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Abstract: Mycobacterium tuberculosis (MTB), responsible for the deadliest infectious disease 
worldwide, displays the remarkable ability to transition in and out of dormancy, a hallmark of the 
pathogen’s capacity to evade the immune system and opportunistically exploit 
immunocompromised individuals. Uncovering the gene regulatory programs that underlie the 
dramatic phenotypic shifts in MTB during disease latency and reactivation has posed an 
extraordinary challenge. We developed a novel experimental system to precisely control dissolved 
oxygen levels in MTB cultures in order to capture the chain of transcriptional events that unfold 
as MTB transitions into and out of hypoxia-induced dormancy. Using a comprehensive genome-
wide transcription factor binding location map and insights from network topology analysis, we 
identified regulatory circuits that deterministically drive sequential transitions across six 
transcriptionally and functionally distinct states encompassing more than three-fifths of the MTB 
genome. The architecture of the genetic programs explains the transcriptional dynamics underlying 
synchronous entry of cells into a dormant state that is primed to infect the host upon encountering 
favorable conditions. 
 
One Sentence Summary: High-resolution transcriptional time-course reveals six-state genetic 
program that enables MTB to enter and exit hypoxia-induced dormancy.  
 
 
Main Text: Mycobacterium tuberculosis (MTB) kills more people than any other infectious agent, 
causing ~10 million new cases of active tuberculosis (TB) disease and 1.7 million deaths each year 
(Murray et al., 2014). TB remains a major human public health burden, in large part due to the 
sizeable reservoir of latently infected individuals, who may relapse into active disease decades 
after acquiring the infection. MTB can persist in a stable, non-replicative (often termed dormant) 
state within the host for months or years without symptoms, and then revive to initiate the 
production of lesions and active TB disease. Moreover, dormant cells may be responsible for the 
slow treatment response of patients with active TB. Elucidation of the factors that affect treatment 
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outcome, latency and activation requires a better characterization of functional states adopted by 
the pathogen during progression of the disease, as well as a mechanistic understanding of the 
genetic programs that orchestrate transitions between these states.  

Hypoxia, an environmental stress encountered by MTB within granulomas (Tsai et al., 
2006), is sufficient to shift the pathogen into a defined non-growing survival form, which can be 
reversed upon aeration of the culture (Chao and Rubin, 2010). Therefore, hypoxia has been 
leveraged as an in vitro approximation to study MTB dormancy and the underlying genetic 
programs. However, previous transcriptional analyses under in vitro hypoxic conditions (via the 
Wayne model in which MTB cultures are sealed and gradually depleted of oxygen (Wayne and 
Hayes, 1996; Wayne and Sohaskey, 2001) or the defined hypoxia model in which nitrogen gas is 
flowed into the headspace to rapidly deplete oxygen (Kempner, 1939; Yuan et al., 1998)) were 
limited to either static snapshots, or low-resolution time-course studies (Muttucumaru et al., 2004; 
Rustad et al., 2008; Sherman et al., 2001). Moreover, deletion of previously identified 
transcriptional regulators thought crucial to hypoxia-induced dormancy (i.e. ΔdosR, ΔsigEΔsigH), 
conferred only mild growth defects under hypoxic conditions (Boon and Dick, 2002; Rustad et al., 
2008; Rustad et al., 2009), suggesting a genetic circuit architecture that has evolved to withstand 
environmental and genetic perturbations. Here, we developed a novel experimental platform to 
characterize MTB’s response to changing oxygen (O2) levels in considerably more depth. We 
reveal detailed transcriptional dynamics and coordinated regulatory circuits that enable the 
pathogen’s transition into and out of hypoxia-induced dormancy. 
 To detail the genetic programs underlying hypoxia-induced dormancy in MTB, we needed 
to obtain accurate dynamic measurements of genome-wide expression, over an O2 gradient. 
Previous experimental models to study O2 tension and growth arrest in MTB were not suitable for 
the accuracy and resolution of measurements needed. In particular, the Wayne model has issues 
with reproducibility (Rustad et al., 2008) and the defined hypoxia model depletes O2 very quickly, 
thereby hindering high-resolution sampling during critical transition periods. Moreover, neither 
model has been performed with real-time monitoring of O2 levels to accurately relate the 
transcriptional state of MTB with a precise O2 measurement. Therefore, we designed a new 
programmable multiplexed reactor system, the controlled O2 model, to precisely manipulate and 
monitor O2 levels within the growth medium–even during sampling (Fig 1A). The precise control 
engineered into the system enabled high-resolution sampling across a time-course and O2 gradient, 
with minimal disturbance to the bacteria and high reproducibility across culture replicates and 
experiments (Fig S1). Briefly, air and nitrogen (N2) gas lines were connected to separate mass 
flow controllers, which allowed for programmable gradients of gas mixtures to be streamed into 
the headspace of spinner flasks containing MTB in media. Moreover, we used O2 sensor spots and 
fiber optic technology to non-invasively measure the dissolved O2 content of the cultures. Both the 
mass flow controllers and O2 sensor spots were configured for remote management, advantageous 
for a biosafety level 3 pathogen. With the controlled O2 model, we performed a time-course 
experiment, which involved a steady depletion of dissolved oxygen (DO) over 2 days from full 
aeration (~80% DO) to hypoxia (0% DO). This steady depletion was achieved by programming 
the mass flow controllers to produce the desired mixture of air and N2. The cultures were 
maintained in hypoxia for 2 days by streaming only N2, then reaerated over 1 day by a programmed 
increase in air flow (Fig 1B). Over the time-course, we harvested samples in triplicates, one each 
from three independent reactors, via sampling ports that prevented aeration of the culture. We 
sampled at high frequency during the period when cultures transitioned from 10% to 0% DO, as 
well as from 0% to 10% DO and at lower but regular frequency across the remaining 120-hour 
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experiment. Samples were flash frozen in liquid N2 and later processed for gene expression 
profiling by RNA-sequencing. 

Over the course of the experiment, nearly 64% of all genes (non-coding regions were 
excluded) in the MTB genome were significantly differentially expressed (2,582 genes with 
adjusted P-value < 0.05 and estimated absolute log2 fold-change >1). The number of differentially 
expressed genes from our controlled O2 system is an order of magnitude greater than the number 
from earlier microarray studies using the Wayne (Muttucumaru et al., 2004) (299 genes) or defined 
hypoxia (Rustad et al., 2008) (274 genes) models. Nevertheless, there is significant overlap across 
gene sets between the three models of hypoxia-induced dormancy (Table S1). Interestingly, the 
controlled O2 model significantly recapitulated differential expression observed from intracellular 
MTB (Peterson et al., 2019) (enrichment test P-value=4.29 x 10-30), whereas the other hypoxia 
models did not or had a low recall of the differentially expressed genes (Table S2).  These findings 
highlight the capability of our model to capture MTB’s transcriptional programs during dormancy 
that are relevant to MTB within host cells.   

To further characterize the MTB transcriptional states over the time course and O2 gradient, 
we applied dimensionality reduction techniques that allowed us to define tightly clustered samples 
(Fig S2; see methods). The six identified clusters are shown in a two-dimension t-distributed 
stochastic neighbor embedding (tSNE) plot (Fig 2A). Each cluster represents a distinct 
transcriptional state and was associated with sets of non-overlapping differentially expressed 
genes: Normoxia (81 genes), Depletion (446 genes), Early hypoxia (328 genes), Mid hypoxia (320 
genes), Late hypoxia (978 genes), and Resuscitation (429 genes) (Dataset S1). Each differentially 
expressed gene was assigned to the state in which it had the highest mean expression (see methods). 
The average expression profiles for the gene sets reveal that the states transition from one to 
another and that transitions are oxygen- (e.g. Late hypoxia into Resuscitation occurred upon re-
introducing air into the culture) and time-dependent (e.g. Early/Mid hypoxia into Late hypoxia 
occurred ~40 h after the culture reached 0% DO) (Fig 2B). As such, the six states were also defined 
with oxygen and time intervals (Table S3), with the exception of 46-49 h, where there was 
oscillation between Early hypoxia and Late hypoxia states as the culture went below ~3% DO (Fig 
2). While this intriguing “flicker” behavior could be experimental noise, these anomalous time 
points (measured roughly one hour apart) clearly cluster with Late hypoxia. Such oscillatory 
expression could be generated by inherent properties of the network structure, which we describe 
later.  

Genes associated to the Depletion state (DO between 43% and 4%) were enriched for 
growth-related functions including amino acid metabolism, oxidative phosphorylation and 
translation (Fig 2B). In Early hypoxia, ATP synthase and genes involved in electron transport 
chain and lipid metabolism were highly enriched and expressed, even more so than in Normoxia. 
Furthermore, these metabolic genes were then significantly down regulated during Late hypoxia. 
This result indicates that Early hypoxia is a metabolically active state that may exist for MTB to 
prepare itself for an upcoming metabolically quiescent state (i.e. Late hypoxia). Mid hypoxia genes 
were enriched in stress response genes, indicating the bacteria are sensing and adapting to the 
anaerobic environment. In Late hypoxia, genes essential for MTB to infiltrate host cells were 
induced. Furthermore, genes for 32 proteins that belong to the proline-glutamic acid (PE) and 
proline-proline-glutamic acid (PPE) family, whose functions remain largely unknown (Bottai and 
Brosch, 2009) were up-regulated. These PPE family proteins have been proposed to modulate the 
host’s immune response (Tiwari et al., 2012), generate antigenic variation (Cole et al., 1998) and 
were shown to be secreted by MTB’s ESX-5  export system (Abdallah et al., 2008). Interestingly, 
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genes encoding the components of ESX-5 export system (as well as ESX-1 and ESX-3) were 
rapidly activated as soon as MTB shifted from Late hypoxia into Resuscitation, minutes after air 
was introduced back into the culture (Fig S3). It is possible that Late hypoxia not only engenders 
quiescence in MTB but also sequesters a collection of PPE proteins in anticipation of resuscitation 
and ESX system production. In the Resuscitation state, proteases, transposases and insertion 
sequences were also enriched among activated genes. These functional groups suggest that MTB 
may strategically avert immune recognition through antigenic heterogeneity (via ESX secretion of 
PPE proteins) and simultaneously reorganize its genome (via transposases and insertion 
sequences) to increase its chances for survival and transmission to a new host upon resuscitation. 

Using the gene expression data, we also analyzed changes in MTB metabolic pathways, as 
reconstructed by Kavvas et al (Kavvas et al., 2018), along the hypoxia time series. The expression 
of many metabolic pathways reiterated the state transitions described above (Fig 2C-F). For 
example, significant down-regulation of genes involved in oxidative phosphorylation during Late 
hypoxia (Fig 2C), confirming the loss of energy related pathways during Late hypoxia. 
Furthermore, MTB’s dependency on alternative carbon sources was also observed in Late hypoxia, 
with significant up-regulation of genes related to cholesterol degradation and a simultaneous 
down-regulation of mycolic acid biosynthesis genes (Fig 2D-E). Reaeration of the MTB culture 
and entry into the Resuscitation stage reversed these expression trends of late hypoxia. 
Additionally, we observed interesting expression dynamics for genes involved in mycobactin 
biosynthesis, where expression was generally up-regulated during hypoxia states and 
Resuscitation, excluding Mid hypoxia (Fig 2F). The increase in mycobactin, an iron chelator, is 
essential for MTB to access iron, particularly when the bacteria competes with the host for the 
metal (McMahon et al., 2012). Overall, MTB adaptation to hypoxia involves rewiring of several 
metabolic pathways, indicating an evolutionarily learned and coordinated response to stresses that 
typically co-exist within the host environment (e.g., hypoxia, starvation, and iron limitation), 
despite the singular in vitro perturbation.      
 The six-state model across the time course and O2 gradient revealed distinct patterns of 
expression suggestive of intriguing and coordinated regulatory programs. Several methods are 
available for reconstructing gene regulatory networks (GRN) along time series expression data 
(Baugh et al., 2005; Bromberg et al., 2008; Luscombe et al., 2004). We selected DREM 2.0 (Schulz 
et al., 2012), which has been successfully applied to various systems (e.g., fly (Consortium et al., 
2010), yeast (Ernst et al., 2007), E. coli (Ernst et al., 2008)) and is ideal for identifying dynamic 
transcriptional events over time and perturbations. The Dynamic Regulatory Events Miner 
(DREM) integrates time series and snapshots of the GRN of interest using an input-output Hidden 
Markov Model (Ernst et al., 2007). In so doing, DREM learns a dynamic GRN by identifying 
bifurcation points—places in the time series where a group of co-expressed genes begins to 
diverge. These bifurcation points are annotated with the proposed TFs controlling the split, leading 
to a combined dynamic model. Using the hypoxia time course expression dataset and a TF-target 
gene network derived from the ChIP-seq assessment of 154 TFs overexpressed in MTB (Minch et 
al., 2015), DREM identified bifurcation points that coincide with transitions between the six states 
(Fig 3A and Fig S4). The bifurcation points defined by DREM reinforce the importance of 
transcriptional regulation in the progression between states. DREM identified TFs that are known 
to mediate MTB’s response to hypoxia (e.g., DosR, Rv0081, Rv0324) (Galagan et al., 2013) along 
with additional TFs with a potential role in hypoxia. In particular, Rv1353c stood out for being the 
only TF linked to the time points that precede and mark the end of Late hypoxia. The Rv1353c 
regulon is the third largest, with 596 genes (after the Rv0081 and Rv0678 regulons), and DREM 
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predicts that Rv1353c regulatory activity may be important for sustained hypoxic conditions. In 
addition, DREM suggests that CsoR (Rv0967), a TF that controls MTB’s response to copper stress 
(Marcus et al., 2016), may also have an unappreciated role in hypoxia. Interestingly, DREM 
associated CsoR with the bifurcation points preceding Early hypoxia and Resuscitation. In the 
latter point, csoR transcriptional level transitioned from its lowest value (Late hypoxia) to its 
highest value (Resuscitation). This suggests a potential bifunctional activity of CsoR in controlling 
MTB’s transcriptional response both in and out of hypoxia. In fact, 87% of DEGs (223 genes in 
total) from a csoR knockout mutant (Marcus et al., 2016) were differentially expressed at some 
point during the time course and oxygen gradient (P-value = 1.7 x 10-16). Specifically, this set of 
DEGs was enriched with members of Early hypoxia, Mid hypoxia, and Resuscitation, supporting 
the CsoR bifurcation points predicted by DREM. We propose further investigation to evaluate the 
consequences of perturbing Rv1353c and CsoR activity during hypoxia adaptation. 
 While DREM was able to identify key TFs involved in state transitions with >0% DO, only 
a single bifurcation point (associated to Rv1353c) was predicted within the hypoxia window 
between T12 and T20. This single TF prediction during hypoxic conditions reveals a limitation of 
DREM reconstructions, which is the focus on bifurcation points. Although there are clear changes 
in expression in sets of co-expressed genes during these hypoxic stages (e.g., purple path in Fig 
3A), DREM does not associate a TF with these changes due to the absence of a bifurcation in the 
gene set. Instead, the genes continue to change expression as a unit and could be influenced by a 
TF whose activity is being modified over time in hypoxia. Another explanation for the lack of TFs 
identified by DREM during the hypoxia-associated states (Early, Mid, Late hypoxia) could be the 
normoxic conditions used for collecting the available protein-DNA interaction data (Minch et al., 
2015).  

The set of TFs identified by DREM included only 16% of the 147 putative TFs 
differentially expressed at some point across the time course and oxygen gradient (Fig 3B). In fact, 
Late hypoxia contains 24% of all differentially expressed TFs (47 TFs). The large number of 
differentially expressed TFs suggested complex and combinatorial circuitry patterns could be 
involved in MTB’s adaptation to hypoxic conditions. Fig 3C shows the dense TF-TF connectivity 
within and between transcriptional states, according to available protein-DNA binding data (Minch 
et al., 2015). The key regulatory proteins of the TF-TF network were identified based on 
betweenness centrality, which characterizes the connectivity of interacting nodes in the network. 
The top high-degree nodes were (in decreasing order) Rv0081 (Early hypoxia), Rv3597c (Lsr2; 
Early hypoxia), Rv1990c (Mid hypoxia), Rv2034 (Mid hypoxia) and Rv0023 (Late hypoxia). As 
high-degree nodes, drugs targeting one or more of these regulatory hubs may have a major impact 
on MTB survival. In support of this, Bartek and collaborators showed that deletion of lsr2 
significantly compromised adaptation of MTB to hypoxic conditions (Bartek et al., 2014). 
Notably, Lsr2 had the second and third largest outdegree (number of TF targets) and indegree 
(number of transcriptional regulators), respectively. Lsr2 directly controls TFs from Depletion 
(one TF), Early hypoxia (two TFs), Mid hypoxia (four TFs), Late hypoxia (five TFs) and 
Resuscitation (one TF). Moreover, lsr2 is regulated by Mid hypoxia TFs (Rv1994c, Rv2034 and 
Rv3160c) and Late hypoxia TFs (Rv0023, Rv0324 and Rv1460). The critical role of Lsr2 in the 
coordination between hypoxia-related states offers an explanation for the known importance of 
Lsr2 in hypoxic conditions. 

The high connectivity of the TF-TF network revealed regulatory hubs that activate one 
state while repressing another. Interestingly, DREM also identified bifurcation points in DO >0% 
with down-regulated Late hypoxia TFs (Rv0023c, Rv0324 and Rv1049), indicating a concurrent 
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repression of Late hypoxia regulators and activation of earlier states. Motivated by these findings, 
we evaluated the enrichment of regulons of all differentially expressed TFs with members of each 
transcriptional state. Many regulons (n = 21) were significantly enriched with members of their 
TF’s state (permutation test P-value = 0), while even more regulons (n = 49, permutation test P-
value = 0) were significantly enriched with members of other transcriptional states (Dataset S2). 
In other words, TFs act to express members of their own state while repressing members of another 
state (shown in TF-TF interactions of Fig 3C). Such behavior by TFs, described as mutual 
inhibition (Gardner et al., 2000; Glass and Kauffman, 1973; Huang et al., 2007), proposes a 
mechanism for the coordination and cooperation between transcriptional states to achieve the 
proper timing and gene expression levels to successfully adapt to changes in O2.  

Interactions among TFs can also form specific network motifs that perform defined 
dynamical functions in response to changing environmental conditions (Alon, 2007; Shiraishi et 
al., 2010; Wu et al., 2011). Network motifs,   such as feedforward loops (FFLs), single-input 
modules, or bistable toggle switches (Alon, 2007) are recurring gene patterns found within gene 
regulatory networks. To unbiasedly search for network motifs that may be involved in hypoxia 
adaptation, we analyzed the experimentally determined MTB TF-target gene interactions from 
ChIP-seq (Minch et al., 2015) using FANMOD (Wernicke and Rasche, 2006) in the MotifNet 
Webserver (Smoly et al., 2017). We found the MTB ChIP-seq network is significantly enriched 
with FFLs, a common network motif composed of two input TFs, one of which regulates the other 
and both of which jointly regulate a target gene (or set of genes) (Mangan and Alon, 2003). We 
ran extensive permutation tests to confirm the likelihood (P-value = 0.001) of 1690 FFL instances 
emerging in a random network with the same number of nodes and edges. Interestingly, Rv0081 
is the most frequent regulator at the “top” of the FFLs (45.4% of all detected instances) and also 
has the highest-degree connectivity (described above). Rv0081 has been previously linked to 
MTB’s response to hypoxia (Galagan et al., 2013; Prosser et al., 2017) and is itself a target gene 
of the well-characterized regulator of dormancy survival, DosR (Boon and Dick, 2002; Park et al., 
2003; Sherman et al., 2001; Vasudeva-Rao and McDonough, 2008). To evaluate the involvement 
of Rv0081-centered FFLs in the transcriptional changes observed during hypoxia, we explored 
some of the most frequent TF pairs found in FFL configuration). The top pair, Rv0081-Rv0324 
controls 134 genes significantly enriched with Late hypoxia genes (P-value = 6.4x10-5). Rv0081 
also frequently pairs with Rv3249 and controls 87 genes enriched with Depletion state genes (P-
value = 1.1x10-5). Another frequent pair combines Rv0023 and Rv0324 to control 70 genes 
enriched in Mid hypoxia genes (P-value = 3x10-5). We explored the directionality of these state-
specific FFL target genes using gene expression data from MTB TF overexpression (TFOE) strains 
in normoxia (Rustad et al., 2014) and a MTB Rv0081 gene deletion (ΔRv0081) strain in  hypoxia 
(Sun et al., 2018). For example, the majority of Depletion genes with differential expression in the 
ΔRv0081 strain were up-regulated, suggesting a negative relationship with Rv0081 in hypoxia 
(Fig 4A). Moreover, we observed that Depletion genes controlled by the Rv0081-Rv3249c FFL 
were significantly down-regulated in the Rv0081 TFOE strain (Fig 4B). In contrast, there is a 
positive relationship between Rv0081and Late hypoxia genes during hypoxia as indicated by a 
largely decreased expression of Late hypoxia genes in the ΔRv0081 strain (Fig 4C). Furthermore, 
Late hypoxia genes controlled by the Rv0081-Rv0324 FFL were significantly up-regulated (Fig 
4D). Altogether, we generated a model of interlocking FFLs that together up-regulate 213 genes 
corresponding to Late hypoxia, while also coordinating the repression of Mid hypoxia and 
Depletion genes (Fig 4E). The overlapping sets of network motifs act to reinforce each other’s 
function and direct the complex physiological state transitions required to adapt to decreasing DO 
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levels. 
Three important hypotheses developed from identifying network motif topology. The first 

hypothesis is that Rv0081 plays a pivotal role in the adaptation of MTB to hypoxia (Galagan et 
al., 2013) and its regulatory activity may be oxygen-dependent. The bifunctional activity of 
Rv0081 is based on comparison between the normoxic TFOE data (Rustad et al., 2014) and 
hypoxic ΔRv0081 data (Sun et al., 2018) (Fig S5). The regulatory targets of Rv0081 had very little 
concordance of fold-change expression in these different conditions. Most genes that were 
significantly down-regulated in the ΔRv0081 strain in hypoxia showed no fold-change difference 
in the TFOE data (in normoxia). This observation supports recent work demonstrating that Rv0081 
had altered DNA-binding ability under hypoxic conditions, with evidence that formate ion 
accumulation and/or post-translational modifications may be involved in the conditional 
regulatory activity (Kumar et al., 2019). Furthermore, dual activity of Rv0081 seems to be 
necessary for coordinating the repression of Late hypoxia TFs in early hypoxic time points and 
their up-regulation in Late hypoxia (Fig S6).  

The second hypothesis is that Rv0081 may be involved in the state oscillations observed 
as the DO dropped below 3% (Fig 2). Under these low O2 conditions, the MTB transcriptome 
oscillated between two states: Late hypoxia genes were expressed (T8 and T9), then Early hypoxia 
genes (T10), then back to Late hypoxia (T11), before ultimately committing to Early hypoxia 
(T12-T18). This “flicker” between Early hypoxia and Late hypoxia, measured roughly one hour 
apart, could emerge from oscillatory mechanisms involving an Rv0081-directed incoherent FFL 
(I-FFL) (Geva-Zatorsky et al., 2006; Kholodenko, 2000; Novak and Tyson, 2008). In I-FFLs, one 
TF acts positively while the other TF acts negatively, resulting in a pulse of target gene(s) 
expression. Interestingly, the peak height between the first and second pulse of Late hypoxia genes 
had roughly equal normalized expression (Fig 2B & Fig S7), suggesting a potential detection of 
fold-change based on the I-FFL, as described by Goentoro and colleagues (Goentoro et al., 2009). 
Fitting Rv0081 and Early Hypoxia TFs (excluding Rv0081) between T7-T20 with three 
configurations of I-FFLs (cooperative, independent and exclusive; see methods), cooperative TF 
binding most closely modeled the observed average expression of Late hypoxia genes (Fig S7A, 
RMSD = 0.0965). Importantly, all three I-FFL configurations were able to reproduce the 
oscillatory expression of Late hypoxia genes when DO dropped below 3%, concluding that the I-
FFL motif can explain the observed “flicker” between Early and Late hypoxia states. Furthermore, 
the parameters of the exclusive binding model are in the fold change detection region (Fig S7C), 
indicating that a fold-change detection mechanism is possible if a subset of repressors interact 
exclusively with Rv0081 to regulate some Late hypoxia genes. While the role of the I-FFL as a 
fold-change detector requires further exploration, it is intriguing to hypothesize that by sensing 
relative changes in gene expression nearing hypoxia, a potentially variable and “noisy” period, the 
circuit could serve to synchronize the hypoxic response across all cells in the population.  

Finally, the third hypothesis is that the I-FFL controlled by Rv0081 also regulates the 
transition to Late hypoxia. Late hypoxia accounts for the largest change in expression and the 
transcriptional state most characteristic of dormant (i.e. nonreplicating) MTB (Schnappinger et al., 
2003; Voskuil et al., 2003). In addition to reproducing the “flicker”, all three I-FFL configurations 
modeled a delay in Late hypoxia gene expression after entering hypoxia (Fig S7). The time scale 
of the delay element, about 40 hours from entering 0% DO to Late hypoxia transition, is consistent 
with delayed translation observed in slow-growing MTB in response to nitric oxide (Cortes et al., 
2017). It was recently demonstrated that delayed regulatory interactions within I-FFLs (with 
mutual inhibition present) produced state transitions related to T cell exhaustion, after a fixed time 
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post-stimulation (Bolouri, 2019). As such, the delay element may function in MTB to incorporate 
robustness into the hypoxic response, ensuring that Late hypoxia (with large-scale expression 
changes) is not activated prematurely. Further investigation is required to determine whether the 
duration of the delay element is fixed or variable in a manner dependent on how MTB enters 
hypoxia. The shift to Late hypoxia, after 40 hours in hypoxia and following transition through two 
intermediate hypoxic states, is one of the most intriguing revelations from this study and required 
the development of a novel reactor system and the high-resolution profiling that was performed 
here. The elucidation of regulatory circuits that control the large, altered transcriptome of Late 
hypoxia offers novel drug targets that could block the underlying mechanisms that contribute to 
replication suppression, alternate respiratory/metabolic pathways, and phenotypic tolerance 
associated with dormant MTB.  

This report presents the high-resolution system-wide gene expression profiling of MTB 
across a 5-day time course of hypoxia and reaeration. A novel reactor system was designed to 
allow for exquisite control and monitoring of O2 levels, thereby uncovering intermediate 
transcriptional states and dynamic expression patterns, not previously described. Gene expression 
profiling revealed that three-fifths of all genes in the MTB genome are differentially expressed 
and associated with six distinct transcriptional states as MTB enters into and exits from hypoxia. 
Moreover, there is strong evidence that the six-state model described in this paper relates to 
adaptations of MTB in vivo. The response to hypoxia is accompanied by other host-related stress 
mechanisms (e.g., alternative carbon utilization, iron limitation, copper stress), as a result of 
MTB’s evolutionary history as an intracellular pathogen. The large-scale expression changes 
demonstrate the importance of oxygen as a major force in the evolution of MTB and reveals that 
the pathogen alters gene expression in anticipation of future conditions and challenges. For 
example, the increased production of PE/PPE proteins during Late hypoxia in preparation for ESX 
export system production upon Resuscitation, thereby foreseeing the benefit of PE/PPE protein 
secretion for dissemination to other host cells. Integrating high-resolution and longitudinal 
profiling with experimentally determined TF-gene interactions enabled inference of key regulators 
and intricate circuit architecture that explain how the state transitions unfold (summarized in Fig 
4F). Regulatory programs with characteristic motifs and properties were identified that serve to 
incorporate robustness (e.g., time-delay ensures state transition only upon proper conditions), 
synchronization (e.g., fold-change detection that uniforms response across all cells), and 
coordination across the states (e.g., interlocking FFLs, bifunctional Rv0081, mutual inhibition) as 
MTB transitions across time and O2 gradient. This study reveals that MTB encodes abundant 
network motifs, presumably with functions that cannot be carried out by simpler circuits, to 
successfully tailor MTB physiology to stresses within the host environment. It is interesting to 
speculate that these regulatory interactions have evolved in MTB as an adaptive response to 
ineffective immunity and failure to clear the pathogen. One of the most important challenges for 
antibiotic research will be to overcome these overlapping and redundant regulatory mechanisms 
with novel combinatorial interventions. This study presents significant steps toward apprehending 
these genetic programs in MTB, paving the way for predictive and rational strategies to improve 
clinical outcomes of TB treatment. 
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Figures and Figure Legends: 
 

 
Figure 1. Schematic of the controlled O2 model reactor system and DO profiles. (A) 
Programmable mass flow controllers were used to modulate the ratio of air and nitrogen (N2) in a 
gas mixture that was flowed into the headspace of spinner flasks containing cultures of MTB. 
Dissolved oxygen sensor spots and fiber optic technology non-invasively provided real time and 
remote readout of the dissolved oxygen (DO) levels within the culture media. Samples were drawn 
from a sampling port attached to one of the side arms of the spinner flask. Four reactors were 
multiplexed and individually monitored for DO levels to obtain biological replicates.  (B) DO 
levels across the 120-hour time course. Points are the average of three biological replicates; the 
yellow shading indicate the periods of controlled O2 depletion and reaeration, whereas the white 
background indicates a sustained 2 day immersion in hypoxia. 
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Figure. 2. The controlled O2 model captures distinct cell states over time course and O2 
gradient. (A) t-SNE analysis of all samples across the time course and hypoxia gradient. (B) 
Average expression profiles for state-specific gene sets across the time course and hypoxia 
gradient. The yellow shading indicate the periods of controlled O2 depletion and reaeration, 
whereas the grey background indicates a sustained 2 day immersion in hypoxia. General theme of 
significant functional term clusters defined by DAVID (Huang da et al., 2009), in each state are 
indicated. The star symbol (*) indicates the most enriched term at the individual term level in the 
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Resuscitation state (not present in any of the significant term clusters). (C-F) Log2 fold-change 
respect to normoxia (T0 and T1) of selected metabolic pathways reconstructed by Kavvas et al 
(Kavvas et al., 2018); numbers in parentheses indicated the number of genes in the relevant 
pathway.   
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Fig. 3. Transcriptional circuits controlling the six transcriptional states adopted by MTB 
during entry and exit from hypoxia.  (A) DREM output. Transcription factors (TFs) associated 
with selected branching points (white nodes) are shown. Time points and TFs are colored code 
based on transcriptional states membership. The n.c, d and u superscripts indicate no change, 
down-regulation and up-regulation, respectively. (B) Heatmap with transcriptional profiles of 147 
differentially expressed MTB TFs; number in parentheses indicate the number of TFs associated 
with each state. (C) TF-TF network of differentially expressed TFs in the controlled O2 model. 
ChIP-seq derived protein-DNA interactions reported in Minch et al (Minch et al., 2015) were used 
to establish the connections between TFs. Only TFs with one or more differentially expressed 
targets were included in the diagram. The diagram was generated with the Biotapestry tool 
(Paquette, 2016).  
 

 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/709378doi: bioRxiv preprint 

https://doi.org/10.1101/709378
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Fig. 4. Data supporting Rv0081-controlled interlocking FFLs and overview of the 
transcriptional dynamics across the six-state model that enables MTB to enter and exit 
hypoxia-induced dormancy. (A) The log2 fold-change distribution of Depletion genes with 
significant differential expression (P-value < 0.05, absolute log2 fold-change >1) from the 
ΔRv0081 strain in hypoxia (Sun et al., 2018). (B) Boxplots representing log2 fold-change of 
various gene groups related to Depletion state from Rv0081 transcription factor overexpression 
(TFOE) (Rustad et al., 2014). The number in parentheses indicates the number of genes evaluated 
in each group. (C) The log2 fold-change distribution of Late hypoxia genes with significant 
differential expression (P-value < 0.05, absolute log2 fold-change >1) from the ΔRv0081 strain in 
hypoxia (Sun et al., 2018). (D) Boxplots representing log2 fold-change of various gene groups 
related to Late hypoxia state from Rv0081 transcription factor overexpression (TFOE) (Rustad et 
al., 2014). (E) Model of Rv0081-controlled interlocking FFLs that together up-regulate a 
significant number of genes corresponding to Late hypoxia, while also repressing Mid hypoxia 
and Depletion genes. The P-values for enrichment of the FFL-controlled genes from each state are 
indicated below the state name, as evaluated using a hypergeometric test. (F) Summary overview 
of the transcriptional dynamics, inferred key regulators, and regulatory circuits that were revealed 
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from the high-resolution and longitudinal gene expression profiling across the O2 gradient. Key 
features described in the text include: (a) ESX-5 secretion of  PE/PPE proteins that were expressed 
during Late hypoxia; (b) changes in metabolic pathways during Late hypoxia; (c) DREM predicted 
TFs (shown as ovals throughout figure) that concurrently repress Late hypoxia genes and activate 
earlier states (mutual inhibition connections shown as dotted lines throughout figure); (d) DREM 
identified CsoR in controlling MTB’s transcriptional response both in and out of hypoxia; (e) 
Rv0081-controlled interlocking FFLs; (f) the regulatory activity of Rv0081 is oxygen-dependent; 
(g) the “flicker” of Late hypoxia gene expression as DO dropped below 3%; (h) the shift to Late 
hypoxia occurred after 40 hours in hypoxia. * indicates P-value < 0.05, ** indicates P-value < 
0.01 
  
 
Methods 
 
The approaches used in this study include both computational and biological methods. Plots were 
generated using Python and R, and images prepared using Adobe Illustrator CS6 and Inkscape 
0.91. 
 
Culturing conditions 
Experiments were performed using H37Rv grown at 37°C in Middlebrook 7H9 supplemented with 
ADC and 0.05% Tween in spinner flasks. Working stocks were expanded from frozen aliquots 
shortly before experiments began. For hypoxia time-course experiment, a 50 mL culture was 
grown to mid-log phase, and diluted in 700 mL 7H9 media within each bioreactor to a starting 
A600 of 0.01. Cultures were stirred over a range of speeds throughout the experiment. 
 
Controlled O2 model design and operation 
An Oxygen Sensor Spot (PreSens, Regensburg, Germany) was adhered within a 1L disposable 
spinner flask with two side arms (Corning, Corning, NY) using vacuum tweezers (Excelta, 
Buelton, CA). A velcro belt with a screw-on port for the fiber optic cable was wrapped around the 
flask. A gas line input was fastened on one arm of the flask, and a luer-lock/filter sampling port 
was connected to the other arm. Air and N2 gas lines were run into the Biological safety laboratory 
and connected to gas-specific mass flow controllers (Alicat Scientific, Tucson, AZ), whose outputs 
were connected downstream through a Y-connector that led into an incubator. Three separate 
flasks, all prepared as described above, were placed onto a stir plate inside an incubator at 37° C. 
The mixed gas line was split via additional Y-connecters, streamed through 0.2 um filters, and 
attached to the gas line inputs of each flask. Media was incubated overnight and checked for 
contamination before inoculated with MTB.  

The mass flow controllers and oxygen sensor were linked to a computer, which could be 
remotely accessed and monitored in real-time. After inoculation, we programmed the mass flow 
controllers using Flow Vision software (Alicat Scientific) to achieve a changing gas mixture 
gradient, which allowed us creating a steady two-day depletion, followed by two-days of sustained 
hypoxia, and reaeration by flowing pure air into the headspace of the vessels and increasing the 
speed of the stir bars in each vessel. 
 
RNA isolation 

Samples were collected by a luer-lock syringe to the sampling port. Sample volumes varied  
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from 5 mL to 25 mL across the time course, depending on OD but were consistent across replicates 
of a time point. Samples were centrifuged at high speed for 5 min, supernatant was discarded and 
cell pellet was immediately flash frozen in liquid nitrogen. Cell pellets were stored at -80° C until 
all samples collected and then resuspended in 600 μL of fresh lysozyme solution in TE pH 8.0 (5 
mg/mL). The resuspended cells were transferred to a tube containing Lysing Matrix B (MP 
Biomedicals, Santa Ana, CA) and incubated at 37° C for 30 min. Following incubation, 60 μL 
(1/10th volume of lysate volume) of 10% SDS was added and then tubes were vigorously shaken 
at max speed for 30 s in a FastPrep 120 homogenizer (MP Biomedicals) three times. Tubes were 
centrifuged for 1 min (max speed), then 66 μL of 3 M sodium acetate pH 5.2 added and mixed 
well. Acid phenol (pH 4.2) was added at 726 μL and tubes were inverted to mix well (~60 times). 
Samples were incubated at 65° C for 5 min, inverting tubes to mix samples every 30 s. Then, 
centrifuged at 14000 rpm for 5 min and upper aqueous phase was transferred to a new tube. 3M 
sodium acetate (pH 5.2) was added at 1/10th volume along with 3x volumes of 100% ethanol. 
Sample was mixed well and incubated at -20° C for 1 hr or overnight. Following incubation, 
samples were centrifuged at 14000 rpm for 30 min at 4° C, ethanol was discarded and 500 μL of 
70% ethanol was added. Samples were centrifuged again at 14000 rpm for 10 min at 4° C, 
supernatant discarded, and any residual ethanol removed using pipet. Pellet was allowed to air dry, 
resuspended in 30-40 μL of RNase free water and quantified by Nanodrop (Thermo Scientific). 
This was followed by in solution genomic DNA digestion using RQ1 Dnase (Promega) following 
manufacturer’s recommendation. RNA quality was analyzed in a 2100 Bioanalyzer system 
(Agilent Technologies). Total RNA samples were depleted of ribosomal RNA using the Ribo-Zero 
Bacteria rRNA Removal Kit (Illumina). 
 
Processing and analysis of RNA-seq data 
Sample collection and RNA-extraction was performed as described above. Quality and purity of 
mRNA samples was determined with 2100 Bioanalyzer (Agilent, Santa Clara, CA). Samples were 
prepared with TrueSeq Stranded mRNA HT library preparation kit (Illumina, San Diego, CA) and 
multiplexed into a single run. All samples were sequenced on the NextSeq sequencing instrument 
in a high output 150 v2 flow cell. Paired-end 75 bp reads were checked for technical artifacts using 
Illumina default quality filtering steps. Raw FASTQ read data were processed using the R package 
DuffyNGS as described previously (Vignali et al., 2011). Briefly, raw reads were passed through 
a 3-stage alignment pipeline: (i) a prealignment stage to filter out unwanted transcripts, such as 
rRNA, mitochondrial RNA, albumin, and globin; (ii) a main genomic alignment stage against the 
genome(s) of interest; and (iii) a splice junction alignment stage against an index of standard and 
alternative exon splice junctions. Reads were aligned to M. tuberculosis H37Rv (ASM19595v2) 
with Bowtie2 (Langmead and Salzberg, 2012), using the command line option “very-sensitive.” 
BAM files from stages (ii) and (iii) were combined into read depth wiggle tracks that recorded 
both uniquely mapped and multiply mapped reads to each of the forward and reverse strands of 
the genome(s) at single-nucleotide resolution. Gene transcript abundance was then measured by 
summing total reads landing inside annotated gene boundaries, expressed as both RPKM and raw 
read counts. Two stringencies of gene abundance were provided using all aligned reads and by just 
counting uniquely aligned reads. 
 
Differential expression 
We used the raw read counts, estimated with DuffyNGS as described above, as input for DESeq2 
(Love et al., 2014). We compared the transcriptional profile of each time point respect to T0. Genes 
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with adjusted P-value < 0.05 and estimated absolute log2 fold-change >1 were considered 
differentially expressed.  
 
Identification of transcriptional states adopted by MTB in the controlled O2 model 
After normalizing the full transcriptional dataset using DESeq2, we used Principal Component 
Analysis (PCA) to reduce the dimensionality of our data (median transcript levels of 4,049 genes 
profiled at each time point). Then, we used the NbClust R package (Charrad et al., 2014) to identify 
the most likely number of clusters in the PCA space. Two clusters were predicted (Fig S2A). One 
cluster contained the time points: T8, T9, T11, T19, T20 and T21. A second cluster contained the 
other time points. Motivated by the clustering of consecutive time points and their similarity in O2 
concentrations in Fig S2A (T0-T1, T2-T7,T16-T18, etc), we evaluated the structure of the largest 
cluster using PCA and NbClust as before. However, this time the T8, T9, T11, T19, T20 and T21 
points were removed before the analysis. Five distinct clusters were identified (Fig S2B). To 
confirm the presence of six clusters (each corresponding to a transcriptional state), we performed 
hierarchical clustering of the transcriptional dataset with bootstrapping using the Pvclust R 
package (Suzuki and Shimodaira, 2006) (Fig S2C). All six putative clusters had 100% bootstrap 
support in the resulting dendrogram. Finally, we confirmed the presence of the six defined 
transcriptional states with the t-distributed stochastic neighbor embedding (tSNE) algorithm (Fig 
2A).  
 
Connecting differentially expressed genes with the six hypoxia-related transcriptional states of 
MTB 
To understand the functional implications of the transcriptional states adopted by MTB during 
entry and exit from hypoxia, each differentially expressed gene was assigned to the state in which 
it had the highest average transcription level.  As an unsupervised alternative, we used the Boruta 
R package (Kursa, 2010), that implements random forest to select all features (in our case 
transcriptional profiles), to identify the genes that distinguish any given state from the rest. There 
was statistically significant overlap between the groups of genes associated to any given 
transcriptional state by the two approaches (Table S4). Because Boruta only selected 566 genes 
(out of 2,582 differentially expressed genes), we decided to use the average transcriptional profile 
based gene assignment. In this way we tried to capture the biological processes active in the 
different states without excluding any differentially expressed gene. To evaluate the quality of the 
resulting sets of genes, we computed the mean square residual (MSR) of each gene cluster (Table 
S4).  The MSR is widely used as a metric of performance of biclustering methods (which cluster 
both genes and conditions) (Reiss et al., 2006). A low MSR value indicates that individual profiles 
do not deviate from the average profile of the bicluster (in our case, the group of genes in the 
relevant time points/state). We also computed the mean Pearson correlation among the genes 
assigned to each transcriptional state (Table S4). In support of our gene assignment, the sets of 
genes associated to MTB transcriptional states had MSR values smaller than 0.1  In fact, for the 
Depletion and Late hypoxia genes the MSR values were smaller than 0.05. The average Pearson 
correlation values were equal to or greater than 0.4 for all gene clusters but Normoxia. 
 
Metabolic pathway analysis 
We mapped the measured gene expression data against the most recent genome-scale metabolic 
network construction of M. tuberculosis H37Rv iEK1011 (Kavvas et al., 2018) using COBRApy 
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(Ebrahim et al., 2013). We used the subsystem defintions defined in iEK1011 to explore pathway 
usage at the network level. 
 
MTB ChIP-seq derived TF-gene network  
The initial ChIP-seq derived MTB network consisted of 6,581 interactions occurring in the -150bp 
to +70bp region of genes’ promoter reported by Minch et al. (Minch et al., 2015). We expanded 
that MTB ChIP-seq network by taking into account operon organizations. For a given TF-gene 
interaction, if the target gene is part of an operon, we included all other members of the operon as 
potential targets of the corresponding TF. The expanded MTB ChIP-seq network contained 12,188 
interactions.  
 
Detection of network motifs in the MTB ChIP-seq network 
To identify network motifs in the MTB transcriptional network, we used the MotifNet webserver 
(Smoly et al., 2017). We scanned for all potential three and four nodes motifs with maximum P-
value £ 0.01 (in 1000 random networks) and with 100 or more instances in the analyzed network. 
For this analysis, we constrained the ChIP-seq derived network by excluding genes that were not 
differentially expressed in our time course. This network filtering was done to improve detection 
of motifs most relevant to the actual changes in transcript levels we observed. 
 
DREM analysis 
DREM2.0 (Schulz et al., 2012) was run with default parameters. The input TF-gene network was 
the MTB ChIP-seq network described above. The input expression data contained the median 
transcriptional profiles of the 2,582 differentially expressed genes. The minimum absolute 
expression change parameter was set to 0.75.  
 
Permutation test for evaluating significance of overlap between TF regulons and sets of genes 
associated with identified transcriptional states 
The 2,582 differentially expressed genes in the controlled O2 model were permutated 1000 times 
to generate shuffled gene clusters (corresponding to the six transcriptional states). In each 
permutation, the produced shuffled gene clusters had the same size as the original ones. Then, 
significance of the overlap between regulons of differentially expressed TFs and the shuffled gene 
sets was evaluated using a hypergeometric test. Hypergeometric test P-values below 0.05 were 
considered significant. The overall permutation test P-value was computed as the proportion of 
cases (out of 1000 permutations) in which the number of enriched regulons was equal or higher 
than the observed values in the original data.  
 
Differential expression analysis of transcriptional data collected with the defined hypoxia model 
We downloaded the transcriptional profile data of MTB at day 0, day 1, day 3, day 5, day 7 and 
day 8 (reaeration) collected by Galagan et al (Galagan et al., 2013) using the defined hypoxia 
model (GEO accession number: GSE43466). We performed a Bayesian t-test using CyberT (Baldi 
and Long, 2001) to compare the gene expression profiles at each time point respect to T0. Genes 
with adjusted P-value < 0.05 and absolute log2 fold-change > 1 were considered differentially 
expressed.  
 
Modeling of Rv0081-directed I-FFL with Late hypoxia gene expression 
The IFFL motif is commonly modeled by the following equations (Goentoro et al., 2009): 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/709378doi: bioRxiv preprint 

https://doi.org/10.1101/709378
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
𝑑𝑌
𝑑𝑡 = 𝛽&𝑋 − 𝛼&𝑌 

 
𝑑𝑍
𝑑𝑡 = 	𝛽,𝐺(𝑋, 𝑌) − 𝛼,𝑍 

 
where Z is the output of the motif which in our case represents the average expression of Late 
hypoxia genes between T7-T20. X and Y represent the expression of Rv0081 and average 
expression of Early hypoxia TFs (excluding Rv0081), respectively. Goentoro et al (Goentoro et 
al., 2009) analyzed  three possible models of the I-FFL motif representing three configurations in 
which Late hypoxia genes could be regulated. Their focus was to identify conditions for which the 
I-FFL motif works as fold change detection. The models correspond to exclusive binding, 
independent binding, and cooperative binding which are represented by the following equations 
(Goentoro et al., 2009) : 
 

Exclusive binding: 𝐺1(𝑋, 𝑌) = 	
2
34

&5 2
34
5 6
37

 

Independent binding: 𝐺8(𝑋, 𝑌) = 	
2
34

(&5 2
34
)(&5 6

37	
)
 

Cooperative binding: 𝐺9(𝑋, 𝑌) = 	
2
34

&5 2
34
5 6
37
5263:

	 

 
where Ge, Gi, and Gc are functions that determine the rate change of Late hypoxia genes (Z); K1 is 
the binding rate between Rv0081 and Late hypoxia genes; K2 is the binding rate between Early 
hypoxia TFs and Late hypoxia genes; and K3 is the cooperative binding rate of Rv0081 and Early 
hypoxia TFs with the Late hypoxia genes. α2, β2, K1, K2, and K3 were estimated by an optimization 
procedure using the average experimental values of X, Y, Z at different time points.  We used the 
Nelder-Mead simplex algorithm for optimization (Nelder, 1965) as implemented in MATLAB 
R2014a. The objective function used for minimization is the root-mean-squared deviation (RMSD) 
between experimental and estimated values of Late hypoxia gene expression is given by: 
 

𝑆 = 	<𝑁>& ∑ (𝑍1@A(𝑡8B
8 ) − 𝑍CDE(𝑡8)),	  

 
where Zexp(ti) is the average expression of Late hypoxia genes at time ti obtained experimentally, 
and Zmod(ti) is the corresponding model estimate. Similarly, α1 and β1 were estimated by a similar 
optimization procedure using the average experimental values of Y and X. The objective function 
in this case is given by: 
 

  𝑆 = 	<𝑁>& ∑ (𝑌1@A(𝑡8B
8 ) − 𝑌CDE(𝑡8)),	 

 
where Yexp(ti) is the average expression of repressors at time ti obtained experimentally, and 
Ymod(ti) is the corresponding model estimate.   
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Supplemental Materials 
 
 

 
 
Figure S1. Bioreactor system is highly reproducible across three biological replicates. (A) 
Dissolved oxygen curve of growth medium across hypoxia and reaeration time-course measured 
with oxygen sensor spots (Presens). (B) Optical density across replicates over the time course. 
Datapoints are the median of three replicates with error bars showing the Standard Error of 
measurements. 
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Figure S2. Identification of six transcriptional states of MTB during depletion and re-
introduction of O2 in the controlled O2 model. Time points and dendrogram branches are color 
coded according to their membership in the six transcriptional states defined in Fig 2A. (A) 
Principal component plot of the transcriptional matrix containing the median profiles of all 4,049 
genes. Dashed line indicates the two clusters identified by the NbClust tool in R (Charrad et al., 
2014). (B) Principal component plot of the same transcriptional matrix after excluding T8, T9, 
T11, T19-T21 data. Dashed lines indicate the five clusters identified by the NbClust tool in R. (C) 
Hierarchical clustering of the transcriptional data using the Pvclust R package (Suzuki and 
Shimodaira, 2006). Numbers on top of the dendrogram branches indicate the unbiased P-value 
(au; black) and bootstrap support (bp; purple) for each branch. 
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Figure S3. Transcriptional profile of the five type seven secretion systems (T7SS) in MTB. The 
transcriptional profiles of genes encoding components of MTB’s ESX systems (also known as 
T7SS) are shown. Each gene is represented with a color. For visualization purpose, the normalized 
read counts were re-scaled to the [0,1] interval. 
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Figure S4. DREM output. 
DREM associated 35 TFs with the 23 identified branching points (light green nodes). Blue , 
black and red TFs labels indicate up-regulation, no change or down-regulation, respectively. 
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Figure S5. The dual activity of Rv0081. Plot is based on the comparison between the normoxic 
TFOE data and hypoxic ΔRv0081 data (Rustad et al., 2014; Sun et al., 2018). Only genes with 
differential expression in the Rv0081deletion strain during hypoxia are shown. This set of genes 
was separated in the ones that are controlled by Rv0081 (based on ChIP-seq data) and the ones 
that are not. 
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Figure S6. Dual activity of Rv0081 seems to be necessary for coordinating the repression and 
activation of Rv0324 at early and late points of the time course. Nodes are colored based on 
their transcriptional states membership. The shown transcriptional circuit was derived from 
available protein-DNA biding data in MTB (Minch et al., 2015). The signs of the TF-TF 
interactions were defined using the change in transcript levels of the target genes in the TFOE 
strains (blue edges) and hypoxic ΔRv0081 strain (golden edges) (Rustad et al., 2014; Sun et al., 
2018). Interactions with no assigned signs are shown in black. 
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Figure S7. Modeling of an I-FFL controlling the expression of Late hypoxia genes using methods 
of Goentoro et al (Goentoro et al., 2009). Simulation results for the I-FFL motif under (A) 
exclusive, (B) independent, and (C) cooperative binding configurations (see methods). Xo and Yo 
represent the observed expression of Rv0081 and average observed expression of Early hypoxia 
TFs (excluding Rv0081), respectively. K1 is the binding rate between Rv0081 and Late hypoxia 
genes; K2 is the binding rate between Early hypoxia TFs and Late hypoxia genes; and K3 is the 
cooperative binding rate of Rv0081 and Early hypoxia TFs with the Late hypoxia genes. RMSD is 
the root-mean-squared deviation between experimental and estimated values of Late hypoxia gene 
expression.      
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Table S1. Gene set overlap between the three models of hypoxia-induced dormancy. 
 

State IHR 
recall* 

Overlap 
P-value 

EHR 
recall$ 

Overlap 
P-value 

NRP1 
recall% 

Overlap 
P-value 

NRP2 
recall^ 

Overlap 
P-value 

Normoxia 0 1 0.004 0.992 0.016 0.739 0.004 0.991 
Depletion 0.02 0.997 0.035 1 0.107 0.597 0.04 1 

Early hypoxia 0.408 2.9E-10 0.070 0.783 0.176 0.116 0.138 1.9E-03 
Mid hypoxia 0.49 1.7E-14 0.226 6.3E-13 0.187 8.3E-07 0.201 1.8E-09 
Late hypoxia 0.041 1 0.196 0.963 0.032 1 0.125 1 
Resuscitation 0.02 0.996 0.165 3.2E-03 0.316 8.6E-16 0.214 8.2E-07 

* Initial Hypoxic Response (IHR) contains 49 genes (Rustad et al., 2008) 
$ Enduring Hypoxic Response (EHR) contains 230 genes (Rustad et al., 2008) 
% Non Replicating Persistence 1 (NRP1) contains 187 genes (Muttucumaru et al., 2004)  
^ Non Replicating Persistence 2 (NRP2) contains 224 genes (Muttucumaru et al., 2004) 
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Table S2. Gene set overlap between the models of hypoxia-induced dormancy and intracellular 
MTB dataset.   
 

Hypoxia Model Overlap with DEGs in 
intracellular environment* 

Recall rate 

Controlled O2
^ 731 0.784# 

Galagan et al. 2013$ 711 0.763 
Wayne% 115 0.123# 
Defined& 117 0.126# 

^This work 
*Dataset is based on findings reported in Peterson et al. (Peterson et al., 2019). There were 932 
differentially expressed genes (DEGs) in MTB within bone marrow derived macrophages with 
respect to extracellular MTB. 
$Dataset includes transcriptional data for hypoxia during seven days and one day after reaeration 
(Galagan et al., 2013). The set of DEGs was defined as described in methods. 
#Overlap between the two DEG sets was statistically significant (hypergeometric test P-value < 
0.01) 
%Dataset refers to the union of the NRP1 and NRP2 gene sets using Wayne model (Muttucumaru 
et al., 2004). 
&Dataset refers to the union of the initial and enduring hypoxic response using defined hypoxia 
model (Rustad et al., 2008).  
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Table S3. Samples (T0 to T25) were used to define the six state model. Each state was also 
defined with oxygen and time intervals.  
 

 Time (h) 
Avg DO 

(%) State 
T0 0 81.6 Normoxia 
T1 17.3 57.6 Normoxia 
T2 23.4 42.8 Depletion 
T3 41.5 11.5 Depletion 
T4 42.3 8.8 Depletion 
T5 43.3 7.5 Depletion 
T6 44.3 6.1 Depletion 
T7 45.3 4.3 Depletion 
T8 46.3 2.9 Late hypoxia 
T9 47.3 0.4 Late hypoxia 
T10 48.4 0 Early hypoxia 
T11 49.4 0 Late hypoxia 
T12 50.3 0 Early hypoxia 
T13 51.2 0 Early hypoxia 
T14 53.6 0 Early hypoxia 
T15 55.0 0 Early hypoxia 
T16 65.3 0.1 Mid hypoxia 
T17 71.3 0.1 Mid hypoxia 
T18 89.3 0.1 Mid hypoxia 
T19 95.5 0 Late hypoxia 
T20 113.6 0.1 Late hypoxia 
T21 115.1 0.4 Late hypoxia 
T22 115.5 3.8 Resuscitation 
T23 116.1 6 Resuscitation 
T24 116.9 10. 9 Resuscitation 
T25 120.5 46.9 Resuscitation 
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Table S4. Properties of gene clusters associated with identified transcriptional states. 
 

State 
Genes selected 

based on 
average 

Mean 
Square 

Residual 

Pearson 
correlation 

Boruta 
genes Overlap 

Recall 
Boruta 
genes 

P-value 
overlap 

Normoxia 81 0.04 0.28 15 3 0.20 9.40E-05 
Depletion 446 0.02 0.71 127 73 0.57 7.70E-27 

Early Hypoxia 328 0.05 0.55 80 61 0.76 6.00E-42 
Mid Hypoxia 320 0.08 0.4 44 24 0.55 1.40E-12 
Late Hypoxia 978 0.03 0.75 254 185 0.73 1.70E-33 
Resuscitation 429 0.09 0.47 94 56 0.60 8.10E-23 
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Dataset S1. Each cluster represents a distinct transcriptional state and was classified with sets of 
non-overlapping differentially expressed genes (see methods): Normoxia (81 genes), Transition 
(446 genes), Stage Ia hypoxia (328 genes), Stage Ib hypoxia (320 genes), Stage II hypoxia (978 
genes), and Resuscitation (429 genes) (Dataset S1).  
 
Dataset S2: TF regulons enrichment with genes associated with identified transcriptional states.  
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