bioRxiv preprint doi: https://doi.org/10.1101/709683; this version posted July 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

pyBedGraph: a Python package for fast operations on 1-
dimensional genomic signal tracks
Henry B. Zhang'?, Minji Kim?*, Jeffrey H. Chuang?, and Yijun Ruan??

"Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA, 2The Jackson
Laboratory for Genomic Medicine, Farmington, CT, USA, 3Department of Genetics and Genome Sciences, University of
Connecticut Health Center, Farmington, CT, USA

*To whom correspondence should be addressed.

Abstract

Motivation: Modern genomic research relies heavily on next-generation sequencing experiments such as ChIP-seq
and ChIA-PET that generate coverage files for transcription factor binding, as well as DHS and ATAC-seq that
yield coverage files for chromatin accessibility. Such files are in a bedGraph text format or a bigWig binary format.
Obtaining summary statistics in a given region is a fundamental task in analyzing protein binding intensity or
chromatin accessibility. However, the existing Python package for operating on coverage files is not optimized for
speed.

Results: We developed pyBedGraph, a Python package to quickly obtain summary statistics for a given interval in
a bedGraph file. When tested on 8 ChIP-seq and ATAC-seq datasets, pyBedGraph is on average 245 times faster
than the existing program. Notably, pyBedGraph can look up the exact mean signal of 1 million regions in ~0.26
second on a conventional laptop. An approximate mean for 10,000 regions can be computed in ~0.0012 second
with an error rate of less than 5 percent.

Availability: pyBedGraph is publicly available at https://github.com/TheJacksonLaboratory/pyBedGraph under
the MIT license.

1 Introduction

The advancement of next-generation sequencing technologies allowed researchers to measure various biological
signals in the genome. For example, one can probe gene expression (RNA-seq) (Mortazavi et al., 2008), protein
binding intensity (ChIP-seq) (Robertson et al., 2007), chromatin accessibility (DHS and ATAC-seq) (Buenrostro
et al., 2015), and protein-mediated long-range chromatin interactions (ChIA-PET) (Fullwood et al., 2009).
Members of the ENCODE consortium (ENCODE Project Consortium, 2012) have collectively generated these
datasets in diverse organisms, tissues, and cell types. The 1-dimensional (1-D) signal tracks of the datasets are
generally stored in a bigWig compressed binary format or in a bedGraph text format. Although bigWig is a space-
efficient standard format for visualizing data on genome browsers, the bedGraph format is often used for text
processing and downstream analyses.

A common task in analyzing 1-D signals is extracting summary statistics of a given genomic region. For instance,
it is useful to compare an average binding intensity in a peak region of the ChIP-seq signal track to that in a non-
peak region. When analyzing new assays with unknown background null distributions, one may need to randomly
sample as many as 10 billion regions to obtain sufficient statistical power to assess the significance of observed
data for de-noising (Zheng et al., 2019). Thus, a fast algorithm is highly desirable. To accommodate this feature in
the widely used Python language, we developed a package pyBedGraph and demonstrate its ability to quickly
obtain summary statistics directly from a bedGraph file without the need to convert it to bigWig. The features of

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/709683; this version posted July 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

pyBedGraph include finding: 1) exact mean, minimum, maximum, coverage, and standard deviations; 2)
approximate solutions to the mean.

2 Methods

Searching for a given interval in a large bedGraph file is a computationally expensive job. To overcome this
problem, pyBedGraph creates an array that contains an index to an entry of data corresponding to a bedGraph line
for every base pair in a chromosome. Therefore, when searching for a statistic, pyBedGraph can then simply use
the array indices to rapidly access the bedGraph values, thereby avoiding the need to search.

In addition to finding the exact mean, pyBedGraph offers the option to approximate it with a reduced calculation
time. The program can pre-calculate and store bins containing values over non-overlapping windows to substantially
decrease the number of values indexed and hence the runtime. In this method, pyBedGraph looks up the two bins
containing the start and end of the interval and inclusively extracts all bins between the two. When the first and last
bin do not exactly match the start and end of the interval, respectively, an estimate is made for each bin by taking
the (value of the bin)X(proportion of the bin overlapping the interval). This method trades off the speed with
accuracy.

pyBedGraph is implemented in Python3 using Cython to further optimize speed. Detailed methods are provided
in Supplementary data.

3 Results

We benchmarked the performance of pyBedGraph and its bigWig counterpart pyBigWig (Ramirez ef al., 2016) on
6 ChIP-seq and 2 ATAC-seq mammalian datasets (Supplementary data) downloaded from the ENCODE portal
(Sloan et al., 2016) (https://www.encodeproject.org). All runs were on a Intel(R) Core(TM) i5-7300HQ CPU @
2.50GHz with 16 GB of RAM using a single thread.

3.1 Speed

Using an interval size of 500 bp and bin sizes of 100, 50, or 25 bp, we measured the runtime of looking up 0.1 to 1
million intervals from chrl. The results are illustrated for POLR2A ChIP-seq data (‘ENCFF376VCU’), where
pyBedGraph takes 0.26 second (cf. 56 seconds for pyBigWig) to obtain an exact mean in 1 million intervals (Figure
1a). Our approximate computation takes 0.09, 0.11, and 0.14 seconds for bin sizes 100, 500, and 25 bp, respectively,
while pyBigWig takes 56 seconds. As the size of the query intervals get larger, the run time gradually decreases for
pyBedGraph’s approximate mean while it increases for the calculation of the exact mean (Supplementary data).

3.2 Accuracy

We next measured the amount of error resulting from the approximation. For each interval size from 100 bp to

100 dicted(i)— 13
5,000 bp, the percentage error was defined as - [lpredtcted(t)—actual(h|

- , where n = 10,000 is the number of
actual(i)

regions to look up (test case intervals) in chrl. A test case interval was excluded from the error calculation when its
actual value was ‘None’ or 0 while the predicted was not, occurring in less than 2.5 percent of test cases. Mean
squared errors and absolute errors were also computed (Supplementary data). On the ‘ENCFF376VCU’ dataset,
the error was around 6%, 3%, and 1% for pyBedGraph with bin sizes equal to the interval size divided by 5, 10,

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/709683; this version posted July 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

and 20, respectively (Figure 1b). By contrast, pyBigWig utilizes ‘zoom levels’ in the bigWig file and its
approximation error peaked at 11% and 9% for interval sizes of 1,000 bps and 4,000 bps, respectively.

3.2 Memory

The memory usage of pyBedGraph depends on the number of lines in the bedGraph file and sizes of each
chromosome in the reference genome. Reading in the bedGraph file stores two 32-bit integers and a 64-bit float for
each line; “loading” each chromosome creates an array of 32-bit integers to store the location of the corresponding
line from the bedGraph file. Furthermore, the pre-calculated bins are stored in an array of 64-bit floats of length
equal to the genome size divided by the bin size. For example, a bedGraph file for POLR2A ChIP-seq data in mouse
spleen (‘ENCFF376VCU’) uses ~1.6GB (=100,620,515 lines X (4 + 4 + 8) bytes) of memory to load the whole

genome and an additional 0.8GB (= 2.0 X 108 base pair X 4 bytes) to load chromosome 1 (chrl). Storing bins of

2.0x108
100

trivial, yet still reasonable for most laptops. By contrast, pyBigWig does not load the bigwig file and consequently

uses no memory.

size 100 base pairs (bps) requires only 16MB (= X 8 bytes). The memory usage of pyBedGraph is non-

4 Discussion

We developed pyBedGraph and demonstrated its ability to quickly obtain summary statistics from 1-dimensional
genomic signals in bedGraph format. Specifically, obtaining the exact mean for 10 billion intervals is estimated to
take 43 minutes with pyBedGraph and 7.4 days with pyBigWig. However, one drawback of pyBedGraph is that it
can take up to a minute to load files whereas pyBigWig allows instant computation. Therefore, we recommend
users to choose pyBedGraph if they prefer working with bedGraph file instead of bigWig, or if they have to search
within more than 1 million intervals. For more than 1 billion intervals with limited compute time, our approximate
solution with a small bin size may be a viable option. As genomics researchers continue to develop novel
technologies ranging from bulk cells to single-cell and single-molecule experiments, it will be imperative to
distinguish true signal from technical noise. Particularly, some ChIP-seq, ChIA-PET, and ChIA-Drop experiments
yield only 10-20% enrichment rates due to weak antibody, resulting in noisy tracks. We envision pyBedGraph to
play a vital role in quickly sampling null distributions to help researchers to de-noise the data.

Funding

This work has been supported by a Jackson Laboratory Director’s Innovation Fund (DIF19000-18-02), 4DN (U54
DK107967) and ENCODE (UM1 HG009409) consortia; Human Frontier Science Program (RGP0039/2017), and
Florine Roux Endowment to Y.R.

Conflict of Interest: none declared.

References

Buenrostro,J. et al. (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc.
Mol. Biol., 109(1), 21-29.

ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature,
489(7414), 57.

Fullwood,M.J. et al. (2009) An oestrogen-receptor-a.-bound human interactome. Nature, 462(7269), 58.

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/709683; this version posted July 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Mortazavi,A. et al. (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods, 5(7),
621.

Ramirez,F. et al. (2016) deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids
Res., 44(W1), W160-W165.

Robertson,G. et al. (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation
and massively parallel sequencing. Nat. Methods, 4(8), 651-7.

Sloan,C. et al. (2016) ENCODE data at the ENCODE portal. Nucleic Acids Res., 44(D1), D726-D732.

Zheng,M. et al. (2019) Multiplex chromatin interactions with single-molecule precision. Nature, 566(7745), 558.

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/709683; this version posted July 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

a

= 1.5
S

c 1.0

3

(5] 054 —— pyBW exact = approximate
3 0 — pyBG exact

QE’ pyBG approximate bin=100 bps
= -054 — pyBG approximate bin=50 bps
c —— PyBG approximate bin=25 bps
2 1.0
N~ *

e

o -1.5
o

-2.0 1

5.0 5.2 5.4 5.6 5.8 6.0
log o(number of tests)

~—— pyBW approximate
pyBG approximate bin=interval_size/5
10 — pyBG approximate bin=interval_size/10
pyBG approximate bin=interval_size/20
8 .
6 .
4

0 1000 2000 3000 4000 5000
Interval size (base pairs)
Fig. 1. Speed and accuracy benchmark on ENCFF376VCU dataset. a) Runtimes of pyBigWig
(pyBW) and pyBedGraph (pyBG) are recorded for 0.1 to 1 million intervals of size 500 bps. The
approximate algorithm for pyBG uses bin sizes of 100, 50, 25 bps. b) The percentage error rate is calculated

for approximate solutions as a function of interval sizes ranging from 100 bps to 5000 bps, each with 10,000
intervals to test. For pyBG, bin sizes are the interval size divided by 5, 10, and 20.

o}

Percentage error rate (%)

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/709683; this version posted July 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

pyBedGraph: a Python package for fast operations on 1-dimensional genomic signal tracks

Henry B. Zhang'?, Minji Kim?, Jeffrey H. Chuang? and Yijun Ruan®?

'Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA,
USA.

’The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.

*Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington,
CT, USA.

*Corresponding author. Email: minji.kim@jax.org

Supplementary Method, Tables and Figures

Supplementary Method S1. Example mean statistics and error calculation
Supplementary Method S2. pyBedGraph usage and commands

Supplementary Table S1. Details of 8 datasets used in the benchmark
Supplementary Table S2. Runtime for 1 million test intervals

Supplementary Table S3. Error statistics for ENCFF050CCI and ENCFF321FZQ
Supplementary Table S4. Error statistics for ENCFF631HEX and ENCFF847JMY
Supplementary Table S5. Error statistics for ENCFF376VCU and ENCFF643WMY
Supplementary Table S6. Error statistics for ENCFF384CMP and ENCFF770CQD
Supplementary Figure S1. Runtime vs. number of tests for all 8 datasets
Supplementary Figure S2. Runtime vs. interval size for all 8 datasets
Supplementary Figure S3. Error rate vs. interval size for all 8 datasets

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/709683; this version posted July 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Supplementary Method S1. Example mean statistics and error calculation

An example bedGraph file is given by the following:
chrl |0 |2 0.7
chrl |2 5 0.9
chrl |8 9 0.1
chrl |13 |14 0.9
chrl |19 |20 |04

After reading the file, the bedGraph object stores the following table as three NumPy arrays for ‘Start’, ‘End’, and Value’.
Index | 0 1 2 3 4

Start |0 |2 8 13 |19
End |2 5 9 14 120
Value | 0.7 {09 0.1 | 0.9 | 0.4

Loading “chrl” creates the following array used to skip the searching process.
Index [0 1234|567 8|9 1011|1213 |14 |15]16|17 1819
Value |[O|O |1 |1 [T]-1T]-1]-1]2)-1)-1]-1]-1}3 [-1]-1}]-1]-1]-1

Exact statistics:

If the user searches the interval [‘chrl’, 8, 12], pyBedGraph begins by looking up the 8" index and obtains the value ‘2’. It
then goes to the 2" index in the arrays stored in the bedGraph object. The value ‘0.1” and length of the interval (9 — 8 = 1) at
the 2" index is used to calculate the relevant statistic. Moving on to the next interval at the 3™ index, pyBedGraph sees that
the “Start” (“13”) is outside our query interval and stops looking further.

Approximate mean:
If bins of size 5 are used for storing the above values, the following bin array is created:
Index | 0 1 2 3

Value | 2*0.7+43*09=4.11*0.1=0.1]1*09=09]1*04=04

If the user searches the interval [‘chrl’, 0, 6], pyBedGraph notes that the starting index in the bin array is 0 / 5 = 0 and the
end index is floor(6/5) = floor(1.2) = 1. Since the 0™ bin is completely inside the interval, the value is stored with the weight
of 5 (=bin size). The next bin with index 1 is only partly in the interval so the value is stored with the weight of 1 (=6 mod 5).
The calculation found is then (4.1 +0.1/5)/(5+ 5 * 1/5) =0.69 The correct exact mean is (0.7X2 + 0.9%3) / (2 + 3) = 0.82.
As aresult, the percentage error in this example is 100*|0.69 — 0.82| / 0.82 = 15.9%.

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/709683; this version posted July 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Supplementary Method S2. pyBedGraph usage and commands

from pyBedGraph import BedGraph

argl - chromosome sizes file

arg2 - bedgraph file

arg3 - (optional) chromosome_name

Just load chromosome ‘chrl' (uses less memory and takes less time)
bedGraph = BedGraph('myChrom.sizes', 'random_test.bedGraph', 'chrl')

bedGraph.load_chrom_data('chrl")

test_intervals = [
['chrl', 24, 26],
['chr1', 12, 15],
['‘chr1', 8, 12],
['‘chr1l', 9, 10],
['chri', 0, 5]

]

values = bedGraph.stats(intervals=test_intervals)

Output is [-1. 0.9 0.1 -1. 0.82]
print(result)

Full documentation at https://github.com/TheJacksonLaboratory/pyBedGraph

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/709683; this version posted July 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Supplementary Table S1. Details of 8 datasets used in the benchmark

ID Assay type Factor Organism Genome assembly Cell/tissue type
ENCFF376VCU ChIP-seq POLR2A Mus musculus C57BL/6 mm10 Adult spleen
ENCFF643WMY ChIP-seq ZNF384 Mus musculus 1295 mm10 ES-E14
ENCFF384CMP ChIP-seq H3K9me3 Mus musculus C57BL/6 mm10 Forebrain embryo
ENCFF321FZQ ChIP-seq POLR2A Homo sapiens GRCh38 K562
ENCFF050CCI ChIP-seq CTCF Homo sapiens GRCh38 K562
ENCFF847IMY ChIP-seq H3K4me3 Homo sapiens GRCh38 K562
ENCFF631HEX ATAC-seq N/A Homo sapiens GRCh38 A549
ENCFF770CQD ATAC-seq N/A Mus musculus C5S7TBL/6 mm10 pO liver

The 8 ENCODE datasets used in the benchmark. ID: unique identification assigned by ENCODE; Assay type: experimental
assay; Factor: protein immunoprecipitation factor if ChIP-seq; Organism: name of the species and strain (if Mus musculus);

Genome assembly: reference genome used for mapping reads; Cell/tissue type: name of the cell line or tissue as listed by
ENCODE.

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/709683; this version posted July 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-ND 4.0 International license.

Supplementary Table S2. Runtime for 1 million test intervals

Dataset pyBW exact [pyBW app. |pyBG exact %{fﬁ S(I))%ps %{fgg%%s %{fg;%%s
ENCFFO050CCI_|59.265 59.649 0.266 0.093 0.113 0.137
ENCFF321FZQ [62.871 126.587 0.373 0.092 0.115 0.139
ENCFF376VCU |55.952 56.134 0.254 0.089 0.111 0.135
ENCFF384CMP |54.093 54.245 0.252 0.089 0.111 0.136
ENCFF631HEX [117.052 117.129 0.216 0.093 0.115 0.139
ENCFF643WMY|55.591 55.774 0.257 0.090 0.112 0.137
ENCFF770CQD |52.306 52.282 0.255 0.089 0.111 0.136
ENCFF847IMY |56.080 56.408 0.215 0.092 0.115 0.137
IAVERAGE 64.151 72.276 0.261 0.091 0.113 0.137

Runtime recorded in seconds, for all § datasets. pyBW: pyBigWig; pyBG: pyBedGraph; app.: approximation.

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/709683; this version posted July 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Supplementary Table S3. Error statistics for ENCFF050CCI and ENCFF321FZQ

ENCFFO50CCI

a ENCFFO50CCI --- pyBW app. b ENCFFO50CCI --- pyBG app. bin=int_size/20

Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0 Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0

100 0.0 0.0 0.0 0 100 0.19777 0.0 0.00051 25

250 0.0 0.0 0.0 0 250 0.44277 le-05 0.001 18

500 0.0 0.0 0.0 0 500 0.5064 2e-05 0.00172 14

750 0.0 0.0 0.0 0 750 0.43736 4e-05 0.0024 7

1000 8.84954 0.04867 0.05697 59 1000 0.56813 6e-05 0.0027 6

2000 4.86489 0.01083 0.0265 29 2000 0.8495 0.00023 0.00427 8

3000 2.73314 0.00566 0.01925 16 3000 0.83133 0.00043 0.0056 3

4000 7.37763 0.02792 0.05276 51 4000 0.87903 0.00051 0.00599 10

5000 6.096 0.0217 0.04282 39 5000 1.0037 0.00091 0.00701 9

c ENCFFO50CCI --- pyBG app. bin=int_size/5 d ENCFFO50CCI --- pyBG app. bin=int_size/10

Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0 Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0
100 2.22438 0.00055 0.00604 112 100 0.69011 4e-05 0.00182 62

250 4.20873 0.00139 0.01108 79 250 1.35438 0.00016 0.00352 42

500 3.76417 0.00325 0.01698 48 500 1.42765 0.00027 0.00552 23

750 4.33152 0.00671 0.02188 27 750 141773 0.00066 0.00729 10

1000 3.94969 0.01006 0.02452 33 1000 1.51551 0.00116 0.00852 19

2000 4.86489 0.01083 0.0265 29 2000 2.45116 0.00216 0.01197 16

3000 3.84557 0.0131 0.02781 22 3000 1.91895 0.00311 0.01359 12

4000 3.77184 0.0088 0.02642 29 4000 1.9365 0.00306 0.01362 17

5000 4.00455 0.0101 0.02794 28 5000 2.17891 0.00366 0.01504 14

ENCFF321FZQ

e ENCFF321FZQ --- pyBW app. f ENCFF321FZQ --- pyBG app. bin=int_size/20

Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actualis O | Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0

100 0.0 0.0 0.0 0 100 0.05095 0.0 0.00018 14
250 0.0 0.0 0.0 0 250 0.18585 0.0 0.00035 18
500 5.80243 0.00441 0.01406 59 500 0.24962 1e-05 0.00062 14
750 2.79372 0.00942 0.01072 20 750 0.22616 9e-05 0.00089 3
1000 1.68375 0.00096 0.00746 13 1000 0.23464 le-05 0.001 2
2000 4.93825 0.00941 0.02458 13 2000 0.31463 2e-05 0.00152 2
3000 3.32866 0.00246 0.01662 9 3000 0.40396 7e-05 0.00206 3
4000 2.75904 0.0013 0.01222 8 4000 0.51945 0.0001 0.00241 3
5000 2.14842 0.00131 0.00997 6 5000 0.58974 0.00018 0.00293 0
g ENCFF321FZQ --- pyBG app. bin=int_size/5 h ENCFF321FZQ --- pyBG app. bin=int_size/10

Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0 Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0

100 0.78766 2e-05 0.00198 72 100 0.25667 0.0 0.00063 34
250 2.1133 0.0001 0.00402 75 250 0.70887 le-05 0.00119 42
500 2.28113 0.00048 0.00609 46 500 0.79472 0.00011 0.00198 26
750 2.52241 0.00187 0.00866 16 750 0.69359 0.00018 0.00262 10
1000 2.29411 0.00313 0.01034 22 1000 0.75259 9e-05 0.00313 9
2000 2.75565 0.00294 0.01398 13 2000 0.99123 0.00105 0.00512 8
3000 2.90612 0.00172 0.01399 13 3000 121472 0.00064 0.00629 7
4000 3.36092 0.00319 0.01499 8 4000 1.53006 0.0007 0.00698 6
5000 2.70569 0.00255 0.01477 11 5000 14146 0.00081 0.00737 3

Additional error statistics for approximate results from pyBigWig and pyBedGraph. Mean squared error is calculated as
(actual — predicted)?, and the absolute error is calculated as |actual — predicted|. “# actual is 0” is the number of test
cases not included in the percentage error rate due to the actual result being 0 while predicted was not. ENCFF050CCT:
CTCF ChIP-seq in human K562 cell line; ENCFF321FZQ: POLR2A ChIP-seq in human K562 cell line. Tables S4, S5, S6
follow the same notation as Table S3.

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/709683; this version posted July 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Supplementary Table S4. Error statistics for ENCFF631HEX and ENCFF847JMY

ENCFF631HEX

a ENCFF631HEX --- pyBW app. b ENCFF631HEX --- pyBG app. bin=int_size/20

Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0 || Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0

100 0.0 0.0 0.0 0 100 0.15783 0.00741 0.02161 25

250 0.0 0.0 0.0 0 250 0.32185 0.01453 0.04444 46

500 0.0 0.0 0.0 0 500 0.38188 0.03805 0.08614 37

750 0.0 0.0 0.0 0 750 0.46332 0.0574 0.1167 26

1000 0.0 0.0 0.0 0 1000 0.52255 0.08775 0.14388 17

2000 12.87664 231.13895 5.64724 47 2000 0.60204 0.22035 0.23684 5

3000 7.7858 97.29978 3.81412 35 3000 0.64027 0.37413 0.30447 1

4000 5.23807 54.82365 2.81183 20 4000 0.77547 0.63408 0.3697 4

5000 4.85157 32.97427 2.26198 11 5000 0.99399 0.73966 0.41869 3

c ENCFF631HEX --- pyBG app. bin=int_size/5 d ENCFF631HEX --- pyBG app. bin=int_size/10

Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0 Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0
100 1.60011 0.47989 0.28938 125 100 0.52078 0.06076 0.08329 59

250 3.20007 1.46303 0.5661 175 250 1.10833 0.1454 0.1676 89

500 3.93499 3.456 0.91131 140 500 1.29715 0.35248 0.28417 76

750 414189 6.84428 1.20181 108 750 1.60001 0.58176 0.38092 57

1000 4.41435 9.50925 1.43425 63 1000 1.45005 0.89312 0.46396 37

2000 6.01991 18.63036 1.96445 25 2000 1.74513 2.36786 0.73055 13

3000 4.2207 26.81737 2.16785 29 3000 1.93702 4.20412 0.91446 17

4000 4.8659 33.5904 2.23606 18 4000 1.96842 4.91793 0.99207 9

5000 4.4646 35.01066 2.26956 11 5000 2.30428 5.66221 1.0355 9

ENCFF847JMY

e ENCFF847|MY --- pyBW app. f ENCFF847)MY --- pyBG app. bin=int_size/20

Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0 Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0

100 0.0 0.0 0.0 0 100 0.16888 0.0 0.00025 38
250 0.0 0.0 0.0 0 250 0.61892 1e-05 0.00056 60
500 0.0 0.0 0.0 0 500 112473 4e-05 0.00113 7
750 0.0 0.0 0.0 0 750 1.06239 7e-05 0.00155 44
1000 0.0 0.0 0.0 0 1000 0.91102 0.00014 0.0021 28
2000 13.91072 0.18049 0.07293 73 2000 0.8792 0.00028 0.00343 14
3000 7.9812 0.06931 0.04792 42 3000 102717 0.00039 0.00437 9
4000 6.79703 0.0409 0.03638 35 4000 163952 0.00063 0.00514 10
5000 4.96046 0.01967 0.02691 27 5000 1.2845 0.00088 0.00576 4
g ENCFF847)MY --- pyBG app. bin=int_size/5 h ENCFF847)MY --- pyBG app. bin=int_size/10

Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0 Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0

100 2.24585 0.00035 0.00352 220 100 0.7316 3e-05 0.00096 29
250 5.77551 0.00182 0.00751 307 250 1.98588 0.00015 0.00215 152
500 9.68363 0.00362 0.01231 242 500 3.53039 0.00045 0.00392 138
750 9.34833 0.00889 0.01684 132 750 3.63639 0.00091 0.00536 73
1000 8.41881 0.01237 0.02097 96 1000 2.99831 0.00134 0.00681 51
2000 6.03585 0.02269 0.0256 34 2000 2.75019 0.0028 0.0105 21
3000 5.15734 0.02357 0.02715 33 3000 2.58095 0.00384 0.01199 17
4000 6.44138 0.02428 0.02795 35 4000 4.44111 0.00468 0.01249 20
5000 4.94017 0.02465 0.02893 26 5000 2.53949 0.00415 0.01258 11

Refer to Table S3 legend for labels. ENCFF631HEX: ATAC-seq in human A549; ENCFF847JMY: H3K4me3 ChIP-seq in
human K562 cell line.

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

aCC-BY-ND 4.0 International license.

ENCFF376VCU

Supplementary Table S5. Error statistics for ENCFF376VCU and ENCFF643WMY

bioRxiv preprint doi: https://doi.org/10.1101/709683; this version posted July 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

a ENCFF376VCU --- pyBW app. b ENCFF376VCU --- pyBG app. bin=int_size/20
Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0 Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0
100 0.0 0.0 0.0 0 100 0.23037 0.0 0.00051 56
250 0.0 0.0 0.0 0 250 0.42817 le-05 0.00105 38
500 0.0 0.0 0.0 0 500 0.60384 1le-05 0.00185 31
750 0.0 0.0 0.0 0 750 0.68952 2e-05 0.00244 23
1000 11.2523 0.00414 0.04428 124 1000 0.76138 3e-05 0.00298 16
2000 5.60394 0.00108 0.02278 55 2000 1.10835 5e-05 0.00454 13
3000 3.97163 0.00055 0.01456 29 3000 140739 6e-05 0.00523 15
4000 8.89222 0.0022 0.0304 89 4000 1.74871 6e-05 0.00531 10
5000 6.56727 0.00122 0.02354 79 5000 1.30581 7e-05 0.00541 12
C ENCFF376VCU --- pyBG app. bin=int_size/5 d ENCFF376VCU --- pyBG app. bin=int_size/10
Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0 Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0
100 2.91404 0.00016 0.00645 226 100 0.89764 2e-05 0.00187 115
250 4.83938 0.00035 0.01133 171 250 1.6041 5e-05 0.00367 82
500 5.87136 0.00078 0.01785 107 500 1.88046 9e-05 0.00586 59
750 6.61644 0.00103 0.02063 84 750 2.61968 0.00015 0.0076 44
1000 5.42748 0.00115 0.02128 60 1000 2.32288 0.00021 0.00909 32
2000 4.83178 0.00091 0.01992 55 2000 2.65438 0.00027 0.01068 27
3000 5.83118 0.00086 0.01852 49 3000 3.2228 0.00026 0.01067 25
4000 4.74847 0.00069 0.01687 41 4000 2.85012 0.00023 0.00995 19
5000 5.38443 0.00054 0.01555 51 5000 3.20058 0.00022 0.00943 26
ENCFF643WMY
e ENCFF643WMY --- pyBW app. f ENCFF643WMY --- pyBG app. bin=int_size/20
Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is O || Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0
100 0.0 0.0 0.0 0 100 0.23795 0.0 0.0004 49
250 0.0 0.0 0.0 0 250 0.43936 0.0 0.00087 35
500 0.0 0.0 0.0 0 500 0.68099 1le-05 0.00155 25
750 0.0 0.0 0.0 0 750 0.58877 2e-05 0.00209 16
1000 12.55899 0.00961 0.05102 115 1000 0.66427 2e-05 0.00249 19
2000 5.36306 0.00249 0.02566 65 2000 0.79656 4e-05 0.00377 13
3000 3.51624 0.00119 0.01721 a1 3000 0.99991 7e-05 0.00469 18
4000 9.11413 0.0063 0.04068 110 4000 1.13275 9e-05 0.00509 15
5000 8.72881 0.00443 0.03431 73 5000 1.44401 8e-05 0.00527 13
g ENCFF643WMY --- pyBG app. bin=int_size/5 h ENCFF643WMY --- pyBG app. bin=int_size/10
Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0 Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0
100 2.76014 0.00011 0.00519 204 100 0.79373 1e-05 0.00152 100
250 4.74573 0.00028 0.00973 168 250 1.58286 3e-05 0.00312 90
500 4.91109 0.00062 0.01476 101 500 1.766 8e-05 0.00492 56
750 5.4598 0.00115 0.01845 64 750 1.92871 0.00013 0.00635 34
1000 5.35259 0.00124 0.01998 64 1000 1.99923 0.00014 0.00744 35
2000 4.37937 0.0015 0.02112 47 2000 2.17704 0.00037 0.0102 33
3000 4.15464 0.00137 0.0202 54 3000 2.26377 0.00038 0.01068 29
4000 4.29308 0.00168 0.01987 45 4000 2.30729 0.00049 0.01067 24
5000 5.53679 0.00136 0.01863 58 5000 279314 0.00039 0.01031 24

Refer to Table S3 legend for labels. ENCFF376VCU: POLR2A ChIP-seq in C57BL/6 (B6) mouse adult spleen;
ENCFF643WMY: ZNF384 ChIP-seq in 129S mouse ES-E14.

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/709683; this version posted July 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Supplementary Table S6. Error statistics for ENCFF384CMP and ENCFF770CQD

ENCFF384CMP

a ENCFF384CMP --- pyBW app. b ENCFF384CMP --- pyBG app. bin=int_size/20

Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actualis O || Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0

100 0.0 0.0 0.0 0 100 0.17917 0.0 0.00038 57

250 0.0 0.0 0.0 o 250 0.48411 0.0 0.00081 63

500 0.0 0.0 0.0 0 500 0.65117 le-05 0.00147 39

750 0.0 0.0 0.0 o 750 0.53995 1le-05 0.00195 23

1000 15.23345 0.0061 0.05198 105 1000 0.7096 2e-05 0.00241 21

2000 5.88282 0.00148 0.026 47 2000 0.82115 3e-05 0.00368 9

3000 4.02822 0.00073 0.01812 27 3000 1.08191 5e-05 0.00473 9

4000 9.92053 0.00431 0.04258 56 4000 1.25278 6e-05 0.0053 6

5000 8.81868 0.00272 0.03614 45 5000 1.80034 7e-05 0.00555 8

c ENCFF384CMP --- pyBG app. bin=int_size/5 d ENCFF384CMP --- pyBG app. bin=int_size/10

Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0 Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0
100 2.31138 0.0001 0.00488 233 100 0.70936 le-05 0.0014 122

250 4.44706 0.00026 0.00944 255 250 1.47054 3e-05 0.00291 127

500 5.74615 0.00055 0.01477 144 500 1.8858 7e-05 0.0048 69

750 5.48654 0.00079 0.01846 79 750 1.88775 0.0001 0.00626 47

1000 5.77311 0.001 0.02065 53 1000 2.10746 0.00013 0.00734 30

2000 4.98382 0.00103 0.02142 33 2000 2.42531 0.00024 0.01032 19

3000 4.92644 0.00103 0.02137 32 3000 2.65572 0.00029 0.01123 20

4000 4.56237 0.00096 0.02035 22 4000 2.49997 0.00027 0.01092 10

5000 5.98328 0.00086 0.01937 37 5000 3.0924 0.00026 0.01082 14

ENCFF770CQD

e ENCFF770CQD --- pyBW app. f ENCFF770CQD --- pyBG app. bin=int_size/20

Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actualis O || Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0

100 0.0 0.0 0.0 0 100 0.22878 0.0 0.00037 59
250 0.0 0.0 0.0 0 250 0.49444 0.0 0.00076 30
500 0.0 0.0 0.0 0 500 0.81446 1e-05 0.00141 20
750 0.0 0.0 0.0 0 750 091214 2e-05 0.0019 20
1000 11.72576 0.00594 0.03034 112 1000 1.02285 3e-05 0.00228 14
2000 5.42291 0.00137 0.01458 68 2000 1.4343 5€-05 0.00336 17
3000 3.54555 0.00068 0.01036 40 3000 154412 8e-05 0.00389 1
4000 11.00703 0.00615 0.0327 119 4000 131571 9e-05 0.00374 17
5000 11.25475 0.00418 0.02548 77 5000 152607 0.0001 0.00396 16
g ENCFF770CQD --- pyBG app. bin=int_size/5 h ENCFF770CQD --- pyBG app. bin=int_size/10

Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is 0 Interval Size (bPS) | Error Rate (%) | Mean Squared Error | Absolute Error | # Actual is O

100 3.11766 0.00014 0.00475 216 100 0.90828 le-05 0.00137 106
250 5.01282 0.00046 0.00883 144 250 1.75512 Se-05 0.00277 71
500 5.92168 0.00081 0.01298 70 500 2.23482 0.00011 0.00452 35
750 5.56093 0.00124 0.01491 64 750 2.46739 0.00015 0.0058 36
1000 5.59304 0.0013 0.01458 61 1000 2.71618 0.00021 0.00658 29
2000 5.42291 0.00137 0.01458 68 2000 2.77676 0.00033 0.00748 35
3000 5.21979 0.00163 0.01525 73 3000 2.81085 0.00041 0.00775 33
4000 5.21869 0.00172 0.01565 71 4000 2.5137 0.00036 0.00749 37
5000 5.383 0.00172 0.01557 63 5000 2.73866 0.00041 0.00754 33

Refer to Table S3 legend for labels. ENCFF384CMP: H3K9me3 ChIP-seq in C57BL/6 mouse forebrain embryo;
ENCFF770CQD: ATAC-seq in C57BL/6 pO0 liver.

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/709683; this version posted July 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Supplementary Figure S1. Runtime vs. number of tests for all 8 datasets

d Run Time for ENCFFO50CCI b Run Time for ENCFF321FZQ
2 /
15
= 10 =
w w
° T 1
c c
S o5 pyBW exact S pyBW exact
& —— pyBW app. & —— pyBW app.
o 0.01 — pyBG exact o -~ pyBG exact
E pyBG app. bin=100 E 0 pyBG app. bin=100
g -0.51 — pyBG app. bin=50 § —— pyBG app. bin=50
=3 —— pyBG app. bin=25 - —— pyBG app. bin=25
3 -1.0 8
o o -1
° °
“1s /
20 -2 1
5.0 5.2 5.4 5.6 5.8 6.0 5.0 5.2 5.4 5.6 5.8 6.0
log10(# of tests) log10(# of tests)
c Run Time for ENCFF847)MY d Run Time for ENCFF631HEX
2
15

log10(runtime (seconds))

—m——

1.0
1
0.5 pyBW exact pyBW exact
— pyBWapp. — pyBW app.
0.0 — pyBG exact —— pyBG exact

pyBG app. bin=100
—— pyBG app. bin=50
—— pyBG app. bin=25

log10(runtime (seconds))
o

pyBG app. bin=100
—— pyBG app. bin=50
—— pyBG app. bin=25

-15

-2.0 -2

5.0 5.2 5.4 5.6 5.8 6.0 5.0 52 5.4 5.6 5.8 6.0
log10(# of tests) log10(# of tests)
e Run Time for ENCFF376VCU f Run Time for ENCFF643WMY
15 15

= 10 = 10
0)
g g
S 0571 —— pyBW exact S 0571 —— pyBW exact
8 —— pyBW app. & —— pyBW app.
o 0.0 — pyBG exact o 0.0{ — pyBG exact
E pyBG app. bin=100 £ pyBG app. bin=100
€ 051 — pyBG app. bin=50 ‘g ~0.5{ — pyBG app. bin=50
= —— pyBG app. bin=25 - —— pyBG app. bin=25
2 -10 S -10
o o
° °

-15 -15

-2.0 -2.0

5.0 5.2 54 5.6 5.8 6.0 5.0 52 5.4 5.6 5.8 6.0
log10(# of tests) log10(# of tests)
g Run Time for ENCFF384CMP h Run Time for ENCFF770CQD
15 15

= 10 =~ 10
0)
g g
g 05 pyBW exact g 05 pyBW exact
8 —— pyBW app. & —— pyBW app.
o 0.0 — pyBG exact o 007 — pyBG exact
E pyBG app. bin=100 £ pyBG app. bin=100
§ -0.54 —— pyBG app. bin=50 g -0.51 —— pyBG app. bin=50
g, —— pyBG app. bin=25 g, —— pyBG app. bin=25
= -10 = -1.0
o o
° °

-15 -15

-2.0 -2.0

5.0 52 5.4 5.6 58 6.0
log10(# of tests)

5.0 5.2 5.4 5.6 5.8 6.0
log10(# of tests)

Runtime for various numbers of test cases, for all 8 datasets. pyBW: pyBigWig; pyBG: pyBedGraph; app.: approximation.
Except for ENCFF321FZQ, pyBW exact has approximately the same runtime as pyBW app., making the red and yellow lines
overlap.

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/709683; this version posted July 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Supplementary Figure S2. Runtime vs. interval size for all 8 datasets

a Run Time vs. Interval Size for ENCFFO50CCI b Run Time vs. Interval Size for ENCFF321FZQ
0.0 / 0.0 —/

—~ =05 ~ =0.51
w w
° °
c c
S -10 pyBW exact S -10 pyBW exact
8 —— pyBW app. 8 —— pyBW app.
© 15 —— pyBG exact o — pyBG exact

=1 - . =151 S £
g pyBG app. bin=int_size/5 § pyBG app. bin=int_size/5
‘g pyBG app. bi & g pyBG app. bi t_size/10
E 20 —— pyBG app. bin=int_size/20 £ -2.0{ — pyBG app. bin=int_size/20 /
3 3
o =)
o 25 2 254

-3.0 &-_x -3.04

[1000 2000 3000 4000 5000 [1000 2000 3000 4000 5000
Interval Size Interval Size
c Run Time vs. Interval Size for ENCFF847)MY d Run Time vs. Interval Size for ENCFF631HEX
0.0 0.0
_. =05 ~ -05
3 3
e c
g -10 pyBW exact S -1.04 pyBW exact
3 PYBW app. & —— pyBW app.
© _154 —— pyBG exact v 154 — pyBG exact
E 7 pyBG app. bin=int_size/5 £ pYBG app. bin=int_size/5
S

§ pyBG app. bi t_size/10 S pyBG app. bin=int_size/10
£ -20 —— pyBG app. bin=int_size/20 g, -2.01 —— pyBG app. bin=int_size/20
g i
o

-3.0 -3.01

0 1000 20'00 3000 4000 5000 0 1000 2000 3000 4000 5000
Interval Size Interval Size

oQ

Runtime for various interval sizes, for all 8 datasets. pyBW: pyBigWig; pyBG: pyBedGraph; app.: approximation.

Run Time vs. Interval Size for ENCFF376VCU

Run Time vs. Interval Size for ENCFF384CMP

—

0

Run Time vs. Interval Size for ENCFF643WMY

0.0 / 0.0 /

_. 05 ~ 05
o o
] =]
c c
g -Lo0 —— pyBW exact g -10 —— pyBW exact
& —— PpyBW app. & —— PpyBW app.
©-15 —— pyBG exact ©-15 —— pyBG exact
E pyBG app. bin=int_size/5 E pyBG app. bin=int_size/5
g —— pyBG app. bin=int_size/10 g —— pyBG app. bin=int_size/10
£ -20 —— pyBG app. bin=int_size/20 £ -20 —— pyBG app. bin=int_size/20
2 2
o o
oS -25 2 -25

-30 e ——

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Interval Size Interval Size

Run Time vs. Interval Size for ENCFF770CQD

0.04 0.0 J
_-05 _ 05
n n
2 2
g -1o0 pyBW exact g -10 pyBW exact
8 —— pyBW app. & —— pyBW app.
@ -15 — PyBG exact ©-15 —— pyBG exact
E E pyBG app. bin=int_size/5
‘é < —— pyBG app. bin=int_size/10
£ -20 —— pyBG app. bin=int_size/20 .E, -2.0 —— pyBG app. bin=int_size/20
S 2
8-as C——-’// 825
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Interval Size Interval Size

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/709683; this version posted July 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Supplementary Figure S3. Error rate vs. interval size for all 8 datasets

a Error vs. Interval Size for ENCFFO50CCI b Error vs. Interval Size for ENCFF321FZQ
61

—— pyBW app. —— pyBW app.

8 pyBG app. bin=int_size/5 pyBG app. bin=int_size/5
—— pyBG app. bin=int_size/10 —— pyBG app. bin=int_size/10
—— pyBG app. bin=int_size/20 —— pyBG app. bin=int_size/20

6

4 \

V

w

w s

Percentage Error Rate (%)
~

Percentage Error Rate (%)

-

0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Interval Size (basepairs) Interval Size (basepairs)
C Error vs. Interval Size for ENCFF847JMY d Error vs. Interval Size for ENCFF631HEX
14 — pyBW app. —— pyBW app.
pyBG app. bin=int_size/5 12 pyBG app. bin=int_size/5
12 ——— pyBG app. bin=int_size/10 ~—— pyBG app. bin=int_size/10
—— pyBG app. bin=int_size/20 10 —— pyBG app. bin=int_size/20
10
8

Percentage Error Rate (%)
Percentage Error Rate (%)

6
4 41
2 2
0 0o —/]//
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Interval Size (basepairs) Interval Size (basepairs)
e Error vs. Interval Size for ENCFF376VCU f Error vs. Interval Size for ENCFF643WMY
—— pyBW app. 121 —— pyBW app.

pyBG app. bin=int_size/5
—— pyBG app. bin=int_size/10
—— pyBG app. bin=int_size/20

pyBG app. bin=int_size/5
—— pyBG app. bin=int_size/10
—— pyBG app. bin=int_size/20

10

-
© o

I

Percentage Error Rate (%)
Percentage Error Rate (%)
o

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Interval Size (basepairs) Interval Size (basepairs)
g Error vs. Interval Size for ENCFF384CMP h Error vs. Interval Size for ENCFF770CQD
—— pyBW app. 121 —— pyBW app.

-
&

pyBG app. bin=int_size/5 pyBG app. bin=int_size/5
—— pyBG app. bin=int_size/10 J —— pyBG app. bin=int_size/10

-
o

;e‘ 12 —— pyBG app. bin=int_size/20 ;c‘ —— pyBG app. bin=int_size/20
Z10 g 89
-4 -4
s]
5 ® 5 69
@ 1
o ¢ =}
© ©
- € 4
5 5
24 =
& &

2 2]

0 04

o 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Interval Size (basepairs) Interval Size (basepairs)

Percentage error for various interval sizes, for all 8 datasets. pyBW: pyBigWig; pyBG: pyBedGraph; app.: approximation.
Errors from exact statistics of both pyBigWig and pyBedGraph are not included since they are zero.

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

