

1 Genomic diversity and global distribution of *Saccharomyces eubayanus*, the wild ancestor of
2 hybrid lager-brewing yeasts

3

4 Quinn K. Langdon¹, David Peris^{1,2,3}, Juan I. Eizaguirre⁴, Dana A. Opulente^{1,2}, Kelly V. Buh¹,
5 Kayla Sylvester^{1,2}, Martin Jarzyna^{1,2}, María E. Rodríguez⁵, Christian A. Lopes⁵, Diego
6 Libkind^{4,@}, Chris Todd Hittinger^{1,2,@}

7

8 ¹Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy
9 Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706,
10 USA

11 ²DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI
12 53706, USA

13 ³Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA),
14 CSIC, Valencia, Spain

15 ⁴Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto
16 Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional
17 de Investigaciones, Científicas y Técnicas (CONICET)-Universidad Nacional del Comahue,
18 8400 Bariloche, Argentina

19 ⁵Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías
20 Alternativas (PROBIEN, CONICET-UNCo), Neuquén, Argentina

21 [@]Corresponding authors: CTH cthittinger@wisc.edu & DL diego.libkind@gmail.com

22

23

24 Abstract:

25 *S. eubayanus*, the wild, cold-tolerant parent of hybrid lager-brewing yeasts, has a
26 complex and understudied natural history. The exploration of this diversity can be used both to
27 develop new brewing applications and to enlighten our understanding of the dynamics of yeast
28 evolution in the wild. Here, we integrate whole genome sequence and phenotypic data of 200 *S.*
29 *eubayanus* strains, the largest collection to date. *S. eubayanus* has a multilayered population
30 structure, consisting of two major populations that are further structured into six subpopulations.
31 Four of these subpopulations are found exclusively in the Patagonian region of South America;
32 one is found predominantly in Patagonia and sparsely in Oceania and North America; and one is
33 specific to the Holarctic ecozone. *S. eubayanus* is most abundant and genetically diverse in
34 Patagonia, where some locations harbor more genetic diversity than is found outside of South
35 America. All but one subpopulation shows isolation-by-distance, and gene flow between
36 subpopulations is low. However, there are strong signals of ancient and recent outcrossing,
37 including two admixed lineages, one that is sympatric with and one that is mostly isolated from
38 its parental populations. Despite *S. eubayanus*' extensive genetic diversity, it has relatively little
39 phenotypic diversity, and all subpopulations performed similarly under most conditions tested.
40 Using our extensive biogeographical data, we constructed a robust model that predicted all
41 known and a handful of additional regions of the globe that are climatically suitable for *S.*
42 *eubayanus*, including Europe. We conclude that this industrially relevant species has rich wild
43 diversity with many factors contributing to its complex distribution and biology.

44

45

46

47 Introduction:

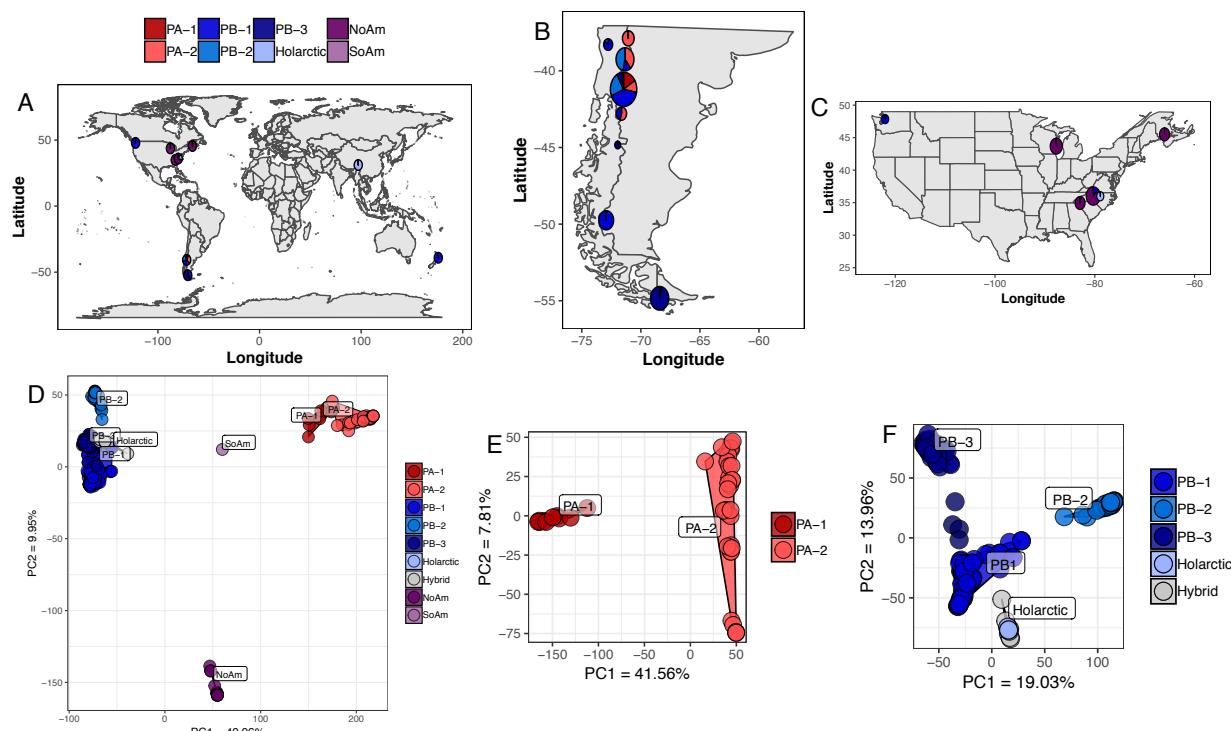
48 In microbial population genomics, the interplay of human association and natural
49 variation is still poorly understood. The genus *Saccharomyces* is an optimal model to address
50 these questions for eukaryotic microbes, as it contains both partly human-associated species (i.e.
51 *Saccharomyces cerevisiae*) and mostly wild species (e.g. *Saccharomyces paradoxus*). These two
52 examples also illustrate the complexity of studying yeast population genomics. Much of *S.*
53 *cerevisiae* population structure is admixed, and several lineages show signatures of
54 domestication (Liti et al. 2009; Schacherer et al. 2009; Gallone et al. 2016; Gonçalves et al.
55 2016). In contrast, *S. paradoxus* is almost exclusively found in the wild and has a population
56 structure that is correlated with geography (Leducq et al. 2014; Eberlein et al. 2019). Pure
57 isolates of their more distant relative *Saccharomyces eubayanus* have only ever been isolated
58 from wild environments; yet, hybridizations between *S. cerevisiae* and *S. eubayanus* were key
59 innovations that enabled cold fermentation and lager brewing (Libkind et al. 2011; Gibson and
60 Liti 2015; Hittinger et al. 2018; Baker et al. 2019). Other hybrids with contributions from *S.*
61 *eubayanus* have been isolated from industrial environments (Almeida et al. 2014; Nguyen and
62 Boekhout 2017), indicating that this species has long been playing a role in shaping many
63 fermented products. This association with both natural and domesticated environments makes *S.*
64 *eubayanus* an excellent model where both wild diversity and domestication can be investigated.

65 Since the discovery of *S. eubayanus* in Patagonia (Libkind et al. 2011), this species has
66 received much attention, both for brewing applications and understanding the evolution, ecology,
67 population genomics of the genus *Saccharomyces* (Sampaio 2018). In the years since its
68 discovery, many new globally distributed isolates have been found (Bing et al. 2014; Peris et al.
69 2014; Rodríguez et al. 2014; Gayevskiy and Goddard 2016; Peris et al. 2016; Eizaguirre et al.

70 2018). Prior research has suggested that *S. eubayanus* is most abundant and diverse in the
71 Patagonian region of South America, where there are two major populations (Patagonia
72 A/Population A/PA and Patagonia B/Population B/PB) that recent multilocus data suggested are
73 further divided into five subpopulations (PA-1, PA-2, PB-1, PB-2, and PB-3) (Eizaguirre et al.
74 2018). There are two early-diverging lineages, West China and Sichuan, which were identified
75 through multilocus data (Bing et al. 2014) and whose sequence divergences relative to other
76 strains of *S. eubayanus* are nearly that of currently recognized species boundaries (Peris et al.
77 2016; Sampaio and Gonçalves 2017; Naseeb et al. 2018). A unique admixed lineage has been
78 found only in North America, which has approximately equal contributions from PA and PB
79 (Peris et al. 2014, 2016). Other isolates from outside Patagonia belong to PB, either the PB-1
80 subpopulation that is also found in Patagonia (Gayevskiy and Goddard 2016; Peris et al. 2016),
81 or a Holarctic-specific subpopulation that includes isolates from Tibet and from North Carolina,
82 USA (Bing et al. 2014; Peris et al. 2016). This Holarctic subpopulation includes the closest
83 known wild relatives of the *S. eubayanus* subgenomes of lager-brewing yeasts (Bing et al. 2014;
84 Peris et al. 2016).

85 To explore the geographic distribution, ecological niche, and genomic diversity of this
86 industrially relevant species, here, we present an analysis of whole genome sequencing data for
87 200 *S. eubayanus* strains. This dataset confirms the previously proposed population structure
88 (Peris et al. 2014, 2016; Eizaguirre et al. 2018) and extends the analysis to fully explore genomic
89 diversity. Even though *S. eubayanus* is genetically diverse and globally distributed, there are not
90 large phenotypic differences between subpopulations. This genomic dataset includes evidence of
91 gene flow and admixture in sympatry, as well as admixture in parapatry or allopatry. While *S.*
92 *eubayanus* has a well-differentiated population structure, isolation by distance occurs within

93 subpopulations that are found globally, as well as within subpopulations restricted to a handful of
94 locations. Much of the genetic diversity is limited to northern Patagonia, but modeling suggests
95 that there are more geographic areas that are climatically suitable for this species, including
96 Europe. *S. eubayanus* maintains genetic diversity over several dimensions, including multiple
97 high-diversity sympatric populations and a low-diversity widespread invasive lineage. The
98 diversity and dispersal of this eukaryotic microbial species mirror observations in plants and
99 animals, including humans, which shows how biogeographical and evolutionary forces can be
100 shared across organismal sizes, big and small.


101

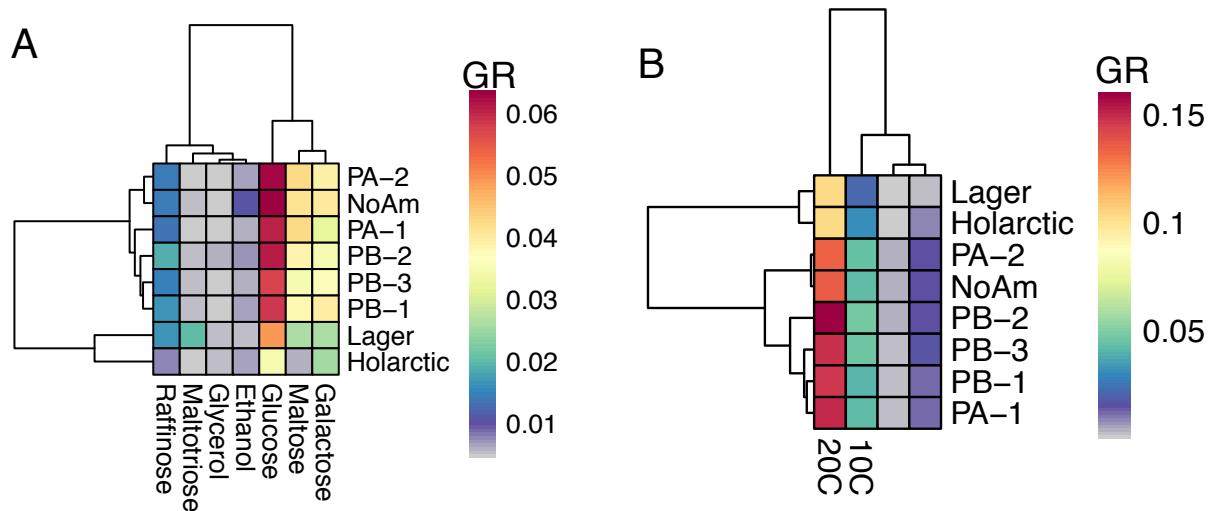
102 Results:

103 Global and regional *S. eubayanus* population structure and ecology:

104 To expand on existing data (Libkind et al. 2011; Bing et al. 2014; Peris et al. 2014;
105 Rodríguez et al. 2014; Gayevskiy and Goddard 2016; Peris et al. 2016; Eizaguirre et al. 2018),
106 we sequenced the genomes of 174 additional strains of *S. eubayanus*, bringing our survey to 200
107 *S. eubayanus* genomes. This large collection provides the most comprehensive dataset to date for
108 *S. eubayanus*. We note that the dataset does not contain West China or Sichuan strains (Bing et
109 al. 2014), which were unavailable for study and may constitute a distinct species or subspecies.
110 These strains were globally distributed (Figure 1A), but the majority of our strains were from
111 South America (172 total, 155 newly sequenced here). The next most abundant continent was
112 North America with 26 strains (19 new to this publication). We also analyzed whole genome
113 sequence data for the single strain from New Zealand (Gayevskiy and Goddard 2016) and the
114 single Tibetan isolate with available whole genome sequence data (Bing et al. 2014; Brouwers et
115 al. 2019). The collection sites in South America span from northern Patagonia to Tierra del

116 Fuego (Figure 1B), while the North American isolates have been sparsely found throughout the
117 continent, including the Canadian province of New Brunswick and the American states of
118 Washington, Wisconsin, North Carolina, and South Carolina (Figure 1C).
119

120 **Figure 1.** *S. eubayanus* distribution and population structure.
121 *S. eubayanus* has a global distribution and two major populations with six subpopulations. (A) Isolation
122 locations of *S. eubayanus* strains included in the dataset. For visibility, circle size is not scaled by the
123 number of strains. Subpopulation abundance is shown as pie charts. The Patagonian sampling sites have
124 been collapsed to two locations for clarity. Details of sites and subpopulations found in South America
125 (B) and North America (C) with circle size scaled by the number of strains. (D) Whole genome PCA of *S.*
126 *eubayanus* strains and five hybrids with large contributions from *S. eubayanus*. (E) PCA of just PA. (F)
127 PCA of just PB and hybrid *S. eubayanus* sub-genomes. Color legends in A and D apply to this and all
128 other figures.
129


130 To determine population structure, we took several approaches, including Principal
131 Component Analysis (PCA) (Jombart 2008), phylogenomic networks (Huson and Bryant 2006),
132 and STRUCTURE-like analyses (Lawson et al. 2012; Raj et al. 2014). All methods showed that
133 *S. eubayanus* has two large populations that can be further subdivided into a total of six non-

134 admixed subpopulations and one abundant North American admixed lineage (Figure 1D and
135 Figure S1). We previously described the two major populations, PA and PB-Holarctic (Peris et
136 al. 2014, 2016), as well as the subpopulations PA-1, PA-2, PB-1, PB-2, Holarctic, and the North
137 American admixed lineage (Peris et al. 2016). PB-3 had been suggested by multilocus data
138 (Eizaguirre et al. 2018), and our new analyses confirm this subpopulation with whole genome
139 sequence data. All of the strains isolated from outside of South America belonged to either the
140 previously described North American admixed lineage (NoAm) or one of two PB
141 subpopulations, PB-1 or Holarctic. This dataset included novel PB-1 isolates from the states of
142 Washington (yHRMV83) and North Carolina (yHKB35). Unexpectedly, from this same site in
143 North Carolina, we also obtained new isolates of the NoAm admixed lineage (Figure 1C and
144 Table S1), and we obtained additional new NoAm strains in South Carolina. Together, with the
145 North Carolina strains reported here and previously (Peris et al. 2016), this region near the Blue
146 Ridge Mountains harbors three subpopulations or lineages, PB-1, Holarctic, and NoAm. We
147 were also successful in re-isolating the NoAm lineage from the same Wisconsin site, sampling
148 two years later than what was first reported (Peris et al. 2014) (Table S1), indicating that the
149 NoAm admixed lineage is established, not ephemeral, in this location. Additionally, we found
150 one novel South American strain that was admixed between PA (~45%) and PB (~55%) (Figure
151 1D “SoAm”). This global distribution and the well-differentiated population structure of *S.*
152 *eubayanus* is similar to what has been observed in *S. paradoxus* (Leducq et al. 2014, 2016) and
153 *Saccharomyces uvarum* (Almeida et al. 2014).

154 *S. eubayanus* has been isolated from numerous substrates and hosts, and our large dataset
155 afforded us the power to analyze host and substrate association by subpopulation. We found that
156 PA-2 was associated with the seeds of *Araucaria araucana* (45.71% of isolates, p-val = 6.11E-

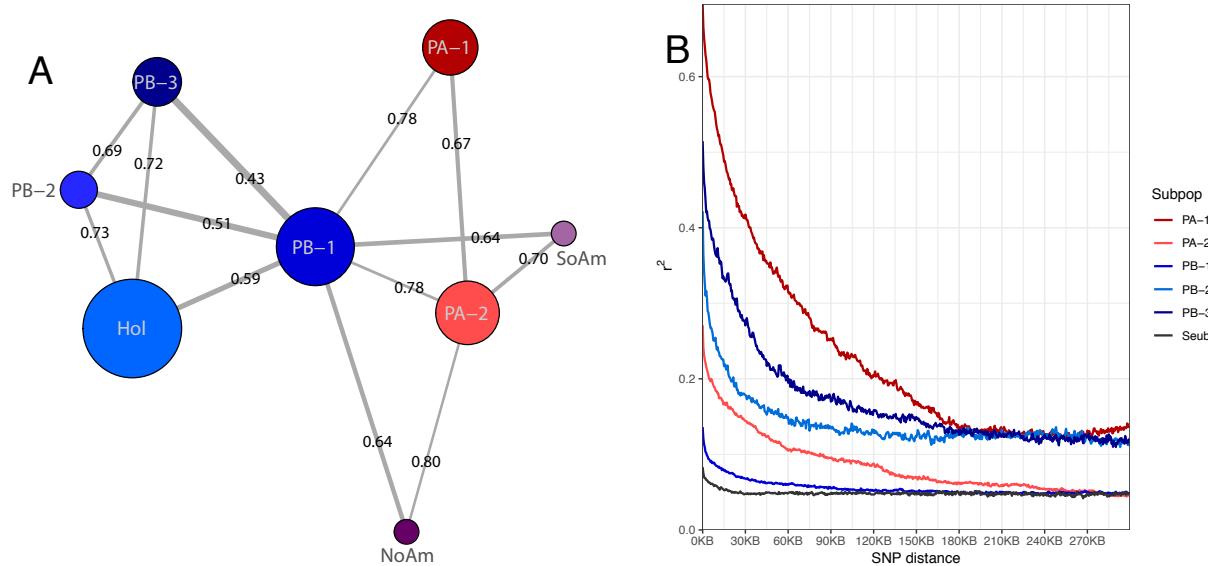
157 07, F-statistic = 15.29). Interestingly, while PB-1 was the most frequently isolated subpopulation
158 (34% of isolates), it has never been isolated from *A. araucana* seeds. Instead, PB-1 was
159 associated with *Nothofagus antarctica* (52.31% of isolates, p-val = 0.017, F-statistic = 3.10). PB-
160 1 was also the subpopulation isolated the most from *Nothofagus dombeyi* (75% of isolates from
161 this tree species), which is a common host of *S. uvarum* (Libkind et al. 2011; Eizaguirre et al.
162 2018). PB-2 was positively associated with *Nothofagus pumilio* (36.59% of isolates, p-val = 9.60
163 E-04, F-statistic = 6.59), which could be an ecological factor keeping PB-2 partly isolated from
164 its sympatric subpopulations, PA-2 and PB-1 (Figure 1C). PB-3 was associated with the fungal
165 parasite *Cyttaria darwinii* (14.29% of isolates, p-val = 0.039, F-statistic = 25.34) and
166 *Nothofagus betuloides* (28.57% of isolates, p-val = 5.02E-06, F-statistic = 60.35), which is only
167 found in southern Patagonia and is vicariant with *N. dombeyi*, a host of PB-1. PB-3 was
168 frequently isolated in southern Patagonia (49% of southern isolates) (Eizaguirre et al. 2018), and
169 its association with a southern-distributed tree species could play a role in its geographic range
170 and genetic isolation from the northern subpopulations. Neither *Nothofagus* nor *A. araucana* are
171 native to North America, and we found that our North American isolates were from multiple
172 diverse plant hosts, including *Juniperus virginiana*, *Diospyros virginiana*, *Cedrus* sp., and *Pinus*
173 sp. (Table S1), as well as from both soil and bark samples. In Patagonia, *S. eubayanus* has been
174 isolated from exotic *Quercus* trees (Eizaguirre et al. 2018), so even though *Nothofagus* and *A.*
175 *araucana* are common hosts, *S. eubayanus* can be found on a variety of hosts and substrates.
176 These observed differences in host and substrate could be playing a role in the maintenance of its
177 population structure, especially in sympatric regions of Patagonia.
178
179 All subpopulations grow at freezing temperatures and on diverse carbon sources:

180 *S. eubayanus* comes from a wide range of environments, so we tested if there were
181 phenotypic differences between these subpopulations. We measured growth rates on several
182 carbon sources and stress responses for a large subset of these strains (190) and 26 lager-brewing
183 strains (Figure 2 and Figure S2). Lager-brewing strains grew faster on maltotriose than all
184 subpopulations ($p\text{-val} < 0.05$, Figure 2A), which is consistent with this sugar being one of the
185 most abundant in brewing wort but rare in nature (Salema-Oom et al. 2005). The Holarctic
186 subpopulation grew slower on glucose and maltose compared to all other subpopulations ($p\text{-val} <$
187 0.05, Figure 2A, Table S2). Overall, the admixed NoAm lineage performed better than PB-1 ($p\text{-}$
188 $\text{val} = 0.038$, Figure 2A), but there was no interaction with carbon source. Therefore, the admixed
189 lineage's robustness in many conditions could play a role in its success in far-flung North
190 American sites where no pure PA or PB strains have ever been found.

191
192 **Figure 2.** Phenotypic differences.
193 (A) Heat map of mean of maximum growth rate (change in OD/hour) (GR) on different carbon sources by
194 subpopulation. Warmer colors designate faster growth. (B) Heat map of \log_{10} normalized growth at
195 different temperatures by subpopulation.

196
197 Since *S. eubayanus*' contribution to the cold-adaptation of hybrid brewing strains is well
198 established (Libkind et al. 2011; Gibson et al. 2013; Baker et al. 2019), we measured growth at
199 0°C, 4°C, 10°C, and 20°C. All subpopulations grew at temperatures as low as 0°C (Figure 2B

200 and Figure S2), and all *S. eubayanus* subpopulations outperformed lager-brewing yeasts ($p <$
201 0.05). Within pure *S. eubayanus*, there were no temperature by subpopulation interactions,
202 indicating that no subpopulation is more cryotolerant than any other subpopulation. In summary,
203 we found that all strains that we tested grew similarly in many environments, and despite the
204 large amount of genotypic diversity observed for this species, we observed much less phenotypic
205 diversity (Figure 2).

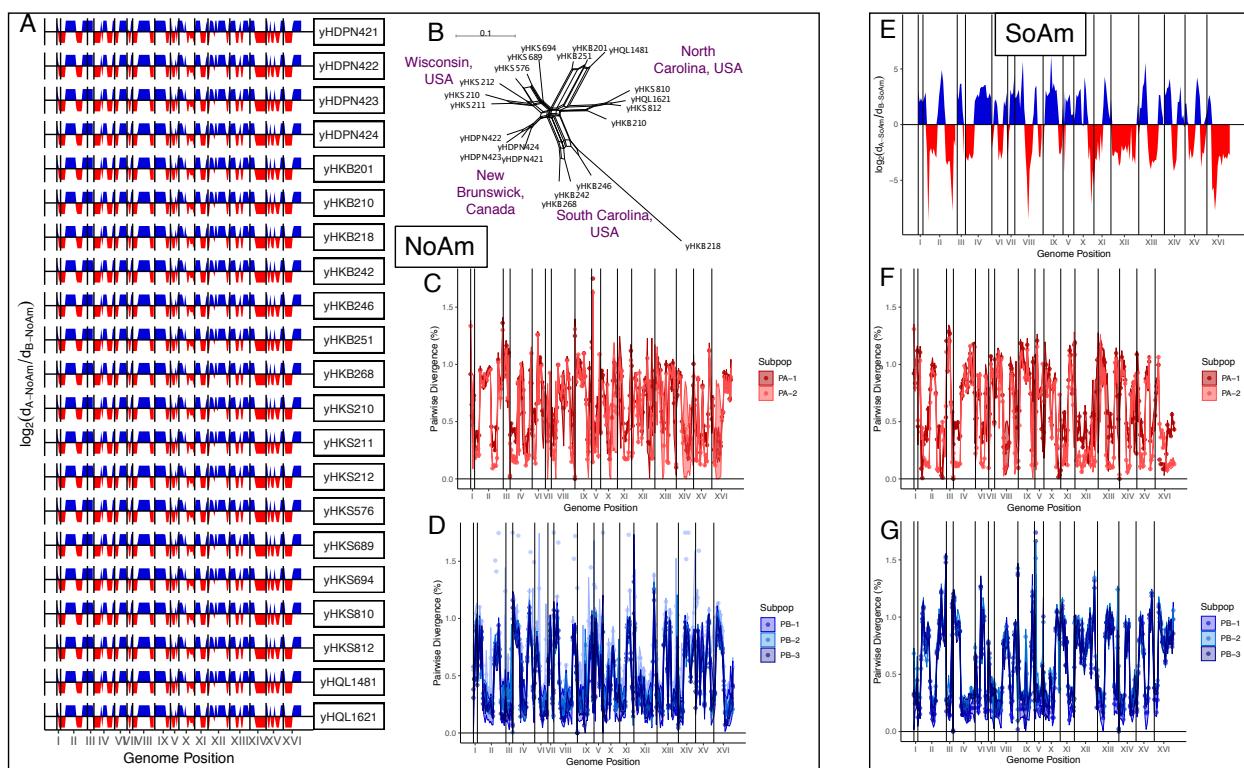

206

207 Subpopulations are well differentiated:

208 The mating strategies and life cycle of *Saccharomyces*, with intratetrad mating and
209 haploselfing, often lead to homozygous diploid individuals (Hittinger 2013). Nonetheless, in *S.*
210 *cerevisiae*, many industrial strains are highly heterozygous (Gallone et al. 2016; Gonçalves et al.
211 2016; Peter et al. 2018). Here, we analyzed genome-wide heterozygosity in our collection of 200
212 strains and found only one individual with more than 20,000 heterozygous SNPs (Figure S3).
213 When we phased highly heterozygous regions of its genome and analyzed the two phases
214 separately, we found that both phases grouped within PB-1 (Figure S3C). Thus, while this strain
215 is highly heterozygous, it has contributions from only one subpopulation.

216 This large collection of strains is a powerful resource to explore natural variation and
217 population demography in a wild microbe, so we analyzed several common population genomic
218 statistics in 50-kbp windows across the genome. We found that diversity was similar between
219 subpopulations (Figure S4A). We also calculated Tajima's D and found that the genome-wide
220 mean was zero or negative for each subpopulation (Figure S4B), which could be indicative of
221 population expansions. In particular, the most numerous and widespread subpopulation, PB-1,

222 had the most negative and consistent Tajima's D, suggesting a recent population expansion is
223 especially likely in this case.


224
225 **Figure 3.** Population genomic parameters.
226 (A) Network built with pairwise F_{ST} values < 0.8 between each subpopulation. F_{ST} values are printed and
227 correspond to line thickness, where lower values are thicker. Circle sizes correspond to genetic diversity.
228 (B) LD decay for each subpopulation (colors) and the species in whole (black).

229
230 For the non-admixed lineages, genome-wide average F_{ST} was consistently high across the
231 genome (Figure S4C). In pairwise comparisons of F_{ST} , PB-1 had the lowest values of any
232 subpopulation (Figure 3A, Figure S4D). These pairwise comparisons also showed that, within
233 each population, there has been some gene flow between subpopulations, even though the
234 subpopulations were generally well differentiated. Linkage disequilibrium (LD) decay indicated
235 low recombination in these wild subpopulations (Figure 3B), with variability between
236 subpopulations. For the species as a whole, LD decayed to one-half at about 5 kbp, which is
237 somewhat higher than the 500bp - 3kbp observed in *S. cerevisiae* (Liti et al. 2009; Schacherer et
238 al. 2009; Peter et al. 2018) and lower than the 9 kbp observed in *S. paradoxus* (Liti et al. 2009),
239 indicating that there is less mating, outcrossing, and/or recombination in this wild species than *S.*
240 *cerevisiae* and more than in *S. paradoxus*.

241

242 Recent admixture and historical gene flow between populations:

243 We previously reported the existence of 7 strains of an admixed lineage in Wisconsin,
244 USA, and New Brunswick, Canada (Peris et al. 2014, 2016). Here, we present 14 additional
245 isolates of this same admixed lineage. These new isolates were from the same site in Wisconsin,
246 as well as two new locations in North Carolina and South Carolina (Table S1). Strikingly, all 21
247 strains shared the exact same genome-wide ancestry profile (Figure 4A), indicating that they all
248 descended from the same outcrossing event between the two main populations of *S. eubayanus*.
249 These admixed strains were differentiated by 571 SNPs, which also delineated these strains
250 geographically (Figure 4B). Pairwise diversity and F_{ST} comparisons across the genomes suggest
251 that the PA parent came from the PA-2 subpopulation (Figure 4C and Figure S5A) and that the
252 PB parent was from the PB-1 subpopulation (Figure 4D and Figure S5A).

253
254

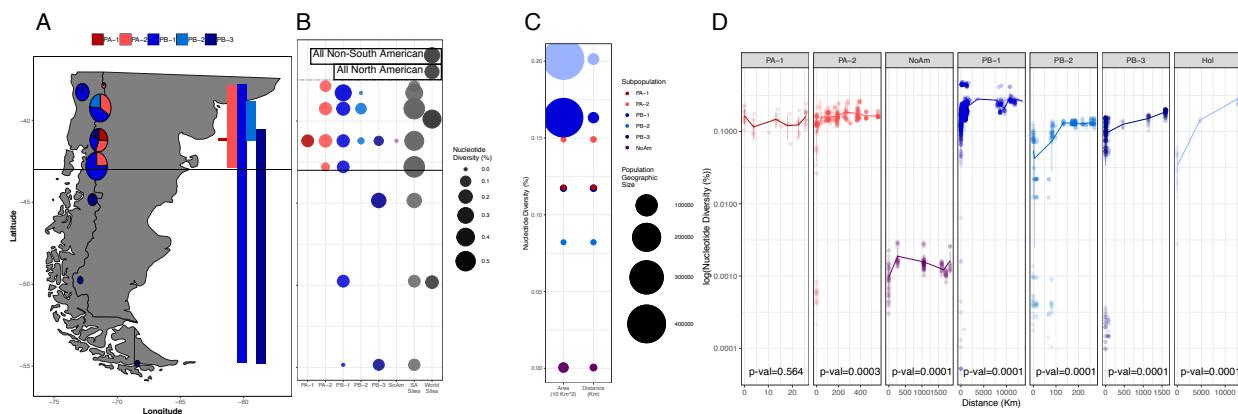
Figure 4. Genomic ancestries of NoAm and SoAm admixed lineages.

255 (A) For all 21 NoAm admixed strains, \log_2 ratio of the minimum PB-NoAm pairwise nucleotide sequence
256 divergence (dB-NoAm) and the minimum PA-NoAm pairwise nucleotide sequence divergence (dA-
257 NoAm) in 50-kbp windows. Colors and $\log_2 < 0$ or > 0 indicate that part of the genome is more closely
258 related to PA or PB, respectively. (B) Neighbor-Net phylogenetic network reconstructed with the 571
259 SNPs that differentiate the NoAm strains. The scale bar represents the number of substitutions per site.
260 Collection location is noted. (C) Pairwise nucleotide sequence divergence of the NoAm strain yHKS210
261 compared to strains from the PA-1 and PA-2 subpopulations of PA in 50-kbp windows. (D) Pairwise
262 nucleotide sequence divergence of the NoAm strain yHKS210 compared to strains from the PB-1, PB-2,
263 and PB-3 subpopulations of PB in 50-kbp windows. (E) \log_2 ratio of the minimum PB-SoAm pairwise
264 nucleotide sequence divergence (dB-SoAm) and the minimum PA-SoAm pairwise nucleotide sequence
265 divergence (dA-SoAm) in 50-kbp windows. Colors and $\log_2 < 0$ or > 0 indicate that part of the genome is
266 more closely related to PA or PB, respectively. (F) Pairwise nucleotide sequence divergence of the SoAm
267 strain compared to strains from the PA-1 and PA-2 subpopulations of PA in 50-kbp windows. (G)
268 Pairwise nucleotide sequence divergence of the SoAm strain compared to strains of the PB-1, PB-2, and
269 PB-3 subpopulations of PB in 50-kbp windows.
270

271 Here, we report a second instance of recent outcrossing between PA and PB. One other
272 strain with fairly equal contributions from the two major populations, PA (~45%) and PB
273 (~55%) (Figure 4E), was isolated from the eastern side of Nahuel Huapi National Park, an area
274 that is sympatric for all subpopulations found in South America. This strain had a complex
275 ancestry, where both PA-1 and PA-2 contributed to the PA portions of its genome (Figure 4F and
276 Figure S5B), indicating that its PA parent was already admixed between PA-1 and PA-2. As with
277 the NoAm admixed strains, the PB parent was from the PB-1 subpopulation (Figure 4G and
278 Figure S5B). Together, these two admixed lineages show that outcrossing occurs between the
279 two major populations, and that admixture and gene flow are likely ongoing within sympatric
280 regions of South America.

281 We also found examples of smaller tracts of admixture between PA and PB that were
282 detectable as 2-12% contributions. These introgressed strains included the taxonomic type strain
283 of *S. eubayanus* (CBS12357^T), whose genome sequence was mostly inferred to be from PB-1,
284 but it had a ~4% contribution from PA-1 (Figure S6). We found several other examples of
285 admixture between PA and PB, as well as admixture between subpopulations of PA or of PB
286 (Table S3). Notably, the PB contributions were usually from PB-1, the subpopulation with the

287 largest range, most hosts, and strongest signature of population expansion, factors that would
288 tend to make contact with other subpopulations more likely.


289 In our collection of 200 strains, we observed nuclear genome contributions from *S.*
290 *uvarum* in four strains. These four strains all shared the same introgression of ~150-kbp on
291 chromosome XIV (Figure S7A&B). When we analyzed the portion of the genome contributed by
292 *S. eubayanus*, we found that these strains were all embedded in the PB-1 subpopulation (Figure
293 S7C). Analysis of the 150-kbp region from *S. uvarum* indicated that the closest *S. uvarum*
294 population related to these introgressed strains was SA-B (Figure S7D), a population restricted to
295 South America that has not previously been found to contribute to any known interspecies
296 hybrids (Almeida et al. 2014). These strains thus represent an independent hybridization event
297 between South American lineages of these two sister species that is not related to any known
298 hybridization events among industrial strains (Almeida et al. 2014). These strains show that *S.*
299 *eubayanus* and *S. uvarum* can and do hybridize in the wild, but the limited number (n=4) of
300 introgressed strains, small introgression size (150-kbp), and shared breakpoints suggest that the
301 persistence of hybrids in the wild is rare.

302

303 Northern Patagonia is a diversity hot spot:

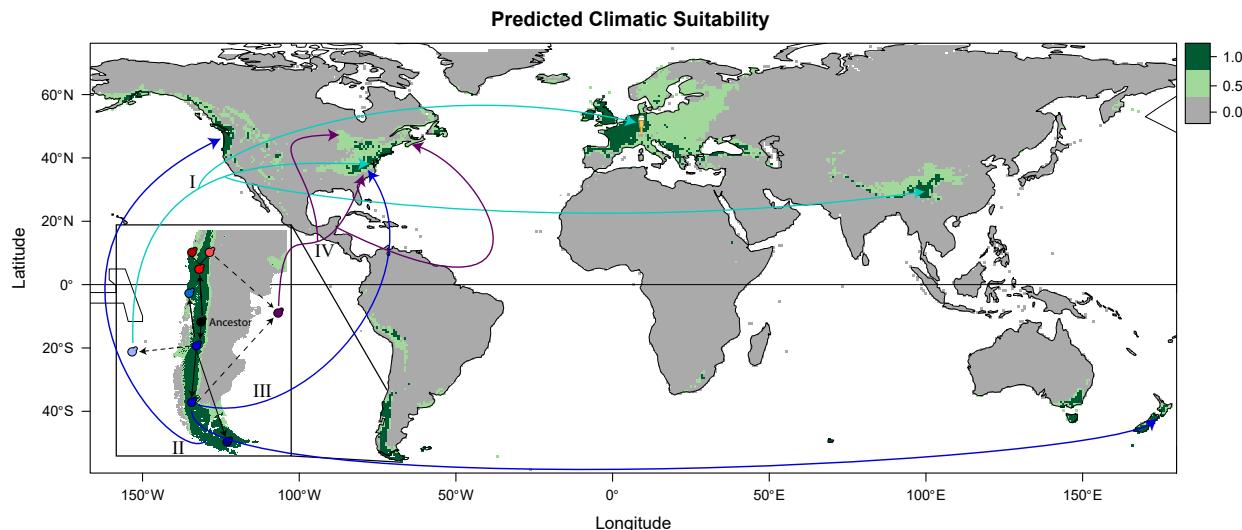
304 Patagonia harbors the most genetic diversity of *S. eubayanus* in our dataset, and four
305 subpopulations were found only there: PA-1, PA-2, PB-2, and PB-3 (Figure 1A and 4A).
306 Therefore, we examined the genetic diversity and range distributions of the isolates from South
307 America more closely. Nahuel Huapi National Park yielded isolates from all five subpopulations
308 found in South America, was the only place where PA-1 was found, and was the location where
309 the SoAm admixed strain was isolated (Figure 5A & B). All five sub-populations were found

310 north of 43°S, an important boundary during the last glaciation period that affects many
311 organisms (Mathiasen and Premoli 2010; Premoli et al. 2010; Quiroga and Premoli 2010).
312 Species-wide, there was more genetic diversity north of this boundary (Figure 5B). In contrast,
313 only PB-1 and PB-3 were found south of 43°S, with both distributions reaching Tierra del Fuego.
314 The southernmost strains were primarily PB-3 (89.7%), but they included two highly admixed
315 PB-1 × PB-3 strains (Table S1 & S3).

316 **Figure 5.** South American genomic diversity versus range, diversity by area, and isolation by distance.
317 (A) Range and genomic diversity of South American sampling sites. Circle sizes correspond to nucleotide
318 diversity of all strains from that site, and pie proportions correspond to each subpopulation's contribution
319 to π at each site. Latitudinal range of each subpopulation is shown to the right. (B) Nucleotide diversity
320 by subpopulation by sampling site, where larger and darker circles indicate more diversity. “SA Sites” in
321 gray show the diversity of all strains found in each South American (SA) site. “World Sites” in darker
322 gray show the nucleotide diversity of all North American or non-South American strains, regardless of
323 subpopulation, compared to South American strains south or north of 43°S, aligned to mean latitude of all
324 strains included in the analysis. (C) Correlation of nucleotide diversity and the area or distance a
325 subpopulation covers. The y-axis shows the nucleotide diversity of each subpopulation, and circle sizes
326 correspond to the geographic sizes of the subpopulations on a log10 scale. Note that PA-1 (dark red) is as
327 diverse as PB-3 (dark blue) but encompasses a smaller area. (D) log₁₀(pairwise nucleotide diversity)
328 correlated with distance between strains, which demonstrates isolation by distance. Note that y-axes are
329 all scaled the same but not the x-axes. Holarctic includes the *S. eubayanus* sub-genome of two lager-
330 brewing strains. Figure S8A shows the individual plots for the NoAm lineage. Figure S8B shows the
331 individual plot of PB-1.
332

333 Despite the limited geographic range of some subpopulations, their genetic diversity was
334 high, and this diversity often did not scale with the geographic area over which they were found
335 (Figure 5C). The widespread distribution of some subpopulations led us to question if there was
336 isolation by distance within a subpopulation (Figure 5D). We used pairwise measures of
337

338 diversity and geographic distance between each strain and conducted Mantel tests for each
339 subpopulation. All subpopulations showed significant isolation by distance (Table S4), except
340 PA-1, likely because it had the smallest geographic range (25 km). Even the Mantel test for the
341 least diverse lineage, NoAm, was highly significant ($p\text{-val} = 0.0001$, $R^2 = 0.106$), indicating that
342 each location has been evolving independently after their recent shared outcrossing and dispersal
343 event. Through these pairwise analyses, we also detected two strains from Cerro Ñielol, Chile,
344 that were unusually genetically divergent from the rest of PB-1 and could potentially be a novel
345 lineage (Figure S8).


346

347 Additional global regions are climatically suitable:

348 The sparse but global distribution of *S. eubayanus* raises questions about whether other
349 areas of the world could be suitable for this species. We used the maxent environmental niche
350 modeling algorithm implemented in Wallace (Kass et al. 2018) to model the global climatic
351 suitability for *S. eubayanus*, using GPS coordinates of all known *S. eubayanus* strains published
352 here and estimates of coordinates for the East Asian isolates (Bing et al. 2014). These niche
353 models were built using the WorldClim Bioclims, which are based on monthly temperature and
354 rainfall measures, reflecting both annual and seasonal trends, as well as extremes, such as the
355 hottest and coldest quarters. How climatic variables affect yeast distributions is an understudied
356 area, and building these models allowed us a novel way to explore climatic suitability.

357 Using all known locations of isolation (Figure 6), we found that the best model
358 ($AIC = 2122.4$) accurately delineated the known distribution along the Patagonian Andes. In
359 North America, the strains from the Olympic Mountains of Washington state and the Blue Ridge
360 region of North Carolina fell within the predicted areas, and interestingly, these sites had yielded

361 pure PB-1 and Holarctic strains. In contrast, some of the NoAm admixed strains were found in
362 regions that were on the border of suitability in this model (New Brunswick and Wisconsin). In
363 Asia, the model predicts further suitable regions along the Himalayas that are west of known
364 locations.

365
366 **Figure 6.** Predicted climatic suitability of *S. eubayanus*.
367 Minimum training presence (light green) and 10th percentile training presence (dark green) based on a
368 model that includes all known *S. eubayanus* isolations, as well as a scenario of dispersal and
369 diversification out of Patagonia (inset and arrows). Black arrows signify diversification events, dotted
370 lines are diversification events where the population is not found in Patagonia, and colored arrows are
371 migration events for the lineage of matching color. Roman numerals order the potential migration events.
372 *S. eubayanus* has not been found in the wild in Europe, but it has contributed to fermentation hybrids,
373 such as lager yeasts. This scenario proposes that the last common ancestor of PA and PB-Holarctic
374 bifurcated into PA (red) and PB-Holarctic (blue), which further radiated into PA-1 (dark red), PA-2 (light
375 red), PB-1 (blue), PB-2 (lighter blue), PB-3 (dark blue), and Holarctic (very light blue). At least four
376 migration events are needed to explain the locations where *S. eubayanus* has been found. I. The Holarctic
377 subpopulation was drawn from the PB-Holarctic gene pool and colonized the Holarctic ecozone. II. PB-1
378 colonized the Pacific Rim, including New Zealand and Washington state, USA. III. An independent
379 dispersal event brought PB-1 to North Carolina, USA. IV. Outcrossing between PA-2 and PB-1 gave rise
380 to a low-diversity admixed lineage that has recently invaded a large swath of North America.

381
382 The uneven global distribution of *S. eubayanus* led us to test if models were robust to
383 being built only with the South American locations or only with the non-South American
384 locations (Figure S9). Remarkably, with just the South American isolates, the model
385 (AIC=1327.32) accurately predicted the locations of the non-South American isolates (Figure

386 S9A). Even the model built from the limited number of isolates from outside South America
387 (AIC=558.58) still performed reasonably well, identifying the regions in Patagonia along the
388 Andes where *S. eubayanus* has been found (Figure S9B). Collectively, these models suggest that
389 climatic modeling can predict other suitable regions for eukaryotic microbes. These approaches
390 could be used to direct future sampling efforts or applied to other microbes to gain further insight
391 into microbial ecology.

392 Notably, all models agree that Europe is climatically a prime location for *S. eubayanus*
393 (Figure S9C), but no pure isolates have ever been found there, only hybrids with *S. uvarum*, *S.*
394 *cerevisiae*, or hybrids with even more parents (Almeida et al. 2014). These hybrids with complex
395 ancestries have been found in numerous fermentation environments, suggesting that pure *S.*
396 *eubayanus* once existed, or still exists at low abundance or in obscure locations, in Europe. Thus,
397 the lack of wild isolates from sampling efforts in Europe remains a complex puzzle.

398

399 Discussion:

400 Here, we integrated genomic, geographic, and phenotypic data for 200 strains of *S.*
401 *eubayanus*, the largest collection to date, to gain insight into its world-wide distribution, climatic
402 suitability, and population structure. All the strains belong to the two major populations
403 previously described (Peris et al. 2014, 2016), but with the extended dataset, we were able to
404 define considerable additional structure, consisting of six subpopulations and two admixed
405 lineages. These subpopulations have high genetic diversity, high F_{ST} , and long LD decay; all
406 measures indicative of large and partly isolated populations undergoing limited gene flow.
407 Despite this high genetic diversity, there was relatively little phenotypic differentiation between
408 subpopulations. This dichotomy between large genetic diversity and limited phenotypic

409 differentiation hints at a complex demographic history where genetically differentiated
410 subpopulations are minimally phenotypically differentiated and grow well in a wide range of
411 environments.

412 Despite the strong population structure, we also observed considerable evidence of
413 admixture and gene flow. The two recently admixed lineages had nearly equal contributions
414 from the two major populations, but they were the result of independent outcrossing events. The
415 SoAm admixed strain was isolated from a hotspot of diversity and contains contributions from
416 three subpopulations. The NoAm admixed lineage has spread across at least four distant
417 locations, but all strains descended from the same outcrossing event. Since PA has only been
418 isolated in South America, it is intriguing that the NoAm admixed lineage has been successful in
419 so many locations throughout North America. The success of this lineage could be partially
420 explained by its equal or better performance in many environments in comparison to its parental
421 populations (Fig. 2), perhaps contributing to its invasion of several new locations. Several other
422 Patagonian strains also revealed more modest degrees of gene flow between PA and PB. Finally,
423 we characterized a shared nuclear introgression from *S. uvarum* into four Patagonian strains of *S.*
424 *eubayanus*, demonstrating that hybridization and backcrossing between these sister species has
425 occurred in the wild in South America.

426 *S. eubayanus* has a paradoxical biogeographical distribution; it is abundant in Patagonia,
427 but it is sparsely found elsewhere with far-flung isolates from North America, Asia, and Oceania.
428 Most subpopulations displayed isolation by distance, but genetic diversity only scaled with
429 geographic range to a limited extent. In Patagonia, some sampling sites harbor more genetic
430 diversity than all non-Patagonian locations together (Figure 5B). Although we found the most
431 genetic diversity and largest number of subpopulations north of 43°S, the pattern of genetic

432 diversity appears to be reversed on the west side of the Andes, at least for the PB-1
433 subpopulation (Nespolo et al. 2019). This discrepancy could be due to differences in how glacial
434 refugia were distributed (Sérsic et al. 2011) and limitations on gene flow between the east and
435 west sides of the Andes. Together, the levels of *S. eubayanus* genetic diversity found within
436 Patagonia, as well as the restriction of four subpopulations to Patagonia, suggest that Patagonia is
437 the origin of most of the diversity of *S. eubayanus*, likely including the last common ancestor of
438 the PA and PB-Holarctic populations.

439 The simplest scenario to explain the current distribution and diversity of *S. eubayanus* is
440 a series of radiations in Patagonia, followed by a handful of out-of-Patagonia migration events
441 (Figure 6). Under this model, PA and PB would have bifurcated in Patagonia, possibly in
442 separate glacial refugia. The oldest migration event would have been the dispersal of the ancestor
443 of the Holarctic subpopulation, drawn from the PB gene pool, to the Northern Hemisphere.
444 Multiple more recent migration events could have resulted in the few PB-1 strains found in New
445 Zealand and the USA. The New Zealand and Washington state strains cluster phylogenetically
446 and could have diversified from the same migration event from Patagonia into the Pacific Rim.
447 The PB-1 strain from North Carolina (yHKB35) is genetically more similar to PB-1 strains from
448 Patagonia, suggesting it arrived in the Northern Hemisphere independently of the Pacific Rim
449 strains. Finally, the NoAm admixed strains are likely the descendants of a single, and relatively
450 recent, out-of-Patagonia dispersal. Given that PA appears to be restricted to northern Patagonia,
451 this region could have been where the hybridization leading to the NoAm lineage occurred.
452 While the dispersal vector that brought this admixed lineage to North America is unknown, its
453 far-flung distribution and low diversity show that it has rapidly succeeded by invading new
454 environments.

455 Other more complex scenarios could conceivably explain the limited number of strains
456 found outside of Patagonia. For example, PA and PB could represent sequential colonizations of
457 Patagonia from the Northern Hemisphere. Under this model, PA would have arrived first and
458 would then have been restricted to northern Patagonia by competition with the later arrival of
459 PB. The Holarctic subpopulation could be interpreted as remnants of the PB population that did
460 not migrate to Patagonia; but the PB-1 strains from the Northern Hemisphere, especially
461 yHKB35, seem far more likely to have been drawn from a Patagonian gene pool than the other
462 way around. Furthermore, the structuring of the PA-1 and the PA-2 subpopulations and of the
463 PB-1, PB-2, and PB-3 subpopulations are particularly challenging to rectify with models that do
464 not allow for diversification within South America. Even more complex scenarios remain
465 possible, and more sampling and isolation will be required to fully elucidate the distribution of
466 this elusive species and more conclusively reject potential biogeographical models.

467 *S. eubayanus* has a strikingly parallel population structure and genetic diversity to its
468 sister species *S. uvarum* (Almeida et al. 2014; Peris et al. 2016). Both species are abundant and
469 diverse in Patagonia but can be found globally. Both have early diverging lineages, found in Asia
470 or Australasia, that border on being considered novel species. In South America, both have two
471 major populations, where one of these populations is restricted to northern Patagonia (north of
472 43°S). However, a major difference between the distribution of these species is that pure strains
473 of *S. uvarum* have been found in Europe. Many dimensions of biodiversity could be interacting
474 to bound the distribution and population structure of both *S. eubayanus* and *S. uvarum*. In
475 particular, we know very little about local ecology, including the biotic community and
476 availability of abiotic resources on a microbial scale, but these factors likely all influence
477 microbial success. We show here that substrate and host association vary between

478 subpopulations. In Patagonia, *S. eubayanus* and *S. uvarum* are commonly associated with
479 *Nothofagus*, where *N. dombeyi* is the preferred host of *S. uvarum* (Libkind et al. 2011; Eizaguirre
480 et al. 2018). Therefore, niche partitioning of host trees could be playing role in the persistence of
481 these species in sympatry in Patagonia. However, in locations where *Nothofagus* is not found and
482 there are perhaps fewer hosts, competitive exclusion between the sister species *S. eubayanus* and
483 *S. uvarum*, could influence distribution. Competition for a narrower set of hosts could potentially
484 explain why only *S. uvarum* has been found in Europe as pure strains, while *S. eubayanus* has
485 not. A second factor influencing distribution and population structure could be dispersal. Yeasts
486 could migrate via many avenues, such as wind, insect, bird, or other animals (Francesca et al.
487 2012, 2014; Stefanini et al. 2012; Gillespie et al. 2012). Human mediated-dispersal has been
488 inferred for the *S. cerevisiae* Wine and Beer lineages and for the *S. paradoxus* European/SpA
489 lineage (Gallone et al. 2016; Gonçalves et al. 2016; Leducq et al. 2014; Kuehne et al. 2007). A
490 third bounding factor could be a region's historical climate. Glacial refugia act as reservoirs of
491 isolated genetic diversity that allow expansion into new areas after glacial retreat (Stewart and
492 Lister 2001). 43°S is a significant geographic boundary due to past geological and climatic
493 variables (Mathiasen and Premoli 2010; Eizaguirre et al. 2018), and many other species and
494 genera show a distinction between their northern and southern counterparts, including
495 *Nothofagus* (Mathiasen and Premoli 2010; Premoli et al. 2012). *S. eubayanus* and *S. uvarum*
496 diversities are also strongly affected by the 43°S boundary (Almeida et al. 2014; Eizaguirre et al.
497 2018), and it seems likely that the microbes experienced some of the same glaciation effects as
498 their hosts. The strong correlation of *S. eubayanus* and *S. uvarum* population structures with
499 43°S further implies a longstanding and intimate association with Patagonia.

500 The sparse global distribution and complex patterns of genetic diversity continue to raise
501 questions about the niche and potential range of *S. eubayanus*. Our climatic modeling suggests
502 that parts of Europe would be ideal for *S. eubayanus*. Despite extensive sampling efforts, *S.*
503 *eubayanus* has never been isolated in Europe (Sampaio 2018). However, recent environmental
504 sequencing of the fungal specific ITS1 region hinted that *S. eubayanus* may exist in the wild in
505 Europe (Alsammar et al. 2019). Considerable caution is warranted in interpreting this result
506 because the rDNA locus quickly fixes to one parent's allele in interspecies hybrids, there is only
507 a single ITS1 SNP between *S. uvarum* and *S. eubayanus*, and the dataset contained very few
508 reads that mapped to *S. eubayanus*. Still, the prevalence of hybrids with contributions from the
509 Holarctic lineage of *S. eubayanus* found in Europe (Peris et al. 2016) suggests that the Holarctic
510 lineage exists in Europe, or at least existed historically, allowing it to contribute to many
511 independent hybridization events.

512 The patterns of radiation and dispersal observed here mirror the dynamics of evolution
513 found in other organisms (Czekanski-Moir and Rundell 2019), including humans (Nielsen et al.
514 2017). *S. eubayanus* and humans harbor diverse and structured populations in sub-Saharan
515 Africa and Patagonia, respectively. In these endemic regions, both species show signals of
516 ancient and recent admixture between these structured populations. Both species have
517 successfully colonized wide swaths of the globe, with the consequence of repeated bottlenecks in
518 genetic diversity. While anatomically modern humans underwent a single major out-of-Africa
519 migration that led to the peopling of the world (Nielsen et al. 2017), *S. eubayanus* has
520 experienced several migration events from different populations that have led to more punctate
521 global distribution. For both species, intraspecific admixture and interspecific hybridization
522 appear to have played adaptive roles in the success of colonizing these new locations. In humans,

523 introgressions from past hybridizations with both Neanderthals and Denisovans underlie many
524 adaptive traits (Racimo et al. 2015), while the cold fermentation of lager-brewing would not be
525 possible without the cryotolerance of *S. eubayanus* and the aggressive fermentation of
526 domesticated ale strains of *S. cerevisiae* (Gibson and Liti 2015). These parallels illustrate how
527 the biogeographical and evolutionary dynamics observed in plants and animals also shape
528 microbial diversity. As yeast ecology and population genomics (Marsit et al. 2017; Yurkov
529 2017) move beyond the Baas-Becking “Everything is everywhere” hypothesis of microbial
530 ecology (Baas-Becking 1934; de Wit and Bouvier 2006), the rich dynamics of natural diversity
531 that is hidden in the soil at our feet is being uncovered.

532

533 Methods:

534 Wild strain isolations

535 All South American isolates were sampled, isolated, and identified as described
536 previously (Libkind et al. 2011; Eizaguirre et al. 2018). North American isolates new to this
537 publication were from soil or bark samples from the American states of Washington, Wisconsin,
538 North Carolina, and South Carolina (Table S1). Strain enrichment and isolation was done as
539 previously described (Sylvester et al. 2015; Peris et al. 2016, 2014), with a few exceptions in
540 temperature and carbon source of isolation (Table S1). Specifically, two strains were isolated at
541 4°C, eight strains were isolated at room temperature, and six strains were isolated on a non-
542 glucose carbon source: three in galactose, two in sucrose, and one in maltose (Table S1).

543

544 Whole genome sequencing and SNP-calling

545 Whole genome sequencing was completed with Illumina paired-end reads as described
546 previously (Peris et al. 2016; Shen et al. 2018). Reads were aligned to the reference genome
547 (Baker et al. 2015), SNPs were called, masked for low coverage, and retained for downstream
548 analysis as described previously (Peris et al. 2016). One strain, yHCT75, had more than 20,000
549 heterozygous SNPs called. This strain was pseudo-phased using read-backed phasing in GATK
550 (McKenna et al. 2010) and split into two phases. Short-read data is deposited in the NCBI Short
551 Read Archive under PRJNA555221.

552

553 Population genomic analyses:

554 Population structure was defined using several approaches: **fastSTRUCTURE** (Raj et al.
555 2014), **fineSTRUCTURE** (Lawson et al. 2012), **SplitsTree v4** (Huson and Bryant 2006),
556 and Principal Component Analysis with the *adegenet* package in R (Jombart 2008).
557 **fineSTRUCTURE** analysis was completed using all strains and 11994 SNPs. The
558 **SplitsTree** network was built with this same set of strains and SNPs. **fastStructure**
559 analysis was completed with a subsample of 5 NoAm strains and 150165 SNPs. We tested K=1
560 through K=10 and selected K=6 using the “chooseK.py” command in **fastSTRUCTURE**. All
561 calculations of pairwise divergence, F_{ST} , and Tajima’s D for subpopulations were computed
562 using the R package *PopGenome* (Pfeifer and Wittelsbuerger 2015) in windows of 50-kbp.
563 Pairwise divergence between strains was calculated across the whole genome using *PopGenome*.
564 LD was calculated using *PopLDdecay* (Zhang et al. 2019). Geographic area and distance of
565 subpopulations was calculated using the *geosphere* package in R (Hijmans et al. 2019). The
566 Mantel tests were completed using *ade4* package of R (Dray and Dufour 2007). The F_{ST} network
567 was built with *iGraph* in R (Csardi and Nepusz 2006).

568

569 Niche projection with Wallace:

570 Climatic modeling of *S. eubayanus* was completed using the R package *Wallace* (Kass et
571 al. 2018). Three sets of occurrence data were tested: one that included only GPS coordinates for
572 strains from South America, one that included only non-South American isolates, and one that
573 included all known isolates (Table S1). We could use exact GPS coordinates for most strains,
574 except for the strains from East Asia, where we estimated the locations (Bing et al. 2014).
575 WorldClim bioclimatic variables were obtained at a resolution of 2.5 arcmin. The background
576 extent was set to “Minimum convex polygon” with a 0.5-degree buffer distance and 10,000
577 background points were sampled. We used block spatial partitioning. The model was built using
578 the Maxent algorithm, using the feature classes: L (linear), LQ (linear quadradic), H (Hinge),
579 LQH, and LQHP (Linear Quadradic Hinge Product) with 1-3 regularization multipliers and the
580 multiplier step value set to 1. The model was chosen based on the Akaike Information Criterion
581 (AIC) score (Table S5). The best models were then projected to the all continents, except
582 Antarctica.

583

584 Phenotyping:

585 Strains were first revived in Yeast Peptone Dextrose (YPD) and grown for 3 days at room
586 temperature. These saturated cultures were then transferred to two 96-well microtiter plates, for
587 growth rate and stress tolerance phenotyping. These plates were incubated overnight. Cells were
588 pinned from these plates into plates for growth rate measurements. For temperature growth
589 assays, cells were pinned into four fresh YPD microtiter plates and then incubated at 0°C, 4°C,
590 10°C, and 20°C. For the microtiter plates at 0°C, 4°C, and 10°C, OD was measured at least once

591 a day for two weeks or until a majority of the strains had reached stationary phase. Growth on
592 different carbon sources was measured at 20°C in MM media with 2% of the respective carbon
593 source. Carbon sources tested were: glucose, galactose, raffinose, maltose, maltotriose, ethanol,
594 and glycerol. OD was read every two hours for one week or until saturation. All phenotyping
595 was completed in biological triplicate. The carbon source data was truncated to 125 hours to
596 remove artifacts due to evaporation. Growth curves were analyzed using the package *grofit*
597 (Kahm et al. 2010) in R to measure saturation and growth rate. We then averaged each strain
598 over the triplicates. We used an ANOVA corrected with Tukey's HSD to test for growth rate
599 interactions between subpopulation and carbon source or subpopulation and temperature. We
600 used the R package *pvclust* (Suzuki and Shimodaira 2006) to cluster and build heatmaps of
601 growth rate by subpopulation.

602 Heat shock was completed by pelleting 200µl saturated culture, removing supernatant,
603 resuspending in 200µl YPD pre-heated to 37°C, and incubating for one hour at 37°C, with a
604 room temperature control. Freeze-thaw tolerance was tested by placing saturated YPD cultures in
605 a dry ice ethanol bath for two hours, with a control that was incubated on ice. After stress, the
606 strains were serially diluted 1:10 three times and pinned onto solid YPD. These dilution plates
607 were then photographed after 6 and 18 hours. *CellProfiler* (Lamprecht et al. 2007) was
608 used to calculate the colony sizes after 18 hours, and the 3rd (1:1000) dilutions were used for
609 downstream analyses. The heat shock measurements were normalized by the room temperature
610 controls, and the freeze thaw measurements were normalized by the ice incubation controls.
611 Statistical interactions of subpopulations and stress responses were tested as above.

612

613 Data Availability:

614 All short-read genome sequencing data has been deposited in the NCBI Short Read Archive
615 under the PRJNA555221. Accessions of public data is given in Table S1.

616

617 Acknowledgements:

618 We thank Francisco A. Cubillos for coordinating publication with their study; Sean D. Schoville,
619 José Paulo Sampaio, Paula Gonçalves, and members of the Hittinger Lab, in particular
620 EmilyClare P. Baker, for helpful discussion and feedback; Amanda B. Hulfachor and Martin
621 Bontrager for preparing a subset of Illumina libraries; the University of Wisconsin
622 Biotechnology Center DNA Sequencing Facility for providing Illumina sequencing facilities and
623 services; the Agricultural Research Service (ARS) NRRL collection, Christian R. Landry,
624 Ashley Kinart, and Drew T. Doering for strains included in phenotyping; Huu-Vang Nguyen for
625 strains used for hybrid genome comparison; and Leslie Shown, Anita R. & S. Todd Hittinger,
626 EmilyClare P. Baker, and Ryan V. Moriarty for collecting samples and/or isolating strains. This
627 material is based upon work supported by the National Science Foundation under Grant Nos.
628 DEB-1253634 (to CTH) and DGE-1256259 (Graduate Research Fellowship to QKL), the USDA
629 National Institute of Food and Agriculture Hatch Project No. 1003258 to CTH, and in part by the
630 DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science Nos. DE-
631 SC0018409 and DE-FC02-07ER64494 to Timothy J. Donohue). QKL was also supported by the
632 Predoctoral Training Program in Genetics, funded by the National Institutes of Health
633 (5T32GM007133). DP is a Marie Skłodowska-Curie fellow of the European Union's Horizon
634 2020 research and innovation program (Grant Agreement No. 747775). DL was supported by
635 CONICET (PIP11220130100392CO), FONCyT (PICT 3677, PICT 2542), Universidad Nacional
636 del Comahue (B199), and NSF-CONICET grant. CTH is a Pew Scholar in the Biomedical

637 Sciences and H. I. Romnes Faculty Fellow, supported by the Pew Charitable Trusts and Office of
638 the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin
639 Alumni Research Foundation (WARF), respectively.

640

641 Author Contributions:

642 QKL, DL, and CTH, conceived of the study; QLK, DP, JIE, DL, and CTH refined concept and
643 design; QKL performed all population genomic and ecological niche analyses; QKL and DAO
644 sequenced genomes, performed phenotyping and statistical analyses, and mentored KVB and
645 MJ; DL and CTH supervised the study; KVB, KS, and MJ isolated and/or identified North
646 American strains; JIE, MER, CAL, and DL isolated and/or provided South American strains; and
647 QKL and CTH wrote the manuscript with editorial input from all co-authors.

648

649 Conflict of Interest Disclosure:

650 Commercial use of *Saccharomyces eubayanus* strains requires a license from WARF or
651 CONICET. Strains are available for academic research under a material transfer agreement.

652

653 References:

654 Almeida P, Gonçalves C, Teixeira S, Libkind D, Bontrager M, Masneuf-Pomarède I, Albertin W,
655 Durrens P, Sherman DJ, Marullo P, et al. 2014. A Gondwanan imprint on global diversity
656 and domestication of wine and cider yeast *Saccharomyces uvarum*. *Nat Commun* **5**: 4044.

657 Alsammar HF, Naseeb S, Brancia LB, Gilman RT, Wang P, Delneri D. 2019. Targeted
658 metagenomics approach to capture the biodiversity of *Saccharomyces* genus in wild
659 environments. *Environ Microbiol Rep* **11**: 206–214.

660 Baas-Becking L. 1934. *Geobiologie; of inleiding tot de milieukunde*. WP Van Stockum & Zoon
661 NV.

662 Baker E, Wang B, Bellora N, Peris D, Hulfachor AB, Koshalek JA, Adams M, Libkind D,
663 Hittinger CT. 2015. The genome sequence of *Saccharomyces eubayanus* and the
664 domestication of lager-brewing yeasts. *Mol Biol Evol* **32**: 2818–2831.

665 Baker EP, Peris D, Moriarty R V, Li XC, Fay JC, Hittinger CT. 2019. Mitochondrial DNA and
666 temperature tolerance in lager yeasts. *Sci Adv* **5**: eaav1869.

667 Bing J, Han P-J, Liu W-Q, Wang Q-M, Bai F-Y. 2014. Evidence for a Far East Asian origin of
668 lager beer yeast. *Curr Biol* **24**: R380-1.

669 Brouwers N, Brickwedde A, Gorter de Vries AR, van den Broek M, Weening SM, van den
670 Eijnden L, Diderich JA, Bai F-Y, Pronk JT, Daran J-MG. 2019. Maltotriose consumption
671 by hybrid *Saccharomyces pastorianus* is heterotic and results from regulatory cross-talk
672 between parental sub-genomes. *bioRxiv* 679563.

673 Csardi G, Nepusz T. 2006. The igraph software package for complex network research.
674 *InterJournal* **1695**: 1–9.

675 Czekanski-Moir JE, Rundell RJ. 2019. The Ecology of Nonecological Speciation and
676 Nonadaptive Radiations. *Trends Ecol Evol* **34**: 400–415.

677 de Wit R, Bouvier T. 2006. “Everything is everywhere, but, the environment selects”; what did
678 Baas Becking and Beijerinck really say? *Environ Microbiol* **8**: 755–758.

679 Dray S, Dufour A-B. 2007. The ade4 Package: Implementing the Duality Diagram for
680 Ecologists. *J Stat Softw* **22**: 1–20.

681 Eberlein C, Hénault M, Fijarczyk A, Charron G, Bouvier M, Kohn LM, Anderson JB, Landry
682 CR. 2019. Hybridization is a recurrent evolutionary stimulus in wild yeast speciation. *Nat
683 Commun* **10**.

684 Eizaguirre JI, Peris D, Rodríguez ME, Lopes CA, De Los Ríos P, Hittinger CT, Libkind D. 2018.
685 Phylogeography of the wild Lager-brewing ancestor (*Saccharomyces eubayanus*) in
686 Patagonia. *Environ Microbiol* **20**: 3732–3743.

687 Francesca N, Canale DE, Settanni L, Moschetti G. 2012. Dissemination of wine-related yeasts by
688 migratory birds. *Environ Microbiol Rep* **4**: 105–112.

689 Francesca N, Carvalho C, Sannino C, Guerreiro M a, Almeida PM, Settanni L, Massa B,
690 Sampaio JP, Moschetti G. 2014. Yeasts vectored by migratory birds collected in the
691 Mediterranean island of Ustica and description of *Phaffomyces usticensis* f.a. sp. nov., a
692 new species related to the cactus ecoclade. *FEMS Yeast Res* **14**: 910–21.

693 Gallone B, Steensels J, Prahl T, Soriaga L, Saelens V, Herrera-Malaver B, Merlevede A,
694 Roncoroni M, Voordeckers K, Miraglia L, et al. 2016. Domestication and Divergence of
695 *Saccharomyces cerevisiae* Beer Yeasts. *Cell* **166**: 1397-1410.e16.

696 Gayevskiy V, Goddard MR. 2016. *Saccharomyces eubayanus* and *Saccharomyces arboricola*
697 reside in North Island native New Zealand forests. *Environ Microbiol* **18**: 1137–1147.

698 Gibson B, Liti G. 2015. *Saccharomyces pastorianus*: genomic insights inspiring innovation for
699 industry. *Yeast* **32**: 17–27.

700 Gibson BR, Storgårds E, Krogerus K, Vidgren V. 2013. Comparative physiology and
701 fermentation performance of Saaz and Frohberg lager yeast strains and the parental species
702 *Saccharomyces eubayanus*. *Yeast* **30**: 255–266.

703 Gillespie RG, Baldwin BG, Waters JM, Fraser CI, Nikula R, Roderick GK. 2012. Long-distance
704 dispersal: a framework for hypothesis testing. *Trends Ecol Evol* **27**: 47–56.

705 Gonçalves M, Pontes A, Almeida P, Barbosa R, Serra M, Libkind D, Hutzler M, Gonçalves P,
706 Sampaio JP. 2016. Distinct Domestication Trajectories in Top- Fermenting Beer Yeasts and
707 Wine Yeasts. *Curr Biol* **26**: 1–12.

708 Hijnmans RJ, Williams E, Vennes C. 2019. Package “geosphere” Type Package Title Spherical
709 Trigonometry.

710 Hittinger CT. 2013. *Saccharomyces* diversity and evolution: a budding model genus. *Trends
711 Genet* **29**: 309–17.

712 Hittinger CT, Steele JL, Ryder DS. 2018. Diverse yeasts for diverse fermented beverages and

713 foods. *Curr Opin Biotechnol* **49**: 199–206.

714 Huson DH, Bryant D. 2006. Application of Phylogenetic Networks in Evolutionary Studies. *Mol*
715 *Biol Evol* **23**: 254–267.

716 Jombart T. 2008. adegenet: a R package for the multivariate analysis of genetic markers.
717 *Bioinformatics* **24**: 1403–1405.

718 Kahm M, Hasenbrink G, Lichtenberg-Fraté H, Ludwig J, Kschischo M. 2010. grofit : Fitting
719 Biological Growth Curves with R. *J Stat Softw* **33**: 1–21.

720 Kass JM, Vilela B, Aiello-Lammens ME, Muscarella R, Merow C, Anderson RP. 2018.
721 Wallace : A flexible platform for reproducible modeling of species niches and distributions
722 built for community expansion ed. R.B. O’Hara. *Methods Ecol Evol* **9**: 1151–1156.

723 Kuehne HA, Murphy HA, Francis CA, Sniegowski PD. 2007. Allopatric Divergence, Secondary
724 Contact, and Genetic Isolation in Wild Yeast Populations. *Curr Biol* **17**: 407–411.

725 Lamprecht MR, Sabatini DM, Carpenter AE. 2007. CellProfiler™: Free, versatile software for
726 automated biological image analysis. *Biotechniques* **42**: 71–75.

727 Lawson DJ, Hellenthal G, Myers S, Falush D. 2012. Inference of population structure using
728 dense haplotype data. *PLoS Genet* **8**: e1002453.

729 Leducq J-B, Charron G, Samani P, Dubé AK, Sylvester K, James B, Almeida P, Sampaio JP,
730 Hittinger CT, Bell G, et al. 2014. Local climatic adaptation in a widespread microorganism.
731 *Proc Biol Sci* **281**: 20132472.

732 Leducq J-B, Nielly-Thibault L, Charron G, Eberlein C, Verta J-P, Samani P, Sylvester K,
733 Hittinger CT, Bell G, Landry CR. 2016. Speciation driven by hybridization and
734 chromosomal plasticity in a wild yeast. *Nat Microbiol* **1**: 1–10.

735 Libkind D, Hittinger CT, Valério E, Gonçalves C, Dover J, Johnston M, Gonçalves P, Sampaio
736 JP. 2011. Microbe domestication and the identification of the wild genetic stock of lager-
737 brewing yeast. *Proc Natl Acad Sci U S A* **108**: 14539–44.

738 Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A,
739 Koufopanou V, et al. 2009. Population genomics of domestic and wild yeasts. *Nature* **458**:
740 337–341.

741 Marsit S, Leducq JB, Durand É, Marchant A, Filteau M, Landry CR. 2017. Evolutionary biology
742 through the lens of budding yeast comparative genomics. *Nat Rev Genet* **18**: 581–598.

743 Mathiasen P, Premoli AC. 2010. Out in the cold: Genetic variation of *Nothofagus pumilio*
744 (Nothofagaceae) provides evidence for latitudinally distinct evolutionary histories in austral
745 South America. *Mol Ecol* **19**: 371–385.

746 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K,
747 Altshuler D, Gabriel S, Daly M, et al. 2010. The Genome Analysis Toolkit: A MapReduce
748 framework for analyzing next-generation DNA sequencing data. *Genome Res* **20**: 1297–
749 1303.

750 Naseeb S, Alsammar H, Burgis T, Donaldson I, Knyazev N, Knight C, Delneri D. 2018. Whole
751 Genome Sequencing, de Novo Assembly and Phenotypic Profiling for the New Budding
752 Yeast Species *Saccharomyces jurei*. *G3* **8**: 2967–2977.

753 Nespolo RF, Villarroel CA, Oporto CI, Tapia SM, Vega F, Urbina K, De Chiara M, Mozzachiodi
754 S, Mikhalev E, Thompson D, et al. 2019. An Out-of-Patagonia dispersal explains most of
755 the worldwide genetic distribution in *Saccharomyces eubayanus*. *Submiss*.

756 Nguyen HV, Boekhout T. 2017. Characterization of *Saccharomyces uvarum* (Beijerinck, 1898)
757 and related hybrids: Assessment of molecular markers that predict the parent and hybrid
758 genomes and a proposal to name yeast hybrids. *FEMS Yeast Res* **17**: 1–19.

759 Nielsen R, Akey JM, Jakobsson M, Pritchard JK, Tishkoff S, Willerslev E. 2017. Tracing the
760 peopling of the world through genomics. *Nature* **541**: 302–310.

761 Peris D, Langdon QK, Moriarty R V, Sylvester K, Bontrager M, Charron G, Leducq JB, Landry
762 CR, Libkind D, Hittinger CT. 2016. Complex Ancestries of Lager-Brewing Hybrids Were
763 Shaped by Standing Variation in the Wild Yeast *Saccharomyces eubayanus*. *PLoS Genet*
764 **12**.

765 Peris D, Sylvester K, Libkind D, Gonçalves P, Sampaio JP, Alexander WG, Hittinger CT. 2014.
766 Population structure and reticulate evolution of *Saccharomyces eubayanus* and its lager-
767 brewing hybrids. *Mol Ecol* **23**: 2031–2045.

768 Peter J, De Chiara M, Friedrich A, Yue JX, Pflieger D, Bergström A, Sigwalt A, Barre B, Freel
769 K, Llored A, et al. 2018. Genome evolution across 1,011 *Saccharomyces cerevisiae* isolates.
770 *Nature* **556**: 339–344.

771 Pfeifer B, Wittelsbuerger U. 2015. Package ‘PopGenome’.

772 Premoli AC, Mathiasen P, Cristina Acosta M, Ramos VA. 2012. Phylogeographically
773 concordant chloroplast DNA divergence in sympatric *Nothofagus* s.s. How deep can it be?
774 *New Phytol* **193**: 261–275.

775 Premoli AC, Mathiasen P, Kitzberger T. 2010. Southern-most *Nothofagus* trees enduring ice
776 ages: Genetic evidence and ecological niche retrodiction reveal high latitude (54°S) glacial
777 refugia. *Palaeogeogr Palaeoclimatol Palaeoecol* **298**: 247–256.

778 Quiroga MP, Premoli AC. 2010. Genetic structure of *Podocarpus nubigena* (Podocarpaceae)
779 provides evidence of Quaternary and ancient historical events. *Palaeogeogr Palaeoclimatol*
780 *Palaeoecol* **285**: 186–193.

781 Racimo F, Sankararaman S, Nielsen R, Huerta-Sánchez E. 2015. Evidence for archaic adaptive
782 introgression in humans. *Nat Rev Genet* **16**: 359–371.

783 Raj A, Stephens M, Pritchard JK. 2014. fastSTRUCTURE: Variational Inference of Population
784 Structure in Large SNP Data Sets. *Genetics* **197**: 573–589.

785 Rodríguez ME, Pérez-Través L, Sangorrín MP, Barrio E, Lopes CA. 2014. *Saccharomyces*
786 *eubayanus* and *Saccharomyces uvarum* associated with the fermentation of *Araucaria*
787 *araucana* seeds in Patagonia. *FEMS Yeast Res* **14**: 948–965.

788 Salema-Oom M, Pinto VV, Gonçalves P, Spencer-Martins I. 2005. Maltotriose Utilization by
789 Industrial. *Society* **71**: 5044–5049.

790 Sampaio JP. 2018. Microbe profile: *Saccharomyces eubayanus*, the missing link to lager beer
791 yeasts. *Microbiol (United Kingdom)* **164**: 1069–1071.

792 Sampaio JP, Gonçalves P. 2017. Biogeography and Ecology of the Genus *Saccharomyces*. In
793 *Yeasts in Natural Ecosystems: Ecology*, pp. 131–157.

794 Schacherer J, Shapiro JA, Ruderfer DM, Kruglyak L. 2009. Comprehensive polymorphism
795 survey elucidates population structure of *Saccharomyces cerevisiae*. *Nature* **458**: 342–5.

796 Sérsic AN, Cosacov A, Cocucci AA, Johnson LA, Pozner R, Avila LJ, Sites Jr. JW, Morando M.
797 2011. Emerging phylogeographical patterns of plants and terrestrial vertebrates from
798 Patagonia. *Biol J Linn Soc* **103**: 475–494.

799 Shen X-X, Opulente DA, Kominek J, Zhou X, Steenwyk JL, Buh K V., Haase MAB, Wisecaver
800 JH, Wang M, Doering DT, et al. 2018. Tempo and Mode of Genome Evolution in the
801 Budding Yeast Subphylum. *Cell* **175**: 1533–1545.e20.

802 Stefanini I, Dapporto L, Legras J-L, Calabretta A, Di Paola M, De Filippo C, Viola R, Capretti P,
803 Polzinelli M, Turillazzi S, et al. 2012. Role of social wasps in *Saccharomyces cerevisiae*
804 ecology and evolution. *Proc Natl Acad Sci U S A* **109**: 13398–403.

805 Stewart JR, Lister AM. 2001. Cryptic northern refugia and the origins of the modern biota.
806 *Trends Ecol Evol* **16**: 608–613.

807 Suzuki R, Shimodaira H. 2006. Pvclust: An R package for assessing the uncertainty in
808 hierarchical clustering. *Bioinformatics* **22**: 1540–1542.

809 Sylvester K, Wang Q-M, James B, Mendez R, Hulfachor AB, Hittinger CT. 2015. Temperature
810 and host preferences drive the diversification of *Saccharomyces* and other yeasts: a survey
811 and the discovery of eight new yeast species. *FEMS Yeast Res* **15**: fov002.

812 Yurkov A. 2017. Temporal and Geographic Patterns in Yeast Distribution. In *Yeasts in Natural*
813 *Ecosystems: Ecology*, pp. 101–130.

814 Zhang C, Dong S-S, Xu J-Y, He W-M, Yang T-L. 2019. PopLDdecay: a fast and effective tool
815 for linkage disequilibrium decay analysis based on variant call format files. *Bioinformatics*
816 **35**: 1786–1788.

817
818 Figure Legends:

819 Figure 1. *S. eubayanus* distribution and population structure.

820 *S. eubayanus* has a global distribution and two major populations with six subpopulations. (A)
821 Isolation locations of *S. eubayanus* strains included in the dataset. For visibility, circle size is not
822 scaled by the number of strains. Subpopulation abundance is shown as pie charts. The
823 Patagonian sampling sites have been collapsed to two locations for clarity. Details of sites and
824 subpopulations found in South America (B) and North America (C) with circle size scaled by the
825 number of strains. (D) Whole genome PCA of *S. eubayanus* strains and five hybrids with large
826 contributions from *S. eubayanus*. (E) PCA of just PA. (F) PCA of just PB and hybrid *S.*
827 *eubayanus* sub-genomes. Color legends in A and D apply to this and all other figures.

828

829 Figure 2. Phenotypic differences.

830 (A) Heat map of mean of maximum growth rate (change in OD/hour) (GR) on different carbon
831 sources by subpopulation. Warmer colors designate faster growth. (B) Heat map of \log_{10}
832 normalized growth at different temperatures by subpopulation.

833

834 Figure 3. Population genomic parameters.

835 (A) Network built with pairwise F_{ST} values < 0.8 between each subpopulation. F_{ST} values are
836 printed and correspond to line thickness, where lower values are thicker. Circle sizes correspond
837 to genetic diversity. (B) LD decay for each subpopulation (colors) and the species in whole
838 (black).

839

840 Figure 4. Genomic ancestries of NoAm and SoAm admixed lineages.
841 (A) For all 21 NoAm admixed strains, \log_2 ratio of the minimum PB-NoAm pairwise nucleotide
842 sequence divergence (dB-NoAm) and the minimum PA-NoAm pairwise nucleotide sequence
843 divergence (dA-NoAm) in 50-kbp windows. Colors and $\log_2 < 0$ or > 0 indicate that part of the
844 genome is more closely related to PA or PB, respectively. (B) Neighbor-Net phylogenetic
845 network reconstructed with the 571 SNPs that differentiate the NoAm strains. The scale bar
846 represents the number of substitutions per site. Collection location is noted. (C) Pairwise
847 nucleotide sequence divergence of the NoAm strain yHKS210 compared to strains from the PA-
848 1 and PA-2 subpopulations of PA in 50-kbp windows. (D) Pairwise nucleotide sequence
849 divergence of the NoAm strain yHKS210 compared to strains from the PB-1, PB-2, and PB-3
850 subpopulations of PB in 50-kbp windows. (E) \log_2 ratio of the minimum PB-SoAm pairwise
851 nucleotide sequence divergence (dB-SoAm) and the minimum PA-SoAm pairwise nucleotide
852 sequence divergence (dA-SoAm) in 50-kbp windows. Colors and $\log_2 < 0$ or > 0 indicate that
853 part of the genome is more closely related to PA or PB, respectively. (F) Pairwise nucleotide
854 sequence divergence of the SoAm strain compared to strains from the PA-1 and PA-2
855 subpopulations of PA in 50-kbp windows. (G) Pairwise nucleotide sequence divergence of the
856 SoAm strain compared to strains of the PB-1, PB-2, and PB-3 subpopulations of PB in 50-kbp
857 windows.

858
859 Figure 5. South American genomic diversity versus range, diversity by area, and isolation by
860 distance.
861 (A) Range and genomic diversity of South American sampling sites. Circle sizes correspond to
862 nucleotide diversity of all strains from that site, and pie proportions correspond to each
863 subpopulation's contribution to π at each site. Latitudinal range of each subpopulation is shown
864 to the right. (B) Nucleotide diversity by subpopulation by sampling site, where larger and darker
865 circles indicate more diversity. “SA Sites” in gray show the diversity of all strains found in each
866 South American (SA) site. “World Sites” in darker gray show the nucleotide diversity of all
867 North American or non-South American strains, regardless of subpopulation, compared to South
868 American strains south or north of 43°S, aligned to mean latitude of all strains included in the
869 analysis. (C) Correlation of nucleotide diversity and the area or distance a subpopulation covers.
870 The y-axis shows the nucleotide diversity of each subpopulation, and circle sizes correspond to

871 the geographic sizes of the subpopulations on a log10 scale. Note that PA-1 (dark red) is as
872 diverse as PB-3 (dark blue) but encompasses a smaller area. (D) \log_{10} (pairwise nucleotide
873 diversity) correlated with distance between strains, which demonstrates isolation by distance.
874 Note that y-axes are all scaled the same but not the x-axes. Holarctic includes the *S. eubayanus*
875 sub-genome of two lager-brewing strains. Figure S8A shows the individual plots for the NoAm
876 lineage. Figure S8B shows the individual plot of PB-1.

877

878 Figure 6. Predicted climatic suitability of *S. eubayanus*.

879 Minimum training presence (light green) and 10th percentile training presence (dark green) based
880 on a model that includes all known *S. eubayanus* isolations, as well as a scenario of dispersal and
881 diversification out of Patagonia (inset and arrows). Black arrows signify diversification events,
882 dotted lines are diversification events where the population is not found in Patagonia, and
883 colored arrows are migration events for the lineage of matching color. Roman numerals order the
884 potential migration events. *S. eubayanus* has not been found in the wild in Europe, but it has
885 contributed to fermentation hybrids, such as lager yeasts. This scenario proposes that the last
886 common ancestor of PA and PB-Holarctic bifurcated into PA (red) and PB-Holarctic (blue),
887 which further radiated into PA-1 (dark red), PA-2 (light red), PB-1 (blue), PB-2 (lighter blue),
888 PB-3 (dark blue), and Holarctic (very light blue). At least four migration events are needed to
889 explain the locations where *S. eubayanus* has been found. I. The Holarctic subpopulation was
890 drawn from the PB-Holarctic gene pool and colonized the Holarctic ecozone. II. PB-1 colonized
891 the Pacific Rim, including New Zealand and Washington state, USA. III. An independent
892 dispersal event brought PB-1 to North Carolina, USA. IV. Outcrossing between PA-2 and PB-1
893 gave rise to a low-diversity admixed lineage that has recently invaded a large swath of North
894 America.

895

896 Supplementary Figure 1. Additional visualizations of population structure.

897 (A) SplitsTree network tree built with 11994 SNPs with subpopulations circled and labeled. (B)
898 FineStructure co-ancestry plot built with 11994 SNPs. Bluer colors correspond to more genetic
899 similarity. Boxes have been added to label the subpopulations. (C) FastSTRUCTURE plot (K=6)
900 built with 150165 SNPs and showing the same six monophyletic subpopulations found with
901 other approaches. Only five NoAm strains were included in the fastSTRUCTURE analysis.

902

903 Supplementary Figure. 2. Additional phenotypic data.

904 (A) Violin plots of recovery from stress, normalized by controls. There were no significant
905 subpopulation by stress interactions. (B) Violin plots of \log_{10} normalized mean growth rates of
906 each subpopulation at 0°C, 4°C, 10°C, and 20°C. * = p-val < 0.05 of interactions between Lager
907 and PA-2, PB-2, and PB-3 at 10°C; Lager and PA-1, PA-2, PB-1, PB-2, and PB-3 at 20°C; and
908 PB-2 and both PA-2 and NoAm at 20°C (C) Violin plots of mean growth rate on different carbon
909 sources (* = p-val < 0.05). (D) Heatmaps of significant subpopulation by temperature
910 interactions and (E) significant subpopulation by carbon source interactions. Warmer colors
911 indicate that the subpopulation-temperature or carbon source on the left hand had a faster growth
912 rate than the subpopulation-temperature or carbon source along the bottom; cooler colors
913 represent the reverse. Non-significant interactions, based on multiple test corrections, are in
914 white. More intense colors represent smaller p-values.

915

916 Supplementary Figure 3. Heterozygosity analyses.

917 (A) Summary of all SNPs vs SNPs called as heterozygous compared to the taxonomic type strain
918 for all 200 strains included in this study. The upper limit of the bar is the total SNP count. The
919 lower point corresponds to SNPs called as heterozygous. The horizontal line is 20k SNPs. (B)
920 Strain yHCT75 (CRUB 1946) is the only strain with > 20K heterozygous SNPs. (C) When the
921 heterozygous SNPs of yHCT75 were pseudo-phased (labeled), both phases clustered with PB-1.

922

923 Supplementary Figure 4. Additional population genomic statistics.

924 (A) Mean pairwise nucleotide diversity ($\pi * 100$) for each subpopulation across the genome in
925 50-kbp windows. (B) Tajima's D across the genome in 50-kbp windows for each subpopulation.
926 (C) Mean F_{ST} in 50-kpb windows for each subpopulation compared to all subpopulations. (D)
927 Pairwise F_{ST} for each subpopulation compared to PB-1.

928

929 Supplementary Figure 5. Pairwise F_{ST} plots for NoAm and SoAm compared to all other
930 subpopulations.

931 Pairwise F_{ST} for the NoAm lineage (A) or SoAm strain (B) compared to all other subpopulations.

932

933 Supplementary Figure 6. The taxonomic type strain has a mosaic genome.
934 (A) Pairwise genetic divergence of the taxonomic type strain compared to each subpopulation.
935 (B) Comparison of pairwise genetic divergence of the taxonomic type strain compared to PA-1
936 and PB-1. (C) \log_2 divergence plot (as in Figure 4) showing regions introgressed from PA-1 in
937 the taxonomic type strain.

938

939 Supplementary Figure 7. Four *S. eubayanus* strains with *S. uvarum* nuclear introgressions.
940 (A) Depth of coverage plots of reads from four strains mapped to both the *S. uvarum* (Suva) and
941 *S. eubayanus* (Seub) reference genomes. (B) Zoom-in of region on Chromosome XIV where
942 these four strains have the same *S. uvarum* (purple) introgression into a *S. eubayanus*
943 background. (C) A PCA plot shows that these four strains belong to the PB-1 subpopulation of *S.*
944 *eubayanus*. (D) A PCA plot shows that the introgressed region from *S. uvarum* came from the
945 South American SA-B subpopulation of *S. uvarum*.

946

947 Supplementary Figure 8. Isolation by distance plots for NoAm and PB-1.
948 (A) Isolation by distance for all NoAm strains. The y-axis has been rescaled compared to Figure
949 5 for better visualization. (B) Isolation by distance for subpopulation PB-1. Comparisons with
950 strains from Cerro Nielol are labeled. All comparisons of South American strains with non-South
951 American strains are on the right side.

952

953 Supplementary Figure 9. Additional Wallace climatic models.
954 (A) Model built using only South American isolation locations. (B) Model built using only non-
955 South American sites. (C) Comparison of models based on all known *S. eubayanus* collection
956 sites, only South American, or only non-South American sites. Where the models agree is in dark
957 green, where two models agree is in medium green, and where one model predicts suitability is
958 in light green.

959

960 Supplementary Table 1. Collection information for all strains whose genomes were sequenced or
961 analyzed in this study.

962

963 Supplementary Table 2. Average triplicate growth rates for various temperatures and carbon
964 sources. Note that this spreadsheet has multiple sheets.

965

966 Supplementary Table 3. K=6 output of FastSTRUCTURE.

967

968 Supplementary Table 4. Mantel test results.

969

970 Supplementary Table 5. Input and output for Wallace climatic modeling.

Figure 1

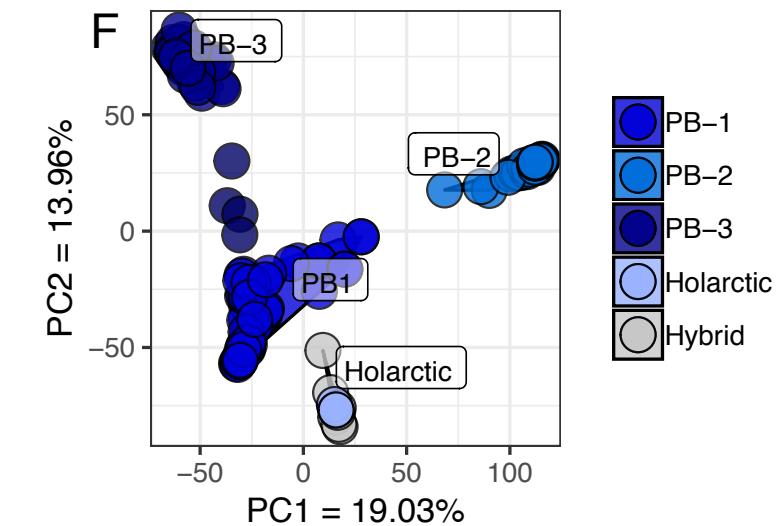
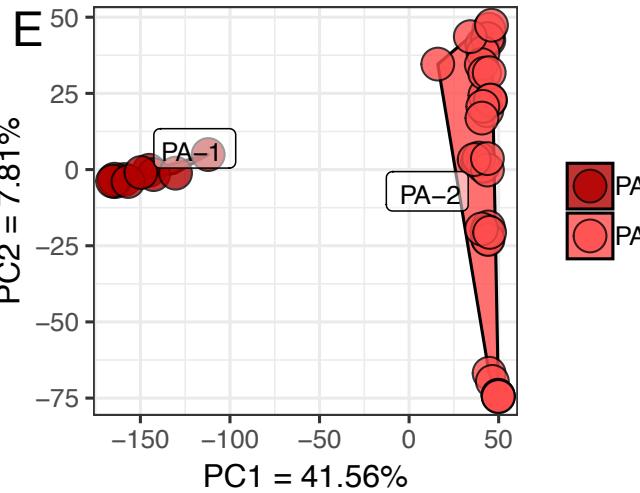
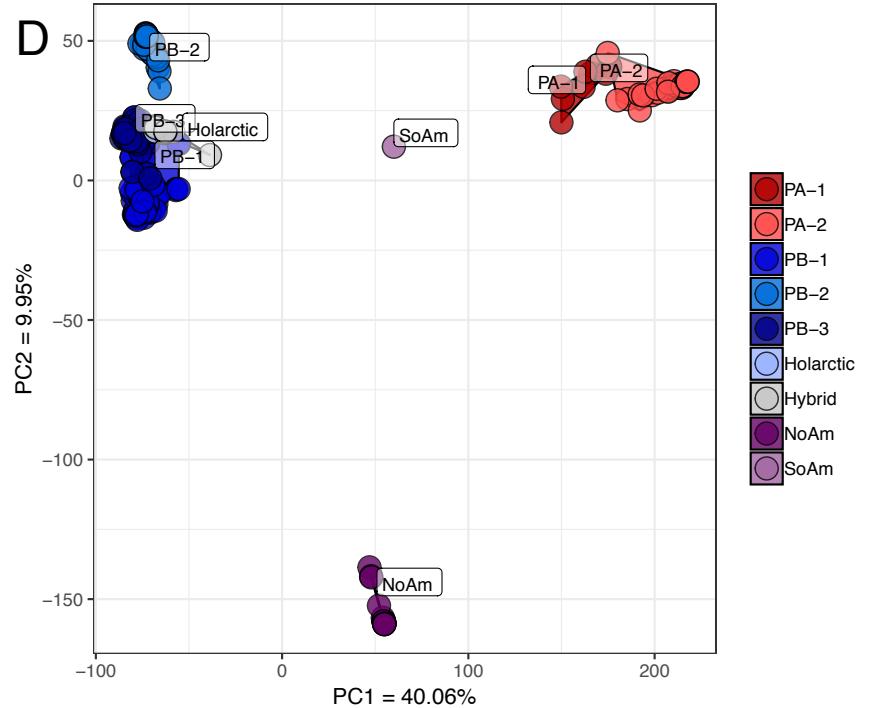
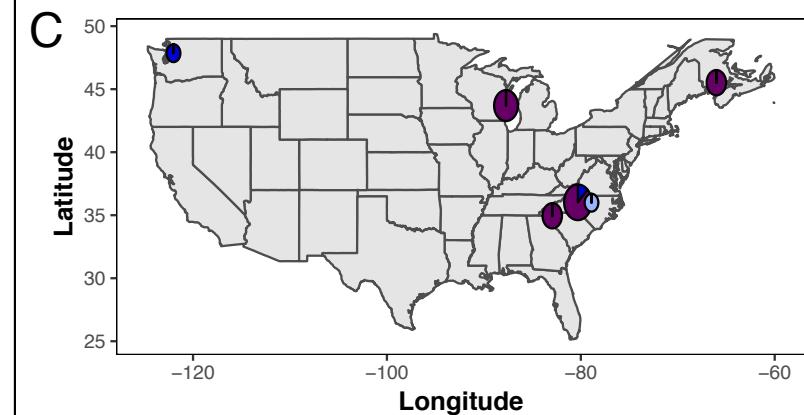
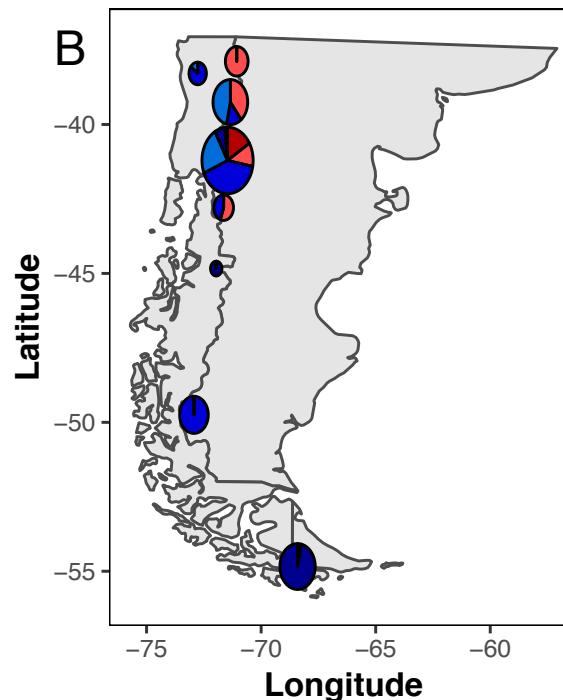
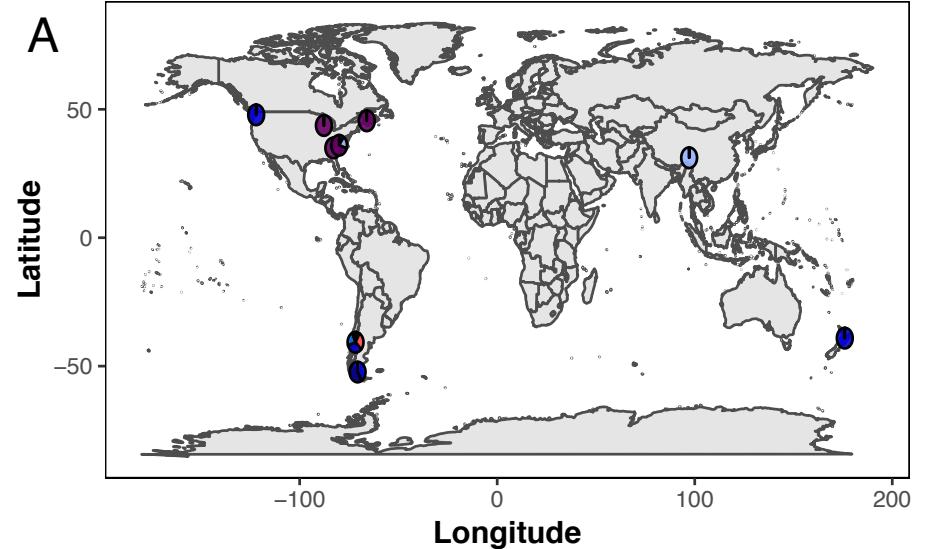
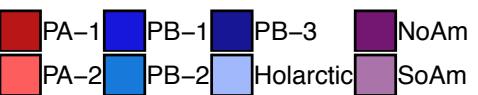








Figure 2

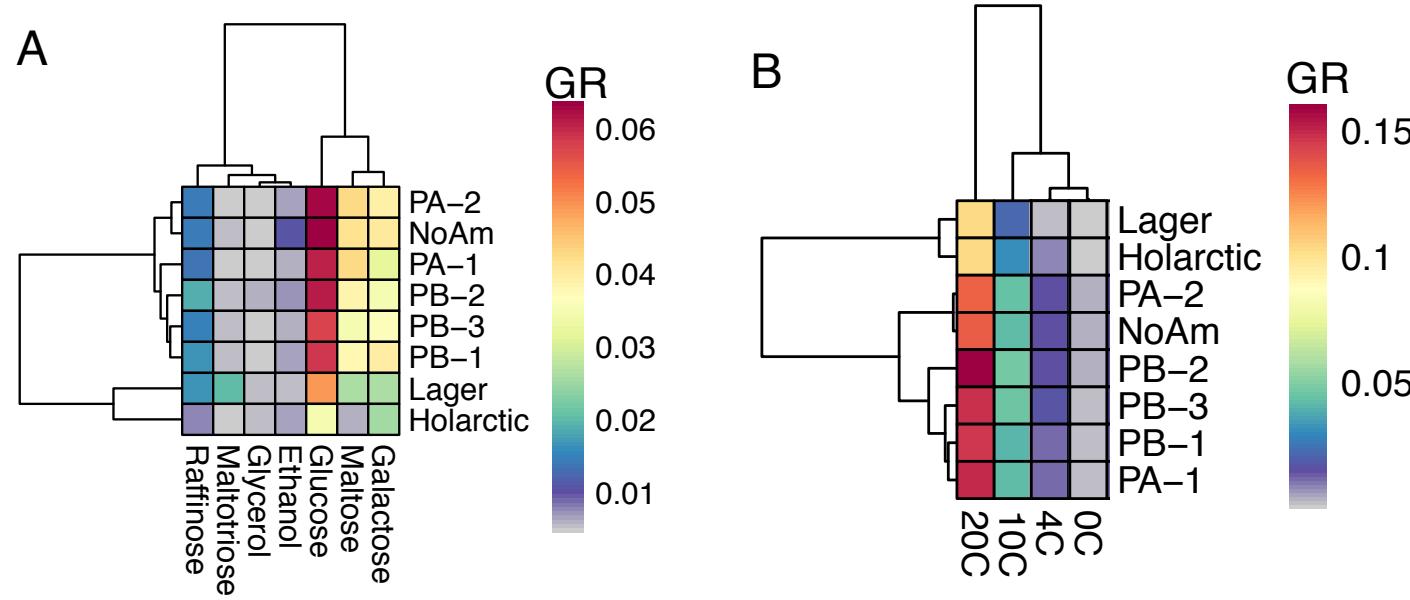


Figure 3

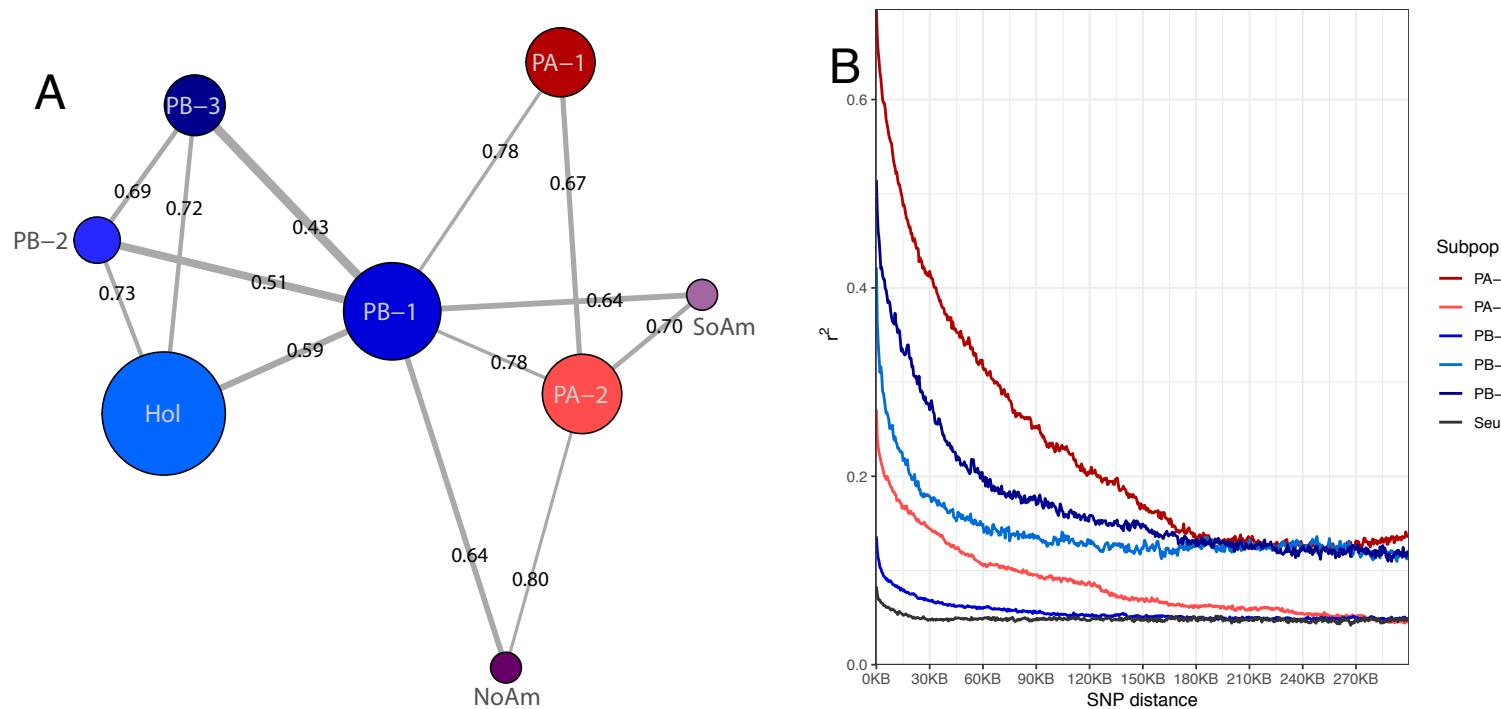
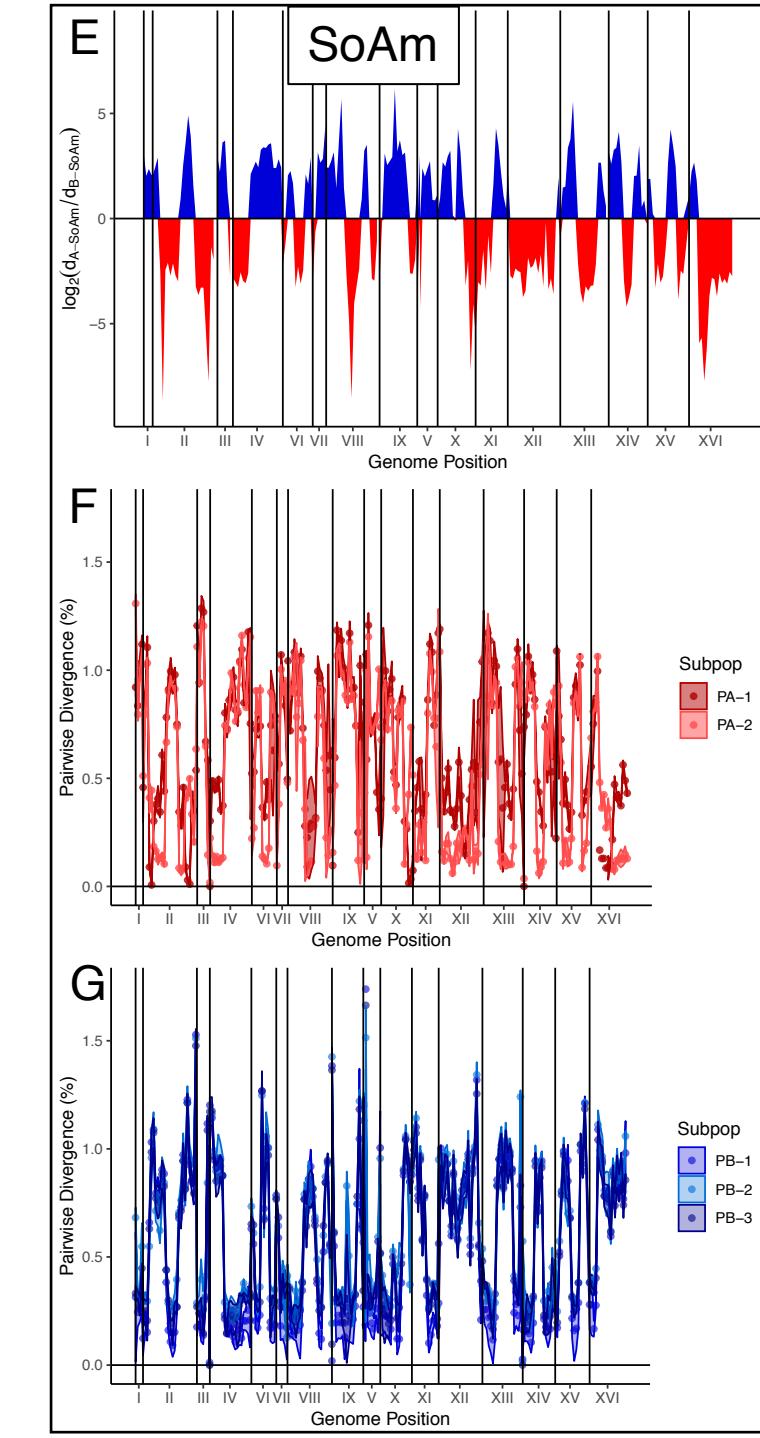
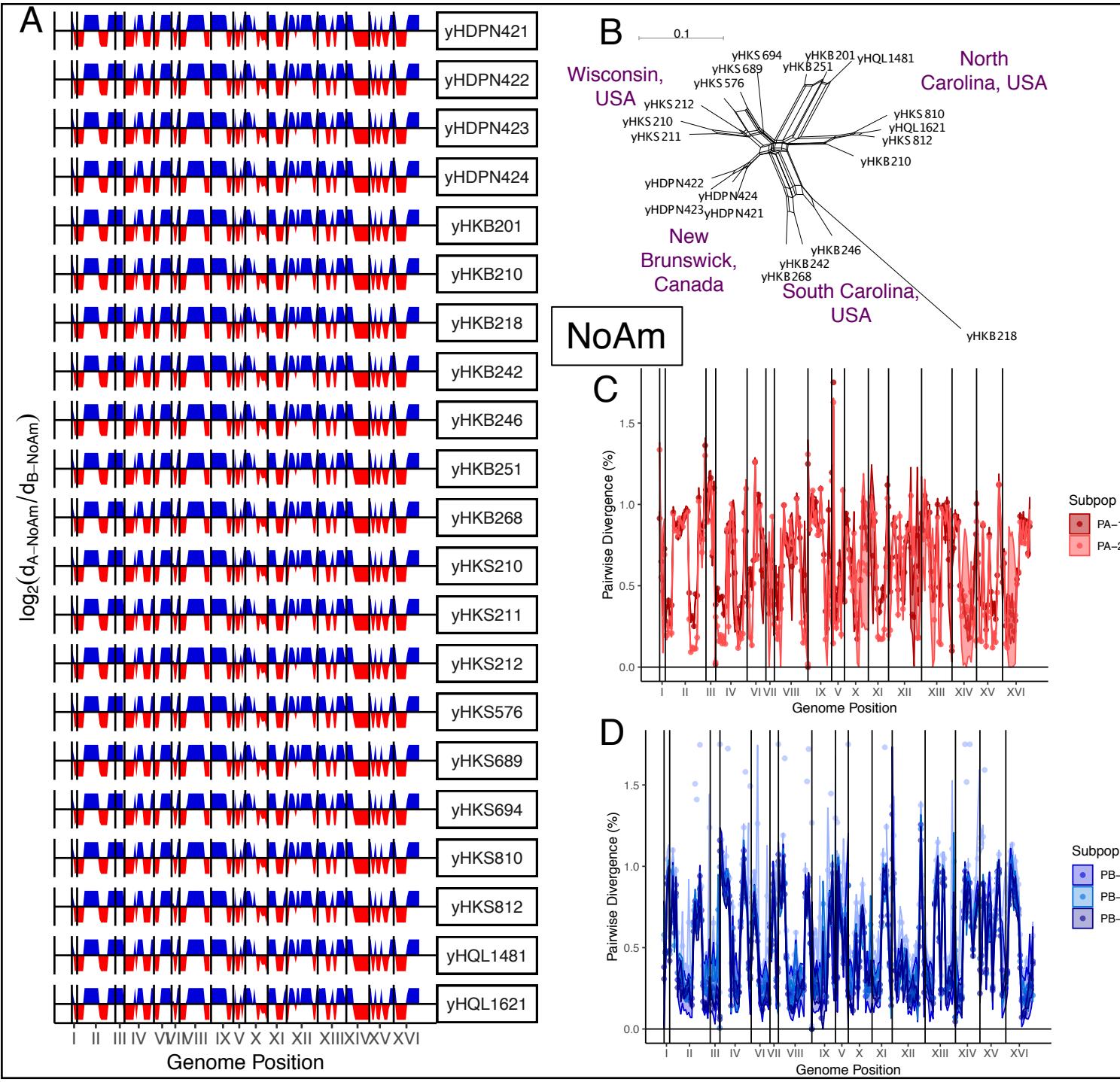




Figure 4

Figure 5

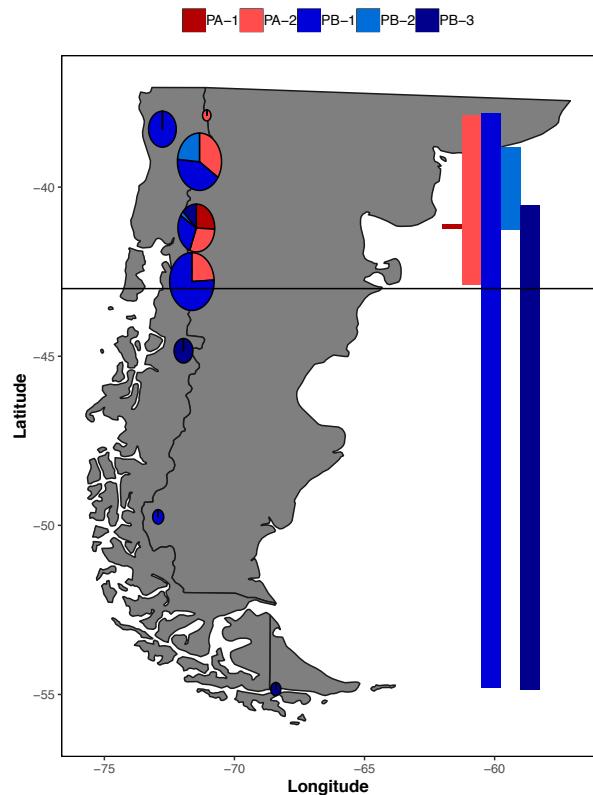
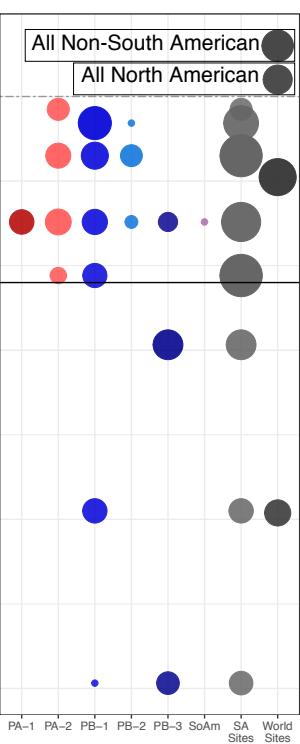
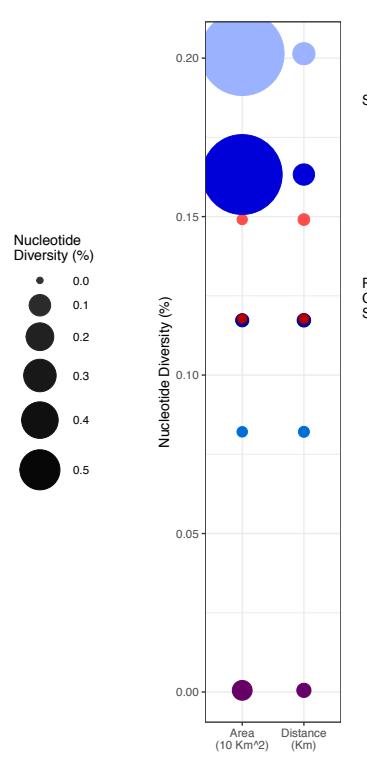
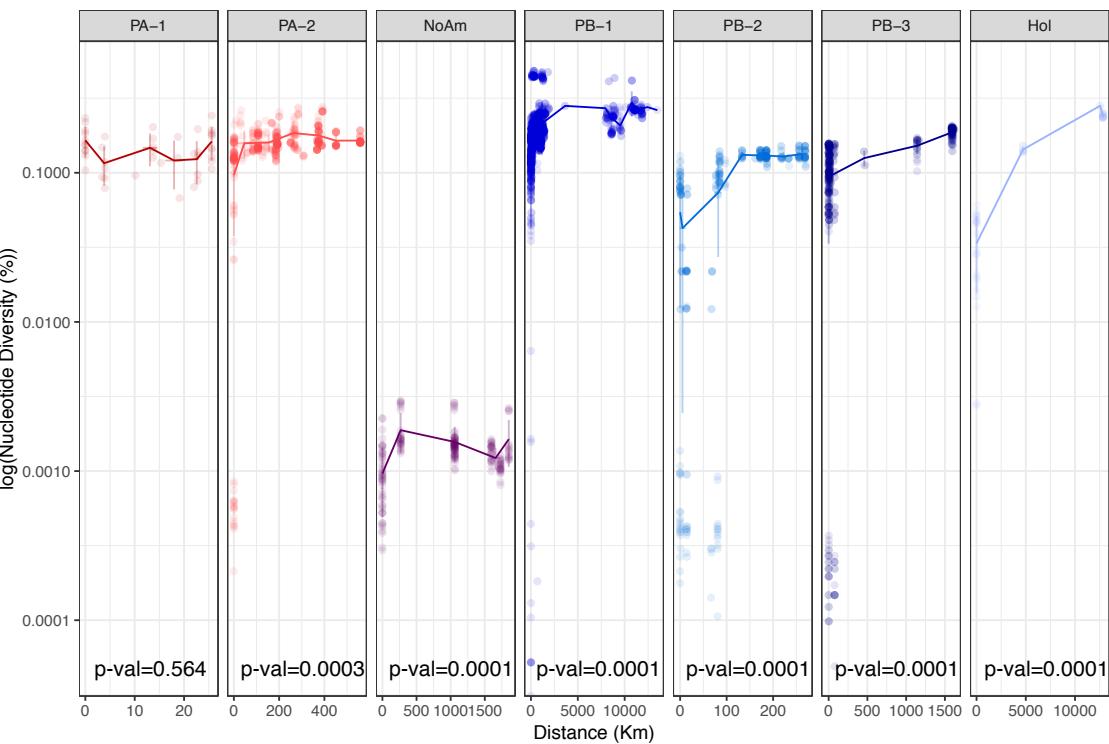




A**B****C****D**

Figure 6

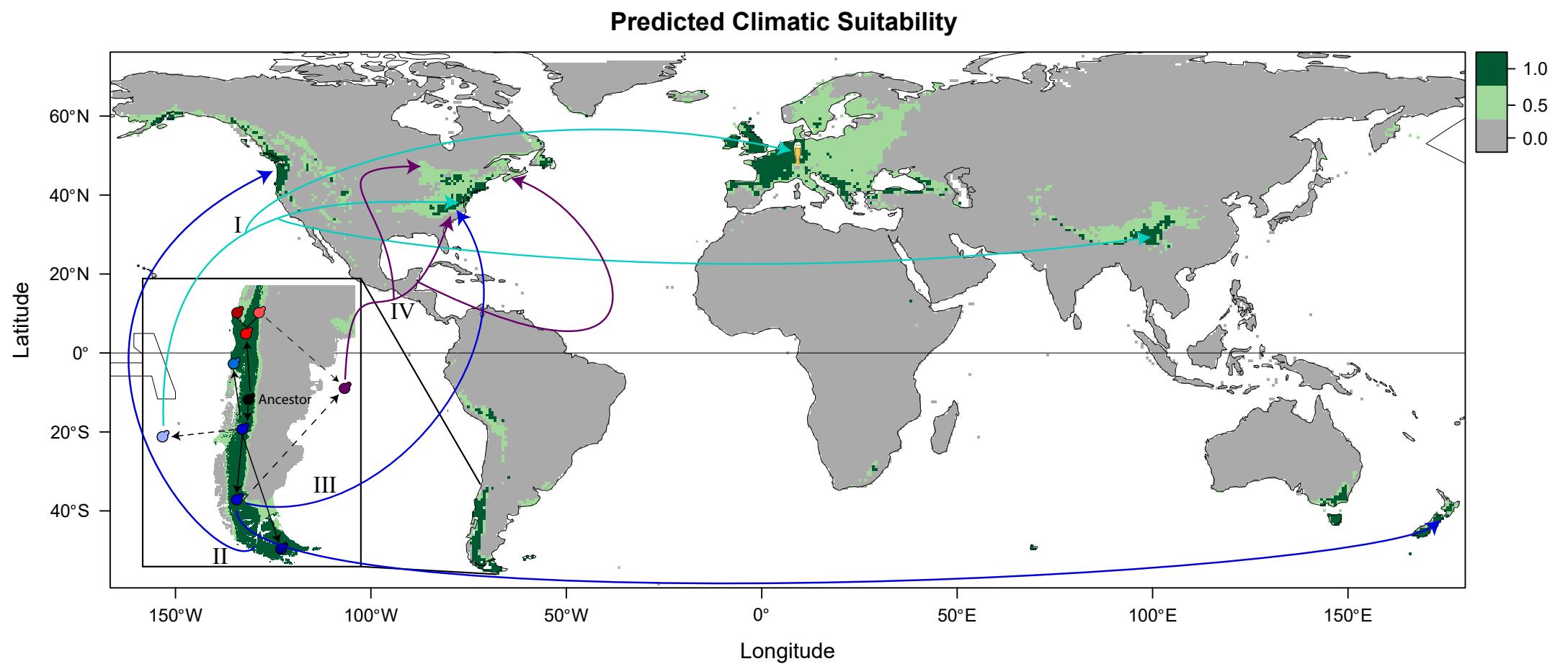


Figure S1

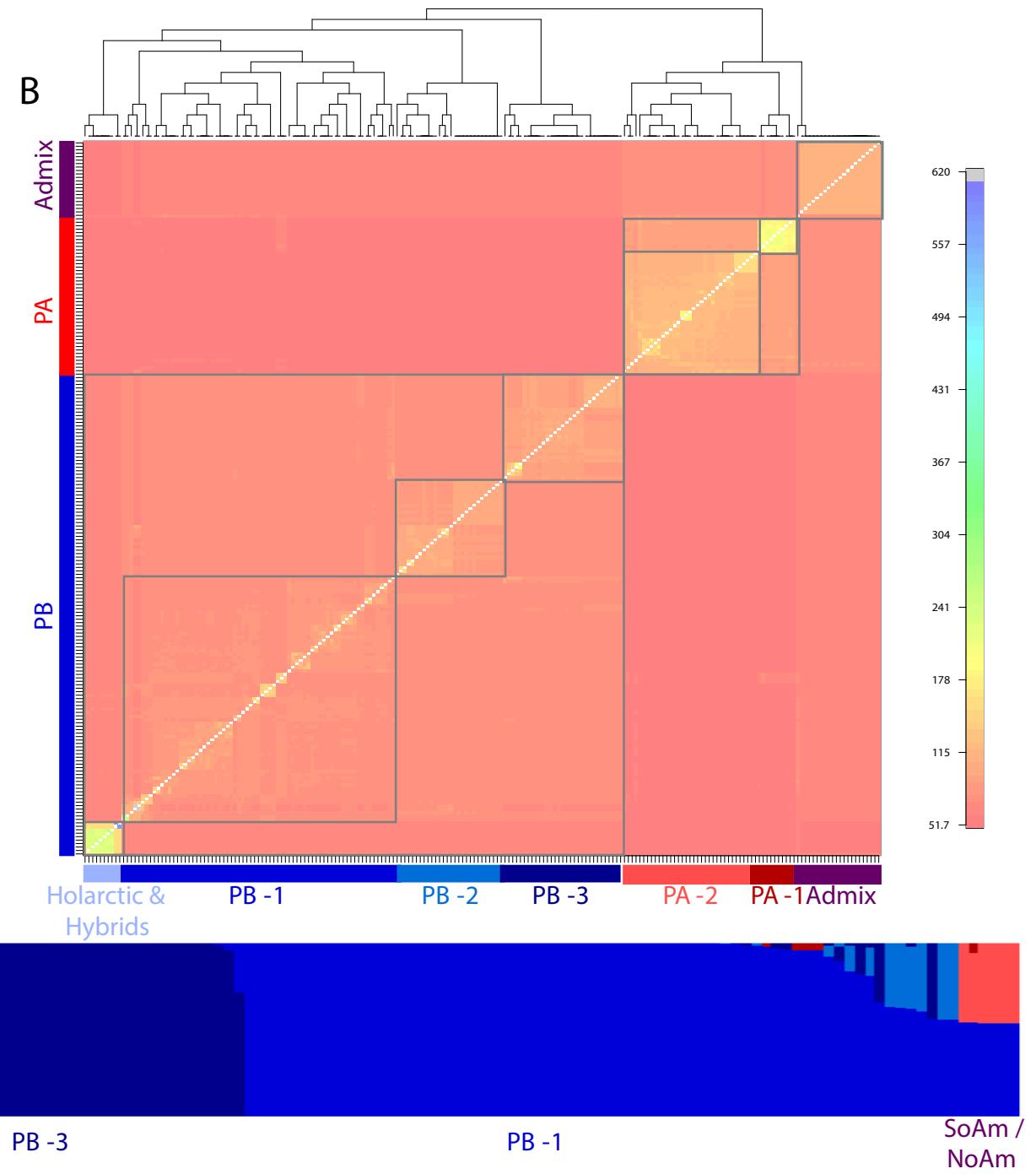
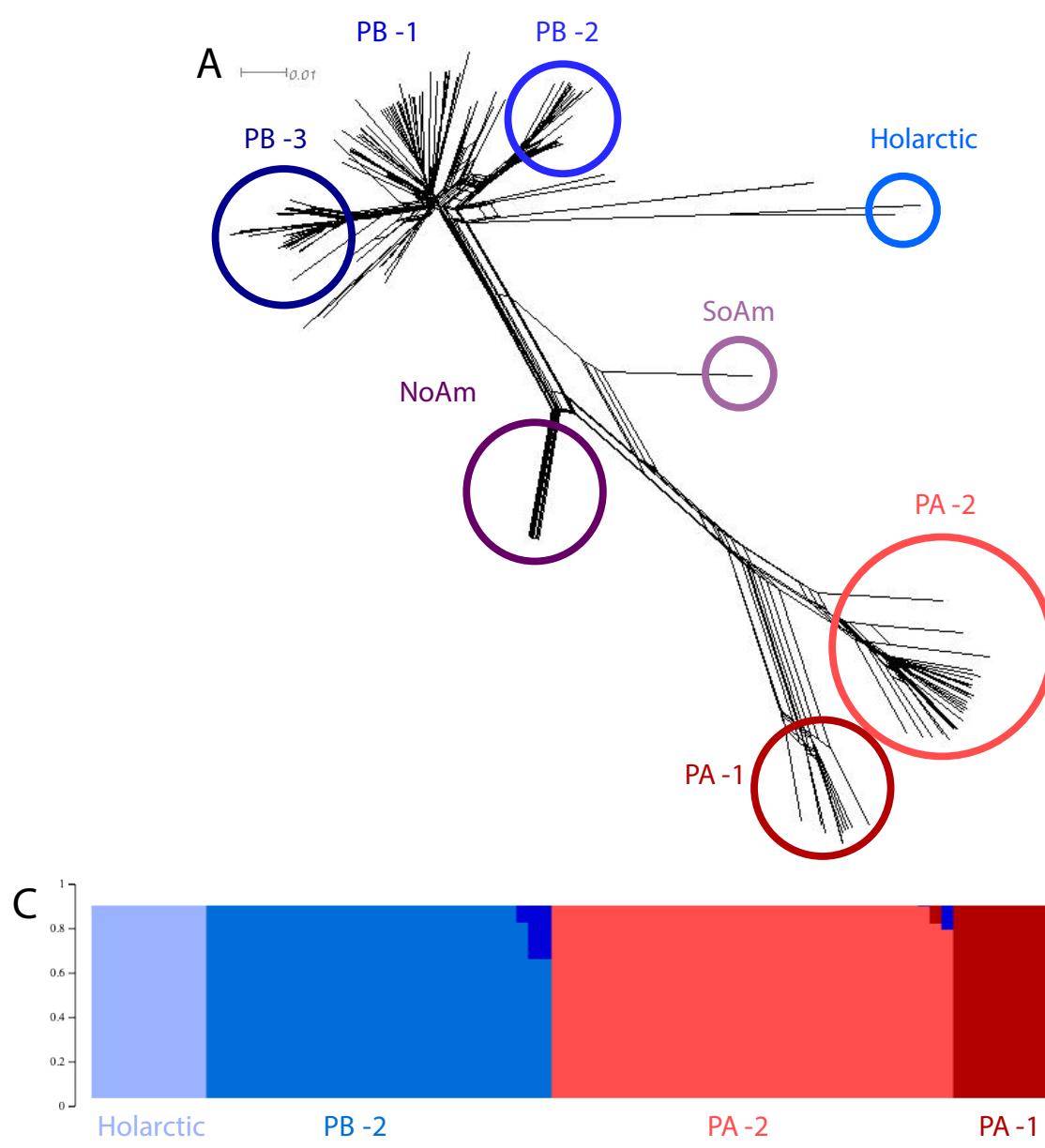



Figure S2

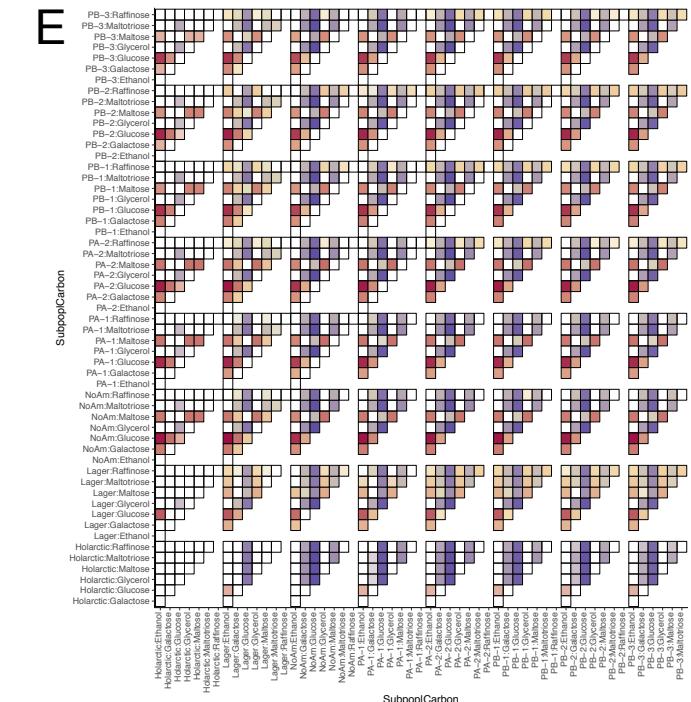
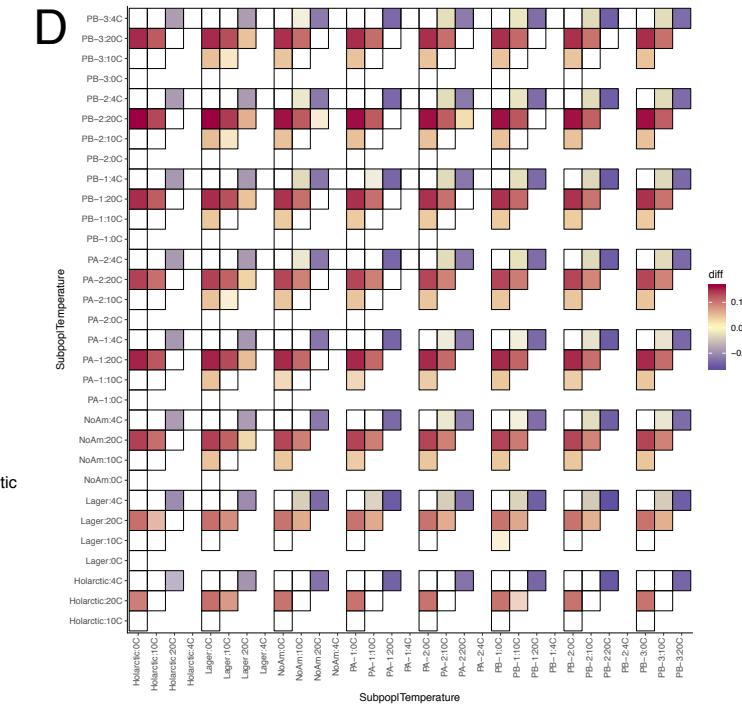
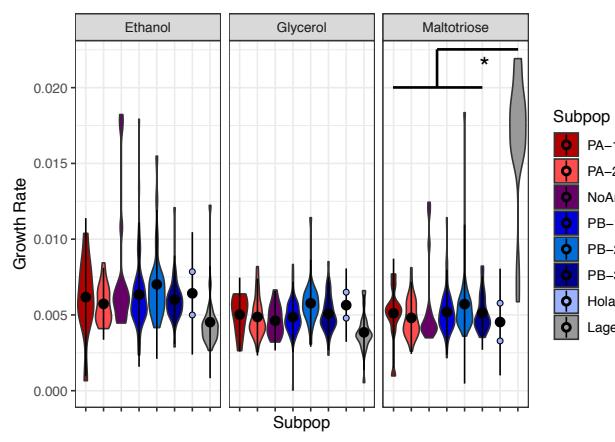
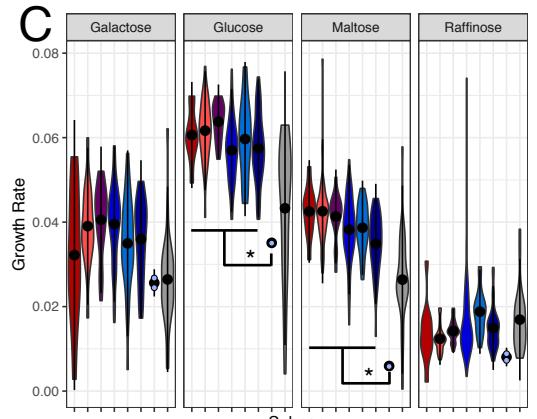
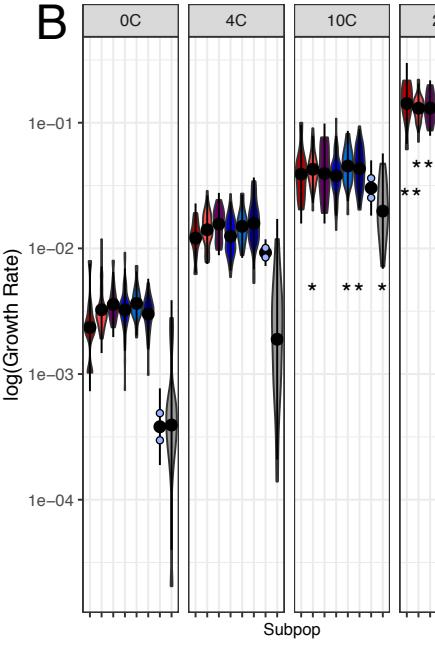
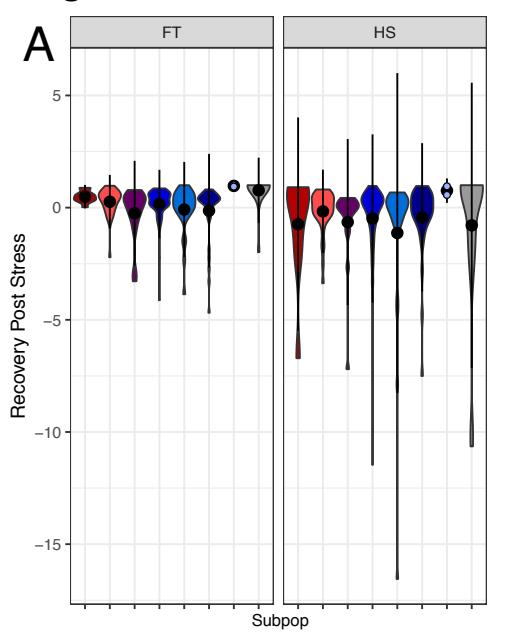







Figure S3

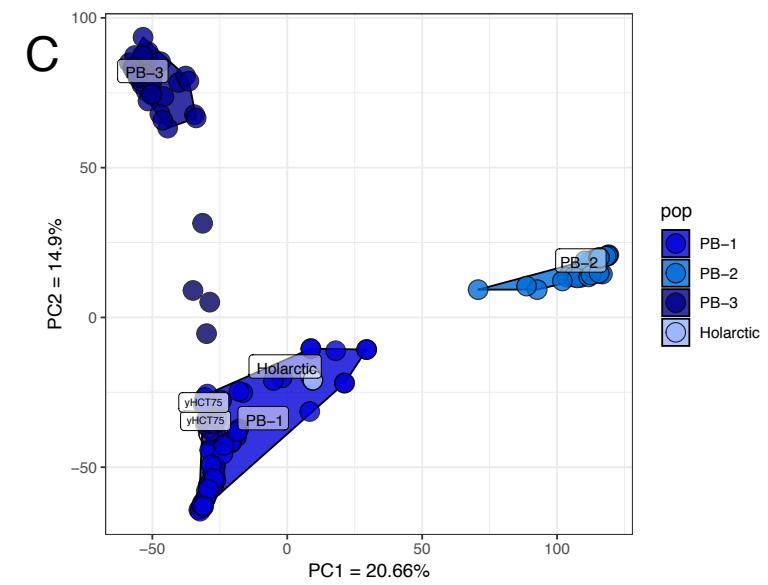
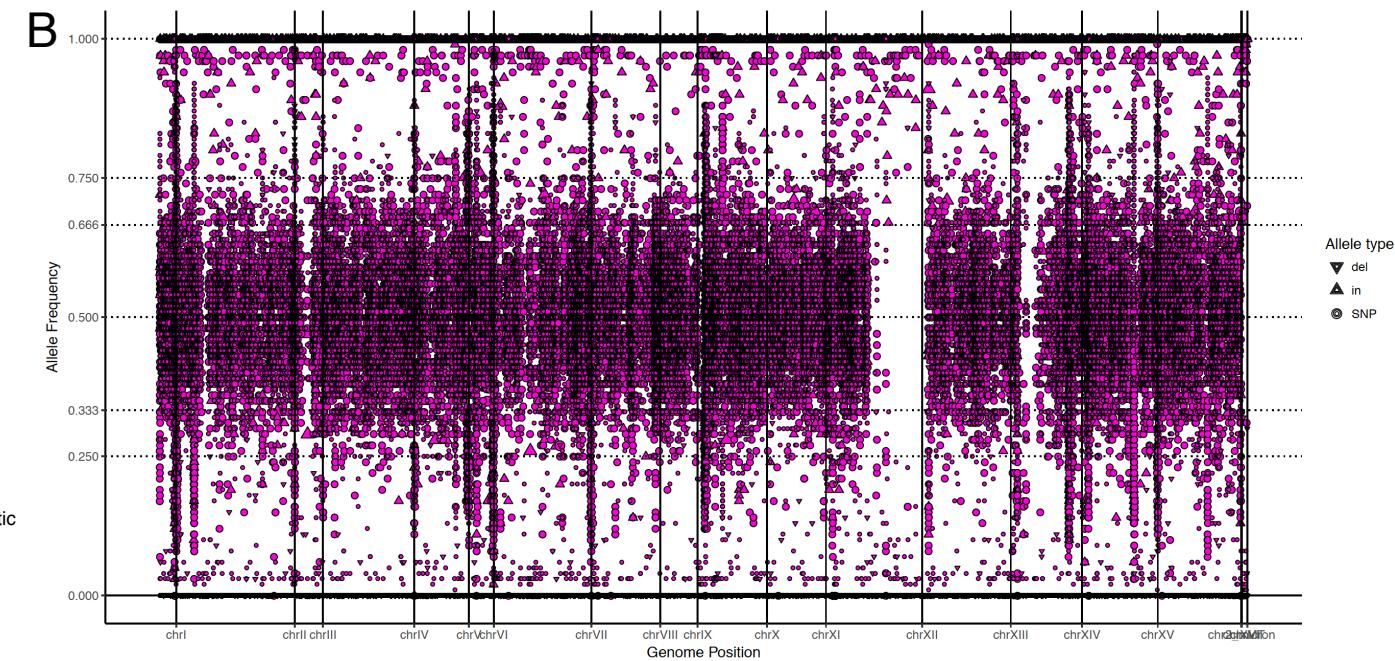
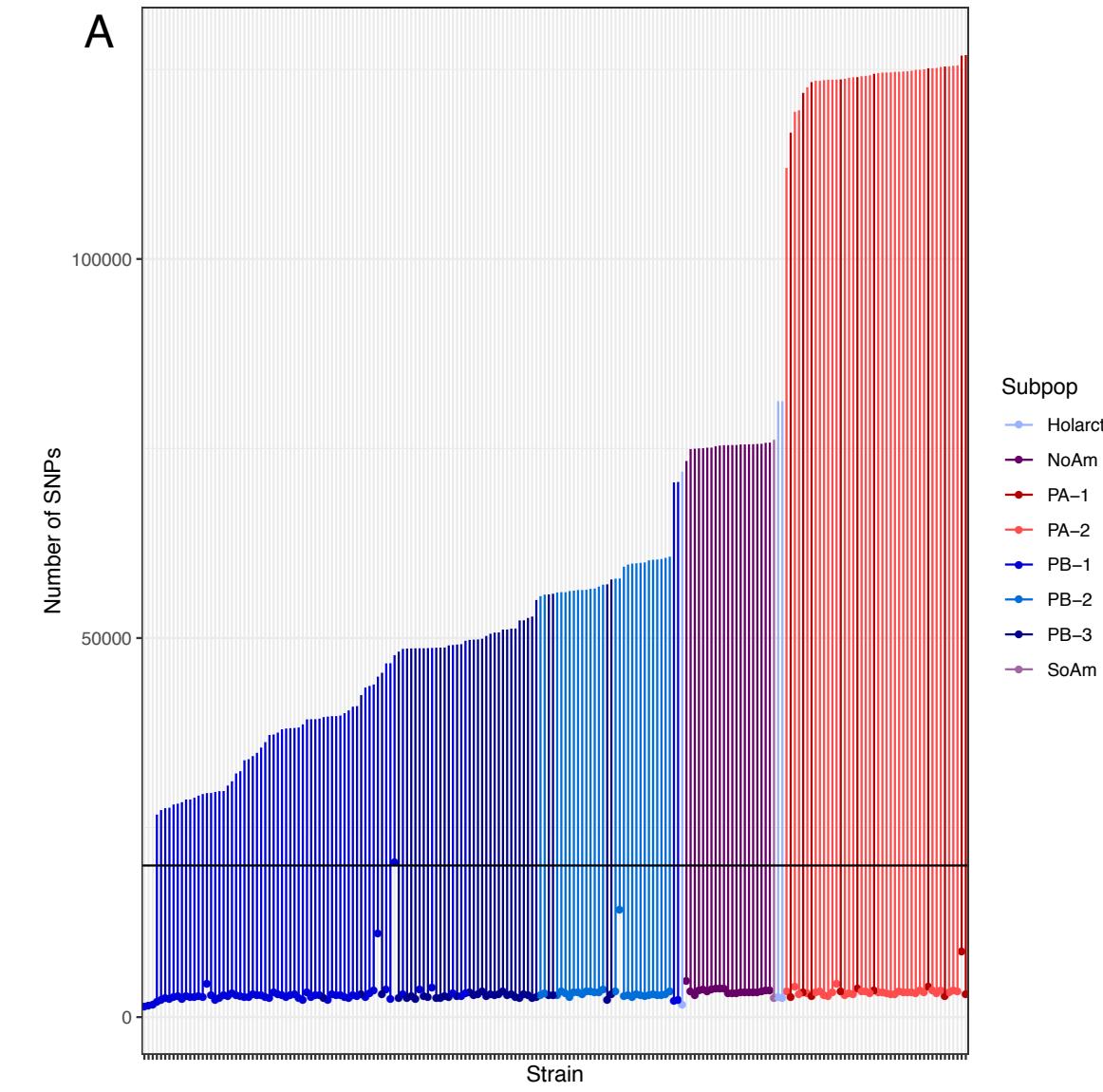
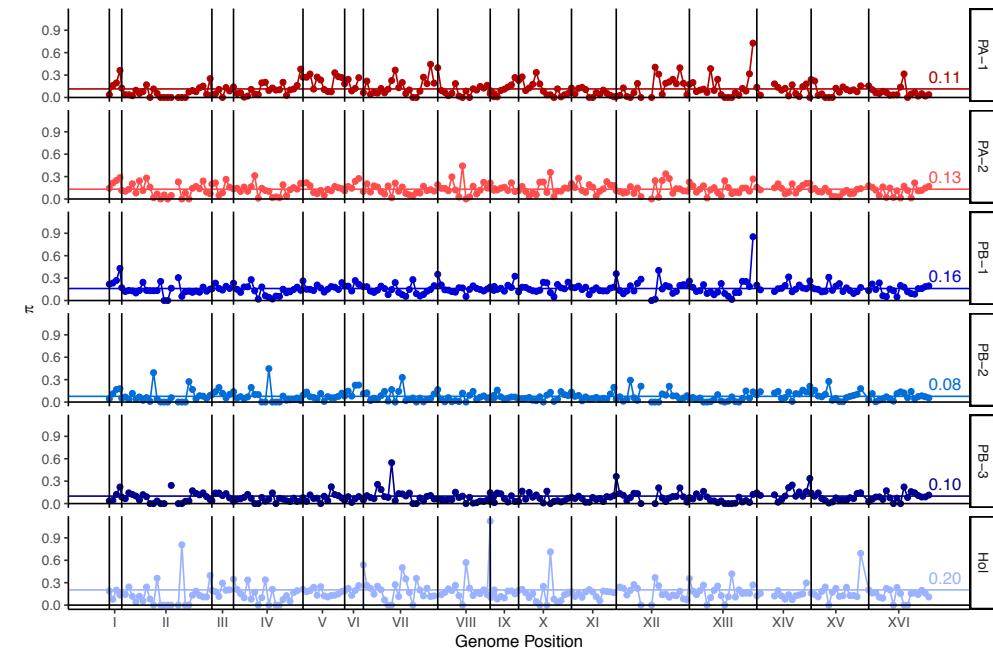
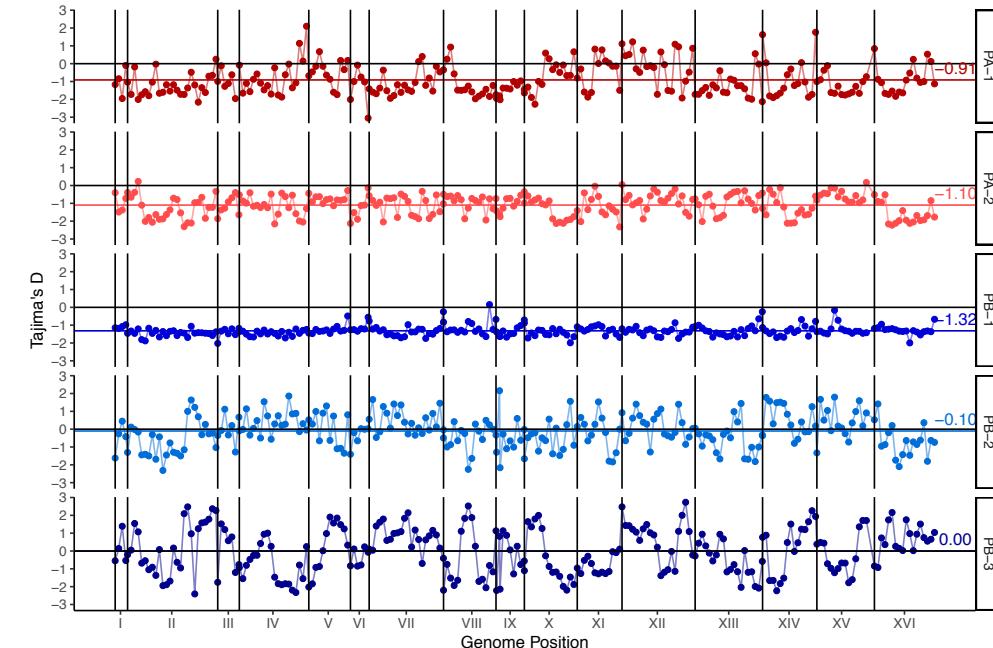
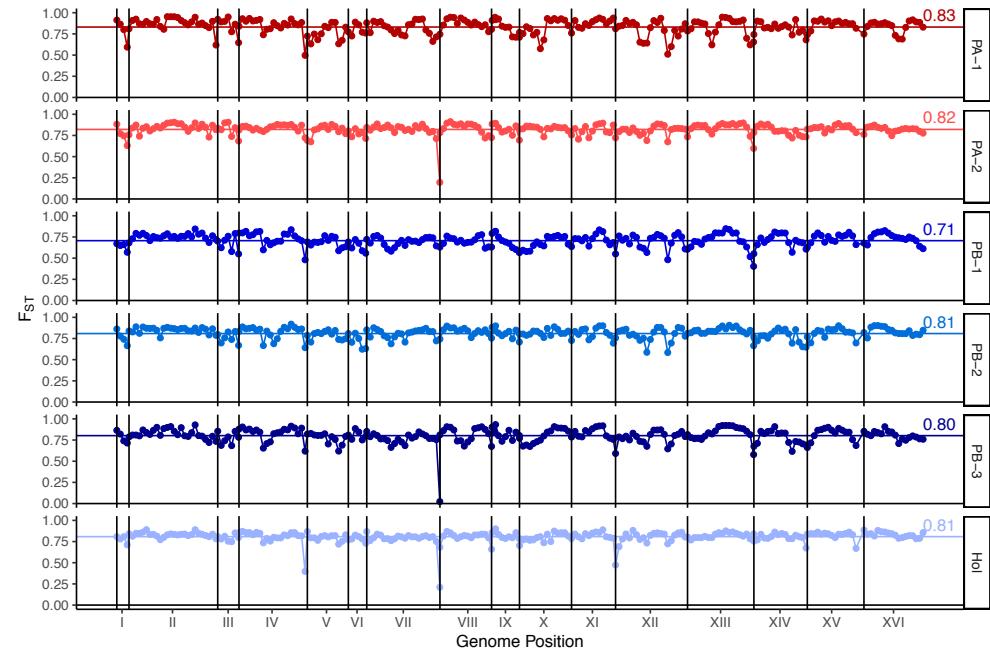






Figure S4


A

B

C

D

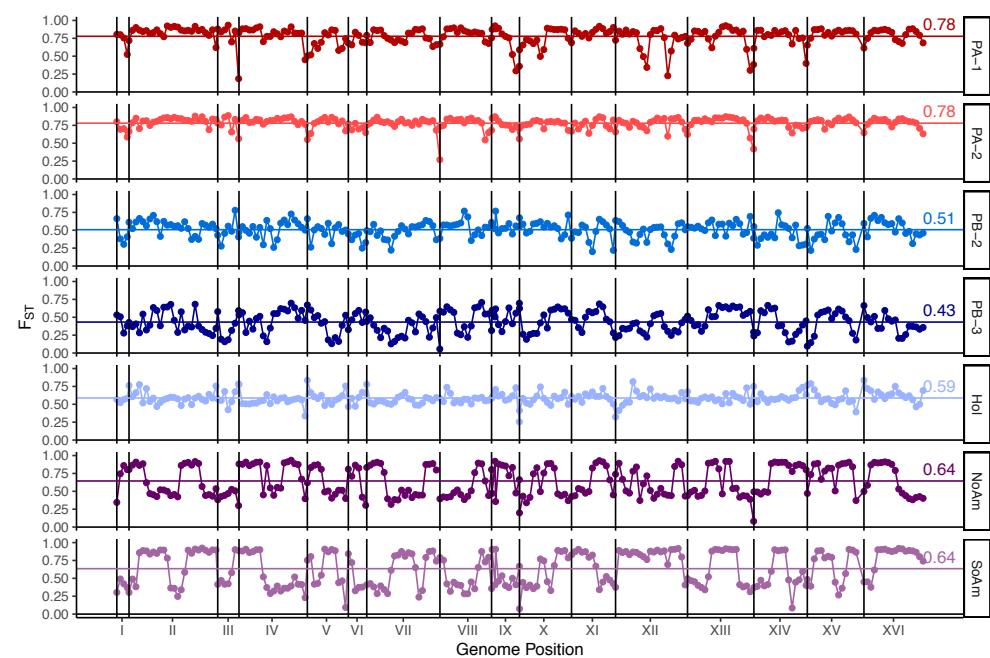


Figure S5

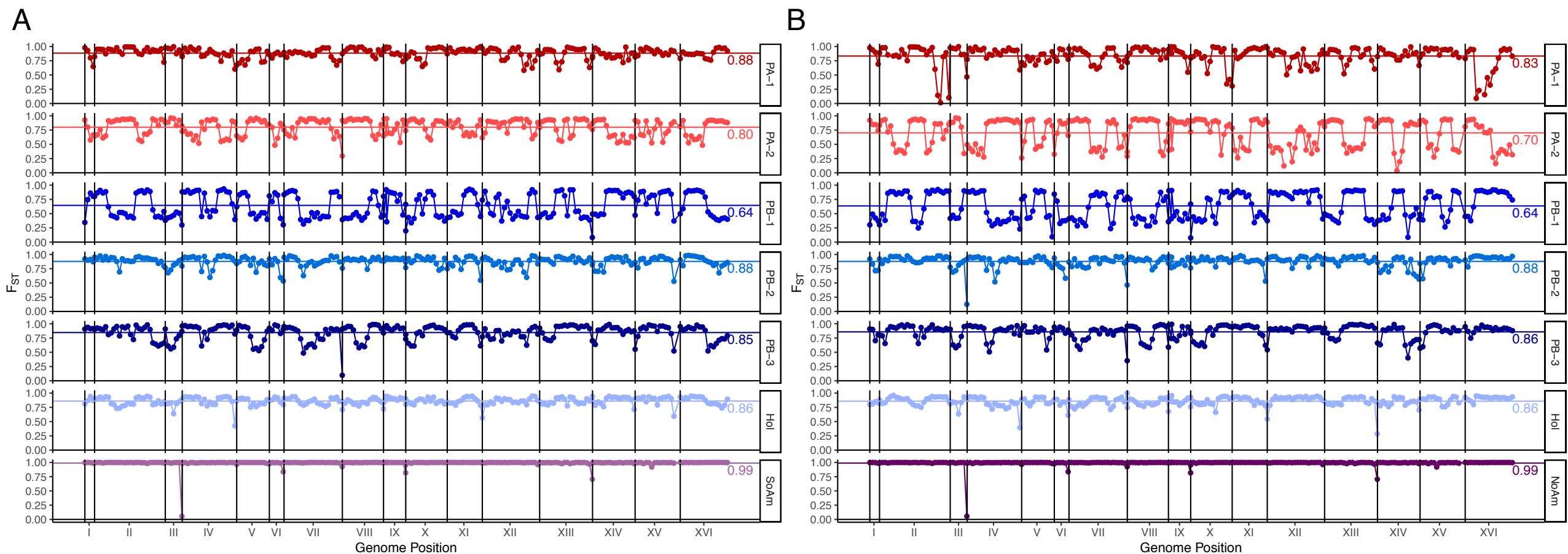


Figure S6

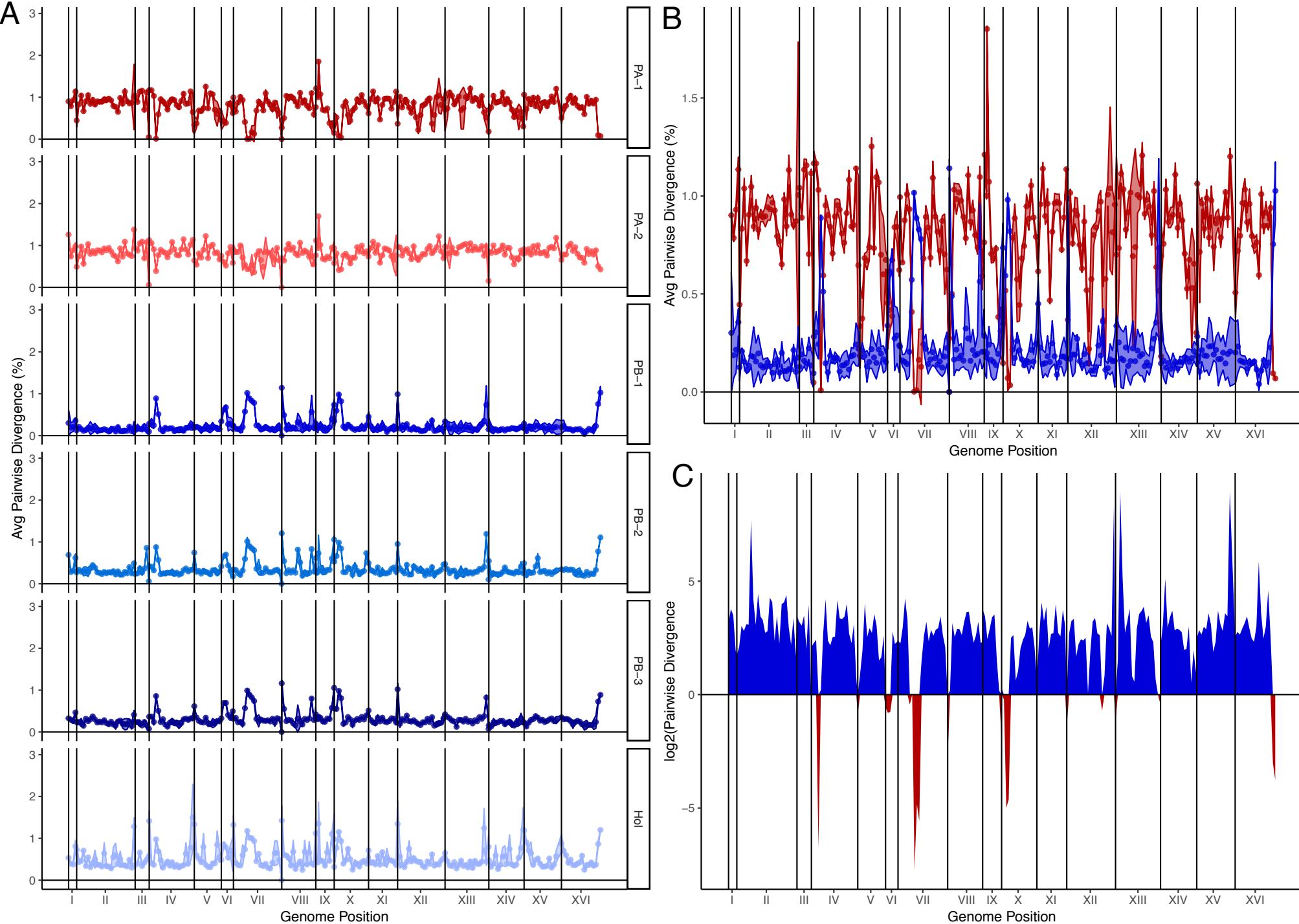


Figure S7

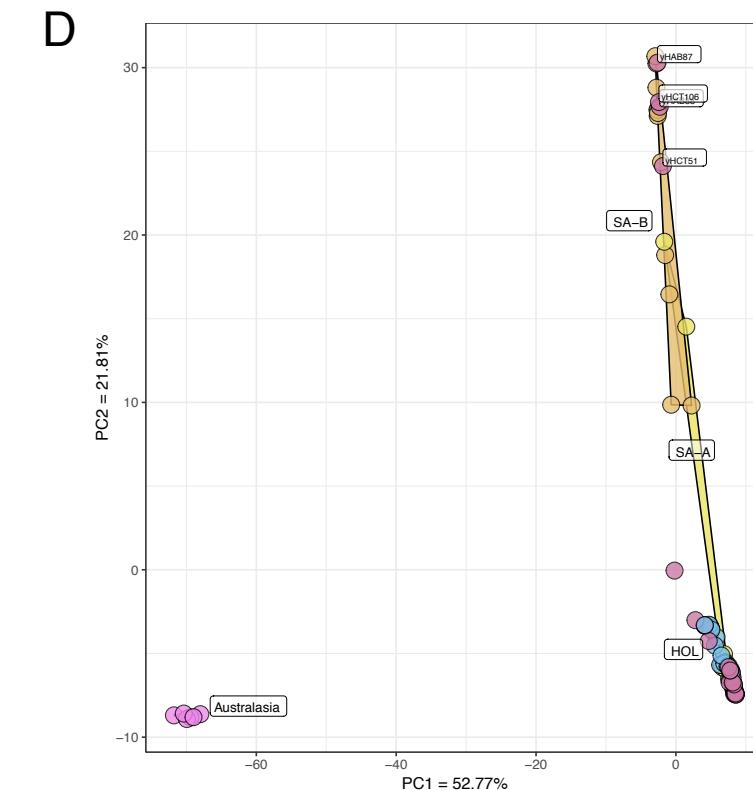
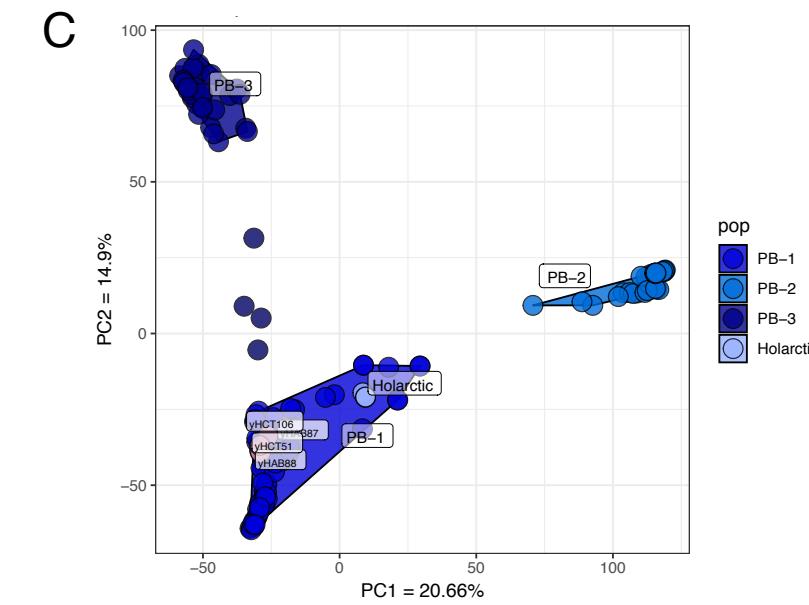
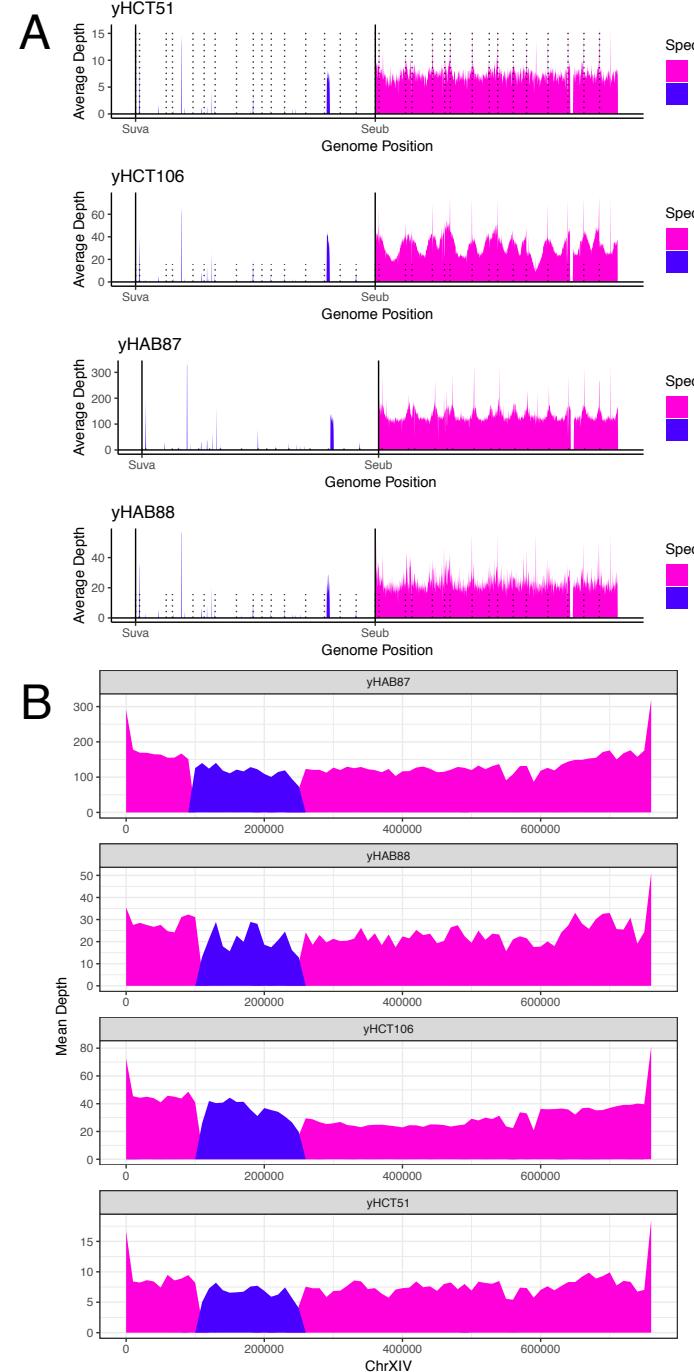




Figure S8

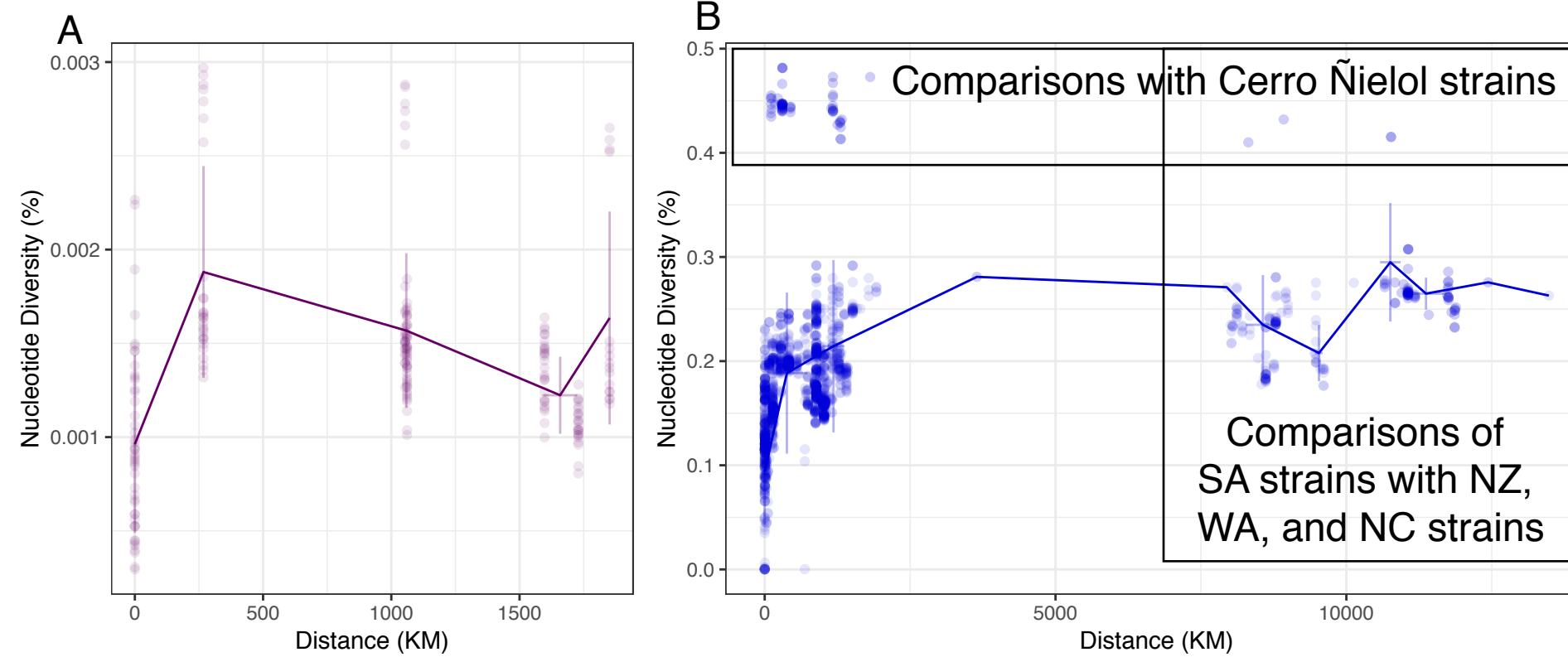
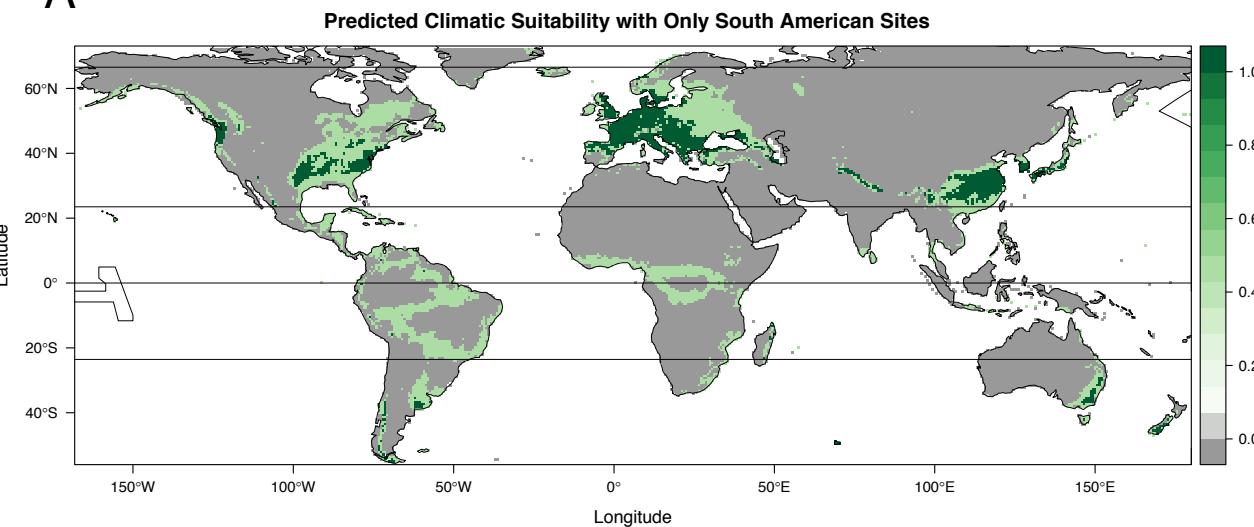
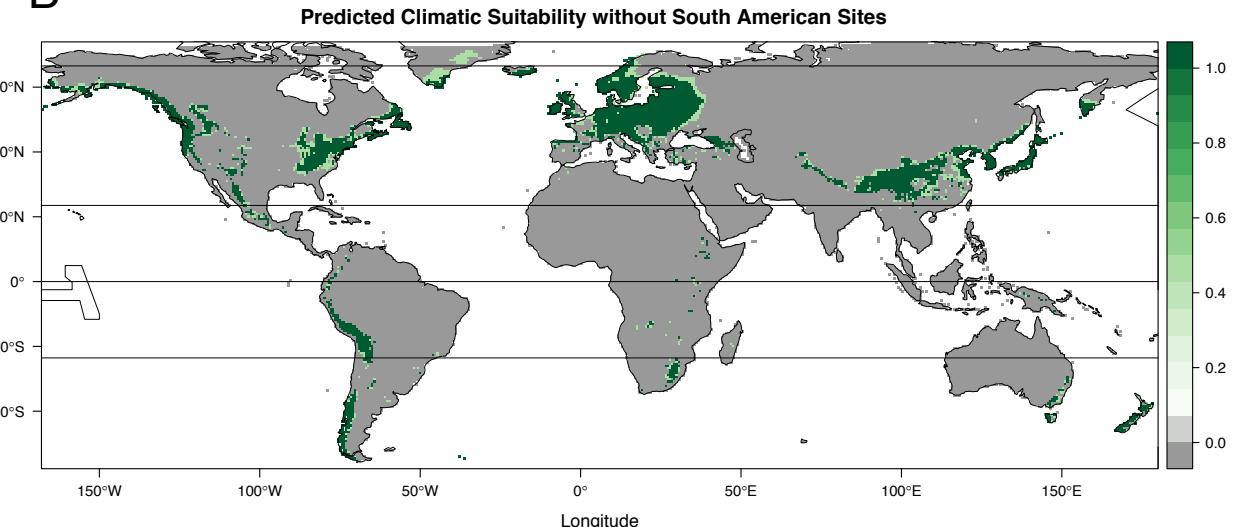
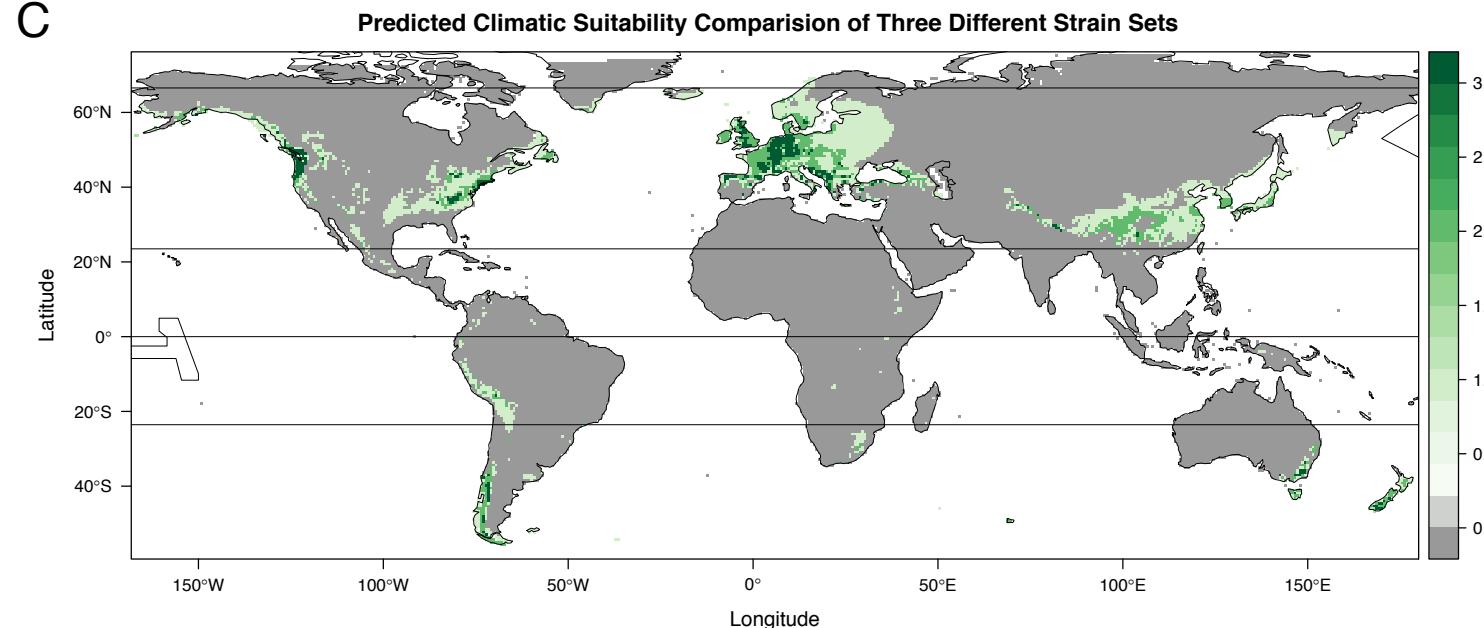




Figure S9


A

B

C

