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Abstract

Various computational and statistical approaches have been proposed to uncover the mutational
patterns of rapidly evolving influenza viral genes. Nonetheless, the approaches mainly rely on
sequence alignments which could potentially lead to spurious mutations obtained by comparing
sequences from different clades that coexist during particular periods of time. To address this issue,
we propose a phylogenetic tree-based pipeline that takes into account the evolutionary structure in
the sequence data. Assuming that the sequences evolve progressively under a strict molecular
clock, considering a competitive model that is based on a certain Markov model, and using a
resampling approach to obtain robust estimates, we could capture statistically significant single-
mutations and co-mutations during the sequence evolution. Moreover, by considering the results
obtained from analyses that consider all paths and the longest path in the resampled trees, we can
categorize the mutational sites and suggest their relevance. Here we applied the pipeline to
investigate the 50 years of evolution of the HA sequences of influenza A/H3N2 viruses. In addition
to confirming previous knowledge on the A/H3N2 HA evolution, we also demonstrate the use of
the pipeline to classify mutational sites according to whether they are able to enhance antigenic

drift, compensate other mutations that enhance antigenic drift, or both.
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Introduction

Seasonal influenza viruses, especially the influenza A viruses, have exhibited frequent mutations
with a rapid evolutionary rate. The hemagglutinin (HA) of influenza has the highest mutational
rate among all influenza viral proteins [1]. Besides, the HA is considered as a major culprit for the
antigenicity of influenza and a primary target for the influenza vaccine [2, 3]. Cumulative
mutations can lead to the antigenic drift of influenza, enable the viruses to mismatch the influenza
vaccine, escape the human immune system, and even raise an epidemic [4]. Therefore, it is crucial
to surveil and predict the mutations of influenza. The knowledge of mutational patterns can

improve our understanding about the mechanism of antigenic drift.

Discovering the dependencies among mutations is a non-trivial and active area of bioinformatics.
Non-independent mutations of amino acids may co-occur, or occur chronologically, generally
sharing a common constraint or protein function domain [5]. The directed mutagenesis
experiments are a classical type of method to identify functional dependencies between amino acid
sites [6]. However, the complexity of possible the experiments limits the capacity of research.
Subsequently, various statistical and computational models have been proposed as complementary
tools to evaluate the correlation between amino acid sites [7], annotate protein functional domains
[8], reveal possible amino acid interactions, and predict the interactions between motifs or proteins
[9, 10].

As to the influenza viruses, many computational methods detecting the antigenic mutations have
been proposed. For example, Smith et al. pioneered the mapping of antigenic evolution and genetic
evolution, revealing that the influenza viruses undergo continuous genetic evolution pressure,
while the antigenic evolution is more punctuated with 11 antigenic clusters of influenza A/H3N2
being detected. The comparison between genetic and antigenic evolution indicated that some
mutations bear a disproportionately large effect on the antigenicity of influenza [11]. Shih et al.
analyzed the frequency changes of all HA1 amino acids, showing that the positive selection on
HAL is ongoing most of the time. However, the antigenic drift of influenza is punctuated which
can be changed by a single substitution at antigenic sites of HAL, or in most cases, by simultaneous

multiple fixations [12]. Koel et al. extended the works by investigating the antigenic clusters and
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all observed substitutions. It was found that seven cluster-transition substitutions were responsible
for the antigenic cluster transitions, all of which located at or around the receptor-binding sites of
HA [13]. Recently, Quan et al. developed a computational model RECDS (recognition of cluster-
transition determining sites) using a gradient boosting classifier to rank the importance of all HA
sites, and evaluate the contribution of an HA amino acid site to the antigenic evolutionary history
of influenza viruses [14]. The RECDS is a feature-based (both sequence-based features and
structure-based features) computational model under the assumption that features dominating
antigenicity are highly conserved. Statistical models on positive selection sites are mainly based
on the ratio of nonsynonymous to synonymous mutations (dN/dS ratio) [15]. Tusche et al.
integrated the dN/dS as a measure of selection, the ancestral information inferred from

phylogenetic trees, and spatial proximity of sites to identify regions under selective pressure [16].

However, these methods do not pay attention to the substitution dependency on the HA.
Information theory based strategies are the most extensively used to measure the covariance
between mutations [17]. For example, Baker et al. developed a web-based tool CoeViz for
calculating and visualizing covariance metrics (mutual information, chi-square statistics, Pearson
correlation, and joint Shannon entropy) [18]. Xia et al. constructed a site transition network based
on the pairwise mutual information between amino acids of the HA sequences [19]. The network
incorporating correlation information between residues improved the prediction of site mutations
with an accuracy of 70%. Besides, EIma et al. considered the information of HA evolution. A
mass-based protein phylogenetic model was proposed to identify functional comutations [20].
Alternatively, machine learning approaches are also applied to detect comutation patterns. For
example, Chen et al. applied association rule mining to explore co-occurring mutations on H3 [21].
Du et al. proposed a feature-based Naive Bayesian network to predict antigenic clusters [22].

However, those methods mainly depend on the protein sequences, lacking the chronological and
3D structural information. In this study, we proposed a pipeline for uncovering not only single-
mutations under positive selection pressure, but also co-mutations of influenza viral protein
sequences. Besides, we analyzed the co-mutations of hemagglutinin sequences of human influenza
A/H3N2 to evaluate the effectiveness and robustness of the proposed pipeline. The detected

mutation sites are highly overlapped with those reported to be under positive selection pressure,
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92  especially interfaces exposed to the antigenic binding. The proposed pipeline is promising to be
93  applied to analyzing the molecular evolution of all influenza proteins.

94

95 Methods
96

97  The flowchart of the proposed pipeline for uncovering significant single-mutations and co-

98  mutations in particular influenza protein sequences is presented in Fig. 1. The overall pipeline

99  composed of five major procedures, i.e., (i) Sub-pipeline 1 that retrieved, clustered and aligned a
100  subset of sequence data from local influenza genome datasets, (ii) Sub-pipeline 2 that identified
101 and removed outliers detected following the linear regression of root-to-tip distances in inferred
102 neighbor joining (NJ) tree against isolation dates, (iii) Sub-pipeline 3 that extracted substitution
103  model parameters from a maximum likelihood (ML) tree reconstructed from aligned sequences
104  and used them to simulate sequence evolution, (iv) Sub-pipeline 4 that reconstructed resampled
105  trees from aligned sequence data (either real or simulated one), and (v) Sub-pipeline 5 that
106  calculated supports for single-mutations and co-mutations detected in the resampled trees. The
107  evolutionary parameters, i.e., the rate of substitution and the date of origin, were required for co-
108  mutation detection and remaining analyses (interpretation), and could be robustly estimated from
109 the root-to-tip regressions of the resampled trees. At the final stage, the distributions of supports
110  for the single-mutations/co-mutations from simulated sequence data were used to set a threshold
111 for claiming significant single-mutations/co-mutations from the real sequence data. The details of
112 the local influenza genome datasets and steps in each major procedure in the pipeline are described
113 shortly, while the use of the pipeline for analyzing the evolutionary patterns of the hemagglutinin
114  (HA) sequences of human influenza A/H3N2 viruses are presented in the Results and Discussions.
115
116  Influenza genome datasets. Local datasets consisting of influenza virus genomes, transcriptomes,
117  proteomes, and their metadata (including the virus types, virus subtypes, virus names, and date of
118  isolation) were created for this work. The records were retrieved from NCBI Influenza Virus
119  Resource [23] or GISAID database [24]. Only records of influenza viruses whose genome was
120  complete, associated coding/protein sequences could be identified and were not too short, and
121 information of the host, location, and date of collection (for the date, if only the day was missing,

122 then it was set to the 15th of the month; if the day and the month were missing, then it was set to
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30 June of the year) was available, were included in the datasets. The records were cleaned and
reformatted into one tab-delimited text file of metadata and eight tab-delimited text files of

sequence data that correspond to each of the eight segments of influenza virus genome.

Fig. 1. Phylogenetic tree-based pipelines for uncovering significant single-mutations and co-

mutations in evolving influenza viral proteins.

Influenza Genome Datasets Sub-pipeline 2. Outlier Sub-pipeline 4.
analysis Reconstruction of resampled
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Sub-pipeline 1 — Sequence data retrieval and alignment. This pipeline was used to subset the
full nucleotide sequences, coding sequences and protein sequences of a particular gene of a specific
influenza A subtype or influenza B lineage from the local datasets described previously, and each
of the dataset was stored into a fasta file. The description of each fasta sequence record included
the sequence ID, gene name, genome 1D, name of the corresponding influenza virus strain, country
and the date of virus isolation. The subsetted, non-redundant coding sequences were then aligned
to codon position. For fast alignment and considering the sequences were highly similar, the
protein sequences were first clustered using the CD-HIT tool [25] to obtain clusters of sequences

whose percent identity to a representative sequence was above a certain threshold (we used a
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140 threshold of 98%). Clusters containing protein sequences of different length were split according
141  totheir length. Subsequently, the representatives of CD-HIT clusters were aligned with the muscle
142  package [26] and the protein alignment was then used to guide the alignment of the corresponding
143  coding sequences to codon position. The alignment of each of the rest of the coding sequences to
144  the alignment of the representatives was done according to the alignment of its corresponding
145  representative. The results of the alignment were visualized with MEGA7 software [27] for
146  inspection.

147

148  Sub-pipeline 2 — Outlier analysis. For outlier detection, we assumed that the sequence evolution
149  follows a strict molecular clock, i.e., all branches in the phylogenetic tree evolve at the same rate.
150  To evaluate this assumption, the genetic distances based on Jukes-Cantor (JC) substitution model
151 [28] were calculated from the aligned coding sequences and used to construct an NJ tree [29].
152 Assuming the sequences evolve progressively, the phylogenetic tree was rooted using one of the
153  earliest coding sequence as an outgroup. The root-to-tip regression analysis was then used to
154  explore the association between genetic distances of the samples from the tree root and sampling
155  dates. Denoting these two variables as d,; and t;, respectively, where r represents the tree root
156 and i represents the samples or tree tips, the regression model can be written as: E[dr,i] =
157  u(t; — t,-). The gradient (i) and x-intercept (t,.) provide estimates for the substitution rate and the
158  time of the tree root (the date of origin), respectively. Given the nature of the sequence data that is
159  heterochronous (collected at different time points), a strong linear correlation between d,.; and ¢t;
160  suggests a high level of strict clock-like signals. Due to the non-independency of the individual
161  data points, the root-to-tip linear regression is not appropriate for statistical hypothesis [30].
162  Nonetheless, the regression approach is reasonably used for identifying outliers. Here we identified
163  a data point as an outlier if the absolute value of its residual from the regression line was larger
164  than five times interquartile range.

165

166  Sub-pipeline 3 — Simulating sequence evolution. After outliers were removed, a new
167  phylogenetic tree was reconstructed using a more complex substitution model and algorithm. In
168  particular, we reconstructed an ML tree using GTR + G + I substitution model implemented in
169  phangorn package [31]. The GTR substitution model [32] is a type of continuous-time Markov

170  model that is most general neutral, independent, finite-sites and time-reversible model. Its
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171 parameters consist of four equilibrium base frequency parameters (m,: the frequency of base A,
172 mg: the frequency of base G, m.: the frequency of base C, and m: the frequency of base T) and
173 six substitution rate parameters (¢ the substitution rate parameter for A - G and G — A, f: the
174  substitution rate parameter for A — C and C — A, y: the substitution rate parameter for A —> T
175 and T — A, & the substitution rate parameter for G —» C and C — G, & the substitution rate
176  parameter for G — T and T — G, and 7: the substitution rate parameter for C — T and T — C).

177  These parameters form the equilibrium base frequency vector I1 = (74, s, e, r) and the rate

178  matrix
—(amg + prc +ymr) amg Brc Yy
amy —(amy + 6mte + emy) 8 EMT
179 Q= V4
B 61 —(Bry + 61 + nmr) Nty
YTy ETg T —(yma + emg + n7c)

180  for the continuous-time Markov model. When considering the GTR + G + I model, a discrete
181  Gamma distribution (4+G) is used to take into account the rate heterogeneity among sites and a
182  fixed fraction of sites is assumed to be evolutionary invariable (+1). These add two parameters for
183  the Gamma distribution, i.e., the number of rate categories and the shape parameters, and another
184  parameter for the proportion of invariant sites into the model. The estimated GTR + G + I
185  substitution model parameters, the structure of the ML tree (that included the length of their
186  branches) and the sequence at the tree root (inferred using Fitch algorithm [33]), were then used
187 to simulate sequence evolution with Pyvolve [34]. Note that Pyvolve does not model
188 insertion/deletion, hence any gap in the root sequence were removed. Sequences produced at the
189 tip of the tree as the results of simulation were used to create a new sequence dataset that is referred
190  to as simulated sequence dataset.

191

192  Sub-pipeline 4 — Reconstruction of resampled trees. To reconstruct resampled phylogenetic
193  trees from real or simulated sequence dataset, the aligned sequences were first grouped according
194  to their sampling year. Before grouping, one of the earliest sequence was first singled out and it
195  will always be included for sampled tree reconstruction. The grouping was done year by year, i.e.,
196  starting from the earliest year to the latest year, and the earlier sequences were grouped into a
197  single year group if the total number of the sequences was more than a certain threshold (here we
198  used a threshold of 20). After sequence grouping, we repeatedly and randomly sampled a fixed

199  number of aligned sequences from each year group and added the earliest sequence to the sample.
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200  An ML phylogenetic tree was then reconstructed for each sample usinga GTR + G + I substitution
201 model implemented in phangorn package. The resampled ML trees were rooted using the earliest
202  sequence as an outgroup and then used to calculate bootstrap estimates for the substitution rate and
203  the date of sequence origin, i.e., by averaging the estimates obtained from each tree using the root-
204  to-tip regression approach.

205

206  Sub-pipeline 5 — Mutational analysis with resampled trees. Mutational analysis was done using
207  resampled phylogenetic trees from each of the real and simulated sequence data. Each edge length
208  ordistance between two adjacent nodes in the trees was associated with the evolutionary distance,
209 i.e., the number of nucleotide substitutions per site estimated based on the chosen substitution
210  model. The distance between any two nodes (of interest, between ancestor and predecessor) in the
211 tree was calculated by summing the length of edges in the path connecting the two nodes. The
212 coding and protein sequences at each internal node of each tree were inferred using the Fitch's
213 algorithm [33]. Amino acid mutations were detected at each node (except for the root) by
214  comparing its protein sequence to its parent's protein sequence. Each amino acid mutation was in
215  the form AA1-p-AA2, representing a mutation of a given amino acid AAL in the parent node to
216  another amino acid AA2 in the child node at a given site p in the sequence. Finally, the distance
217  of each node to the root of the tree was also recorded.

218

219  The resampled phylogenetic trees were used to calculate support values that indicate the signal
220  strength of single-mutational and co-mutational events during sequence evolution. To calculate
221 supports for single-mutations, each of single-mutations observed in the trees was mapped to a list
222 of real numbers representing the distances of the nodes where the mutation observed to their
223 corresponding root. Then, for each mutation, we smoothed the distribution of its distance data with
224  a Gaussian kernel density estimate [35], followed by the detection of the peaks that were defined
225 as local maxima centered in any interval for the distance. Assuming hy, h,, ..., h;, are the heights
226  of the detected peaks for mutation m at distance to the root d,, d,, ..., di, then the strength of the

227 signal for m at distance d;, denoted by S(m,d;), was calculated as follows: S(m,d;) =
228 MmN/ j:’l” h;, where N is the number of observations for the mutation of interest. The formula is

229 indicative of the portion of observations that support the observed mutation. In addition to

230 calculating supports for single-mutations found in any node in the resampled trees, we also
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231 calculated supports for single-mutations that were only observed in the longest paths of the
232 resampled trees. The version of mutational analysis that considers any path in the resampled trees
233 istermed as all path analysis, while the one that considers the longest path is termed as the longest
234  path analysis.

235

236 The supports for co-mutations were calculated in similar way. Here, we considered co-mutations
237 as any possible pair of single-mutations (the order of the single-mutations does not matter)
238  observed at a single node or from two different nodes that had ancestor-predecessor relationship
239  and distance below a certain threshold (which ought to be influenced by the estimated substitution
240 rate). Each co-mutation was mapped to the distance of the ancestral node to the root of its
241  resampled tree. Note that if the co-mutation was observed at a single node, then the node was
242  considered as both ancestor and predecessor associated with the co-mutation. Algorithmically, the
243 co-mutation list and the map can be created while walking from an initial node (any node other
244  than the root), in the direction to the associated root, up to the node whose distance to the initial
245  node is below a certain threshold. The rest of the procedure is as described previously for
246  calculating the supports for single mutations. The complete procedure for calculating supports for
247  co-mutations is formalized in Algorithm 1.

248

249  Algorithm 1: Pseudocode for calculating supports for co-mutations from sampled phylogenetic trees.
250
251 Input: A positive real number d* and a set of I phylogenetic trees, i.e., {T; = (V;,E;)| i = 1,2, ..., I}, where V; and E;

252 are the set of nodes and edges in the tree, respectively. The root of the i-th tree is denoted as r; and each node v in the
253 tree is labelled with the distance of the node to its respective root and the set of mutations observed in the sequence
254  associated with the node, denoted as d(v, r;) and M,,, respectively.

255

256  Output: Function S that maps co-mutations at inferred distances to their support values.

257

258  # Mapping each co-mutation observed in the phylogenetic trees to the distance of the ancestral (earlier) node
259 associated with the co-mutation to its respective root.

260 Initialize: Dictionary CoM = {}.

261 Foreachi =1,2,...,1do:

262 Foreach v, € V; — {r;} do:

263 Find a path P from v, to r;.

264 Foreach v € P — {r;} do:
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265 If d(vy, ;) — d(v,1;) < d* then:

266 Foreach {m;,m,} € {{m, n}|(m,n) € My, X M, U M,, X MV} do:
267 If CoM[{m,, m,}] = @ then:

268 CoM[{m,, m,}] = (d(v, ri))

269 Else:

270 Concatenate CoM[{m,,m,}] and (d(v,;)) into
271 CoM([{m,, m,}].

272

273  # Calculating the supports for co-mutations at inferred distances where the co-mutational signals reaching their peaks
274  Foreach {m;, m,} € keys(CoM) do:

275 Calculate Gaussian smoothing G for the array of distance CoM[{m,, m,}].

276 Find the locations d, d,, ..., d;, of the peaks for G that are local maxima centered in any interval
277 for the distance and their respective height hy, h,, ..., hy.

278 Foreachi =1,2, ...,k do:

279 Calculate support for {m,, m,} at distance d; using the equations

280 S(fmy,my},d;) = |CoM[{my, m,}| x by /SIS by

281

282 ldentification of significant single-mutations and co-mutations. The simulated sequence data
283  generated by Pyvolve were under the assumptions of continuous-time Markov model (Markov
284  process), which include the neutrality and site independence. Hence, we could evaluate whether
285 the real sequence data followed the two assumptions by comparing the distribution of relevant
286  statistics calculated from the real sequence data with that calculated from the simulated sequence
287  data. Here we compared the distributions of supports for single-mutations and co-mutations (as
288  described in the previous section) to evaluate the neutrality and site-independency, respectively.
289  Given the site neutrality assumption was rejected, then a certain quantile (e.g., 95% quantile) of
290 the distribution of supports for simulated single-mutations could be used as a threshold for
291 identifying significant single-mutations in the real data. In similar fashion, if the site independence
292  assumption was rejected, then a certain quantile of the distribution of supports for simulated co-
293  mutations could be used as a threshold for identifying significant co-mutations in the real data.
294

295  Other analyses. To optimize the pipeline and assess the robustness of the output, we calculated
296 the overlap coefficient and Kendall rank correlation between the list of top single-mutations/co-
297  mutations output by two different runs of the pipeline. For this, the supports for each unique single-
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298  mutation/co-mutation from each run were first summed and then the single-mutations/co-
299  mutations were sorted in descending order according to their aggregated support. Given the top N
300 single-mutations/co-mutations Xy = (xq, x5, ..., xy) from the first run and Yy = (y1,¥2, ..., Yn)
301 from the second run, the overlap coefficient was calculated using the following formula:
302 overlap(Xy,Yy) = |Xy N Yy|/N.

303

304  For calculating the Kendall rank correlation, we first determined the union of Xy and Yy, i.e., Xy U
305 Yy. Then, we assigned a ranking for each single-mutation/co-mutation in X, U Yy according to the
306  first run ordering as well as the second run ordering. For all single-mutations/co-mutations that
307 werein Xy U Yy but not in Xy, the first run assigned their ranking to N + 1. In the same way, for
308 all single-mutations/co-mutations that were in X, U Yy but not in Yy, the second run assigned their
309 ranking to N + 1. The two ranking assignments for single-mutations/co-mutations in Xy U Yy,
310 each of them was sorted in descending order, were then used to calculate the Kendall rank
311  correlation: 7 = ((number of concordant pairs) — (number of discordant pairs))/(L(L — 1)/2),
312 where L = |Xy UYy| and assuming (q, g3, -.-,q.) and (ry, 15, ..., 1) be the sorted ranks by the
313 first run and the second run, respectively, pairs of observations (g;, ;) and (qj,rj), where i < j,
314  are said to be concordant if g; > g; and r; > 7; and discordant if ¢; > q; and r; < 1;, orif q; < gq;
315 and r; > 1y (if q; = g and r; = 7, the pair is neither concordant not discordant).

316

317  Finally, for the interpretation of the single-mutations and co-mutations output by the pipeline, each
318 amino acid site was mapped to H3 numbering and epitope regions (epitope A, B, C, D and E). The
319  mapping of the sites to epitope regions was based on the mapping provided in [36].

320

321 Results and Discussions
322

323  HA sequences of influenza A/H3N2 and outlier analysis

324

325  We explored the use of the pipeline to uncover significant single-mutations and co-mutations
326  during the evolution of the A/H3N2 HA. For this, the pipeline first subsetted 7,727 non-redundant

327  from 14,301 A/H3N2 HA sequences available in the local influenza genome datasets (the sequence
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328 metadata are provided in Table S1; the acknowledgement table for sequences obtained from
329  GISAID is provided in Table S2). An NJ tree was then reconstructed from the aligned sequences
330 and used for checking the assumption of the constant rate of evolution of the HA sequences. As
331 shownin Fig. 2A, the assumption was strongly supported by multiple R-squared value of the root-
332 to-tip regression that was >0.95. Then, using a multiplier for standard deviation of 5 for outlier
333  detection, we identified 58 outliers that were mainly dominated by the sequences collected in the
334  middle of 2012 from a number of regions in North America, including Indiana, lowa, Michigan
335  Minnesota, Pennsylvania and Ohio. In the phylogenetic tree, the outliers appeared as the tips on
336 the long branch emerging from an internal node at a particular distance to root (Fig. 2C; the outliers
337 emerge at distance of 0.11).

338

339  For further analysis, the outliers were removed. The removal of the outliers improved the
340  regression model (Fig. 2B), but it did not remove some obvious gap around year 2003-2005 in the
341  scatter plot. Following some investigation, the gap could be linked to the reassortment event and
342  genome-wide selective sweep during the period that replaced the HA of the major circulating
343  influenza A/H3N2 lineage (clade A) with the HA of a minor co-circulating H3N2 lineage (clade
344  B) [37]. The existence of this phenomenon highlights the importance of the phylogenetic tree-
345 based mutational analysis we proposed — sequence alignment-based approaches may lead to
346  misleading list of mutations when analyzing sequence data arise from such phenomenon.

347

348  Despite the gap, we could still safely assume that the substitution rate of the HA of influenza
349  A/H3N2 was constant during the period of sequence data collection due to high R-squared value
350 and its improvement after removing outliers. Indeed, previous studies such as by [38] supported
351 this assumption. Additionally, the assumption that the HA sequences evolve progressively was
352  supported by the ladder-like structure of the phylogenetic tree of HA sequences that excluded the
353  outliers (Fig. 2D). Biologically, the ladder-like phylogeny of the HA sequences has been regarded
354  as the consequence of strong directional selection, driven by host immunity [39].

355

356

357

358
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359  Fig. 2. Root-to-tip regressions and phylogenetic trees of the HA sequences of influenza A/H3N2
360 before and after removing outliers. Outliers are any data point more than five times standard
361  deviation from the average distances of all data points to the regression line. (A) Regression of
362  root-to-tip genetic distance against sampling time for all HA sequences before outlier removal. (B)
363  Regression of root-to-tip genetic distance against sampling time after outlier removal. (C)
364  Neighbor joining tree of a subset of sequences that contain some outliers. The tips corresponding

365 tothe outliers are in red. (D) Neighbor joining tree of the same subset of sequences but the outliers
366  are notincluded.
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368

369

370  Estimation of evolutionary parameters and simulation of sequence evolution

371

372 Following the outlier analysis, we reconstructed an ML tree under GTR + G + I substitution model
373  using the alignment of all sequence data except the outliers. For GTR + G + I substitution model,
374  the estimated discrete gamma model parameters were 4 for the number of rate categories and

375 1.1003 for the shape parameters; the estimated proportion of invariant sites was 0.2500; the
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376  estimated equilibrium base frequency parameters were 0.4061, 0.1688, 0.1842 and 0.2409 for

377  nucleotide A, C, G and T, respectively; and the estimated rate matrix as follows:

0.0000 1.3128 6.6816 0.4432

1.3128 0.0000 0.1288 7.5154
6.6816 0.1288 0.0000 1.0000

0.4432 7.5154 1.0000 0.0000
379  Theestimated GTR + G + I substitution model parameters, along with the structure of the ML tree

378 Q=

380 (that included the length of their branches) and the inferred sequence at the tree root, were used to
381  generated simulated HA sequence dataset under GTR + G + I substitution model (see Methods).

382

383  In addition, we also estimated the substitution rate and the date of origin of the HA of influenza
384  A/H3N2 sequence. We initially estimated these parameters from the root-to-tip regression that
385  corresponds to the ML tree above, which gave the substitution rate of 0.004618 substitution per
386  year and the date of origin of 1967.34). However, in the downstream analyses, the estimated
387  parameters did not provide reasonable estimated years for the inferred mutations. Thus, we took a
388  different approach, i.e., a bootstrap approach, that averaged the estimated regression parameters
389 calculated from each of the 1000 resampled ML trees reconstructed in the next stage of the
390 pipeline. Using this approach, the estimates for the substitution rate and the date of origin were
391 0.004369 substitution per site per year and 1967.90, respectively. These parameter values were
392  proven to be better for mutational analyses. In addition to estimating the years of inferred
393  mutations, the estimate for the substitution rate was also used to calculated the threshold distance
394  between ancestor and predecessor in the resampled phylogenetic trees (the d* in Algorithm 1) for
395 the identification of co-mutations. In particular, we set the expected number of substitutions per
396 site in one year, i.e., 0.004369 substitutions, as the value for d*. One reason for using such d- is
397  due to the fact that influenza epidemics occur yearly and vaccines are updated almost every year
398 by WHO,; thus, significant mutational patterns should be observed within 1 year.

399

400 Parameter optimization for mutational analyses using resampled phylogenetic trees and
401  setting the threshold for identifying significant single-mutations and co-mutations

402

403  Two parameters associated with the reconstruction of resampled trees in Sub-pipeline 4 were
404  considered to significantly affect the output of the mutational analysis by Sub-pipeline 5 and thus

405  optimized. The first one was the number of sequences randomly selected from each isolation year
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406  group (or in other words, sample size per year group), which effectively determine the size of the
407  resampled phylogenetic trees (i.e., the number of taxa in the resampled phylogenetic trees). The
408  second one was the number of the resampled trees or the number of the resampling iterations. The
409  values to be explored for the first parameter were 5, 10, 15 and 20, while for the second parameter
410  were 300, 700, 1000, 1500 and 2000. The optimal parameters were determined by investigating
411  the robustness of the output, i.e., comparing the top 500 single-mutations/co-mutations (after
412 summing the supports for each unique single-mutation/co-mutation and sorting the single-
413  mutations/co-mutations in descending order according to their aggregated support) that were
414  output by the pipeline using different combination of these two parameters. In particular, we varied
415 one parameter while fixing another, and calculated the overlap coefficient and Kendall rank
416  correlation between two ranking groups output by the runs whose parameters being varied were
417  consecutive.

418

419  Asshown in Fig. 3, the overlap coefficients between two ranking groups were very high (>.95 and
420 close to 1) for single-mutations regardless we varied the size of the trees or the number of
421  resampled phylogenetic trees. On the other hand, the Kendall rank correlations between two
422  ranking groups stayed high when the moving parameter was the number of resampled trees.
423  However, the correlation got lower when the moving parameter was the sample size per year
424  group; it reached <0.80 when we compared the sample size of 5 and 10. For co-mutations (Fig. 4),
425  we once again observed that when the moving parameter was the number of resampled trees, the
426  values for both overlap coefficients and Kendall rank correlations were in general still high
427  (>0.90), except when comparing the number of resampled trees of 300 vs 700 (but still >0.85). But
428  when the moving parameter was the sample size per year group, apparently the overlap coefficients
429  and Kendall rank correlations were higher when we compared the sample size of 10 and 15.
430  Overall, we may conclude that changing the number of resampled trees when it is already >700
431  does not affect the output of the pipeline significantly, and that the sample size per year group
432 between 10 and 15 provides a more consistent result. The same conclusion could be drawn when
433 we lowered the number of top single-/co-mutations to 100 (data not shown).

434

435

436


https://doi.org/10.1101/708420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/708420; this version posted July 19, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

437  Fig. 3. The robustness of single-mutations output by the proposed pipeline when varying the

438  number of resampled trees and sample size per year group.
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440

441  For further analyses throughout the paper, we fixed the number of resampled trees to 1,000 and
442  the sample size per year group to 15. To demonstrate that these parameters provided robust output,
443  the overall pipeline was run 10 times independently. In similar fashion to previous, the overlap
444  coefficients and Kendall rank correlations between top 500 single-mutations/co-mutations output
445 by two different runs (note that in total, there were 45 pairs of runs) were calculated to assess the
446  robustness of the pipeline. But here, the overlap coefficients and Kendall rank correlations were
447  also calculated for lists of single-mutations/co-mutations that were associated with the simulated
448  sequence datasets in addition to the real one. As it can be seen in Fig. 5A and 5B, the overlap
449  coefficients and Kendall rank correlation between two ranking groups in the case of both real and
450 simulated sequence datasets were very high (>0.90) for single-mutations. For co-mutations, the
451  overlap coefficients were also still high for both datasets (>0.90); however, the Kendall rank
452  correlations dropped to about 0.85 and 0.72 for real and simulated datasets, respectively. Of
453 interest, the overlap coefficients and Kendall rank correlation for real dataset were generally higher

454  than those for simulated dataset. This result indicates that top single-mutations/co-mutations were


https://doi.org/10.1101/708420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/708420; this version posted July 19, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

455  highly maintained in the analyses of real dataset, and thus some of them must be at the top not by
456  chance.
457
458 In addition to inspecting the overlap coefficient and Kendall rank correlation, we also evaluated
459  the robustness of the output by examining the QQ plots that compare distributions of supports for
460  single-mutations/co-mutations from two different runs. If two support distributions are similar,
461  then the points in the QQ-plots will be mainly scattered on the line y = x. As exemplified in Fig.
462  6A, 6B, 6E and 6F, the Q-Q plots indeed suggest that different pipeline runs on the same dataset
463  (real or simulated one) output distributions of supports for single-mutations/co-mutations that were
464  highly similar. Thus, the pipeline was robust in term of producing lists of single-mutations/co-
465  mutations that have particular support distributions.
466
467  Fig. 4. The robustness of co-mutations output by the proposed pipeline when varying the number
468  of resampled trees and sample size per year group.
Overlap analyses Rank analyses
o e ML 1 |
the sample size per year group § i 2 § i
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470
471  Next, we compared the lists of single-mutations and co-mutations output by Sub-pipeline 4 and
472  Sub-pipeline 5 on different simulated sequence datasets. Expectedly, since different simulations
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473  likely produce different mutations, we observed low overlap coefficients (which was even 0 for
474  co-mutation case) and negative Kendall rank correlations (that indicated disagreement) between
475  top 500 single-mutations/co-mutations from different datasets (Fig. 5C). But mechanistically,
476  different simulations were expected to produce similar distributions of supports for single-
477  mutations/co-mutations. Indeed, despite data points that deviates from the line y = x in the right
478  tail, this was confirmed by the corresponding QQ-plots (Fig. 6C and 6G).

479

480  Fig. 5. Evaluating the robustness of the proposed analysis pipeline on HA proteins sequences of
481  influenza A/H3N2. Averages of overlap coefficients and Kendall rank correlations for all possible
482  pairwise comparisons between the top lists of single-mutations and co-mutations output by 10
483  different runs on (A) real dataset, (B) the same simulated dataset and (C) different simulated
484  datasets. The overlap coefficients and Kendall rank correlations were calculated based on top 500

485  single-mutations or co-mutations of each run.
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488  The deviation from the line y = x in the right tail was more obvious when we compared the
489  distributions of supports generated from real and simulated datasets (exemplified in Fig. 6D and
490  6H for single-mutations and co-mutations, respectively). Overall, this once again indicates that the
491  real dataset contained more extremes (i.e., single-mutations/co-mutations with a high support
492  value) than simulated datasets, which appeared not by chance. Thus, as described in the Methods,
493  we may use the support data given by simulated dataset for the identification of statistically
494  significant single-mutations and co-mutations during the real sequence evolution. For this purpose,
495  we set the 95% quantile of the support distributions for single-mutations from simulated dataset
496  as a threshold for the significance of single-mutations from real dataset for both all path and the
497  longest path analysis, and the 99% quantile for the co-mutation case. The 95% quantile for single-

498  mutations gave a threshold of 999.85 and 1000 for all path and the longest path analyses,
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499  respectively, and the 99% quantile for co-mutations gave a threshold of 994. As it can be observed
500 in Fig. 6D and 6H, the threshold for all path’s single-mutation and co-mutation analyses were
501 close to the beginning of the deviating points. The appropriateness of choosing higher quantile as
502 athreshold for significant co-mutations was due to higher coverage of co-mutations whose pairs
503  of single-mutations were both significant (94.5% coverage when using 99% quantile, compared to
504  62.9% coverage when using 95% quantile).

505

506  Fig. 6. Q-Q plots that compare two distributions of supports for single-mutations and co-mutations
507  output by two different runs on the real dataset (A and E, respectively), two different runs on the
508 same simulated dataset (B and F, respectively), two different runs on different simulated datasets
509 (C and G, respectively), and a run on real dataset versus a run on simulated dataset (D and H,
510  respectively).

(A) (B) (€ (D)

#
d o

8 £ F
Al c i
i H
2
e § o e
s H
£
L 3
H =

= z

x . : T e e e e

quantilesfrom run-2 onreal dataset guantilesfrom run-2 onsimulated dataset quantilesfrom arunon simulateddataset2 quantilesfrom arunon realdataset

(F)

511 quantilesfrom run-2 enreal dataset quantilesfrom run-2 on simulated dateset quantilesfrom arunon simulated dataset2 quantilesfrom arunon real dataset

imulated datas et
onsimulated dataset

1

guantiles from arunonsimulated dataset 1

quantile from
quantile from arun

000 P )

(G) (H)

™

onsimulated dataset 1
unonsimulated dataet

%
guantiles from run-1 onsimulated datas et

quantiles from arun
quantiles from

512
513
514
515
516
517
518
519
520


https://doi.org/10.1101/708420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/708420; this version posted July 19, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

521  Patterns of significant single-mutations during the evolution of the HA of influenza A/H3N2
522 viruses

523

524 In all path analysis, 346 significant single-mutations during the evolution of the HA of human
525 influenza A/H3N2 were identified. The majority of the mutations, i.e., 73.2% of the total
526  significant single-mutations observed in the trees occurred in the epitope regions of the HA protein.
527  In more details, the number of single-mutations observed in epitope A, B, C, D and E were 60, 60,
528 38, 63, and 32 respectively. Nonetheless, a significant number of single-mutations (93 mutations)
529  was also observed in the non-epitope regions. In the longest path analysis, we identified 117
530 significant single-mutations whose majority (77.8%) occurred in the epitope regions, i.e., 24, 24,
531 10, 18 and 15 significant single-mutations observed in epitope A, B, C, D and E, respectively. The
532 number of significant single-mutations observed in the non-epitope regions for the longest path
533 analysis was 26. Almost all significant single-mutations in the longest path analysis were also
534  observed in all path analysis, i.e., 111 out of 117.

535

536  Sites 144 and 145 in epitope A had the most frequent significant single-mutation occurrences in
537 all path analysis, which were 8 and 11 times, respectively (Table 1). Interestingly, the mutations
538  atsites 144 and 145 occurred obvious co-occurrences despite their very close proximity in the HA
539  structure (Fig.7A). Sites 45 in epitope C and 193 in epitope B followed the list with the number of
540  significant single-mutation occurrences of 7 times. Nonetheless, only 4 mutations at site 144, 3
541  mutations at site 145, 1 mutation at site 193 and none at site 45 were identified in the longest path
542  analysis (Fig.7B). On the other hand, 5 significant single-mutations at site 189 in epitope B were
543  all observed in the longest path analysis, and this made site 189 as the top site that had the most
544  frequent significant single-mutation occurrences in the longest path (Fig. 7A and 7B). The five
545  significant amino acid substitutions occurring at this position were all different: Q to K (estimated
546  year of occurrence in 1975), Kto R (in 1985), R to S (in 1991), S to N (in 2003) and N to K (in
547  2010) (Fig. 8), which may indicate the key role of site 189 as a major driver for the evolution of
548  the HA of influenza A/H3N2 viruses.

549

550

551
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552  Table 1. The most frequent single-mutations during the evolution of the HA of influenza A/H3N2

553  observed in all path analysis and the longest path analysis.

Location inthe  Number of HA sites
resampled trees occurrences Epitope A Epitope B Epitope C Epitope D Epitope E Non-epitope
All path 11 145
analysis 8 144
7 193 45
6 124 138 53 173 62
5 137, 142 159, 189 219,226, 92 3,347
229
The longest 5 189
path analysis 4 144
3 124,133, 155,156 50 172,226 83
145
554
555

556  The distribution of the significant single-mutation occurrences in all path analysis over the years
557  from 1968 to 2018 is shown in Fig. 7A, and the distribution of the occurrences in the longest path
558 analysis is shown in Fig. 7B. In Fig. 7A, we can observe the fluctuation of the number of
559  significant single-mutation occurrences and a trend in which more mutations tend to be higher in
560  some ranges of years (e.g., 1991-1995 and 1997-1999) and less in other ranges of years (e.g., 1987-
561 1989, 2000-2002 and 2004-2008). In Fig. 7B, a relatively consistent pattern in the number of
562  significant single-mutations in the longest path can be observed before around year 2000, where
563 >3 and <3 significant single-mutations were alternatively observed across the years. But after
564 1998, the number was generally <3 (often 0) over the years except in 2003, when the number
565  spiked to 11. Considering significant single-mutations occurred over the years in all path analysis,
566  the absence of significant single-mutations in the longest path analysis is very likely an indication
567  of the presence of multiple competing lineages. The absence in the period 2000-2002 could be
568 linked to the presence of multiple competing lineages of clades A, B and C as reported in [40],
569  while the absence in the recent periods is due to the divergence of clade 3c that began in early
570 2011 [41]. Furthermore, the fluctuation in the number of significant single-mutations in both all
571  path and the longest path analyses is relevant with the previous report in [42], which confirmed
572  alternating periods of stasis (neutral evolution without apparent substantial antigenic change) and
573  rapid fitness change in the evolution of the HA sequence of influenza A/H3N2.

574

575
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576  Fig. 7. The yearly frequency of significant single-mutations during the evolution of the HA of
577 influenza A/H3N2 detected in (A) all path analysis and (B) the longest path analysis. The
578 occurrences of significant single-mutations at sites of interest are indicated by stars in the
579  corresponding rows. The contribution of each of epitope regions (A, B, C, D and E) and non-
580 epitope region (N) to the total yearly frequency are indicated by color (red for epitope A, orange
581  for epitope B, green for epitope C, blue for epitope D, cyan for epitope E and purple for N).
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585  To further validate our results, we investigated the overlap between the sites associated with
586 significant single-mutations in our list and the sites that have been reported to be under selection
587  pressure in other two studies. First we compared our results against the results by Bush et al. [43]
588  that were based on analysis of sequences collected between 1983 and 1997, only sites associated
589  with significant single-mutations that occurred in the period were considered. As a result, we found
590 that the majority of sites under positive selection pressure in the report were also in our list, i.e.,
591 23 out of 30 sites. The sites that were captured included sites 121, 124, 133, 135, 137, 138, 142,
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592 145, 156, 158, 159, 186, 193, 194, 196, 197, 201, 219, 226, 246, 262, 275 and 276; while the sites
593 that were not captured included sites 80, 128, 182, 190, 220, 310 and 312. In contrast, we recovered
594  only few sites under negative selection pressure in the report, i.e., 3 out of 18 sites. Indeed, these
595  observations were expected since the significant single-mutations we captured were the ones that
596  oughtto be fixed in the following generation of HA sequences of the viruses. The coverage of sites
597 under positive selection pressure was further confirmed when comparing our list with the result in
598  [44], which interestingly had a moderate overlap with the result in Bush et al. (only 13 sites in the
599  overlap; 22 sites in [44] are not in [43], and 17 sites in [43] are not in [44]). In particular, our list
600  of significant single-mutations in the period before 2012 (to match with the collection dates of
601  sequences in [44]) covered almost all of the sites in the patches under positive selection pressure
602  uncovered in the study, which include sites 47, 48, 50. 53, 62, 92, 94, 137, 140, 142, 144, 145,
603  156-159, 172-175, 186, 188, 189, 192, 193, 196-199, 220, 229, 275 and 276 (sites 91 and 171 were
604  not covered).

605

606  Next, we also revealed that the majority of single-mutations in the relevant period were associated
607  with antigenic cluster transitions as reported in [11]. As shown in Fig. 8, out of 67 single-mutations
608 (4 of them in non-epitope region) in the report, 51 of them were recovered in our analysis: 40 at
609  the longest path (in black and bolded; 15 of them are underlined to indicate that their occurrence
610 was in very close proximity to the year of the new antigenic cluster emergence) and 11 at non-
611  longest paths (in blue and bolded; 1 of them is underlined to indicate that its occurrence was in
612  very close proximity to the year of the new antigenic cluster emergence). In the table, we also
613  showed additional 65 single-mutations that were not in the report.

614

615  Additionally, we also noted that our analysis recovered almost all mutations at the 7 sites near the
616  receptor binding site (i.e., 145, 155, 156, 158, 159, 189 and 193) that had been experimentally
617  shown to be responsible for antigenic cluster transitions during influenza A/H3N2 virus evolution
618  [13]. These include T155Y during transition from HK68 to EN72; Q189K during transition from
619  EN72to VI75; G158E during transition from V175 to TX77; K156E during transition from TX77
620 to BA79; Y155H, S159Y and K189R during transition from BA79 to SI187; N145K and N193S
621  during transition from SI187 to BE89; S133D and E156K during transition from SI87 to BE92;
622  N145K during transition from BE92 to WU95; K135T, K156Q and E158K during transition from
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623  WU95 to SY97; and Q156H during transition from SY97 to FU02. Only mutation D193N during
624  transition from V175 to TX77 was not recovered. Moreover, the significant single-mutations found
625 inthis study also recovered the top 15 cluster-transition determining sites recently reported in [45],
626  which included sites 122, 133, 135, 144, 145, 155, 156, 158, 189, 190, 193, 197, 262, 276 and 278.
627

628  Fig. 8. Overlap between significant single-mutations and mutations playing a role in antigenic
629  cluster transitions of influenza A/H3N2 (as reported in [11]). Significant single-mutations obtained
630  from the longest path analysis are in black; they are bolded if reported in [11] and underlined if
631  their occurrence is in very close proximity to the year of the new antigenic cluster emergence.
632  Significant-single mutations only obtained from all path analysis and reported in [11] are in bold
633  blue; one of them is underlined to indicate that its occurrence was in very close proximity to the
634  year of the new antigenic cluster emergence. Mutations reported in [11] that are not found in our
635 analysis is in bold red and underlined. Mutations reported in [11] that are found in our analysis but
636  their occurrence are not in very close proximity are in bold grey and underlined. (HK: Hong Kong,
637  EN: England, VI: Victoria, TX: Texas, BA: Bangkok, SlI: Sichuan, BE: Beijing, WU: Wuhan, SY:
638  Sydney, FU: Fujian).
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642  Lastly, we present the frequency patterns of amino acid residues during 50 years of evolution of
643  the HA of influenza A/H3N2 viruses at each site associated with significant single-mutations found
644  in our analyses. Given the set of significant single-mutations from all path analysis denoted by A
645  and the set of significant single-mutations from the longest path analysis denoted by B, we grouped
646  the sites into three categories: (1) sites appeared in B but not in A — B, (2) sites appeared in A — B
647  butnotin B, and (3) sites appeared in B and A — B. Fig. 9A reveals that the hallmark of mutational
648  pattern at sites in the first group was the numerous replacements of a dominant amino acid residue
649  with another dominant amino acid residue, and each dominant amino acids generally could
650 dominate for a long period of time. On the other hand, Fig. 9B reveals that sites in the second
651  group often presented temporary appearance of competing amino acid residues. Even though the
652  competing amino acid residue once became the majority, it failed to dominate for a long term.
653  Finally, Fig. 9C reveals that sites in the third group presented more dynamics in their mutational
654  patterns, which combined the characteristics mentioned earlier. Practically, with regards to the
655  notions in [11], sites in the first group may play more roles in the enhancement of antigenic drift
656  or shaping the evolution of the HA, sites in the second group may play more roles in compensatory
657  mutations for retaining higher fitness and associated with clades emerged during specific epidemic
658  seasons; and sites found in the third group could both enhance antigenic drift as well as compensate
659  other mutations that enhanced antigenic drift.
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673  Fig. 9. Yearly frequency of amino acid residues during 50 years of evolution of the HA of influenza
674  A/H3N2 viruses for: (A) sites only found in the longest path analysis, (B) sites only found in all
675  path analysis, and (C) sites found in both all path and the longest path analyses.
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677  Patterns of significant co-mutations during the evolution of the HA of influenza A/H3N2
678  Vviruses

679

680  Using a threshold distance between ancestor and predecessor in the resampled phylogenetic trees
681  (the d* in Algorithm 1) of 0.004369 substitution per site for co-mutation detection and the 99%
682  quantile of support distribution for co-mutations from the simulated data as a threshold for
683  significance, and only considered co-mutations consisting of a pair of significant single-mutations,
684  we identified 343 significant co-mutations output by the pipeline. However, when considering site
685  pairs of the observed co-mutations, no site pair was observed more than twice during influenza
686  A/H3N2 virus evolution. In fact, we only identified 8 site pairs that occurred twice, including 3-
687 144, 62-144, 62-158, 121-142, 144-158, 155-189, 159-225 and 226-262; the rests occurred only
688  once. Nonetheless, when considering the co-mutational networks, some sites had higher degree or
689  number of co-mutational incidents with other sites. The site with the highest degree was 144, with
690 adegree of 20. Sites 145 and 189 with a degree of 13 followed the top list. Sites 124 and 226 had
691  adegree of 12; sites 92 and 156 had a degree of 11; and the rest had a degree of 10 or less.

692

693  When considering the epitopes, we found that the co-mutations mainly involved sites in non-
694  epitope region (N) and epitope A, B and D. The frequencies for co-mutations involving epitopes
695 A and B and involving N and epitope B were the highest, i.e., 33 times. The frequencies for co-
696  mutations involving N and epitope D, N and epitope A, N and N, epitopes A and D, and epitopes
697 B and D were 28, 27, 27, 23, and 22, respectively; the rests were 20 or less. Next, epitope region
698  with the highest degree was epitope A (104), followed by B (80), D (54), E (26) and C (13). The
699  degree of N was higher than the degree of epitopes C, D and E, i.e., 66. This observation suggests
700 the importance of mutations in non-epitope region that may play a role in maintaining the integrity
701 of the HA.

702

703 Next, we explored the temporal patterns of the significant co-mutations found in this study. For
704  this, we grouped the significant co-mutations by the estimated years of their occurrences by using
705  year group 1968-1972, 1973-1977, 1978-1982, and so on until 2013-2017 (as a note, there was no
706  co-mutation observed in 2018). The networks of co-mutational site pairs observed in each year

707  group and their transitions are shown in Fig. 10. The yearly frequency of co-mutations for each
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708  year group is also shown on the left or right of the corresponding network. As an initial
709  observation, we can see that the number of co-mutations over the years were continuously up and
710  down. For some years, the number of co-mutations was even very low (less than 5 and even 0),
711 while for some other years, the number was quite high (>10). Then, we can also observe that for
712 some transitions between year groups, the overlap between the sites were relatively small. Only
713  one site was shared by year groups 1973-1977 and 1978-1982, 1983-1987 and 1988-1992, and
714 1998-2002 and 2003-2007; two sites were shared by year groups 2003-2007 and 2008-2012; and
715  three sites were shared by year groups 1968-1972 and 1973-1977. Larger overlaps were observed
716  between year groups 1978-1982 and 1983-1987 (4 overlapping sites), 1988-1992 and 1993-1997
717 (9 sites), 1993-1997 and 1998-2002 (4 sites), and 2008-2012 and 2013-2017 (6 sites). In addition,
718  we can also observe a number of cliques in the co-mutational networks. Of particular interest, we
719  can see that sites with higher degree, i.e., 124, 144, 145, 189 and 226, were usually part of the
720  cliques.

721

722 When considering co-mutations whose pair consisting of significant single-mutations in the
723 longest path analysis, site pairs 137-158 and 155-189 co-mutated twice. Interestingly, sites 83 had
724  the highest degree (13), followed by sites 144 (10), 131 (8), 137 (7), 156 (7) and 189 (7). The co-
725  mutations involving epitopes A and B stayed at the top (16 times), and epitope A still had the
726  highest degree (49). Finally, the corresponding temporal patterns of the significant co-mutations
727 (Fig. 11) also revealed the presence of a number of cliques. The lack and absence of the co-
728  mutational networks in the last 2 periods corresponds to the lack and absence of significant single-
729  mutations in the longest path explained previously.

730

731 Overall, consistent with previous report by [42] and [46], our observation suggests that during the
732 evolution of influenza A/H3N2, the increased fitness of the HA was occasionally contributed by
733 simultaneous multi-site co-mutations. Here we argue that the events were likely driven by
734  mutations at a number of influential sites frequently observed as part of cliques in Fig. 10 and 11,
735 including sites 83, 144, 145, and 189. Furthermore, we also noted that a new configuration of
736  amino acids at these sites seemed to drive mutations at different sites that were not explored in the
737  previous years.

738
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739  Fig. 10. Networks of site pairs that significantly co-mutated every lustrum (a period of 5 years)
740  during 50 years of evolution of the HA of influenza A/H3N2 viruses. The networks considered all
741 significant co-mutations associated with significant single-mutations in all path analysis.
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744  Fig. 11. Networks of site pairs that significantly co-mutated every lustrum (a period of 5 years)
745  during 50 years of evolution of the HA of influenza A/H3N2 viruses. The networks only
746  considered significant co-mutations associated with significant single-mutations in the longest
747  path analysis.
748
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750 Conclusion
751

752 Inthis study, we present a novel phylogenetic tree-based pipeline for analyzing mutational patterns
753  during the evolution of influenza virus sequences. We demonstrated the use of the pipeline to
754  investigate the single-mutational and co-mutational patterns of the HA sequences of influenza
755  A/H3N2 viruses. In addition to known biologically significant mutations in HA and related
756  patterns, our approach allowed the identification of three groups of sites based the outcomes of all
757  path and the longest path analyses on the resampled phylogenetic trees. Sites in each group were
758  shown to exhibit specific characteristics of mutational pattern, which could be linked to their roles
759  in antigenic drift: enhancing antigenic drift, compensating other mutations that enhance antigenic
760  drift, or both. This classification may potentially be useful for evaluating candidate vaccines
761  targeting the HA.
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