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Abstract: Mycobacterium tuberculosis (MTB), responsible for the deadliest infectious disease
worldwide, displays the remarkable ability to transition in and out of dormancy, a hallmark of the
pathogen’s capacity to evade the immune system and opportunistically exploit
immunocompromised individuals. Uncovering the gene regulatory programs that underlie the
dramatic phenotypic shifts in MTB during disease latency and reactivation has posed an
extraordinary challenge. We developed a novel experimental system to precisely control dissolved
oxygen levels in MTB cultures in order to capture the chain of transcriptional events that unfold
as MTB transitions into and out of hypoxia-induced dormancy. Using a comprehensive genome-
wide transcription factor binding location map and insights from network topology analysis, we
identified regulatory circuits that deterministically drive sequential transitions across six
transcriptionally and functionally distinct states encompassing more than three-fifths of the MTB
genome. The architecture of the genetic programs explains the transcriptional dynamics underlying
synchronous entry of cells into a dormant state that is primed to infect the host upon encountering
favorable conditions.

One Sentence Summary: High-resolution transcriptional time-course reveals six-state genetic
program that enables MTB to enter and exit hypoxia-induced dormancy.

Main Text: Mycobacterium tuberculosis (MTB) kills more people than any other infectious agent,
causing ~10 million new cases of active tuberculosis (TB) disease and 1.7 million deaths each year
(Murray et al., 2014). TB remains a major human public health burden, in large part due to the
sizeable reservoir of latently infected individuals, who may relapse into active disease decades
after acquiring the infection. MTB can persist in a stable, non-replicative (often termed dormant)
state within the host for months or years without symptoms, and then revive to initiate the
production of lesions and active TB disease. Moreover, dormant cells may be responsible for the
slow treatment response of patients with active TB. Elucidation of the factors that affect treatment
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outcome, latency and activation requires a better characterization of functional states adopted by
the pathogen during progression of the disease, as well as a mechanistic understanding of the
genetic programs that orchestrate transitions between these states.

Hypoxia, an environmental stress encountered by MTB within granulomas (Tsai et al.,
2000), 1s sufficient to shift the pathogen into a defined non-growing survival form, which can be
reversed upon aeration of the culture (Chao and Rubin, 2010). Therefore, hypoxia has been
leveraged as an in vitro approximation to study MTB dormancy and the underlying genetic
programs. However, previous transcriptional analyses under in vitro hypoxic conditions (via the
Wayne model in which MTB cultures are sealed and gradually depleted of oxygen (Wayne and
Hayes, 1996; Wayne and Sohaskey, 2001) or the defined hypoxia model in which nitrogen gas is
flowed into the headspace to rapidly deplete oxygen (Kempner, 1939; Yuan et al., 1998)) were
limited to either static snapshots, or low-resolution time-course studies (Muttucumaru et al., 2004;
Rustad et al., 2008; Sherman et al., 2001). Moreover, deletion of previously identified
transcriptional regulators thought crucial to hypoxia-induced dormancy (i.e. AdosR, AsigEAsigH),
conferred only mild growth defects under hypoxic conditions (Boon and Dick, 2002; Rustad et al.,
2008; Rustad et al., 2009), suggesting a genetic circuit architecture that has evolved to withstand
environmental and genetic perturbations. Here, we developed a novel experimental platform to
characterize MTB’s response to changing oxygen (Oz) levels in considerably more depth. We
reveal detailed transcriptional dynamics and coordinated regulatory circuits that enable the
pathogen’s transition into and out of hypoxia-induced dormancy.

To detail the genetic programs underlying hypoxia-induced dormancy in MTB, we needed
to obtain accurate dynamic measurements of genome-wide expression, over an O, gradient.
Previous experimental models to study O tension and growth arrest in MTB were not suitable for
the accuracy and resolution of measurements needed. In particular, the Wayne model has issues
with reproducibility (Rustad et al., 2008) and the defined hypoxia model depletes O2 very quickly,
thereby hindering high-resolution sampling during critical transition periods. Moreover, neither
model has been performed with real-time monitoring of O, levels to accurately relate the
transcriptional state of MTB with a precise O, measurement. Therefore, we designed a new
programmable multiplexed reactor system, the controlled O, model, to precisely manipulate and
monitor Oz levels within the growth medium—even during sampling (Fig 1A). The precise control
engineered into the system enabled high-resolution sampling across a time-course and O; gradient,
with minimal disturbance to the bacteria and high reproducibility across culture replicates and
experiments (Fig S1). Briefly, air and nitrogen (N2) gas lines were connected to separate mass
flow controllers, which allowed for programmable gradients of gas mixtures to be streamed into
the headspace of spinner flasks containing MTB in media. Moreover, we used O sensor spots and
fiber optic technology to non-invasively measure the dissolved Oz content of the cultures. Both the
mass flow controllers and O, sensor spots were configured for remote management, advantageous
for a biosafety level 3 pathogen. With the controlled O> model, we performed a time-course
experiment, which involved a steady depletion of dissolved oxygen (DO) over 2 days from full
aeration (~80% DO) to hypoxia (0% DO). This steady depletion was achieved by programming
the mass flow controllers to produce the desired mixture of air and N>. The cultures were
maintained in hypoxia for 2 days by streaming only N>, then reaerated over 1 day by a programmed
increase in air flow (Fig 1B). Over the time-course, we harvested samples in triplicates, one each
from three independent reactors, via sampling ports that prevented aeration of the culture. We
sampled at high frequency during the period when cultures transitioned from 10% to 0% DO, as
well as from 0% to 10% DO and at lower but regular frequency across the remaining 120-hour
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experiment. Samples were flash frozen in liquid N> and later processed for gene expression
profiling by RNA-sequencing.

Over the course of the experiment, nearly 64% of all genes (non-coding regions were
excluded) in the MTB genome were significantly differentially expressed (2,582 genes with
adjusted P-value < 0.05 and estimated absolute log2 fold-change >1). The number of differentially
expressed genes from our controlled O> system is an order of magnitude greater than the number
from earlier microarray studies using the Wayne (Muttucumaru et al., 2004) (299 genes) or defined
hypoxia (Rustad et al., 2008) (274 genes) models. Nevertheless, there is significant overlap across
gene sets between the three models of hypoxia-induced dormancy (Table S1). Interestingly, the
controlled O> model significantly recapitulated differential expression observed from intracellular
MTB (Peterson et al., 2019) (enrichment test P-value=4.29 x 10%), whereas the other hypoxia
models did not or had a low recall of the differentially expressed genes (Table S2). These findings
highlight the capability of our model to capture MTB’s transcriptional programs during dormancy
that are relevant to MTB within host cells.

To further characterize the MTB transcriptional states over the time course and O; gradient,
we applied dimensionality reduction techniques that allowed us to define tightly clustered samples
(Fig S2; see methods). The six identified clusters are shown in a two-dimension t-distributed
stochastic neighbor embedding (tSNE) plot (Fig 2A). Each cluster represents a distinct
transcriptional state and was associated with sets of non-overlapping differentially expressed
genes: Normoxia (81 genes), Depletion (446 genes), Early hypoxia (328 genes), Mid hypoxia (320
genes), Late hypoxia (978 genes), and Resuscitation (429 genes) (Dataset S1). Each differentially
expressed gene was assigned to the state in which it had the highest mean expression (see methods).
The average expression profiles for the gene sets reveal that the states transition from one to
another and that transitions are oxygen- (e.g. Late hypoxia into Resuscitation occurred upon re-
introducing air into the culture) and time-dependent (e.g. Early/Mid hypoxia into Late hypoxia
occurred ~40 h after the culture reached 0% DO) (Fig 2B). As such, the six states were also defined
with oxygen and time intervals (Table S3), with the exception of 46-49 h, where there was
oscillation between Early hypoxia and Late hypoxia states as the culture went below ~3% DO (Fig
2). While this intriguing “flicker” behavior could be experimental noise, these anomalous time
points (measured roughly one hour apart) clearly cluster with Late hypoxia. Such oscillatory
expression could be generated by inherent properties of the network structure, which we describe
later.

Genes associated to the Depletion state (DO between 43% and 4%) were enriched for
growth-related functions including amino acid metabolism, oxidative phosphorylation and
translation (Fig 2B). In Early hypoxia, ATP synthase and genes involved in electron transport
chain and lipid metabolism were highly enriched and expressed, even more so than in Normoxia.
Furthermore, these metabolic genes were then significantly down regulated during Late hypoxia.
This result indicates that Early hypoxia is a metabolically active state that may exist for MTB to
prepare itself for an upcoming metabolically quiescent state (i.e. Late hypoxia). Mid hypoxia genes
were enriched in stress response genes, indicating the bacteria are sensing and adapting to the
anaerobic environment. In Late hypoxia, genes essential for MTB to infiltrate host cells were
induced. Furthermore, genes for 32 proteins that belong to the proline-glutamic acid (PE) and
proline-proline-glutamic acid (PPE) family, whose functions remain largely unknown (Bottai and
Brosch, 2009) were up-regulated. These PPE family proteins have been proposed to modulate the
host’s immune response (Tiwari et al., 2012), generate antigenic variation (Cole et al., 1998) and
were shown to be secreted by MTB’s ESX-5 export system (Abdallah et al., 2008). Interestingly,
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genes encoding the components of ESX-5 export system (as well as ESX-1 and ESX-3) were
rapidly activated as soon as MTB shifted from Late hypoxia into Resuscitation, minutes after air
was introduced back into the culture (Fig S3). It is possible that Late hypoxia not only engenders
quiescence in MTB but also sequesters a collection of PPE proteins in anticipation of resuscitation
and ESX system production. In the Resuscitation state, proteases, transposases and insertion
sequences were also enriched among activated genes. These functional groups suggest that MTB
may strategically avert immune recognition through antigenic heterogeneity (via ESX secretion of
PPE proteins) and simultaneously reorganize its genome (via transposases and insertion
sequences) to increase its chances for survival and transmission to a new host upon resuscitation.

Using the gene expression data, we also analyzed changes in MTB metabolic pathways, as
reconstructed by Kavvas et al (Kavvas et al., 2018), along the hypoxia time series. The expression
of many metabolic pathways reiterated the state transitions described above (Fig 2C-F). For
example, significant down-regulation of genes involved in oxidative phosphorylation during Late
hypoxia (Fig 2C), confirming the loss of energy related pathways during Late hypoxia.
Furthermore, MTB’s dependency on alternative carbon sources was also observed in Late hypoxia,
with significant up-regulation of genes related to cholesterol degradation and a simultaneous
down-regulation of mycolic acid biosynthesis genes (Fig 2D-E). Reaeration of the MTB culture
and entry into the Resuscitation stage reversed these expression trends of late hypoxia.
Additionally, we observed interesting expression dynamics for genes involved in mycobactin
biosynthesis, where expression was generally up-regulated during hypoxia states and
Resuscitation, excluding Mid hypoxia (Fig 2F). The increase in mycobactin, an iron chelator, is
essential for MTB to access iron, particularly when the bacteria competes with the host for the
metal (McMahon et al., 2012). Overall, MTB adaptation to hypoxia involves rewiring of several
metabolic pathways, indicating an evolutionarily learned and coordinated response to stresses that
typically co-exist within the host environment (e.g., hypoxia, starvation, and iron limitation),
despite the singular in vitro perturbation.

The six-state model across the time course and O gradient revealed distinct patterns of
expression suggestive of intriguing and coordinated regulatory programs. Several methods are
available for reconstructing gene regulatory networks (GRN) along time series expression data
(Baugh etal., 2005; Bromberg et al., 2008; Luscombe et al., 2004). We selected DREM 2.0 (Schulz
et al., 2012), which has been successfully applied to various systems (e.g., fly (Consortium et al.,
2010), yeast (Ernst et al., 2007), E. coli (Ernst et al., 2008)) and is ideal for identifying dynamic
transcriptional events over time and perturbations. The Dynamic Regulatory Events Miner
(DREM) integrates time series and snapshots of the GRN of interest using an input-output Hidden
Markov Model (Ernst et al., 2007). In so doing, DREM learns a dynamic GRN by identifying
bifurcation points—places in the time series where a group of co-expressed genes begins to
diverge. These bifurcation points are annotated with the proposed TFs controlling the split, leading
to a combined dynamic model. Using the hypoxia time course expression dataset and a TF-target
gene network derived from the ChIP-seq assessment of 154 TFs overexpressed in MTB (Minch et
al., 2015), DREM identified bifurcation points that coincide with transitions between the six states
(Fig 3A and Fig S4). The bifurcation points defined by DREM reinforce the importance of
transcriptional regulation in the progression between states. DREM identified TFs that are known
to mediate MTB’s response to hypoxia (e.g., DosR, Rv0081, Rv0324) (Galagan et al., 2013) along
with additional TFs with a potential role in hypoxia. In particular, Rv1353c stood out for being the
only TF linked to the time points that precede and mark the end of Late hypoxia. The Rv1353c
regulon is the third largest, with 596 genes (after the Rv0081 and Rv0678 regulons), and DREM
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predicts that Rv1353c¢ regulatory activity may be important for sustained hypoxic conditions. In
addition, DREM suggests that CsoR (Rv0967), a TF that controls MTB’s response to copper stress
(Marcus et al., 2016), may also have an unappreciated role in hypoxia. Interestingly, DREM
associated CsoR with the bifurcation points preceding Early hypoxia and Resuscitation. In the
latter point, csoR transcriptional level transitioned from its lowest value (Late hypoxia) to its
highest value (Resuscitation). This suggests a potential bifunctional activity of CsoR in controlling
MTRB?’s transcriptional response both in and out of hypoxia. In fact, 87% of DEGs (223 genes in
total) from a csoR knockout mutant (Marcus et al., 2016) were differentially expressed at some
point during the time course and oxygen gradient (P-value = 1.7 x 107'%). Specifically, this set of
DEGs was enriched with members of Early hypoxia, Mid hypoxia, and Resuscitation, supporting
the CsoR bifurcation points predicted by DREM. We propose further investigation to evaluate the
consequences of perturbing Rv1353¢ and CsoR activity during hypoxia adaptation.

While DREM was able to identify key TFs involved in state transitions with >0% DO, only
a single bifurcation point (associated to Rv1353c) was predicted within the hypoxia window
between T12 and T20. This single TF prediction during hypoxic conditions reveals a limitation of
DREM reconstructions, which is the focus on bifurcation points. Although there are clear changes
in expression in sets of co-expressed genes during these hypoxic stages (e.g., purple path in Fig
3A), DREM does not associate a TF with these changes due to the absence of a bifurcation in the
gene set. Instead, the genes continue to change expression as a unit and could be influenced by a
TF whose activity is being modified over time in hypoxia. Another explanation for the lack of TFs
identified by DREM during the hypoxia-associated states (Early, Mid, Late hypoxia) could be the
normoxic conditions used for collecting the available protein-DNA interaction data (Minch et al.,
2015).

The set of TFs identified by DREM included only 16% of the 147 putative TFs
differentially expressed at some point across the time course and oxygen gradient (Fig 3B). In fact,
Late hypoxia contains 24% of all differentially expressed TFs (47 TFs). The large number of
differentially expressed TFs suggested complex and combinatorial circuitry patterns could be
involved in MTB’s adaptation to hypoxic conditions. Fig 3C shows the dense TF-TF connectivity
within and between transcriptional states, according to available protein-DNA binding data (Minch
et al., 2015). The key regulatory proteins of the TF-TF network were identified based on
betweenness centrality, which characterizes the connectivity of interacting nodes in the network.
The top high-degree nodes were (in decreasing order) Rv0081 (Early hypoxia), Rv3597c (Lsr2;
Early hypoxia), Rv1990c (Mid hypoxia), Rv2034 (Mid hypoxia) and Rv0023 (Late hypoxia). As
high-degree nodes, drugs targeting one or more of these regulatory hubs may have a major impact
on MTB survival. In support of this, Bartek and collaborators showed that deletion of /sr2
significantly compromised adaptation of MTB to hypoxic conditions (Bartek et al., 2014).
Notably, Lsr2 had the second and third largest outdegree (number of TF targets) and indegree
(number of transcriptional regulators), respectively. Lsr2 directly controls TFs from Depletion
(one TF), Early hypoxia (two TFs), Mid hypoxia (four TFs), Late hypoxia (five TFs) and
Resuscitation (one TF). Moreover, Isr2 is regulated by Mid hypoxia TFs (Rv1994c, Rv2034 and
Rv3160c) and Late hypoxia TFs (Rv0023, Rv0324 and Rv1460). The critical role of Lsr2 in the
coordination between hypoxia-related states offers an explanation for the known importance of
Lsr2 in hypoxic conditions.

The high connectivity of the TF-TF network revealed regulatory hubs that activate one
state while repressing another. Interestingly, DREM also identified bifurcation points in DO >0%
with down-regulated Late hypoxia TFs (Rv0023c, Rv0324 and Rv1049), indicating a concurrent
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repression of Late hypoxia regulators and activation of earlier states. Motivated by these findings,
we evaluated the enrichment of regulons of all differentially expressed TFs with members of each
transcriptional state. Many regulons (n = 21) were significantly enriched with members of their
TF’s state (permutation test P-value = 0), while even more regulons (n = 49, permutation test P-
value = 0) were significantly enriched with members of other transcriptional states (Dataset S2).
In other words, TFs act to express members of their own state while repressing members of another
state (shown in TF-TF interactions of Fig 3C). Such behavior by TFs, described as mutual
inhibition (Gardner et al., 2000; Glass and Kauffman, 1973; Huang et al., 2007), proposes a
mechanism for the coordination and cooperation between transcriptional states to achieve the
proper timing and gene expression levels to successfully adapt to changes in Oo.

Interactions among TFs can also form specific network motifs that perform defined
dynamical functions in response to changing environmental conditions (Alon, 2007; Shiraishi et
al.,, 2010; Wu et al., 2011). Network motifs, such as feedforward loops (FFLs), single-input
modules, or bistable toggle switches (Alon, 2007) are recurring gene patterns found within gene
regulatory networks. To unbiasedly search for network motifs that may be involved in hypoxia
adaptation, we analyzed the experimentally determined MTB TF-target gene interactions from
ChIP-seq (Minch et al., 2015) using FANMOD (Wernicke and Rasche, 2006) in the MotifNet
Webserver (Smoly et al., 2017). We found the MTB ChIP-seq network is significantly enriched
with FFLs, a common network motif composed of two input TFs, one of which regulates the other
and both of which jointly regulate a target gene (or set of genes) (Mangan and Alon, 2003). We
ran extensive permutation tests to confirm the likelihood (P-value = 0.001) of 1690 FFL instances
emerging in a random network with the same number of nodes and edges. Interestingly, Rv0081
is the most frequent regulator at the “top” of the FFLs (45.4% of all detected instances) and also
has the highest-degree connectivity (described above). Rv0081 has been previously linked to
MTB’s response to hypoxia (Galagan et al., 2013; Prosser et al., 2017) and is itself a target gene
of the well-characterized regulator of dormancy survival, DosR (Boon and Dick, 2002; Park et al.,
2003; Sherman et al., 2001; Vasudeva-Rao and McDonough, 2008). To evaluate the involvement
of Rv0081-centered FFLs in the transcriptional changes observed during hypoxia, we explored
some of the most frequent TF pairs found in FFL configuration). The top pair, Rv0081-Rv(0324
controls 134 genes significantly enriched with Late hypoxia genes (P-value = 6.4x107). Rv0081
also frequently pairs with Rv3249 and controls 87 genes enriched with Depletion state genes (P-
value = 1.1x107°). Another frequent pair combines Rv0023 and Rv0324 to control 70 genes
enriched in Mid hypoxia genes (P-value = 3x107). We explored the directionality of these state-
specific FFL target genes using gene expression data from MTB TF overexpression (TFOE) strains
in normoxia (Rustad et al., 2014) and a MTB Rv0081 gene deletion (ARv0081) strain in hypoxia
(Sun et al., 2018). For example, the majority of Depletion genes with differential expression in the
ARv0081 strain were up-regulated, suggesting a negative relationship with Rv0081 in hypoxia
(Fig 4A). Moreover, we observed that Depletion genes controlled by the Rv0081-Rv3249¢ FFL
were significantly down-regulated in the Rv0081 TFOE strain (Fig 4B). In contrast, there is a
positive relationship between Rv0081and Late hypoxia genes during hypoxia as indicated by a
largely decreased expression of Late hypoxia genes in the ARv0081 strain (Fig 4C). Furthermore,
Late hypoxia genes controlled by the Rv0081-Rv0324 FFL were significantly up-regulated (Fig
4D). Altogether, we generated a model of interlocking FFLs that together up-regulate 213 genes
corresponding to Late hypoxia, while also coordinating the repression of Mid hypoxia and
Depletion genes (Fig 4E). The overlapping sets of network motifs act to reinforce each other’s
function and direct the complex physiological state transitions required to adapt to decreasing DO
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levels.

Three important hypotheses developed from identifying network motif topology. The first
hypothesis is that Rv0081 plays a pivotal role in the adaptation of MTB to hypoxia (Galagan et
al.,, 2013) and its regulatory activity may be oxygen-dependent. The bifunctional activity of
Rv0081 is based on comparison between the normoxic TFOE data (Rustad et al., 2014) and
hypoxic ARv0081 data (Sun et al., 2018) (Fig SS5). The regulatory targets of Rv0081 had very little
concordance of fold-change expression in these different conditions. Most genes that were
significantly down-regulated in the ARv0081 strain in hypoxia showed no fold-change difference
in the TFOE data (in normoxia). This observation supports recent work demonstrating that Rv0081
had altered DNA-binding ability under hypoxic conditions, with evidence that formate ion
accumulation and/or post-translational modifications may be involved in the conditional
regulatory activity (Kumar et al., 2019). Furthermore, dual activity of Rv0081 seems to be
necessary for coordinating the repression of Late hypoxia TFs in early hypoxic time points and
their up-regulation in Late hypoxia (Fig S6).

The second hypothesis is that RvO081 may be involved in the state oscillations observed
as the DO dropped below 3% (Fig 2). Under these low O; conditions, the MTB transcriptome
oscillated between two states: Late hypoxia genes were expressed (T8 and T9), then Early hypoxia
genes (T10), then back to Late hypoxia (T11), before ultimately committing to Early hypoxia
(T12-T18). This “flicker” between Early hypoxia and Late hypoxia, measured roughly one hour
apart, could emerge from oscillatory mechanisms involving an Rv0081-directed incoherent FFL
(I-FFL) (Geva-Zatorsky et al., 2006; Kholodenko, 2000; Novak and Tyson, 2008). In I-FFLs, one
TF acts positively while the other TF acts negatively, resulting in a pulse of target gene(s)
expression. Interestingly, the peak height between the first and second pulse of Late hypoxia genes
had roughly equal normalized expression (Fig 2B & Fig S7), suggesting a potential detection of
fold-change based on the I-FFL, as described by Goentoro and colleagues (Goentoro et al., 2009).
Fitting Rv0081 and Early Hypoxia TFs (excluding Rv0081) between T7-T20 with three
configurations of I-FFLs (cooperative, independent and exclusive, see methods), cooperative TF
binding most closely modeled the observed average expression of Late hypoxia genes (Fig S7A,
RMSD = 0.0965). Importantly, all three I-FFL configurations were able to reproduce the
oscillatory expression of Late hypoxia genes when DO dropped below 3%, concluding that the I-
FFL motif can explain the observed “flicker” between Early and Late hypoxia states. Furthermore,
the parameters of the exclusive binding model are in the fold change detection region (Fig S7C),
indicating that a fold-change detection mechanism is possible if a subset of repressors interact
exclusively with Rv0081 to regulate some Late hypoxia genes. While the role of the I-FFL as a
fold-change detector requires further exploration, it is intriguing to hypothesize that by sensing
relative changes in gene expression nearing hypoxia, a potentially variable and “noisy” period, the
circuit could serve to synchronize the hypoxic response across all cells in the population.

Finally, the third hypothesis is that the I-FFL controlled by Rv0081 also regulates the
transition to Late hypoxia. Late hypoxia accounts for the largest change in expression and the
transcriptional state most characteristic of dormant (i.e. nonreplicating) MTB (Schnappinger et al.,
2003; Voskuil et al., 2003). In addition to reproducing the “flicker”, all three I-FFL configurations
modeled a delay in Late hypoxia gene expression after entering hypoxia (Fig S7). The time scale
of the delay element, about 40 hours from entering 0% DO to Late hypoxia transition, is consistent
with delayed translation observed in slow-growing MTB in response to nitric oxide (Cortes et al.,
2017). It was recently demonstrated that delayed regulatory interactions within I-FFLs (with
mutual inhibition present) produced state transitions related to T cell exhaustion, after a fixed time
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post-stimulation (Bolouri, 2019). As such, the delay element may function in MTB to incorporate
robustness into the hypoxic response, ensuring that Late hypoxia (with large-scale expression
changes) is not activated prematurely. Further investigation is required to determine whether the
duration of the delay element is fixed or variable in a manner dependent on how MTB enters
hypoxia. The shift to Late hypoxia, after 40 hours in hypoxia and following transition through two
intermediate hypoxic states, is one of the most intriguing revelations from this study and required
the development of a novel reactor system and the high-resolution profiling that was performed
here. The elucidation of regulatory circuits that control the large, altered transcriptome of Late
hypoxia offers novel drug targets that could block the underlying mechanisms that contribute to
replication suppression, alternate respiratory/metabolic pathways, and phenotypic tolerance
associated with dormant MTB.

This report presents the high-resolution system-wide gene expression profiling of MTB
across a 5-day time course of hypoxia and reaeration. A novel reactor system was designed to
allow for exquisite control and monitoring of O levels, thereby uncovering intermediate
transcriptional states and dynamic expression patterns, not previously described. Gene expression
profiling revealed that three-fifths of all genes in the MTB genome are differentially expressed
and associated with six distinct transcriptional states as MTB enters into and exits from hypoxia.
Moreover, there is strong evidence that the six-state model described in this paper relates to
adaptations of MTB in vivo. The response to hypoxia is accompanied by other host-related stress
mechanisms (e.g., alternative carbon utilization, iron limitation, copper stress), as a result of
MTB’s evolutionary history as an intracellular pathogen. The large-scale expression changes
demonstrate the importance of oxygen as a major force in the evolution of MTB and reveals that
the pathogen alters gene expression in anticipation of future conditions and challenges. For
example, the increased production of PE/PPE proteins during Late hypoxia in preparation for ESX
export system production upon Resuscitation, thereby foreseeing the benefit of PE/PPE protein
secretion for dissemination to other host cells. Integrating high-resolution and longitudinal
profiling with experimentally determined TF-gene interactions enabled inference of key regulators
and intricate circuit architecture that explain how the state transitions unfold (summarized in Fig
4F). Regulatory programs with characteristic motifs and properties were identified that serve to
incorporate robustness (e.g., time-delay ensures state transition only upon proper conditions),
synchronization (e.g., fold-change detection that uniforms response across all cells), and
coordination across the states (e.g., interlocking FFLs, bifunctional Rv0081, mutual inhibition) as
MTB transitions across time and O» gradient. This study reveals that MTB encodes abundant
network motifs, presumably with functions that cannot be carried out by simpler circuits, to
successfully tailor MTB physiology to stresses within the host environment. It is interesting to
speculate that these regulatory interactions have evolved in MTB as an adaptive response to
ineffective immunity and failure to clear the pathogen. One of the most important challenges for
antibiotic research will be to overcome these overlapping and redundant regulatory mechanisms
with novel combinatorial interventions. This study presents significant steps toward apprehending
these genetic programs in MTB, paving the way for predictive and rational strategies to improve
clinical outcomes of TB treatment.
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Figure 1. Schematic of the controlled O; model reactor system and DO profiles. (A)
Programmable mass flow controllers were used to modulate the ratio of air and nitrogen (N2) in a
gas mixture that was flowed into the headspace of spinner flasks containing cultures of MTB.
Dissolved oxygen sensor spots and fiber optic technology non-invasively provided real time and
remote readout of the dissolved oxygen (DO) levels within the culture media. Samples were drawn
from a sampling port attached to one of the side arms of the spinner flask. Four reactors were
multiplexed and individually monitored for DO levels to obtain biological replicates. (B) DO
levels across the 120-hour time course. Points are the average of three biological replicates; the
yellow shading indicate the periods of controlled Oz depletion and reaeration, whereas the white
background indicates a sustained 2 day immersion in hypoxia.
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Figure. 2. The controlled O; model captures distinct cell states over time course and O:
gradient. (A) t-SNE analysis of all samples across the time course and hypoxia gradient. (B)
Average expression profiles for state-specific gene sets across the time course and hypoxia
gradient. The yellow shading indicate the periods of controlled O» depletion and reaeration,
whereas the grey background indicates a sustained 2 day immersion in hypoxia. General theme of
significant functional term clusters defined by DAVID (Huang da et al., 2009), in each state are
indicated. The star symbol (*) indicates the most enriched term at the individual term level in the
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Resuscitation state (not present in any of the significant term clusters). (C-F) Log2 fold-change
respect to normoxia (TO and T1) of selected metabolic pathways reconstructed by Kavvas et al
(Kavvas et al., 2018); numbers in parentheses indicated the number of genes in the relevant
pathway.
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Fig. 3. Transcriptional circuits controlling the six transcriptional states adopted by MTB
during entry and exit from hypoxia. (A) DREM output. Transcription factors (TFs) associated
with selected branching points (white nodes) are shown. Time points and TFs are colored code
based on transcriptional states membership. The n.c, d and u superscripts indicate no change,
down-regulation and up-regulation, respectively. (B) Heatmap with transcriptional profiles of 147
differentially expressed MTB TFs; number in parentheses indicate the number of TFs associated
with each state. (C) TF-TF network of differentially expressed TFs in the controlled O, model.
ChIP-seq derived protein-DNA interactions reported in Minch ef al (Minch et al., 2015) were used
to establish the connections between TFs. Only TFs with one or more differentially expressed

targets were included in the diagram. The diagram was generated with the Biotapestry tool
(Paquette, 2016).
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Fig. 4. Data supporting Rv0081-controlled interlocking FFLs and overview of the
transcriptional dynamics across the six-state model that enables MTB to enter and exit
hypoxia-induced dormancy. (A) The log2 fold-change distribution of Depletion genes with
significant differential expression (P-value < 0.05, absolute log2 fold-change >1) from the
ARv0081 strain in hypoxia (Sun et al., 2018). (B) Boxplots representing log2 fold-change of
various gene groups related to Depletion state from Rv0081 transcription factor overexpression
(TFOE) (Rustad et al., 2014). The number in parentheses indicates the number of genes evaluated
in each group. (C) The log2 fold-change distribution of Late hypoxia genes with significant
differential expression (P-value < 0.05, absolute log2 fold-change >1) from the ARv0081 strain in
hypoxia (Sun et al., 2018). (D) Boxplots representing log2 fold-change of various gene groups
related to Late hypoxia state from Rv0081 transcription factor overexpression (TFOE) (Rustad et

, 2014). (E) Model of Rv0081-controlled interlocking FFLs that together up-regulate a
significant number of genes corresponding to Late hypoxia, while also repressing Mid hypoxia
and Depletion genes. The P-values for enrichment of the FFL-controlled genes from each state are
indicated below the state name, as evaluated using a hypergeometric test. (F) Summary overview
of the transcriptional dynamics, inferred key regulators, and regulatory circuits that were revealed
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from the high-resolution and longitudinal gene expression profiling across the O, gradient. Key
features described in the text include: (a) ESX-5 secretion of PE/PPE proteins that were expressed
during Late hypoxia; (b) changes in metabolic pathways during Late hypoxia; (c) DREM predicted
TFs (shown as ovals throughout figure) that concurrently repress Late hypoxia genes and activate
earlier states (mutual inhibition connections shown as dotted lines throughout figure); (d) DREM
identified CsoR in controlling MTB’s transcriptional response both in and out of hypoxia; ()
Rv0081-controlled interlocking FFLs; (f) the regulatory activity of Rv0081 is oxygen-dependent;
(g) the “flicker” of Late hypoxia gene expression as DO dropped below 3%; (h) the shift to Late
hypoxia occurred after 40 hours in hypoxia. * indicates P-value < 0.05, ** indicates P-value <
0.01

Methods

The approaches used in this study include both computational and biological methods. Plots were
generated using Python and R, and images prepared using Adobe Illustrator CS6 and Inkscape
0.91.

Culturing conditions

Experiments were performed using H37Rv grown at 37°C in Middlebrook 7H9 supplemented with
ADC and 0.05% Tween in spinner flasks. Working stocks were expanded from frozen aliquots
shortly before experiments began. For hypoxia time-course experiment, a 50 mL culture was
grown to mid-log phase, and diluted in 700 mL 7H9 media within each bioreactor to a starting
A600 of 0.01. Cultures were stirred over a range of speeds throughout the experiment.

Controlled O> model design and operation

An Oxygen Sensor Spot (PreSens, Regensburg, Germany) was adhered within a 1L disposable
spinner flask with two side arms (Corning, Corning, NY) using vacuum tweezers (Excelta,
Buelton, CA). A velcro belt with a screw-on port for the fiber optic cable was wrapped around the
flask. A gas line input was fastened on one arm of the flask, and a luer-lock/filter sampling port
was connected to the other arm. Air and N> gas lines were run into the Biological safety laboratory
and connected to gas-specific mass flow controllers (Alicat Scientific, Tucson, AZ), whose outputs
were connected downstream through a Y-connector that led into an incubator. Three separate
flasks, all prepared as described above, were placed onto a stir plate inside an incubator at 37° C.
The mixed gas line was split via additional Y-connecters, streamed through 0.2 um filters, and
attached to the gas line inputs of each flask. Media was incubated overnight and checked for
contamination before inoculated with MTB.

The mass flow controllers and oxygen sensor were linked to a computer, which could be
remotely accessed and monitored in real-time. After inoculation, we programmed the mass flow
controllers using Flow Vision software (Alicat Scientific) to achieve a changing gas mixture
gradient, which allowed us creating a steady two-day depletion, followed by two-days of sustained
hypoxia, and reaeration by flowing pure air into the headspace of the vessels and increasing the
speed of the stir bars in each vessel.

RNA isolation
Samples were collected by a luer-lock syringe to the sampling port. Sample volumes varied
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from 5 mL to 25 mL across the time course, depending on OD but were consistent across replicates
of a time point. Samples were centrifuged at high speed for 5 min, supernatant was discarded and
cell pellet was immediately flash frozen in liquid nitrogen. Cell pellets were stored at -80° C until
all samples collected and then resuspended in 600 pL of fresh lysozyme solution in TE pH 8.0 (5
mg/mL). The resuspended cells were transferred to a tube containing Lysing Matrix B (MP
Biomedicals, Santa Ana, CA) and incubated at 37° C for 30 min. Following incubation, 60 uL
(1/10% volume of lysate volume) of 10% SDS was added and then tubes were vigorously shaken
at max speed for 30 s in a FastPrep 120 homogenizer (MP Biomedicals) three times. Tubes were
centrifuged for 1 min (max speed), then 66 pL of 3 M sodium acetate pH 5.2 added and mixed
well. Acid phenol (pH 4.2) was added at 726 pL and tubes were inverted to mix well (~60 times).
Samples were incubated at 65° C for 5 min, inverting tubes to mix samples every 30 s. Then,
centrifuged at 14000 rpm for 5 min and upper aqueous phase was transferred to a new tube. 3M
sodium acetate (pH 5.2) was added at 1/10" volume along with 3x volumes of 100% ethanol.
Sample was mixed well and incubated at -20° C for 1 hr or overnight. Following incubation,
samples were centrifuged at 14000 rpm for 30 min at 4° C, ethanol was discarded and 500 pL of
70% ethanol was added. Samples were centrifuged again at 14000 rpm for 10 min at 4° C,
supernatant discarded, and any residual ethanol removed using pipet. Pellet was allowed to air dry,
resuspended in 30-40 puL of RNase free water and quantified by Nanodrop (Thermo Scientific).
This was followed by in solution genomic DNA digestion using RQ1 Dnase (Promega) following
manufacturer’s recommendation. RNA quality was analyzed in a 2100 Bioanalyzer system
(Agilent Technologies). Total RNA samples were depleted of ribosomal RNA using the Ribo-Zero
Bacteria rRNA Removal Kit (Illumina).

Processing and analysis of RNA-seq data

Sample collection and RNA-extraction was performed as described above. Quality and purity of
mRNA samples was determined with 2100 Bioanalyzer (Agilent, Santa Clara, CA). Samples were
prepared with TrueSeq Stranded mRNA HT library preparation kit (Illumina, San Diego, CA) and
multiplexed into a single run. All samples were sequenced on the NextSeq sequencing instrument
in a high output 150 v2 flow cell. Paired-end 75 bp reads were checked for technical artifacts using
[llumina default quality filtering steps. Raw FASTQ read data were processed using the R package
DuffyNGS as described previously (Vignali et al., 2011). Briefly, raw reads were passed through
a 3-stage alignment pipeline: (i) a prealignment stage to filter out unwanted transcripts, such as
rRNA, mitochondrial RNA, albumin, and globin; (ii) a main genomic alignment stage against the
genome(s) of interest; and (iii) a splice junction alignment stage against an index of standard and
alternative exon splice junctions. Reads were aligned to M. tuberculosis H37Rv (ASM19595v2)
with Bowtie2 (Langmead and Salzberg, 2012), using the command line option “very-sensitive.”
BAM files from stages (i1) and (ii1) were combined into read depth wiggle tracks that recorded
both uniquely mapped and multiply mapped reads to each of the forward and reverse strands of
the genome(s) at single-nucleotide resolution. Gene transcript abundance was then measured by
summing total reads landing inside annotated gene boundaries, expressed as both RPKM and raw
read counts. Two stringencies of gene abundance were provided using all aligned reads and by just
counting uniquely aligned reads.

Differential expression
We used the raw read counts, estimated with DuffyNGS as described above, as input for DESeq2
(Love etal., 2014). We compared the transcriptional profile of each time point respect to TO. Genes
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with adjusted P-value < 0.05 and estimated absolute log2 fold-change >1 were considered
differentially expressed.

Identification of transcriptional states adopted by MTB in the controlled O> model

After normalizing the full transcriptional dataset using DESeq2, we used Principal Component
Analysis (PCA) to reduce the dimensionality of our data (median transcript levels of 4,049 genes
profiled at each time point). Then, we used the NbClust R package (Charrad et al., 2014) to identify
the most likely number of clusters in the PCA space. Two clusters were predicted (Fig S2A). One
cluster contained the time points: T8, T9, T11, T19, T20 and T21. A second cluster contained the
other time points. Motivated by the clustering of consecutive time points and their similarity in O
concentrations in Fig S2A (TO0-T1, T2-T7,T16-T18, etc), we evaluated the structure of the largest
cluster using PCA and NbClust as before. However, this time the T8, T9, T11, T19, T20 and T21
points were removed before the analysis. Five distinct clusters were identified (Fig S2B). To
confirm the presence of six clusters (each corresponding to a transcriptional state), we performed
hierarchical clustering of the transcriptional dataset with bootstrapping using the Pvclust R
package (Suzuki and Shimodaira, 2006) (Fig S2C). All six putative clusters had 100% bootstrap
support in the resulting dendrogram. Finally, we confirmed the presence of the six defined
transcriptional states with the t-distributed stochastic neighbor embedding (tSNE) algorithm (Fig
2A).

Connecting differentially expressed genes with the six hypoxia-related transcriptional states of
MTB

To understand the functional implications of the transcriptional states adopted by MTB during
entry and exit from hypoxia, each differentially expressed gene was assigned to the state in which
it had the highest average transcription level. As an unsupervised alternative, we used the Boruta
R package (Kursa, 2010), that implements random forest to select all features (in our case
transcriptional profiles), to identify the genes that distinguish any given state from the rest. There
was statistically significant overlap between the groups of genes associated to any given
transcriptional state by the two approaches (Table S4). Because Boruta only selected 566 genes
(out of 2,582 differentially expressed genes), we decided to use the average transcriptional profile
based gene assignment. In this way we tried to capture the biological processes active in the
different states without excluding any differentially expressed gene. To evaluate the quality of the
resulting sets of genes, we computed the mean square residual (MSR) of each gene cluster (Table
S4). The MSR is widely used as a metric of performance of biclustering methods (which cluster
both genes and conditions) (Reiss et al., 2006). A low MSR value indicates that individual profiles
do not deviate from the average profile of the bicluster (in our case, the group of genes in the
relevant time points/state). We also computed the mean Pearson correlation among the genes
assigned to each transcriptional state (Table S4). In support of our gene assignment, the sets of
genes associated to MTB transcriptional states had MSR values smaller than 0.1 In fact, for the
Depletion and Late hypoxia genes the MSR values were smaller than 0.05. The average Pearson
correlation values were equal to or greater than 0.4 for all gene clusters but Normoxia.

Metabolic pathway analysis
We mapped the measured gene expression data against the most recent genome-scale metabolic
network construction of M. tuberculosis H37Rv iEK1011 (Kavvas et al., 2018) using COBRApy
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(Ebrahim et al., 2013). We used the subsystem defintions defined in iIEK1011 to explore pathway
usage at the network level.

MTB ChIP-seq derived TF-gene network

The initial ChIP-seq derived MTB network consisted of 6,581 interactions occurring in the -150bp
to +70bp region of genes’ promoter reported by Minch et al. (Minch et al., 2015). We expanded
that MTB ChIP-seq network by taking into account operon organizations. For a given TF-gene
interaction, if the target gene is part of an operon, we included all other members of the operon as
potential targets of the corresponding TF. The expanded MTB ChIP-seq network contained 12,188
interactions.

Detection of network motifs in the MTB ChIP-seq network

To identify network motifs in the MTB transcriptional network, we used the MotifNet webserver
(Smoly et al., 2017). We scanned for all potential three and four nodes motifs with maximum P-
value < 0.01 (in 1000 random networks) and with 100 or more instances in the analyzed network.
For this analysis, we constrained the ChIP-seq derived network by excluding genes that were not
differentially expressed in our time course. This network filtering was done to improve detection
of motifs most relevant to the actual changes in transcript levels we observed.

DREM analysis

DREM2.0 (Schulz et al., 2012) was run with default parameters. The input TF-gene network was
the MTB ChIP-seq network described above. The input expression data contained the median
transcriptional profiles of the 2,582 differentially expressed genes. The minimum absolute
expression change parameter was set to 0.75.

Permutation test for evaluating significance of overlap between TF regulons and sets of genes
associated with identified transcriptional states

The 2,582 differentially expressed genes in the controlled O, model were permutated 1000 times
to generate shuffled gene clusters (corresponding to the six transcriptional states). In each
permutation, the produced shuffled gene clusters had the same size as the original ones. Then,
significance of the overlap between regulons of differentially expressed TFs and the shuffled gene
sets was evaluated using a hypergeometric test. Hypergeometric test P-values below 0.05 were
considered significant. The overall permutation test P-value was computed as the proportion of
cases (out of 1000 permutations) in which the number of enriched regulons was equal or higher
than the observed values in the original data.

Differential expression analysis of transcriptional data collected with the defined hypoxia model
We downloaded the transcriptional profile data of MTB at day 0, day 1, day 3, day 5, day 7 and
day 8 (reaeration) collected by Galagan et al (Galagan et al., 2013) using the defined hypoxia
model (GEO accession number: GSE43466). We performed a Bayesian t-test using CyberT (Baldi
and Long, 2001) to compare the gene expression profiles at each time point respect to T0. Genes
with adjusted P-value < 0.05 and absolute log2 fold-change > 1 were considered differentially
expressed.

Modeling of Rv0081-directed I-FFL with Late hypoxia gene expression
The IFFL motif is commonly modeled by the following equations (Goentoro et al., 2009):
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dy
P PriX —aiY

dzZ

P B.G(X,Y) —ayZ
where Z is the output of the motif which in our case represents the average expression of Late
hypoxia genes between T7-T20. X and Y represent the expression of Rv0081 and average
expression of Early hypoxia TFs (excluding Rv0081), respectively. Goentoro et al (Goentoro et
al., 2009) analyzed three possible models of the I-FFL motif representing three configurations in
which Late hypoxia genes could be regulated. Their focus was to identify conditions for which the
I-FFL motif works as fold change detection. The models correspond to exclusive binding,
independent binding, and cooperative binding which are represented by the following equations
(Goentoro et al., 2009) :

X
Exclusive binding: G,(X,Y) = —*—
1+K_1+K_2
X
Independent binding: G;(X,Y) = —2——
p g G (X,)Y) 0D
X

where G, G;, and G. are functions that determine the rate change of Late hypoxia genes (2); K; 1s
the binding rate between Rv0081 and Late hypoxia genes; K> is the binding rate between Early
hypoxia TFs and Late hypoxia genes; and K3 is the cooperative binding rate of Rv0081 and Early
hypoxia TFs with the Late hypoxia genes. a2, 82, K1, K>, and K3 were estimated by an optimization
procedure using the average experimental values of X, Y, Z at different time points. We used the
Nelder-Mead simplex algorithm for optimization (Nelder, 1965) as implemented in MATLAB
R2014a. The objective function used for minimization is the root-mean-squared deviation (RMSD)
between experimental and estimated values of Late hypoxia gene expression is given by:

s= JN—l S Zenp () — Zmoa (£))?

where Z.,(t;) is the average expression of Late hypoxia genes at time #; obtained experimentally,
and Zuo4(t;) 1s the corresponding model estimate. Similarly, a; and 81 were estimated by a similar
optimization procedure using the average experimental values of Y and X. The objective function
in this case is given by:

= jN—lz’!(Yexp(m ~ Ymoa(t))?

where Yey)(t;) is the average expression of repressors at time #; obtained experimentally, and
Ymoa(t:) 1s the corresponding model estimate.
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Figure S1. Bioreactor system is highly reproducible across three biological replicates. (A)
Dissolved oxygen curve of growth medium across hypoxia and reaeration time-course measured
with oxygen sensor spots (Presens). (B) Optical density across replicates over the time course.
Datapoints are the median of three replicates with error bars showing the Standard Error of
measurements.
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Figure S2. Identification of six transcriptional states of MTB during depletion and re-
introduction of O in the controlled O, model. Time points and dendrogram branches are color
coded according to their membership in the six transcriptional states defined in Fig 2A. (A)
Principal component plot of the transcriptional matrix containing the median profiles of all 4,049
genes. Dashed line indicates the two clusters identified by the NbClust tool in R (Charrad et al.,
2014). (B) Principal component plot of the same transcriptional matrix after excluding T8, T9,
T11, T19-T21 data. Dashed lines indicate the five clusters identified by the NbClust tool in R. (C)
Hierarchical clustering of the transcriptional data using the Pvclust R package (Suzuki and
Shimodaira, 2006). Numbers on top of the dendrogram branches indicate the unbiased P-value
(au; black) and bootstrap support (bp; purple) for each branch.
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Figure S3. Transcriptional profile of the five type seven secretion systems (T7SS) in MTB. The

transcriptional profiles of genes encoding components of MTB’s ESX systems (also known as

T7SS) are shown. Each gene is represented with a color. For visualization purpose, the normalized

read counts were re-scaled to the [0,1] interval.
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Figure S4. DREM output.
DREM associated 35 TFs with the 23 identified branching points (light green nodes). Blue ,
black and red TFs labels indicate up-regulation, no change or down-regulation, respectively.
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Figure S5. The dual activity of Rv0081. Plot is based on the comparison between the normoxic
TFOE data and hypoxic ARv0081 data (Rustad et al., 2014; Sun et al., 2018). Only genes with
differential expression in the Rv0081deletion strain during hypoxia are shown. This set of genes
was separated in the ones that are controlled by Rv0081 (based on ChIP-seq data) and the ones
that are not.
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Figure S6. Dual activity of Rv0081 seems to be necessary for coordinating the repression and
activation of Rv0324 at early and late points of the time course. Nodes are colored based on
their transcriptional states membership. The shown transcriptional circuit was derived from
available protein-DNA biding data in MTB (Minch et al., 2015). The signs of the TF-TF
interactions were defined using the change in transcript levels of the target genes in the TFOE
strains (blue edges) and hypoxic ARv0081 strain (golden edges) (Rustad et al., 2014; Sun et al.,
2018). Interactions with no assigned signs are shown in black.
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Figure S7. Modeling of an I-FFL controlling the expression of Late hypoxia genes using methods
of Goentoro et al (Goentoro et al., 2009). Simulation results for the I-FFL motif under (A)
exclusive, (B) independent, and (C) cooperative binding configurations (see methods). X, and ¥,
represent the observed expression of Rv0081 and average observed expression of Early hypoxia
TFs (excluding Rv0081), respectively. K; is the binding rate between Rv0081 and Late hypoxia
genes; K> is the binding rate between Early hypoxia TFs and Late hypoxia genes; and K3 is the
cooperative binding rate of Rv0081 and Early hypoxia TFs with the Late hypoxia genes. RMSD is

the root-mean-squared deviation between experimental and estimated values of Late hypoxia gene
expression.
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Table S1. Gene set overlap between the three models of hypoxia-induced dormancy.

IHR |Overlap | EHR | Overlap | NRP1 | Overlap | NRP2 | Overlap

State recall” | P-value | recall® | P-value | recall” | P-value | recall* | P-value
Normoxia 0 1 0.004 0.992 0.016 0.739 0.004 0.991
Depletion 0.02 0.997 0.035 1 0.107 0.597 0.04 1

Early hypoxia | 0.408 | 2.9E-10 | 0.070 0.783 0.176 | 0.116 | 0.138 | 1.9E-03
Mid hypoxia 0.49 | 1.7E-14 | 0.226 | 6.3E-13 | 0.187 | 8.3E-07 | 0.201 | 1.8E-09
Late hypoxia 0.041 1 0.196 0.963 0.032 1 0.125 1

Resuscitation | 0.02 0.996 | 0.165 | 3.2E-03 | 0.316 | 8.6E-16 | 0.214 | 8.2E-07
* Initial Hypoxic Response (IHR) contains 49 genes (Rustad et al., 2008)
$ Enduring Hypoxic Response (EHR) contains 230 genes (Rustad et al., 2008)
% Non Replicating Persistence 1 (NRP1) contains 187 genes (Muttucumaru et al., 2004)
" Non Replicating Persistence 2 (NRP2) contains 224 genes (Muttucumaru et al., 2004)
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Table S2. Gene set overlap between the models of hypoxia-induced dormancy and intracellular
MTB dataset.

Hypoxia Model Overlap with DEGs in . | Recall rate
intracellular environment
Controlled 0" 731 0.784%
Galagan et al. 2013° 711 0.763
Wayne?” 115 0.123*
Defined® 117 0.126"

"This work

“Dataset is based on findings reported in Peterson et al. (Peterson et al., 2019). There were 932
differentially expressed genes (DEGs) in MTB within bone marrow derived macrophages with
respect to extracellular MTB.

$Dataset includes transcriptional data for hypoxia during seven days and one day after reaeration
(Galagan et al., 2013). The set of DEGs was defined as described in methods.

#Overlap between the two DEG sets was statistically significant (hypergeometric test P-value <
0.01)

“Dataset refers to the union of the NRP1 and NRP2 gene sets using Wayne model (Muttucumaru
et al., 2004).

&Dataset refers to the union of the initial and enduring hypoxic response using defined hypoxia
model (Rustad et al., 2008).
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Table S3. Samples (TO to T25) were used to define the six state model. Each state was also
defined with oxygen and time intervals.

Avg DO
Time (h) (%) State
T0 0 81.6 Normoxia
Tl 17.3 57.6 Normoxia
T2 23.4 42.8 Depletion
T3 41.5 11.5 Depletion
T4 42.3 8.8 Depletion
T5 43.3 7.5 Depletion
T6 443 6.1 Depletion
T7 45.3 4.3 Depletion
T8 46.3 2.9 Late hypoxia
T9 47.3 0.4 Late hypoxia
T10 48.4 0 Early hypoxia
T11 49.4 0 Late hypoxia
T12 50.3 0 Early hypoxia
T13 51.2 0 Early hypoxia
T14 53.6 0 Early hypoxia
T15 55.0 0 Early hypoxia
T16 65.3 0.1 Mid hypoxia
T17 71.3 0.1 Mid hypoxia
T18 89.3 0.1 Mid hypoxia
T19 95.5 0 Late hypoxia
T20 113.6 0.1 Late hypoxia
T21 115.1 0.4 Late hypoxia
T22 115.5 3.8 Resuscitation
T23 116.1 6 Resuscitation
T24 116.9 10.9 Resuscitation
T25 120.5 46.9 Resuscitation
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Table S4. Properties of gene clusters associated with identified transcriptional states.

Genes selected | Mean Recall
Pearson | Boruta P-value

State based on Square . Overlap | Boruta
. correlation | genes overlap

average Residual genes
Normoxia 81 0.04 0.28 15 3 0.20 9.40E-05
Depletion 446 0.02 0.71 127 73 0.57 7.70E-27
Early Hypoxia 328 0.05 0.55 80 61 0.76 6.00E-42
Mid Hypoxia 320 0.08 0.4 44 24 0.55 1.40E-12
Late Hypoxia 978 0.03 0.75 254 185 0.73 1.70E-33
Resuscitation 429 0.09 0.47 94 56 0.60 8.10E-23
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Dataset S1. Each cluster represents a distinct transcriptional state and was classified with sets of
non-overlapping differentially expressed genes (see methods): Normoxia (81 genes), Transition

(446 genes), Stage [a hypoxia (328 genes), Stage Ib hypoxia (320 genes), Stage Il hypoxia (978
genes), and Resuscitation (429 genes) (Dataset S1).

Dataset S2: TF regulons enrichment with genes associated with identified transcriptional states.
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