes from 1,000 permutations to generate a Mahalanobis
242  distance distribution of each permutation from the mean. We then calculated the Mahalanobis
243  distance of the cluster size vector of the non-permuted expression matrix to the mean of
244  permutation-based Mahalanobis distances, and tested it using a standard Chi-squared test,
245  since the squared Mahalanobis distance follows a Chi-Square distribution (Brereton, 2015;
246  Wicklin 2012). None of the 22 TCoE sets deviated from the null distribution constructed from
247  permuted datasets at significant level of 0.05 after Bonferroni correction (Table S3).

248

249  Correlation between transcript expression patterns and metabolites

250  To examine whether the transcript expression patterns associated with metabolite abundance,
251  we applied a simple linear regression to detect the relationship between 634 metabolites (each
252 with heritability > 0.4) of mature seeds and PC1 scores of GCoE sets. The 634 metabolites
253 included 9 fatty acids, 199 and 426 metabolite features obtained from targeted GC-MS, non-
254  targeted GC-496 MS, non-targeted LC-MS analyses, respectively. For almost all the GCoE sets,
255  we found the p-values from real data were much lower than that obtained from permutations
256  (Figure S8).

257

258  Temporal transcript expression pattern of Avns and lipid biosynthetic genes

259  Two of the compositional features that distinguish oats from other cereals are high lipid levels
260  and the multifunctional Avns. We identified transcripts with sequence similarity to biosynthetic
261  genes for both pathways (Table S4). All of our candidates showed long alignment length and
262  high percentage of identity to their reference sequences, and each had a high number of
263  mapped reads across all samples except FAD3, which was excluded in expression pattern
264  analysis.
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CCoA3H, CCoAOMT and HHT are three key genes for Avns biosynthesis (Collins, 2011). The
CCoA3H gene was up-regulated from 8DAA (Figure 6a), reaching a peak either at 13DAA or
18DAA depending on genotype and then declining, and reaching a plateau at 23DAA or 28DAA.
The CCoAOMT gene showed a similar expression pattern to that of the CCoA3H, but with more
variation between genotypes. Expression of the HHT gene moved up and down within a
relatively small range across all time points, but did not show a clear expression pattern
common across all genotypes.

Key genes involved in fatty acid biosynthesis showed several different expression patterns
(Figure 6b). Expressions of ACCase, FAB2, FAE1/KCS18, FATB, PDAT1 and WRI1 started to
decline from 8DAA and reached a plateau either at 23DAA or 18DAA (WRI1). Expressions of
DGAT1/TAG1, FAB1/KAS2, LPCAT1 and PAH1 started to decline at 8DAA, reached a valley at
18DAA, and rose to a plateau at 23DAA. Expression of the FAD2 gene started to rise at 8DAA,
reached a peak at 13DAA, and declined after 13DAA until reaching a final plateau at 23DAA.
The GPAT9 gene showed different expression patterns between genotypes, but most
genotypes started to decline at 8DAA, then rose after 13DAA, and reached a final plateau at
23DAA.
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Discussion

Transcriptome assembly validation and quality evaluation

A common issue for de novo transcriptome assembly is that while there are many transcripts in
the initial assembly, there is no optimal approach to filter them. A number of studies have used
the longest isoform (Gutierrez-Gonzalez, Tu, et al., 2013; Hirsch et al., 2014). In this study, we
started with the longest isoform set (n = 134,418), and found 90.5% of it could be aligned to oat
relatives (n=48,740), oat genome scaffolds (n=71,982) or Viridiplantae proteins (n=918, Figure
1). However, 9,817 (7.3%) transcripts couldn’t be aligned to any of these. Hypotheses to
explain non-alignment are that they were too small to align to a protein in UniRef100 (Figure
S9), were non-coding RNA, were sequence unique to oat, or Ogle-C specific transcripts
missing in the oat genome v1.0. There was no good reason to filter them out, so we included
them in our RTA for the downstream analyses.

Various methods have been proposed to assess the quality of transcriptome assemblies.
BUSCO has been considered the gold standard to evaluate completeness of genome assembly
for transcriptome assembly (Simao et al., 2015). The BUSCO plant set (embryophyta_odb9)
evaluates assembly content by searching the assemblies for 1440 conserved single copy
orthologs found in at least 20 of 31 plant species (Waterhouse et al., 2018). Of those, 1212
(84.2%) BUSCO plant genes were found to be complete in our RTA, which indicates a high
level of overall coverage for our transcriptome assembly. Our dataset is a substantial
improvement over the first oat seed transcriptome assembly (Gutierrez-Gonzalez, Tu, et al.,
2013), which only included 412 (28.7%) complete BUSCO plant genes (Table S1). Based on
the expression profiles of 12 HiSeq samples of cv. Ogle-C whose developing seeds were
collected at 7, 14, 21, and 28 DAA with three biological replications each, we were able to
assign all 12 samples into four clusters corresponding to the four sampling times (Figure S$10),
and the average correlation among biological replicates was 0.97 (Figure S11). Finally, we
evaluated the quality of our transcriptome assembly by searching the RTA for Avns and lipid
biosynthetic genes homologous to other oat cultivars or other species. All three genes of
CCoA3H, CCoAOMT, HHT involved in Avns biosynthetic pathways were found to have high
similarity to their reference sequences from Arabidopsis, Brachypodium distachyon or other oat
cultivars (Table S4). Twelve key genes involved in fatty acid biosynthesis were found to have
high quality homologs in the RTA, with the alignment length ranging from 825 bp to 7598 bp
and the percent identity ranging from 72.8% to 88.7%. For the ACCase gene, the B. distachyon
reference sequence was 8783 bp, and the homologous transcript found in the RTA was 7812
bp with alignment length of 7598 bp and percent identity for the alignment region of 88.7%. In
summary, we created a high quality and comprehensive transcriptome assembly, which is
reliable for downstream analysis.

Important biological processes underlie different oat seed development stages

In Arabidopsis seed development, major accumulation of storage proteins occurs between 5
and 13 days after flowering (Ruuska, 2002). In maize, Li et al. (2014) found that DGE in early
seed development (0-10 DAA) related to storage protein preparation. In wheat grain
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development, Wan et al. (2008) identified storage protein transcripts most abundant at around
14 DAA. In our study, for the early stage of oat grain development (8-13 DAA and 13-18 DAA),
the dominant biological process ontologies enriched included peptide biosynthesis, amide
biosynthesis, organonitrogen compound biosynthesis and translation, which are all relevant to
protein synthesis. This suggests that oat seed storage proteins also accumulate at early grain
development stages between 8-18 DAA.

Li et al. (2014) observed rRNA and ncRNA related biological process ontologies enriched in
early developing kernels of maize (0-10 DAA). We found rRNA and ncRNA related biological
process ontologies enriched between 13-18 DAA, which indicates that rRNA and ncRNA
processing procedures might also be important between 13-18 DAA in oat.

Expression of photosynthetic genes peaked at 11 days after flowering in Arabidopsis
developing seeds (Ruuska, 2002). Photosynthesis is the dominant biological process ontology
identified at 14 DAA in wheat grain development (Rangan et al., 2017). Expression of 20 of 29
(68.97%) photosynthesis-related genes peaked at 8 DAA in developing barley grains (Bian et
al., 2019). Here, photosynthesis related GO terms were enriched in time intervals of 13-18 DAA
and 18-23 DAA, which suggests immature oat seeds at early and middle development stages
contain functional chloroplasts capable of photosynthesis during grain filling.

A GO category of nutrient reservoir activity was found enriched between 28-33 DAA, which
suggested the importance of nutrient accumulation and storage at the late seed development
stage. This GO term was also found to be enriched at storage phase of barley seed
development (Bian et al., 2019).

Canalization and genetic differentiation of transcription

Given the 58,120 transcripts measured in the 3' QuantSeq assay, we find it remarkable that
only 494 showed a time by genotype interaction at an FDR of 0.1. While it is unclear how to
formulate a null hypothesis against which to test this number, the fact that it is less than 1% of
the transcripts suggests that temporal dynamics of expression are tightly controlled and
canalized across genotypes. The seed is the sole vehicle for the survival of an annual from one
year to the next. It stands to reason, therefore, that its composition, as affected by the temporal
sequence of gene expression and therefore enzymatic activity is important to fithess. A
characteristic the analysis revealed about seed gene expression is that it is unimodal: 92% of
transcripts showing differential expression had only one peak of expression over the
development of the seed. In other words, only 8% of transcripts showed first a significant drop
followed by a significant rise in expression which would lead to expression peaks in distinct
early and late periods of seed development. Only one of the top 22 clusters showed this pattern
(Top-20 with 252 transcripts) and no gene ontology terms were enriched in this cluster.

While the temporal expression patterns appeared conscribed, our data also offered the
possibility of exploring genetic variability in expression. To explore genetic variation, we further
clustered transcripts in each TCoE set according to their co-expression across oat lines,
allowing us to test the heritability of such genetic co-expression sets. We observed that for 17
of the 22 TCoE sets, median heritabilities of GCoE sets were above 0.50. Particularly, for 6 of
the 22 temporal co-expression sets, heritabilities of GCoE sets were close to 1. The high
heritabilities of GCoE sets arise for the following reasons: (i) within a GCoE set, profiles of
transcripts are highly correlated and with almost the same shapes across genotypes, so the
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368  majority of variation in expression profiles is expected to be explained by variation of genotypes;
369  (ii) PC1 was used to characterize a GCoE set, which reduced noise from individual transcript
370  expression profiles (Krafft et al., 2011).

371  We further found heritabilities of GCoE sets estimated from our real dataset were much higher
372 than those estimated from permuted datasets (Figure 5). Moreover, after Bonferroni correction,
373 none of the 22 temporal co-expression sets had a cluster size distribution significantly different
374  from that of a null distribution obtained by permution (Table S3). Completing the causal chain
375  from genotypes to transcribed genes to metabolomic phenotypes, we showed that for the
376  overwhelming majority of GCoE (106 GCoE identified across 22 TCoE, Figure S8), transcript
377 levels correlated with metabolite levels. Given the relatively small number of oat lines we
378  worked with, statistical power to identify specific transcript to metabolite correlations was too
379 low to overcome the multiple testing burden. Nevertheless, these correlations suggest the
380 groups of genes we observed at temporally co-regulated clusters are biologically meaningful
381 and represent useful groups of traits that breeders will able to select upon to manipulate oat
382  seed composition to more desirable endpoints.

383

384  Temporal transcript expression patterns of Avns and lipid biosynthetic genes

385  Avns are produced in both vegetative tissues and grain (Matsukawa et al., 2000; Peterson and
386 Dimberg, 2008; Wise, 2017). Enzymes involved in the biosynthetic pathway of the
387 avenanthramides include CCoA3H, CCoAOMT and HHT (Collins, 2011; Yang et al., 2004).
388  HHT is the final enzyme in the biosynthetic pathway. Little research has been conducted on
389  gene expression of the three enzymes in oat. Activity of the final biosynthetic enzyme, HHT,
390 has been found in dry seeds (Bryngelsson et al., 2003; Matsukawa et al., 2000). Temporal
391  dynamics of HHT activity were investigated in spikelets containing developing grain using nine
392  field-grown cultivars (Peterson and Dimberg, 2008). Most cultivars showed a trend of
393  increasing activity during maturation, however, the HHT activity peaked at different times and
394  had high variation at final harvest among cultivars (Peterson and Dimberg 2008). Similarly, in
395  our study, we did not observe a clear common gene expression pattern across all 22 genotyes
396  for the HHT gene, although both CCoA3H and CCoAOMT showed a similar expression pattern
397  over maturation across most of cultivars. This might be attributed to the complex role the HHT
398 enzyme plays in biosynthesis of Avns, as it is involved in three different pathways and
399  catalyzes the biosynthesis of several different Avns (Collins, 2011).

400 In wheat and barley grains, oil accounts for 2-3% of seed dry weight (Barthole et al., 2012). In
401  contrast, oat grains are relatively rich in oil, which can vary from 3% to 11% of grain weight in
402  different cultivars (Banas et al., 2007; Liu, 2011), with breeding lines containing up to 18.1%
403  (Frey and Holland, 1989). In most cereal grains, oil is mostly stored in the form of
404  triacylglycerols (TAGs, esters of fatty acids and glycerol) within the embryo. However, the
405  majority of oat lipids (86—90%) are found in the endosperm, and up to 84% of the lipids are
406  deposited during the first half of seed development, when seeds are still immature with a milky
407  endosperm (Banas et al. 2007). Little research has been done on temporal expression of genes
408 related to oil storage in cereals. In the barley embryo, most lipids were deposited between 12-
409 22 DAA, and the temporal expression profile of the oleosin 2 transcript constantly increased
410  between 8-22 DAA, and declined thereafter (Neuberger 2008). However, we observed most
411  lipid synthesis genes had high expression level at 8 DAA, and then were down regulated,
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412  maintaining a low expression level after 23 DAA. This is distinct from barley lipid synthesis
413 gene expression, but consistent with findings of Bana$ et al. (2007) that most oat lipids were
414  deposited at early and middle stages of seed development.
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Experimental procedures

Sample collection, RNA extraction, cDNA construction, lllumina sequencing of
oat cultivar Ogle-C and transcriptome de novo assembly

The oat (A. sativa L.) genotype used for de novo transcriptome assembly was Ogle-C, derived
from a single plant reselection of the cultivar ‘Ogle’ (Fox et al., 2001). Developing dehulled
seeds, collected at 7, 14, 21, and 28DAA (Gutierrez-Gonzalez, Wise, et al., 2013), were the
source of RNA. Two sets of libraries were constructed. First, libraries were constructed from
RNA of all three biological replications from the four developmental stages (12 libraries,
Appendix S5) and sequenced in paired-end mode with 100 cycles on the lllumina HiSeq 2000
machine as described previously (Gutierrez-Gonzalez, Tu, et al., 2013). Second, longer reads
were generated from a library constructed from a pool of RNA from the 4 developmental stages
as described previously (Gutierrez-Gonzalez and Garvin, 2017), and sequenced on the lllumina
MiSeqg® platform using v3 chemistry generating 300 nt paired-end sequences (Appendix S6).
Trimmomatic version 0.36 (Bolger et al., 2014) was used to remove the first 12 nt, lllumina
Truseq adaptor remnants and bases with an average quality within 4-bp sliding windows below
a base quality value threshold of 20. A read was removed from the dataset if was shorter than
81 nt for HiSeg-generated sequenced and 181nt for Miseq sequences, respectively. Trimmed
paired-end reads were assembled using Trinity v2.8.4 (Grabherr et al., 2013) with default
parameters.

Validation of the de novo transcriptome assembly

We started with the longest isoform set from each Trinity “gene” (Figure 1). The longest
isoform set was then aligned against the Brachypodium distachyon (UP000008810), Hordeum
vulgare (UP000011116), and Triticum aestivum (UP000019116) predicted proteomes using
NCBI blastx 2.7.1 (Camacho et al., 2009) with an E-value cutoff of < 10-1°. Trinity transcripts
without any blast hits were aligned to the oat genome v1.0 (Avena sativa v1.0,
http://avenagenome.org/, consisting of 63,455 scaffolds lacking annotation) using GMAP
version 2018-07-04 (Wu and Watanabe, 2005) with parameter settings of >85% coverage
and >85% identity, and all other parameters at default values. The unaligned Trinity transcript
sets were searched against the UniRef100 database (Release: 2018_10, 07-Nov-2018) using
NCBI blastx 2.7.1 with an E-value cutoff of < 10-. For the transcripts that did not align to the
draft oat genome, we extracted the best hit for each query sequence from the UniRef100
aligments and used taxonomic information to identify potential contaminant sequences. To
assess the completeness of the oat transcriptome we evaluated the RTA using the BUSCO
toolkit (Waterhouse et al., 2018) using the Plantae lineage-specific single-copy orthologs
(embryophyta odb 9) consisting of 1440 single copy orthologs.

Experimental design, sample collection, 3’ RNA-Seq library construction,
sequencing and metabolites chemical analysis of 22 oat lines

In 2016, we planted in the field and greenhouse 24 lines (Table S2) selected by clustering an
oat diversity panel of 500 lines into 24 groups based on genotype and choosing the centroid of
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each cluster. This method of selection caused the lines to have low relatedness to each other,
resulting in a genomic relationship matrix close to being diagonal (Figure S$12).

In both trials, a randomized complete block design(RCBD) with two replicates was used (Table
S5). Individual spikelets were tagged at anthesis and 10 spikelets were collected at 8, 13, 18,
23, 28 and 33 DAA. Primary florets were quickly dehulled on dry ice, then placed in liquid
nitrogen and transferred to -80C freezer for storage. Two of the 24 lines without developing
seeds collected at both sites were excluded. Of the 22 lines x 6 time points x 2 sites x 2
replicates = 528 possible samples, 419 samples with sufficient seed were randomly assigned to
five 96-well plates for RNA extraction and 3' RNA-Seq library construction using the same
procedure as described by Kremling et al. (2018) at the Cornell University Sequencing facility.
Pooled libraries were sequenced using lllumina NextSeq500 and HiSeq2000 with a 150 nt
single-end run, v2 chemistry (Appendix S7).

After harvest, mature seeds were dehulled and analyzed with gas chromatography-mass
spectrometry (GC-MS) and liquid chromatography—mass spectrometry (LC-MS) at the
Proteomics and Metabolomics Facility at Colorado State University following Carlson et al.
(2019).

Quality trimming 3’ RNAseq reads, transcript quantification, and DGE analysis
BBMap version 37.50 (BBMap - Bushnell B. - sourceforge.net/projects/bbmap/) was used to
remove adapter contamination, polyA sequences, and low quality sequences following a
standard protocol described by Lexogen, Inc (QuantSeq User Guide) with slightly modified
parameter settings of trimgq=20, mag=20, and minlen=50 to retain reads with a minimum per
base sequence quality score of 20 and minimum length of 50 nucleotides. After read quality
control, expressed abundances were determined using Salmon version 0.12.0 (Patro et al.,
2017) and the RTA with default parameters. Samples with less than 0.5 million mapped reads
and transcripts with less than two counts in at least ten samples were filtered out, leaving
59,815 transcripts for analysis. The filtered read count matrix was normalized by sequencing
depth with a sample specific size factor implemented in DESseq2 version 1.22.2 (Love et al.,
2014). A PCA of samples was performed based on variance stabilized expression estimates
using the vst function in DESeq2 package. The sample PCA plot showed two distinct clusters.
We performed differential transcript expression analysis based on the major cluster of 326
samples (58,120 transcripts left after filtering those with less than two counts in at least ten
samples) using the DESseq2 package. First, we performed a likelihood ratio test by comparing
a full model (~ genotype + time + genotype:time) against a reduced model (~ genotype + time)
to filter out transcripts showing a significant genotype-by-time interaction at FDR level of 0.1.
This filter removed 424 transcripts, leaving 57,694 for subsequent analyses.

We performed a DGE analysis to identify transcripts differentially expressed between time
points by controlling for the effect of different genotypes at FDR level of 0.05 using the standard
method implemented in DESeq2 package. In order to understand how transcriptome
expression correlated between time points, we averaged DESeq2 normalized read counts
across samples within each time point for each transcript separately, and then applied a
pairwise Spearman's correlation analysis between time points. To identify global transcript
expression patterns across time points common in all 22 oat lines, we constructed gene
expression pattern sets consisting of DETs between any two adjacent time points. Based on
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the differential gene expression analysis results between any two adjacent time points, we
partitioned all DETs in a single time interval into three categories including up-regulated, down-
regulated and not differentially expressed, which were coded as “u”, “d”, and “0”, respectively.
In this way, the expression pattern of each DET was coded as a string of five characters for the
five time intervals. Finally, transcripts were classified into different temporal expression patterns
based on their expression pattern codes.

Heritability estimation of identified TCoE sets and simple linear regression
between metabolites and GCoE sets

Variance components and heritability estimates of GCoE sets were based on the DESeq2
variance stabilized expression matrix with 397 samples and 59,815 transcripts after adjustment.
We used the surrogate variable analysis (Leek et al., 2012) to get an estimate of latent factors,
and then the first latent factor was used to adjust for unwanted variation using the
removeBatchEffect function implemented in R package limma (Ritchie et al., 2015). For each
transcript separately, the least square means (Ismean) of expression values of the 22 lines
were estimated by the linear model ~ Line + Location + Location/Replication + Time, generating
an Ismean expression matrix. For each TCoE set, hierarchical clustering was used to partition
transcripts into 4 to 20 sub-clusters based on the Euclidean distance of the Ismean expression
matrix. The optimized number of subclusters of each TCoE set was determined by selecting the
number of clusters that made heritabilities of all subclusters relatively high and with low
variation. Using a TCoE set dependent and optimized number of sub-clusters is better than a
uniform arbitrary number of sub-clusters applied to all TCoE sets because it allows different
TCoE sets to have different genetic background partitions. For each GCoE set, PCA was
applied to the Ismean expression matrix defined by the transcripts in that set, and scores of the
first PC were extracted for the 22 oat lines. We fit nested models and performed a likelihood-
ratio test: a full model, PC1score ~ y + Zu + e and a reduced model, PC1score ~ u + e. In the
full model the random term u estimated the oat line additive effect with u ~ N(0, K ¢2.), where K
was the genomic relationship matrix among the 22 oat lines (Figure $12) and % was the
estimated additive genetic variance. For both models, the residual was distributed as e ~ N(O, |
o%), with | being an identity matrix. The heritability was estimated as 62, /(6% + 0%).

To test rigorously if the observed distribution of cluster sizes deviated from its expectation
under the null distribution we used permutation testing. For a given TCoE set, expression of all
genes were permuted relative to each other. The permuted matrix was then clustered to form
eight clusters and the clusters ordered by size, but always dropping the smallest cluster.
Permutation and clustering were repeated 1,000 times. The mean and covariance matrix
among permuted cluster sizes were used to calculate the Mahalanobis distance of the non-
permuted cluster size vector from the mean, and a corresponding p-value was calculated
based on a Chi-Squared distribution with 7 degrees of freedom (Brereton, 2015; Wicklin 2012).
This procedure was repeated for each of the 22 TCoE sets.

10 fatty acids, 282 and 529 metabolite features were obtained from targeted GC-MS, non-
targeted GC-MS, non-targeted LC-MS analyses of mature seeds harvested from the two sites.
A standard linear mixed model (~Line + Location + Location/Replication + Location: Line) of the
RCBD design was fitted for each metabolite using R package Ime4 (Bates et al., 2015), with all
terms treated as random. The heritability was estimated as o?une /(0%LNE + OZLocATION-LINE/2 +
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0%/4). The metabolites with heritability > 0.4 were used as response variable in a simple linear
regression with PC1 scores of each GCoE set as predictor. To compare the p-value obtained
from real data against random sampling, for each metabolite and transcript abundance
regression, we performed 100 permutations of PC1 scores of each GCoE set. Finally, p-values
from permutation and non-permutation analyses were plotted.

Transcriptome annotation and GO analysis

Functional annotation of the RTA was done following a standard workflow implemented in
Trinotate v3.1.1 (Bryant et al., 2017), which provided a comprehensive annotation including GO
annotation assigned to each gene. To understand the biological functions behind the DETs
between adjacent time points and those transcripts clustered to different temporal expression
patterns, GO category over-representation analysis was performed using all transcripts of the
RTA having at least one GO term as a background set with the R package of goseq v1.34.1
(Young et al., 2010). Over-represented GO categories that were significant at FDR adjusted p-
values of 0.01 were further plotted using the R package ComplexHeatmap 1.20.0 (Gu et al.,
2016).
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Figure/Table legends

Figure 1 Results of aligning the assembled oat seed transcriptome against reference
proteomes of oat relatives, scaffolds of the hexaploid oat genome v1.0, and the UniRef100.

Figure 2 PCA plot of 326 samples with more than 0.5 million mapped reads based on the 500
transcripts with highest variance.

Figure 3 Pairwise correlation of transcript expression between time points (a) and numbers of
differentially expressed transcripts between adjacent time points (b). In (b), total stacked bar
height indicates the number of transcripts whose transcription level changed significantly over
the time interval. Colored stack components indicate transcripts with significant change in an
interval in common with a previous interval. For example, in red, 4805 transcripts significantly
changed expression over both the 13-18 DAA and 8-13 DAA intervals.

Figure 4 Top20 expression patterns plus two main expression patterns of 13DAA (Three-steps-
up-at-13DAA, Top-31) and 18DAA (Two-steps-up-at-18DAA, Top-24). Expression pattern plots
are named, and ranking numbers and total number of transcripts of each expression patterns
are given at the bottom. Median gene expression profiles of individual transcripts across the 22
oat lines were depicted in gray lines, and average expression profiles for each pattern are
depicted in blue (if up-regulated) or red (if down-regulated).

Figure 5 Box plots of heritabilities estimated from GCoE sets of the 22 TCoE sets (red) against
box plots of heritabilities estimated from permuted TCoE sets (blue). The TCoE sets were
ordered as in Figure 4.

Figure 6 Transcript expression patterns of oat avenanthremides (a) and fatty acids (b)
biosynthetic genes based on individual oat lines. Transcript expression values of individual
samples were depicted in colored dots, and a LOWESS (Locally Weighted Scatterplot
Smoothing) curve through all expression values of each genotype was drawn in colored smooth
lines. Different colors represent different oat lines. Oat lines with too many missing values were
excluded.

Table 1 Statistics of transcriptome assembly and BUSCOs plants set assessment
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Supporting information

Additional Supporting Information may be found online in the supporting information tab for this
article:

Figure S1 Transcript length distribution of the 131,457 transcripts included in the RTA.

Figure S2 PCA plot of 397 samples with more than 0.5 million mapped reads based on the 500
transcripts with highest variance.

Figure S3 Distribution of Pearson correlation coefficients of biological replicates from
Greenhouse samples, Field samples and among samples across the two sites.

Figure S4 Biological process (a), cellular compartments (b) and molecular function (c) GO
terms enriched for differentially expressed transcript sets between adjacent time points. FDR
adjusted p-values < 0.01 (in -log10 scale) were colored between blue and red, and cells without
GO terms assigned were colored in gray.

Figure S5 The 80 observed temporal transcript expression patterns identified from 25,971
differentially expressed transcripts between five pairs of adjacent time points.

Figure S6 Correlation of transcript numbers (log scale) between each pair of symmetrical up-
and down-regulated expression patterns. Each point represents a pair of symmetrical up- and
down-regulated expression patterns. The number of transcripts in the up-regulated pattern on
the x-axis and the number of transcript in the down-regulated pattern on the y-axis. Black points
have one differential expression event, red points two, and green points three such events.
Figure S7 GO categories enriched for 8 temporal transcript co-expression sets. FDR adjusted
p-values < 0.01 (in -log10 scale) were colored between blue and red, and cells without GO
terms assigned were colored in gray.

Figure S8 Distribution of p-values of simple linear regression between 634 metabolites and
PC1 scores of GCoE sets. Red boxes contained p-values from real data, and blue boxes
contained p-values from 100 permutations.

Figure S9 Transcript length distribution of the 9,817 transcripts that couldn’t be aligned to the
UniRef100.

Figure S10 clusters of 12 HiSeq samples based on expression profiles. Euclidean distances
between samples were colored between dark blue and light blue.

Figure S11 Pearson correlation coefficients of biological replicates from 12 HiSeq samples of
cv.Ogle-C whose developing seeds were collected at 7, 14, 21, and 28 DAA.

Figure S12 Heatmap of genomic relationship among 22 oat lines used in this study.

Table S1 A comparison of BUSCOs plant gene completeness between the RTA in this study
and the first version of de novo oat seed transcriptome assembly.

Table S2 A list of 22 oat lines used in this study.

Table S3 Chi-Square test for sub-cluster size distribution of the 22 temporal co-expression sets.
Table S4 A list of oat transcripts homologous to biosynthetic genes of avenanthremides and
fatty acids from other oat cultivars and Brachypodium distachyon.

Table S5 Detailed information of experimental design and 3’ RNASeq sample names.
Appendix S1 A fasta file containing the 131,457 transcript sequences of the RTA.

Appendix S2 An expression matrix of 59,815 transcripts by 397 samples. Sample names were
coded as combination of Location, GID, DAA and block ID, which were described in Table S5.
Expression abundances were normalized by sample specific size factor and then variance
stabilization transformed using DESseq2.

Appendix S3 Lists of differentially expressed genes between each pair of time points.
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793  Appendix S4 A file containing de novo assembled RTA transcripts annotation.

794  Appendix S5 raw reads of the 12 libraries sequenced in paired-end mode with 100 cycles on
795  the lllumina HiSeq 2000 platform.

796  Appendix S6 raw reads of one library constructed from a pool of RNA from four developmental
797  stages and sequenced by the lllumina MiSeq platform.

798  Appendix S7 raw reads of 419 3' RNASeq libraries sequenced by NextSeq500/HiSeq2000
799  with a 150 nt single-end run.

800 Datasets of appendices S1 to S7 are available on the CyVerse Data Commons. DOI:
801  10.25739/7y0n-de49 (Hu 2019). CyVerse Data Store file path:

802  http://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/HaixiaoHu
803 PBJOatTranscriptome Oct2019.
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|Trinity longest isoform set (134,418)|
NCBI Blastx Searched against Brachypodium distachyon Proteome (UP000008810)
(E-value < 1e-10) Searched against Hordeum vulgare Proteome (UP000011116)
Searched against Triticum aestivum Proteome (UP000019116)

|a|igned (48,740)|  [unaligned (85,678) |

Aligned to scaffolds of oat genome v1.0
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Table 1 Statistics of transcriptome assembly and BUSCOs plants set assessment

Transcriptome assembly statistics
Total transcripts

Transcripts (>= 500 nt)
Transcripts (>= 1000 nt)

Contig N50 (nt)

Median contig length (nt)
Average contig length (nt)

Total assembled bases (nt)

131,457
56,877
27,278

1,205

433

757
99,539,633

BUSCO Statistics

Complete BUSCOs

Complete and single-copy BUSCOs
Complete and duplicated BUSCOs
Fragmented BUSCOs

Missing BUSCOs

Total BUSCO groups searched

number of genes (%)
1212 (84.2%)

1188 (82.5%)

24 (1.7%)

148 (10.3%)

80 (5.5%)

1440

nt = nucleotides, PE = paired-end
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