

1 **What can we learn from over 100,000 *Escherichia coli* genomes?**

2 **Kaleb Abram<sup>1\*</sup>, Zulema Udaondo<sup>1\*</sup>, Carissa Bleker<sup>2,3</sup>, Visanu Wanchai<sup>1</sup>, Trudy M.**  
3 **Wassenaar<sup>4</sup>, Dave W. Ussery<sup>1#</sup>**

4 <sup>1</sup>Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little  
5 Rock, Arkansas, USA

6 <sup>2</sup>The Bredesen Center for Interdisciplinary Research and Graduate Education, University of  
7 Tennessee, Knoxville, TN, USA

8 <sup>3</sup>Department of Electrical Engineering and Computer Science, University of Tennessee,  
9 Knoxville, TN, USA

10 <sup>4</sup>Molecular Microbiology and Genomics Consultants, Zotzenheim, Germany

12 **#Corresponding author:** DWUssery@uams.edu

13

14 \*These authors contributed equally

15

16 **Running title:** Insights from 100,000 *E. coli* genomes

17

18 **Keywords:** *Escherichia coli*, phylotype, pangenome, core genes, comparative genomics,  
19 population structure, taxonomy, Mash

20 **ABSTRACT**

21       **The explosion of microbial genome sequences in public databases allows for large-**  
22 **scale population studies of model organisms, such as *Escherichia coli*. We have examined**  
23 **more than one hundred-thousand *E. coli* and *Shigella* genomes. After removing outliers,**  
24 **genomes were classified into two broad clusters based on a semi-automated Mash analysis,**  
25 **which distinguished 14 distinct phylotypes, graphically illustrated by Cytoscape. From a set**  
26 **of more than ten-thousand good quality *E. coli* and *Shigella* genomes from GenBank, we**  
27 **find roughly 2,700 gene families in the *E. coli* species core, and more than 135,000 gene**  
28 **families in the *E. coli* pan-genome. Based on a set of 2,613 single-copy core proteins taken**  
29 **from one representative genome per phylotype, we constructed a robust phylogenetic tree.**  
30 **This is the largest *E. coli* genome dataset analyzed to date, and provides valuable insight**  
31 **into the population structure of the species.**

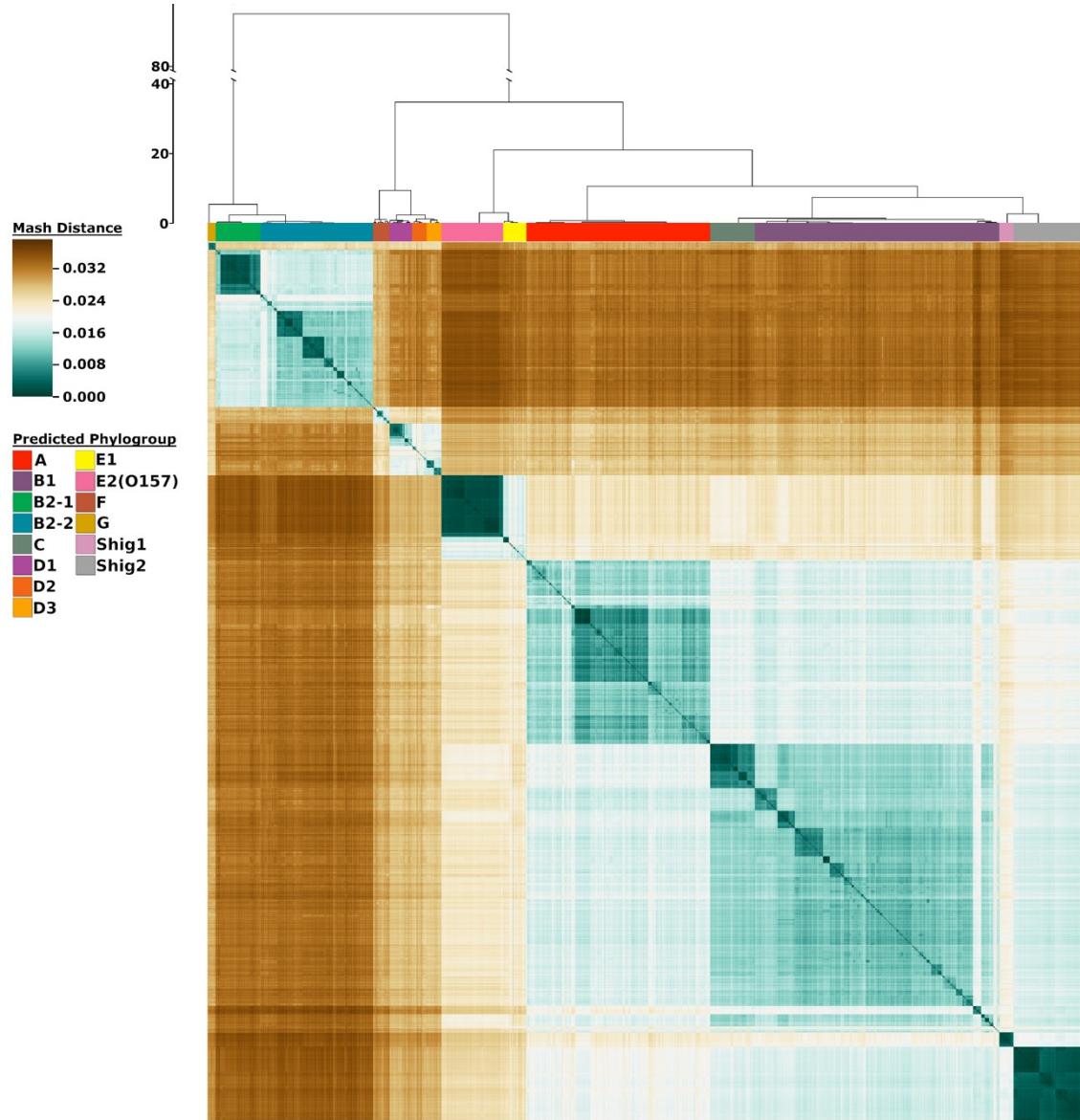
32       *E. coli* is a common inhabitant of the gastrointestinal tract of warm-blooded animals  
33 including humans, and also can be found in soil and freshwater (Jang *et al.*, 2017). The species is  
34 comprised of both commensal and pathogenic strains, and can cause disease in a wide variety of  
35 animal hosts. In humans, pathogenic *E. coli* strains are a leading cause of diarrhea-associated  
36 hospitalizations (Fischer Walker *et al.*, 2010). Some of the attributes that make *E. coli* an  
37 intensely studied microorganism include: rapid growth rate in the presence of oxygen, easy  
38 adaptation to environmental changes, and the relative ease with which it can be genetically  
39 manipulated (Dunne *et al.*, 2017). The extraordinary plasticity of *E. coli* genomes is  
40 demonstrated by differences in their size, which ranges from slightly less than 3 million  
41 basepairs (Mbp) to more than 7 Mb. Genomic diversity of the species, to which *Shigella* species  
42 should be included (Pettengill *et al.*, 2016; Chattaway *et al.*, 2017), is furthermore reflected by  
43 the existence of distinct phylogenetic groups (phylotypes) that have been identified using a  
44 variety of different methods (Clermont *et al.*, 2000; Gordon *et al.*, 2008; Tenaillon *et al.*, 2010).

45       Historically, four phylotypes have been recognized: A, B1, B2, and D (Clermont *et al.*,  
46 2000; Tenaillon *et al.*, 2010) to which three more were added later: phylotypes C (closest relative  
47 to B1) (Clermont *et al.*, 2013), F (as a sister group of phylotype B2), and E to which many D  
48 members were reassigned (Clermont *et al.*, 2013). Some studies have subdivided these into more

49 groups, with D1 to D3, subdivisions of F, and separate phylotypes for *Shigella* species (Meier-  
50 Kolthoff *et al.*, 2014). These phylotypes are thought to be monophyletic (Tenaillon *et al.*, 2010;  
51 Meier-Kolthoff *et al.*, 2014) and partly coincide with different ecological niches and lifestyles,  
52 whose members differ in metabolic characteristics such as their ability to exploit different carbon  
53 sources, the presence of virulence genes and even antibiotic resistance profiles (Walk *et al.*,  
54 2009; Carlos *et al.*, 2010; Tenaillon *et al.*, 2010; Vangchhia *et al.*, 2016).

55 Previously, population structure analysis has been performed using datasets of various size  
56 and composition that did not fully capture the diversity of the species. With the availability of a  
57 large number of genome sequences and high-performance computers, population genomics  
58 within the whole species can now be feasibly studied, although efficient programming is required  
59 for analysis of large amounts of data.

60 Here, we describe a comprehensive comparison of over 100,000 publicly available genome  
61 sequences, consisting of 12,602 assembled genomic sequences from GenBank, and over 102,000  
62 unassembled raw genome sequences from the Sequence Read Archive (SRA). This study  
63 combined whole genome sequences (WGS) and SRA unassembled genomes using high-  
64 performance computing resources to cover the largest and most complete analysis to date of the  
65 population structure of *E. coli*. We have quantified the similarities and differences between  
66 phylotypes to identify genomic phylogroups that encompass the so-far recognized phylotypes  
67 and to characterize the genetic heterogeneity of these different phylogenetic lineages. We have  
68 identified 14 ‘medoid’ genomes, one for each phylogroup, that can be used as a representation of  
69 the population groups within the species.


## 70 RESULTS

71 To conduct the analysis, 12,602 genome sequences labeled with *Escherichia* or *Shigella*  
72 were downloaded from Genbank on 26 June, 2018 (including plasmid sequences when  
73 applicable). This dataset (Supplementary Table 1) was cleaned using a variety of steps as  
74 described in the Methods section, to obtain an informative and diverse set of 10,667 *E. coli* and  
75 *Shigella* genomes that captures the actual diversity of the species as sequenced to date, with  
76 minimal risk of producing artifactual findings from low quality genomes. Underrepresented

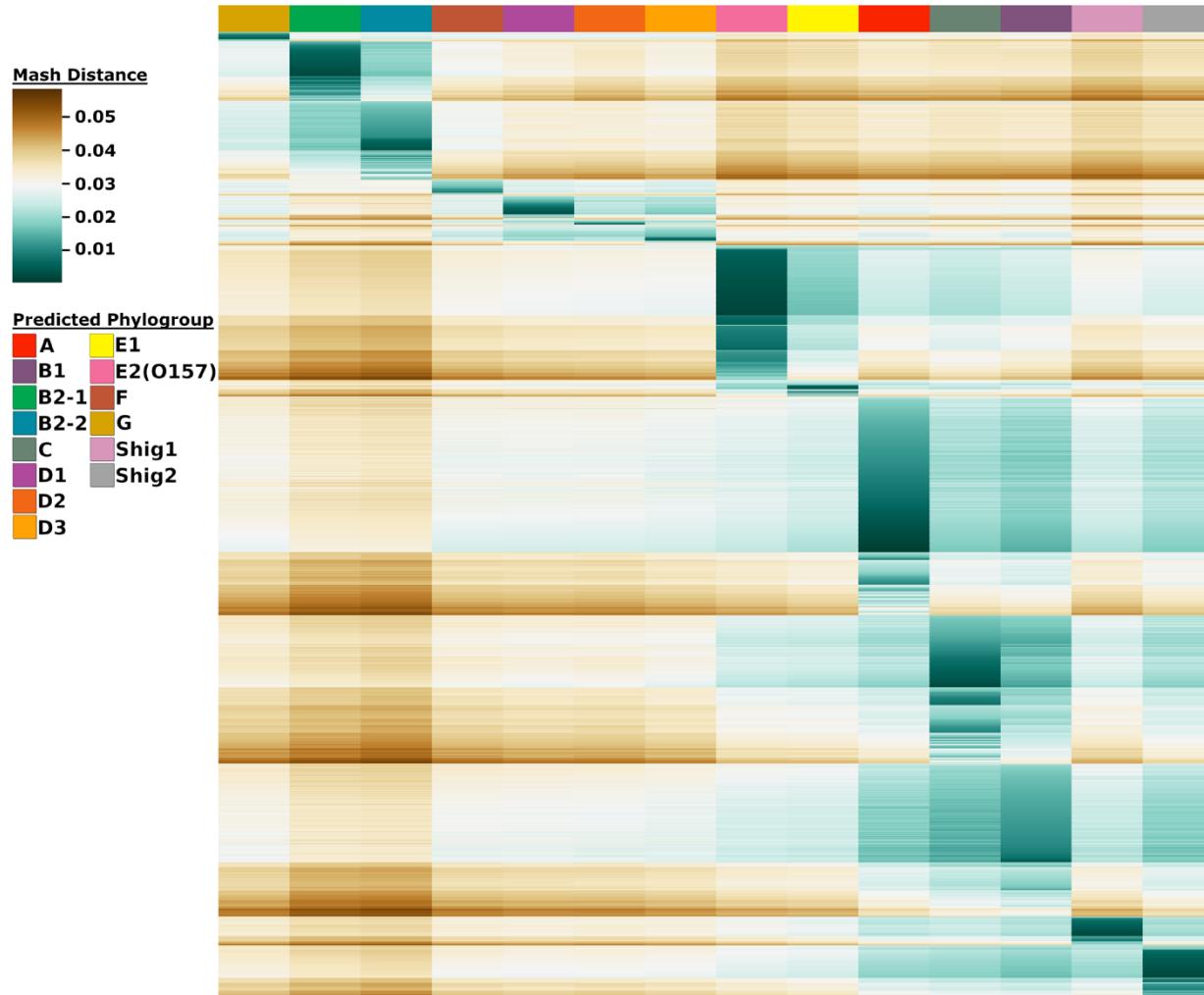
77 genomes upon which previous research knowledge is biased against are also included. Our final  
78 genome dataset is heterogeneous and contains many different genomes within each of the  
79 phylotypes, thereby better reflecting the interests of the complete scientific community in the  
80 area of genomic research on this species. In addition to the GenBank genomes, a total of 102,091  
81 read sets were downloaded from the SRA database that were labeled as either *E. coli* or *Shigella*  
82 (see Methods).

83 ***Mash analysis of E. coli genomic sequences reveals 14 phylotypes.*** After cleaning the dataset,  
84 we used Mash distances (Ondov *et al.*, 2016) to produce a matrix of the 10,667 genomes based  
85 on hierarchical clustering with Pearson's correlation coefficient. A clustered heatmap was used  
86 for visualization to illustrate the population structure of these genomes (Fig. 1). This  
87 methodology differentiated 14 different phylogroups, named: G, B2-1, B2-2, F, D1, D2, D3,  
88 E2(O157), E1, A, C, B1, Shig1 and Shig2 [ordered as in Fig. 1], which are all distinct based on  
89 their genetic sequence, according to the Mash distances. The phylogroups Shig1 and Shig2  
90 exclusively contained *Shigella* species, but some *Shigella* sp. genomes were found in  
91 phylogroups A, B1, B2-2, D2, D3, E and F (Supplementary Fig. 1).

92 The heatmap shown in Fig. 1 reveals that some phylogroups share more genetic similarity to  
93 each other than to other phylogroups, such as B2-1 to B2-2, Shig1 to Shig2, and C to B1. On the  
94 other hand, B1 is quite distinct from the B2 groups. We have utilized Microreact  
95 (<https://microreact.org/project/10667ecoli/b4431cf8>) (Argimón *et al.*, 2016) to visualize the  
96 resultant Mash distance-based clustering. The assembly accession ID was used as the identifier  
97 for each genome. To this identifier we mapped the organism name, strain name, sequence size  
98 (Mb), Bioproject ID, Biosample ID, phylogroup, average genome quality score, and genome  
99 sequence quality score. To optimize the search function of Microreact, we downloaded (on  
100 6/20/2019) all entries from PATRIC-labeled (Wattam *et al.*, 2017) *Escherichia coli* or *Shigella*  
101 sp. and mapped some of their data to each genome. This allows the exploration of subclusters  
102 within the dendrogram for a number of shared characteristics that is outside the scope of the  
103 current study and will be a topic for future exploration to increase our understanding of the *E. coli*  
104 species.



105


106 **Fig. 1. Heatmap representation of 10,667 genomes using Mash distances.** The color bars at the top of the  
107 heatmap identify the phylogroups as predicted from the analysis (see key). The scale to the left of the dendrogram  
108 corresponds to the resultant cluster height of the entire dataset obtained from hclust function in R (see Methods for  
109 more details). The colors in the heatmap are based on the pairwise Mash distance between the genomes. Blue-green  
110 colors represent similarity between genomes with the darkest blue-green corresponding to identical genomes  
111 reporting a Mash distance of 0. Brown colors represent low genetic similarity per Mash distance, with the darkest  
112 brown indicating a maximum distance of ~ 0.039. Genomes of relative median genetic similarity have the lightest  
113 color.

114 **Most sequenced *E. coli* genomes belong to only 4 phylotypes.** To increase the utility of our  
115 analysis, a minimal set of genomes was defined that represents the diversity of the 10,667  
116 genomes without suppressing any of the predicted phylogroups. As 14 main phylogroups were  
117 predicted, we tested if one genome from each of these would be enough to accurately predict the  
118 phylotype of any given genome sequence claiming to be *Escherichia coli* or *Shigella*. Each of  
119 these 14 genomes represents the medoid (Struyf *et al.*, 1997) or the “genomic center” of each  
120 phylogroup based on the 10,667 analyzed genomes. In order to further increase the sequence  
121 dataset, we added a total of 102,091 read sets labeled as either *E. coli* or *Shigella sp.* from the  
122 SRA database. This dataset was first filtered by quality of the sequences (see Methods) which  
123 resulted in a set of 95,525 genomes to which a phylogroup could confidently be assigned. As a  
124 way to reduce computational load for classifying SRA reads, we compared these to each medoid  
125 of the 14 phylogroups in an asymmetric matrix. A heatmap plotting SRA reads that have a Mash  
126 distance equal to or less than 0.04 for at least three medoids is shown (Fig. 2) and a breakdown  
127 of the SRA results is summarized in Supplementary Table 2.

128 Two-thirds (67%) of the analyzed SRA reads were predicted to belong to one of four  
129 phylogroups: A (23%), C (15%), B1 (15%), and E2(O157) (14%). The most prominent predicted  
130 phylogroup in the SRA dataset was A, covering about 23% of the reads. This large disparity in  
131 phylogroup diversity in the SRA dataset is most likely explained by the interest of the scientific  
132 and medical communities. Strains belonging to phylogroups B1, C, and E2(O157) are often  
133 pathogenic and of interest to medical research, while phylogroup A includes strains frequently  
134 used in the laboratory (*e.g.*, strain K-12) or engineered strains (such as strain BL21 and  
135 REL606).

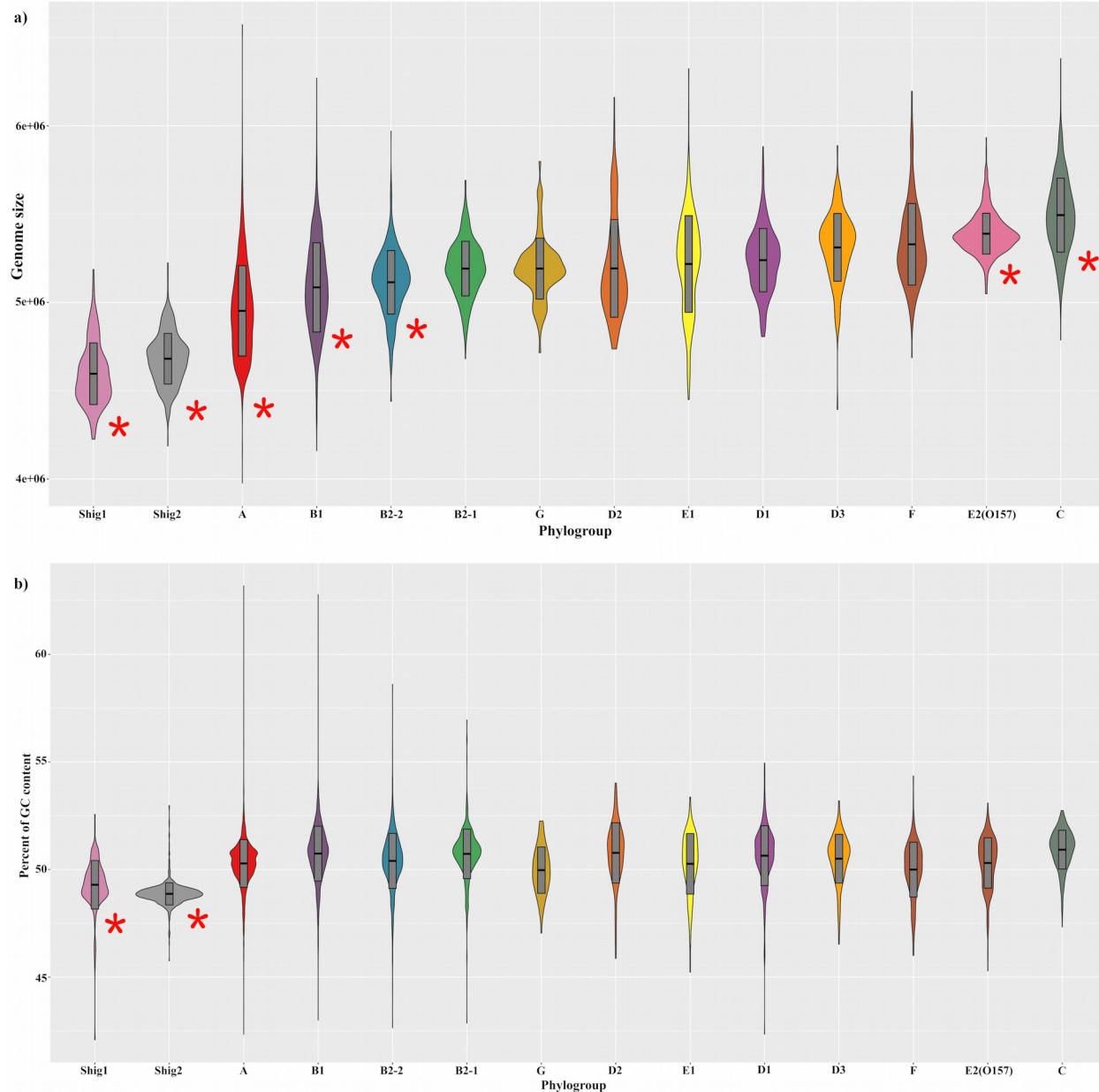
136 Similarly, approximately two-thirds of the 10,667 assembled genomes also belong to four  
137 phylogroups: B1 (28%), A (21%), B2-2 (13%) and Shig2 (8%). However, in the assembled  
138 genomes, phylogroup C is only about 5%, whilst E2(O157) is about 7%.

139



140

141 **Fig. 2. Heatmap representation of 91,261 sequence reads from the SRA database.** The heatmap colors are based  
142 on the pairwise Mash distance between the SRA read sets and the 14 medoid genomes of each phylogroup, which  
143 are presented in the same order as in Fig. 1. To be included, SRA reads sets had to have 3 or more medoid  
144 comparisons producing a Mash distance equal to or less than 0.04. This removed 4,264 SRA read sets from the  
145 dataset. The number of SRA reads mapped to each medoids is given below the heatmap. Supplementary Fig. 2  
146 contains additional cut-offs ranging from one to 14 phylogroups.


147 ***The currently sequenced *E. coli* and *Shigella* species can be represented by 14 medoid***  
148 ***genomes.*** To investigate whether our clustering results were due to the data itself and not due to  
149 bias in hierarchical clustering methods, we utilized Cytoscape (Shannon *et al.*, 2003) to represent  
150 the raw Mash distance outputs. During this clustering, the medoids were used as anchors to

151 evaluate how the rest of the genomes distributed around them. Using the graph visualization  
152 abilities of Cytoscape, we verified the concept of our medoids being representatives of entire  
153 phylogroups. This demonstrated the medoids were suitable to decrease visual complexity without  
154 sacrificing accuracy. The resulting Cytoscape graphs visualize the relative genetic diversity of  
155 the genomes as calculated by Mash genomic distance. A video is available as Supplementary  
156 information and a collection of stills is available upon request. This analysis shows that the two  
157 B2 phylogroups are the most genetically distinct from the remainder of the species, in terms of  
158 sequence content, as they start to split off first. The next set of genomes to separate represent the  
159 D/F/G phylogroups, with G splitting off from the B2 complex. Group F then splits off from the  
160 D/F complex. Next, the E complex separates from the bulk of the species, which then still  
161 contains A/B1/C/Shig. Of the *Shigella* groups, Shig1 splits off before Shig2 does, showing that  
162 Shig1 (containing predominantly *S. flexneri* strains) is more genetically distant from the A/B1/C  
163 complex than Shig2 is (the latter is mainly composed of *S. sonnei* strains (Supplementary Fig. 1)).  
164 At the final Mash value cutoff of 0.0095, the C and B1 phylogroups become the last two groups  
165 to separate. This last split is indicative of the relatively large shared genetic content by these two  
166 phylogroups. Between the initial Cytoscape frame and the final frame, the number of genomes  
167 represented decreased by 43% while the edges (connections between genomes and medoids)  
168 decreased by 96%. These results show that the medoids represent the species accurately. As  
169 expected, the overall interconnectivity of the different phylogenetic groups drops significantly  
170 with the cutoff, but intraconnectivity within the phylotypes does not.

171 **Members of Mash phylogroups possess different genomic characteristics.** Since Mash values  
172 provide a distance measure of similarity between a pair of genomes, the phylogroups of Fig. 1  
173 are the consequence of differences/similarities in the genetic content of each genome with  
174 respect to the rest of the genomes included in the analysis. Differences in genome size and  
175 percentage of GC content between these phylogenetic groups are observed (Fig. 3). Statistical  
176 tests were performed (ANOVA and Turkey test, see methods) to identify significant differences  
177 between the average genome size and GC content per phylogroup. Significant differences in  
178 genome size of members belonging to different phylogroups are observed for phylogroups A and  
179 B1 (significantly smaller genomes ( $P<0.01$ )) and C and E2(O157) (significantly larger genomes

176 (P<0.01)). The two *Shigella* phylogroups also contain genomes with significantly smaller  
177 genomes (P<0.01), on average, indicative of reductive genome evolution of these organisms as  
178 was noted before (Weinert and Welch, 2017). However, reduced genome size is not associated  
179 with pathogenicity *per se*, as the large genomes of E2(O157) illustrate. Larger genome sizes  
180 associated with virulence may result from the accumulations of virulence genes in prophages,  
181 pathogenicity islands and plasmids (Bhunia, 2018). We also compared overall genomic GC  
182 content, which is less variable and only differs significantly for the two *Shigella* phylogroups  
183 (P<0.01). These characteristics might reflect the different evolutionary strategies and opposite  
184 selection pressures as a consequence of adaptation to diverse niches in which the different  
185 phylotypes have evolved (Balbi *et al.*, 2009).

186



188 **Fig. 3. Violin-plots of the distribution of genome size (A) and genomic GC content (B) by phylogroup.** Bar-  
 189 plots inside the violins represent values for mean and mean plus one standard deviation per phylogroup.  
 190 Phylogroups that have values significantly different to all other phylogroups (according to F statistics test) are  
 191 marked with a red asterisk.

192

193 **Level of preservation of homologous genes varies between phylotypes.** To evaluate the  
194 existence of functional traits associated with each of the phylogroups, we performed pan- and  
195 core genomic analyses using the proteomes of the set of 10,667 assembled genomes. In addition,  
196 separate core genomes were calculated for the 14 individual phylogroups. For this, all protein-  
197 coding genes were newly annotated using standardized criteria.

198 The overall pangenome of all assembled genomes is comprised of 135,983 clusters of  
199 homologous proteins. A core genome of this total dataset representing homologs found in 100%  
200 of the strains ( ${}^{\text{TOT}}\text{core}_{100}$ ) only contains one gene, which happens to be a hypothetical protein with  
201 a functional domain of a peptidase superfamily. This vanishingly small core is likely due to  
202 individual genes that are missed in genome sequencing, assembly, or gene calling; with very  
203 large numbers of genomes, a 100% core can be quite small, regardless of high sequence quality  
204 scores. From testing the cutoffs for conservation in 99% to 90% of the genomes (Supplementary  
205 Fig. 4) we concluded that, while the traditional cutoff for core calculation of 95% of genomes  
206 would suffice, a cutoff of 97% can minimize erroneous core genes due to over-representation of  
207 genomes, in turn providing a more stringent core. Therefore, we defined the core genome as  
208 homologous genes shared by at least 97% of the genomes, which produces a  ${}^{\text{TOT}}\text{core}_{97}$  of 2,663  
209 clusters (1.96% of the total pangenome's clusters). These core genes comprise on average a bit  
210 more than 50% of the protein content per strain, as illustrated in Fig. 4. The  ${}^{\text{TOT}}\text{core}_{97}$  contains the  
211 well-preserved genes that define the species, and for the shortest genomes that have been  
212 sequenced, approximately 74% of their protein content belong to this core (GCA\_000350185.1;  
213 *Escherichia coli* str. K-12 substr. MDS42); in contrast, for the largest genomes this fraction is  
214 only about 32% (GCA\_000937575.1; *E. coli* Ec138B\_L1).

215 By defining phylotype-specific core genomes it becomes apparent that large differences  
216 exist between the level of gene preservation for each of the phylotypes. Table 1 summarizes the  
217 phylogroup-specific sizes of core genomes, accessory gene clusters and singletons. Predictably,  
218 the phylogroup with the largest number of genes in their phylogroup-specific core genome is  
219 E2(O157). Not only do its members have large genomes, but this phylogroup is also very  
220 homogeneous and mostly contains *E. coli* O157:H7 strains that have a clonal relationship  
221 (Sharma et al., 2019). Relatively large phylogroup-specific core genomes are also observed for

222 phylogroup C, harboring strains of clinically relevant non-O157 enterohemorrhagic (EHEC)  
 223 serotypes such as O111, O26 and O103. A third phylogroup with a large core genome is Shig2,  
 224 whose members have relatively short genomes, on average, suggesting this phylogroup is  
 225 relatively homogeneous, which increases the size of the core genome. However, phylogroups  
 226 with fewer members produce larger core genome fractions with respect to their pangenome due  
 227 to sample size bias, as illustrated by G. The phylotype with the smallest core genome is Shig1  
 228 followed by B1 and A (Table 1). The small core genome of Shig1 is related to its small genome  
 229 size, while phylotypes A and B1 contain more diverse members, resulting in a larger fraction of  
 230 accessory genes and a smaller phylogroup-specific core.

231 **Table 1. Summary of pangenome analysis results.** Values obtained from the different pangenome analysis using  
 232 the 14 phylogroups separately and the entire set of assembled genomes (10,667 genomes) using UCLUST (Edgard,  
 233 2010). Same parameters were used to all the analysis.

| Phylogroup | Core genome<br>(97% strains) |            | Accessory genome |            | Unique   |          | Total (Pan genome) |            | Core/pan<br>(%) | No. of<br>strains |
|------------|------------------------------|------------|------------------|------------|----------|----------|--------------------|------------|-----------------|-------------------|
|            | clusters                     | proteins   | clusters         | proteins   | clusters | proteins | clusters           | proteins   | clusters        |                   |
| All        | 2,663                        | 28,566,052 | 82,821           | 22,783,754 | 50,499   | 51,099   | 135,983            | 51,400,905 | 1.96            | 10,667            |
| A          | 3,184                        | 7,142,893  | 41,769           | 3,246,591  | 24,501   | 24,828   | 69,454             | 10,414,312 | 4.58            | 2,232             |
| B1         | 3,141                        | 9,365,646  | 44,019           | 4,887,086  | 24,590   | 24,844   | 71,750             | 14,277,576 | 4.38            | 2,960             |
| B2-1       | 3,708                        | 2,016,812  | 10,990           | 619,867    | 7,048    | 7,180    | 21,746             | 2,643,859  | 17.05           | 541               |
| B2-2       | 3,425                        | 4,709,983  | 22,762           | 1,819,538  | 12,566   | 12,763   | 38,753             | 6,542,284  | 8.84            | 1,367             |
| C          | 3,899                        | 2,132,258  | 10,413           | 738,879    | 5,242    | 5,290    | 19,554             | 2,876,427  | 19.94           | 540               |
| D1         | 3,666                        | 1,006,271  | 10,012           | 318,372    | 7,659    | 7,770    | 21,337             | 1,332,413  | 17.18           | 273               |
| D2         | 3,524                        | 626,693    | 11,703           | 221,033    | 6,765    | 7,181    | 21,992             | 854,907    | 16.02           | 177               |
| D3         | 3,754                        | 668,359    | 7,252            | 201,292    | 4,814    | 4,936    | 15,820             | 874,587    | 23.73           | 177               |
| E1         | 3,151                        | 885,018    | 14,883           | 471,354    | 7,969    | 8,088    | 26,003             | 1,364,460  | 12.12           | 279               |
| E2(O157)   | 4,060                        | 3,080,073  | 6,128            | 743,413    | 4,442    | 4,535    | 14,630             | 3,828,021  | 27.75           | 750               |
| F          | 3,486                        | 698,031    | 9,465            | 288,420    | 5,381    | 5,480    | 18,332             | 991,931    | 19.02           | 199               |
| G          | 3,783                        | 365,756    | 5,716            | 98,269     | 4,016    | 4,066    | 13,515             | 468,091    | 27.99           | 96                |
| Shig1      | 3,128                        | 564,868    | 4,903            | 256,426    | 2,815    | 2,883    | 10,846             | 824,177    | 28.84           | 177               |
| Shig2      | 3,732                        | 3,383,814  | 6,870            | 719,247    | 4,751    | 4,799    | 15,353             | 4,107,860  | 24.31           | 899               |

234

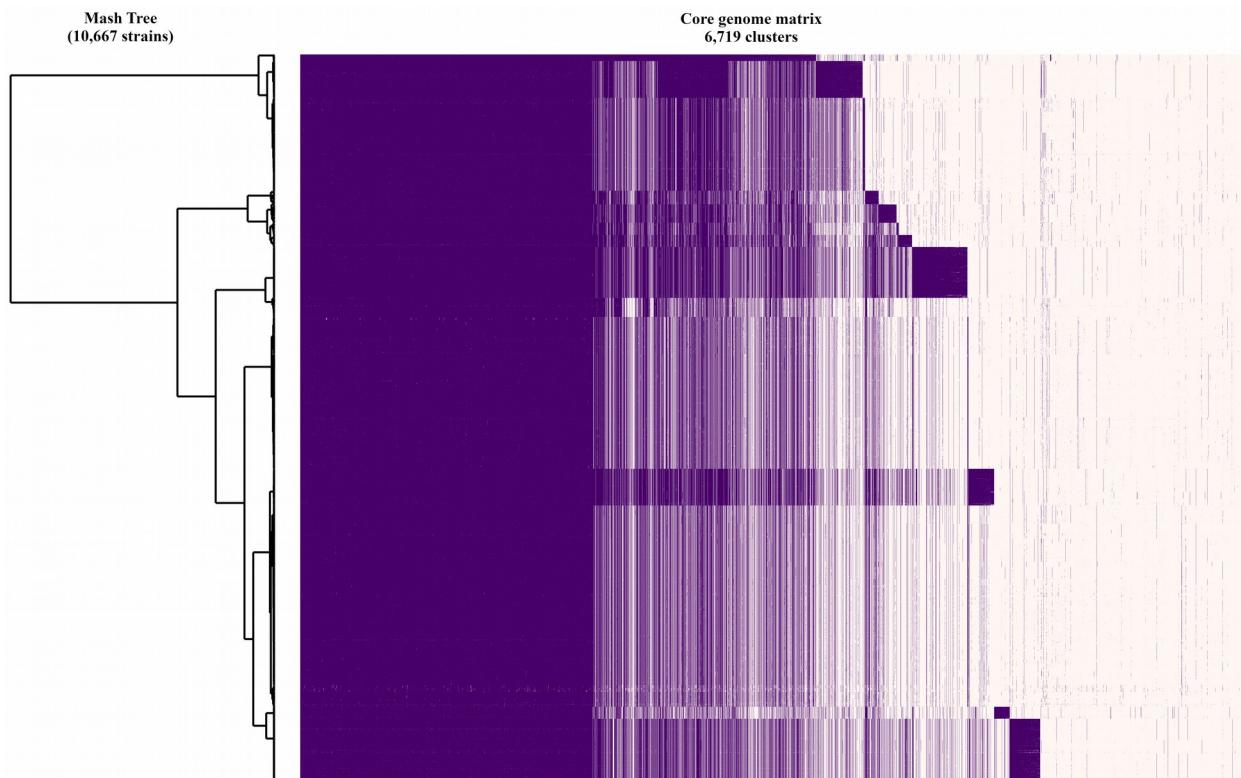
235

236

237

60



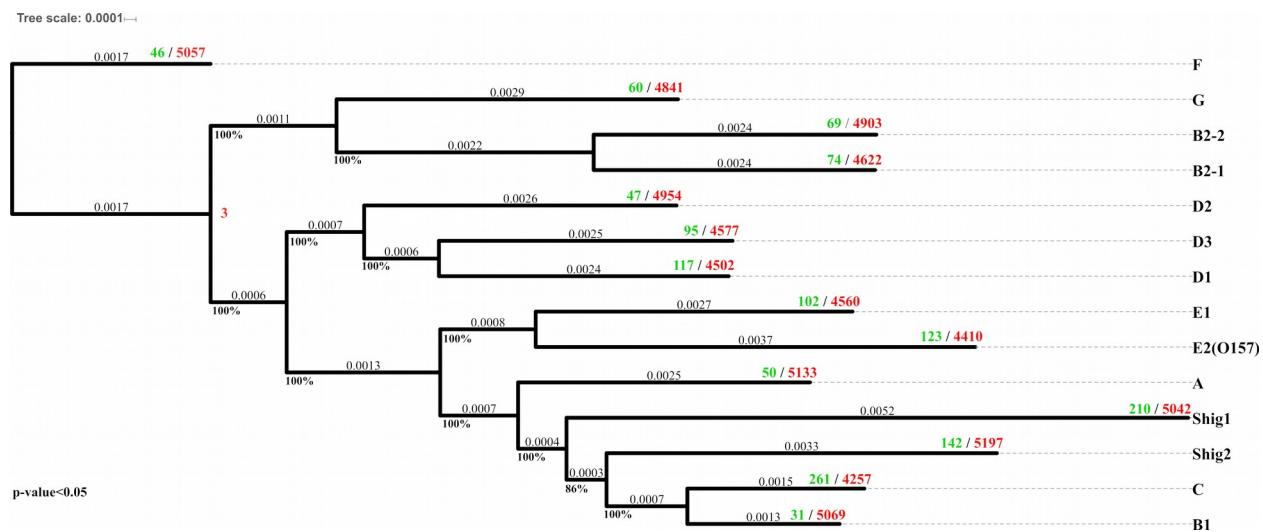

239 **Fig. 4. Pangenome representation of *E. coli* and *Shigella* species.** In this circular barplot, each bar length  
240 represents the total number of proteins of a single genome, grouped by phylogroup. The proteins belonging to the  
241 overall core<sub>97</sub> genome are shown in green. Additional proteins shared in each phylogroup-specific core<sub>97</sub> genome are  
242 shown in blue, while purple is reserved for accessory proteins.

243

244

245

246 The comparison of the core genomes per each phylogroup allowed us to establish the  
247 existence of exclusive genetic signatures that would confer exclusive characteristics to each of  
248 the phylogroups found in *E. coli* species using Mash. Unique phylogroup-specific core genes are  
249 those genes present in the core genome of each phylogroup, but not found in the core genome of  
250 the other phylogroups. Such genes represent genetic signatures for all members of a phylogroup  
251 where they are conserved, but not members of the other phylogroups. The existence of unique  
252 phylogroup-specific core genes is shown in Fig. 5.




254 **Fig. 5. Graphical representation of presence/absence of gene clusters using phylogroups core genomes sorted**  
255 **by Mash dendrogram phylogroup order.** The plot shows 6,719 core gene clusters. The large purple region at the  
256 beginning of the plot represents the gene clusters present in the core genome of all phylogroups. Subsequent blocks  
257 of purple represent core gene clusters with a large representation in the members of a phylogroup.

70

14

258 **Phylogroups evolve with different rates of gain/loss of protein families.** Taking advantage of  
259 the existence of the medoids as representative entities of the phylogenetic groups and the  
260  $^{TOT}_{core_{97}}$  genome we identified, a very robust phylogenetic analysis was performed based on the  
261 concatenated alignment of 2,613 core genome clusters for the entire species (without paralogs)  
262 and a maximum likelihood approach (see methods) using IQ-TREE software (Nguyen *et al.*,  
263 2015). From a total of 9,293 gene families built with these core genes (defined using UCLUST  
264 for the 14 medoid strains, see Methods), CAFE-based analysis of gene gain and loss patterns  
265 (Han *et al.*, 2013) was used to identify the evolution of protein family sizes across the species,  
266 using a random birth/death process along each lineage of the phylogenetic tree. The resulting tree  
267 is shown in Fig. 6.



269 **Fig. 6. Phylogenetic representation of *E. coli* species using a set of 2,613 core clusters.** Branch support is shown  
270 at the beginning of each node. Maximum likelihood distances are showed on the middle of each branch. The number  
271 of gained (green color) and lost (red color) protein families was estimated for each branch using an ultrametric tree  
272 and the pangenomic matrix for the 14 phylotypes with 9,293 protein families.

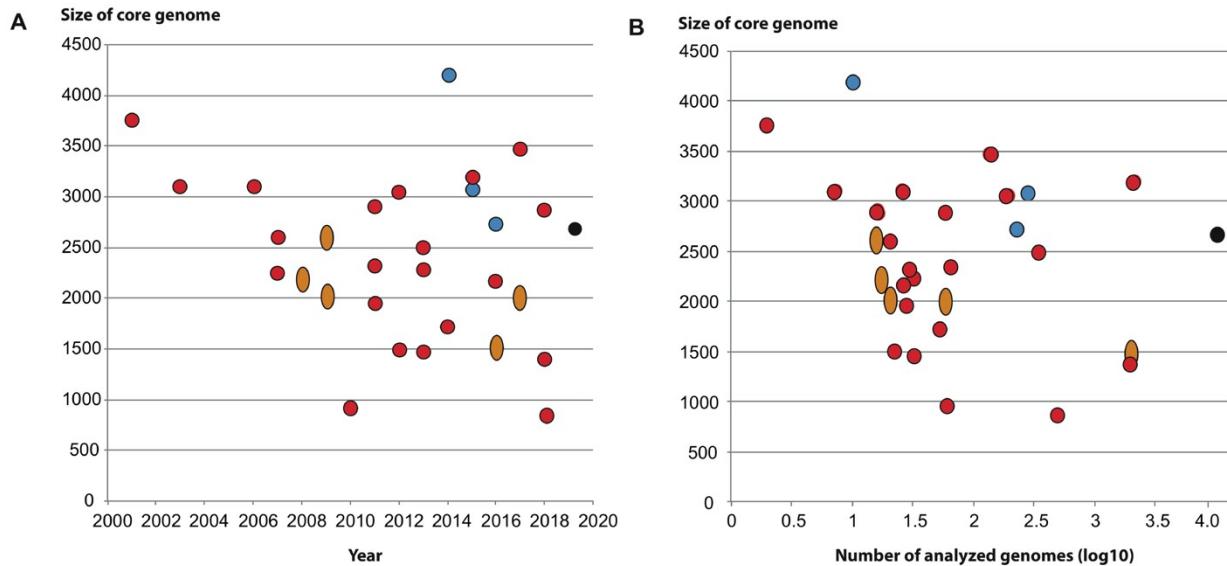
273 This analysis led to the observation that the different phylogroups have evolved with different  
274 rates of gain/loss of protein families (Supplementary Table 3). Branches with higher ratios of  
275 gene expansion correspond to phylogroups C and Shig1 and these differed largely from the other

276 phylogroups. At the other end of the spectrum, phylogroups D2, F and B1 represent the lowest  
277 ratios, indicating limited gene expansion. Note, that these observations are not related to genome  
278 size (*cf.* Fig. 3) or phylogroup-specific core size (Fig. 4).

279 **Discussion**

280 Mash-based analyses provides a fast and highly scalable K-mer based approach that can  
281 be used on very large sets of genomes. Based on more than a hundred thousand genomes, the  
282 population structure of *E. coli* species appears to be more diverse than currently thought. The  
283 methodology applied here detected 14 phylogroups with a remarkably unequal distribution of the  
284 number of genomes across the 14 phylogroups. The current bias in the sequencing data decreases  
285 the probability of finding the genetic signatures that captures the relative homogeneity of all  
286 members of the phylogroups. As a consequence, less numerously represented phylogroups may  
287 actually contain additional, as yet unidentified phylogroups within them and at presence  
288 conclusions about their open or closed nature cannot be drawn.

289 Findings based on Mash analyses were supported by differences found in the analysis of  
290 the core genomes of the 14 phylogroups. These differences can be broadly defined into two  
291 categories: size of the core genome and genetic content. Differences in size could be reflective of  
292 the possible clonal nature of some of the phylogroups. Nevertheless, phylogroups that harbor  
293 commensal and environmental strains such as B1 and A possess smaller core genomes as a result  
294 of a wide variety of environmental pressures. Genomes belonging to Shig1 phylogroup have one  
295 of the smallest sets of core genes; however, this number represents almost 29% of the clusters  
296 found in this phylogroup, which is the highest ratio of core gene clusters to total pangenome  
297 clusters. Therefore, the ratio of core cluster/total cluster is an indication of the intragroup  
298 diversity (Table 1). The presence of different clusters of genes belonging to the core genome of  
299 each phylogroup support the existence of multiple non-overlapping phylogroups within the  
300 species. The comparison of shared and unique core gene clusters for each phylogroup relative to  
301 other phylogroups provides the intergroup diversity of the species.


302 Findings based on Mash analyses were supported by differences found in the analysis of

303 the core genomes of the 14 phylogroups. These differences can be broadly defined into two  
304 categories: size of the core genome and genetic content. Differences in core size expose the  
305 possible clonal nature of some of the phylogroups, in particular those containing mainly  
306 clinically relevant strains. Phylogroups that harbor commensal and environmental strains such as  
307 B1 and A generally possess smaller core genomes while their members have adapted to a wide  
308 variety of environmental pressures. Genomes belonging to the Shig1 phylogroup have the  
309 smallest number of phylogroup-specific core genes, but due to their smaller genomes this  
310 number represents almost 29% of the total clusters found in this phylogroup, which is the highest  
311 ratio of core gene clusters per phylogroup-specific pangenome. The ratio of core clusters/total  
312 clusters can be used as an indication of the intragroup diversity (Table 1). The presence of  
313 different clusters of genes belonging to the core genome of each phylogroup support the  
314 existence of multiple non-overlapping phylogroups within the species. The comparison of shared  
315 and unique core gene clusters for each phylogroup relative to other phylogroups provides the  
316 intergroup diversity of the phylogroup within the species.

317 The dataset of 10,667 WGS genomes was used to calculate the size of the total core  
318 genome for *E. coli* that contained 2,663 gene clusters. Such analyses have been reported multiple  
319 times in the literature, using different cut off values and criteria, as summarized in Fig. 7 and  
320 Supplementary Table 4. The data sets and analytical parameters varied widely between these  
321 studies, resulting in a variation in core genome size between 867 and 3,472, ignoring the  
322 comparison of the first two *E. coli* genomes that were published, and analyses with subsets of *E.*  
323 *coli*. Compared to our results, most determined core genomes were too low, in part because the  
324 parameters of inclusion were too strict for the quality of genomes that were analyzed.

325

326



327

328 **Figure 7. Core genome analyses of *E. coli* in the literature.** (A) Core genome size related to the year of  
329 publication. (B) Core genome size is plotted to the log 10 number of genomes included in each study.  
330 Black symbols represent the data from this study. Oval symbols represent reported approximate sizes only.  
331 Blue symbols represent studies in which a subset of *E. coli* genomes was analyzed (EHEC only in the 2014 study and ExPEC only in the  
332 2015 study). More information, including the sources of these data, are provided in Supplementary Table 4.

333

## 334 METHODS

### 335 *Data Acquisition and Cleaning*

336 A set of 12,602 genomes labeled either *Escherichia* or *Shigella* were downloaded from NCBI's  
337 Genbank on June 26, 2018. To evaluate the quality of the data set, various sequence quality  
338 scores were calculated as described elsewhere (Land *et al.*, 2014). Following the recommended  
339 cutoff value, the dataset was filtered to include only genomes with a Total Quality Score of 0.8  
340 or higher. Applying the same cutoff value to the Sequence Quality Score alone resulted in an  
341 extremely restricted dataset that no longer addressed the goals of this study. Genome size was  
342 restricted to greater than 3 Mb and less than 6.77 Mb to trim questionably sized genomes. After  
343 applying these two steps, 10,855 genomes remained in the dataset for analysis.

344 To further clean the dataset, we filtered genomes that were outside the statistical distribution of

87

18

345 Mash distances within the dataset. Assuming that *Shigella* species are all members of *E. coli*, we  
346 chose to use type strains for the *Escherichia* and *Shigella* genera (accession numbers  
347 GCA\_000613265.1 and GCA\_002949675.1, respectively) to quickly filter the set of 10,855  
348 genomes for erroneous or low-quality genomes that may have slipped through the previous  
349 cleaning steps. The Mash values of the 10,855 genomes compared to each type strain were  
350 broken into percentiles ranging from 10% to 99.995%. A cutoff percentile of 98.5% was  
351 determined to provide sufficient cleaning without risking a large loss of data (data not shown)  
352 and was applied to each type strain Mash value set. Genomes that were found in both sets after  
353 filtering were retained to produce the final dataset of 10,667 genomes.

354 *Mash and Clustering Analysis*

355 Genetic distances between all 10,667 genomes were calculated using ‘Mash dist’ with a k-mer  
356 size of 21 and a sampling size of 10,000. The resulting output was converted into a distance  
357 matrix with matching columns and rows. To improve the clustering results and to provide a  
358 standard metric that allows comparison of different analytical methods, we converted the Mash  
359 distance value into a similarity measure via the Pearson correlation coefficient (Kirch, 2008).  
360 This returns values ranging from -1 (total negative linear correlation) to 1 (total positive linear  
361 correlation), where 0 is no linear correlation. Since clustering-based methods require a distance  
362 measure, the values were subtracted from 1 to convert them into a distance measure. These  
363 distance measures were then clustered using hclust and the “ward.D2” method. A heatmap was  
364 generated using the hclust dendrogram to reorder the heatmap, while values from the raw  
365 distance matrix of Mash distances were mapped to color. To determine the height to cut the  
366 hclust dendrogram and to accurately predict phylotypes that optimally overlapped with existing  
367 phylotypes, we compared multiple different cutoff values and methods to obtain cutoff values.  
368 Taking the maximum height present in the hclust dendrogram and multiplying it by  $1.25^{-2}$  was  
369 found to provide both accurate predictions and a standard method that scales with the data  
370 supplied. Sufficient accuracy was defined by the cutoff at which the last accepted phylotype was  
371 visible, in this case representing the C phylotype splitting off from B1. Some detailed results of  
372 both the cutoff percentile and hclust height testing are included for 10,667 genomes in

373 Supplementary Table 1.

374 *Medoid Selection for Species Representation*

375 Using the Mash values for the entire species, a medoid was defined for each phylogroup. This  
376 was defined as the member of a phylogroup to which the average dissimilarity for all other  
377 phylogroup member is the smallest. This was done by using the aggregate function of R to find  
378 the mean across each phylotype. The alternative approach, isolating each phylogroup and then  
379 reclustering and calculating the medoid, did not yield as accurate results as calculating the  
380 medoid per phylogroup with respect to the entire 10,667 genome dataset.

381 *Scaling up to over 100,000 Escherichia coli by addition of SRA read.*

382 The keyword “*Escherichia coli*” filtered with “DNA” for biomolecule and “genome” for type  
383 was used to retrieve SRA ids from the NCBI SRA website on March 22, 2019. For large scale  
384 data transfer, these SRA genomes were downloaded using the high throughput file transfer  
385 application Aspera (<http://asperasoft.com>). According to the variety of sequencing technologies  
386 used to generate genome data, the obtained read sets of 102,091 genomes in SRA format were  
387 divided into five subsets to ease computational and organizational load as follows: 3 Illumina  
388 paired read sets, 1 mixed technology with paired reads, and 1 mixed technology with single  
389 reads. The 5 sets of reads were then converted from fastq to fasta format to be processed by  
390 Mash using a python script.

391 The sequence reads were sketched using Mash (v2.1). This version change was due to the  
392 addition of read pooling in the read mode which automatically joins paired reads, eliminating the  
393 need to concatenate or otherwise process paired read sets. All read sets were sketched  
394 individually so that read sets that caused an error when sketching were dropped from the analysis  
395 before sketching. The -m setting was set to 2 to decrease noise in the sketches of the reads. After  
396 sketching the reads within the subsets, all sketches were concatenated into a sketch for that  
397 subset using the paste command of Mash. The concatenated sketch of each subset was then  
398 compared to the 14 medoids using Mash dist. As all five subsets had the same reference, the dist

399 output from each subset was concatenated to one file. This single SRA dist output file was then  
400 analyzed to evaluate the quality of the SRA dataset. Due to how Mash distances are calculated,  
401 the k-mer size and sketches sampled settings can consistently flag genomes of very low quality,  
402 since major basis of a Mash value is how many hits are present out of sketches sampled. The top  
403 5 most numerous distances of the SRA read sets corresponded to 0 to 4 hits of the possible  
404 10,000 sketches per genome. This indicates presence of extremely low-quality genomes. A  
405 histogram of the SRA Mash distance results was created to visualize the distribution of Mash  
406 distances of the entire 102,091 SRA reads dataset (results not shown), initially using a cutoff of  
407 0.1 Mash distance. However, a final Mash distance cutoff of 0.04 was chosen based on the  
408 maximum Mash value in the 10,667 whole set that was 0.393524. Although this higher cutoff  
409 might potentially eliminate useful information, it insured quality of the SRA dataset. This  
410 retained 95,525 reads that had at least one Mash distance to a phylogroup medoid. The distances  
411 were transferred into a matrix with reads as columns and rows containing a phylogroup medoid.  
412 For each read the smallest Mash distance to a medoid was identified, and the corresponding  
413 medoid noted (Supplementary Table 2). We then created a distance matrix from the Mash  
414 distance output of the 95,525 reads that met the above cutoff with reads as rows and medoids as  
415 columns. Due to computational pressure this distance matrix was loaded into Python 3 instead of  
416 R. A clustered heatmap was made using Seaborn, Matplotlib, and Scipy with the clustermap  
417 function. Instead of clustering both rows and columns, columns (phylogroups) were ordered the  
418 same as Figure 1 and rows were sorted as follows: number of hits to phylogroups (ascending =  
419 True) and Mash distance (ascending = False). This provided a quick visualization method for the  
420 SRA dataset with a consistent sorting criterion to make comparison between Figure 2 and the  
421 Supplemental heatmaps much easier.

422 *Cyoscape visualization of MASH analysis*

423 The Mash distance matrix of the 10,667 genomes was transmuted into a new 3 column matrix  
424 where the first two columns contains two genomes to be compared and the third column contains  
425 the Mash value for that pairwise comparison. A sliding cutoff ranging from 0.04 to 0.0095 with  
426 increments of 0.005 was applied to the Mash value column. After each cutoff filter was applied a  
427 data table was compiled with the cutoff identified in the name. These data tables were imported

428 into Cytoscape, the Prefuse Force Directed layout was applied, and phylotype membership  
429 mapped with a metadata table. For each cutoff the resultant graph was output as an SVG. All  
430 SVGs were then compiled into an animated transition.

431 *Statistical analysis of genome sizes and percent GC content*

432 Genome sizes and percent of GC content was calculated using infoseq package from EMBOSS  
433 suite v6.6.0.0. A dataframe with sequence ID, percentage of GC content, genome size and  
434 phylogroup ID was made. Library ggplot2 from R was used to plot genome sizes and GC  
435 content. Library dplyr from R was used to perform analysis of Variance ANOVA test and  
436 Turkey HSD tests. The homogeneity of variances was tested using Levene's test and the  
437 normality assumption of the data was checked using Shapiro-Wilk test. As some of the groups  
438 didn't meet the criteria of the assumption of normality, Kruskal-Wallis test was performed as  
439 well as non-parametric alternative to one-way ANOVA. Kruskal-Wallis test rejected both null  
440 hypothesis (means of genome size or percent of GC content are similar between the different  
441 phylogroups), with p-value < 2.2e-16 in both cases. Raw results from these test are available in  
442 Supplementary Table 5.

443 *Pangenome analyses and clustering*

444 All 10,667 genomes were reannotated using Prokka v1.13 (Seemann, 2014), with parameters --  
445 rnammer --kingdom Bacteria --genus *Escherichia* --species *coli* --gcode 11. All protein-coding  
446 sequences (n=51,400,905) were clustered using UCLUST from USEARCH v.10.0.240 (Edgar,  
447 2010), into protein families using cut-off values of 80% of protein sequence similarity, 80% of  
448 query sequence coverage, e-value equal or lower than 0.0001 (parameters -eval 0.0001 -id 0.8  
449 -query\_cov 0.8). The total pangenome was recorded. For the core genome various inclusion  
450 percentages were compared, since we included draft genomes existing in multiple contigs. The  
451 optimum was defined that allowed 3% omissions, giving a core genome was defined as those  
452 genes present in 97% of the genome collection. Therefore, protein families with presence in at  
453 least 97% of the total set strains, were considered as part of the core genome of *E. coli* species.

454 The pan- and core genome of each of the 14 phylogroups were then separately clustered using

455 the same cut-off parameters as for the entire set at species level.

456 Core genome matrix

457 Core genome clusters for the 14 phylotypes obtained using UCLUST v.10.0.240 in the previous  
458 analysis were used again with UCLUST v.10.0.240 using the same parameters as input to find  
459 the intersection of core genes between the core clusters of the 14 phylotypes. A binary matrix  
460 with cluster ID as column labels, genomes as row names, and the number of genes belonging to  
461 that cluster as the cell value was constructed using the main output from UCLUST. This matrix  
462 was then supplied to an “in house” python script that sorts the pangenome matrix such that the  
463 gene clusters found in all phylogroups are placed first (species’ core genome). Then groups are  
464 sorted by abundance per phylogroup to isolate phylogroup core genes. All leftover gene groups  
465 are sorted by phylogroup and abundance and added to the end of the sort list. The Mash tree  
466 obtained earlier for the 10,667 dataset was then loaded and used to sort the order of the  
467 organisms. Finally, Matplotlib was used to visualize the sorted matrix.

468 *Phylogenetic analysis of core gene families*

469 The set of core gene clusters of the 14 medoids was extracted from the core genome clusters of  
470 the entire species and from them single copy ortholog groups were identified to construct a  
471 phylogenomic tree. In total a set of 2,613 single gene (clusters without paralogs paralogs)  
472 ortholog groups were aligned using MAFFT v.7.110 (Katoh and Standley, 2013). The model of  
473 evolution per each of the 2,613 protein clusters was calculated using IQ-TREE v.1.6.10 (Nguyen  
474 *et al.*, 2015) with parameters -m TESTONLY nt AUTO. Once the best model of evolution was  
475 obtained for each of the core protein families, those clusters that shared model of evolution were  
476 sent together to IQ-TREE for a better estimation of the substitution model parameters using -m  
477 MF+MERGE, -nt AUTO and selecting the final model of evolution with mset. In a last step, all  
478 partitions obtained with their corresponding model of evolution were sent again to IQ-TREE for  
479 final estimation of the phylogenetic tree for the 14 medoids using ultrafast bootstrapping approach  
480 (-bb 1000).

481 For estimation of protein family gain and loss events, the Maximum Likelihood tree was used as

482 an ultrametric tree using ace library from ape (Paradis *et al.*, 2004) in R v.3.6.0 (R Core Team,  
483 2013). To obtain the pangenome matrix needed as input for CAFE program v.4.2.1, the  
484 pangenome of the 14 medoids was constructed using UCLUST (with same parameters as in  
485 previous analyses). A pivot table was built using the main output from UCLUST and pandas  
486 library in a python3 script using the function pivot\_table with agglomeration function=sum.  
487 CAFE program was used for gene family expansion/contraction analysis, using option -s for an  
488 optimization algorithm to find the value(s) of  $\lambda$  that maximize the log likelihood of the data for  
489 all families. Families showing significant size variance were identified based on 1,000 random  
490 samples and a p-value cutoff of 0.05. Deviated branches were further identified based on the  
491 Viterbi algorithm in CAFE with a p-value cutoff of 0.05.

492

## 493 REFERENCES

Jang, J., Hur, H.-G., Sadowsky, M.J., Byappanahalli, M.N., Yan, T., and Ishii, S. (2017) Environmental *Escherichia coli*: ecology and public health implications-a review. *Journal of Applied Microbiology* **123**: 570–581.

Fischer Walker, C.L., Sack, D., and Black, R.E. (Beriotto, I., Browning, D.F., Squire, D., et al. (2017) Sequencing a piece of history: complete genome sequence of the original *Escherichia coli* strain. *Microbial Genomics* **3**(3):mgen000106.

Pettengill, E.A., Pettengill, J.B., and Binet, R. (2016) Phylogenetic Analyses of *Shigella* and Enteroinvasive *Escherichia coli* for the Identification of Molecular Epidemiological Markers: Whole-Genome Comparative Analysis Does Not Support Distinct Genera Designation. *Front Microbiol* **6**:1573.

Chattaway, M.A., Schaefer, U., Tewolde, R., Dallman, T.J., and Jenkins, C. (2017) Identification of *Escherichia coli* and *Shigella* Species from Whole-Genome Sequences. *Journal of Clinical Microbiology* **55**: 616–623.

Clermont, O., Bonacorsi, S., and Bingen, E. (2000) Rapid and Simple Determination of the *Escherichia coli* Phylogenetic Group. *Applied and Environmental Microbiology* **66**: 4555–4558.

Gordon, D.M., Clermont, O., Tolley, H., and Denamur, E. (2008) Assigning *Escherichia coli* strains to phylogenetic groups: multi-locus sequence typing versus the PCR triplex method: MLST versus Clermont method. *Environmental Microbiology* **10**: 2484–2496.

Tenaillon, O., Skurnik, D., Picard, B., and Denamur, E. (2010) The population genetics of commensal *Escherichia coli*. *Nature Reviews Microbiology* **8**: 207–217.

Clermont, O., Christenson, J.K., Denamur, E., and Gordon, D.M. (2013) The Clermont *Escherichia coli* phylo-typing method revisited: improvement of specificity and detection of new phylo-groups: A new *E. coli* phylo-typing method. *Environmental Microbiology Reports* **5**: 58–65.

Meier-Kolthoff, J.P., Hahnke, R.L., Petersen, J., Scheuner, C., Michael, V., Fiebig, A., et al. (2014) Complete genome sequence of DSM 30083T, the type strain (U5/41T) of *Escherichia coli*, and a proposal for delineating subspecies in microbial taxonomy. *Standards in Genomic Sciences* **9**: 2.

Walk, S.T., Alm, E.W., Gordon, D.M., Ram, J.L., Toranzos, G.A., Tiedje, J.M., and Whittam, T.S. (2009) Cryptic Lineages of the Genus *Escherichia*. *Applied and Environmental Microbiology* **75**: 6534–6544.

Carlos, C., Pires, M.M., Stoppe, N.C., Hachich, E.M., Sato, M.I., Gomes, T.A., et al. (2010) *Escherichia coli* phylogenetic group determination and its application in the identification of the major animal source of fecal contamination. *BMC Microbiology* **10**: 161.

Vangchhia, B., Abraham, S., Bell, J.M., Collignon, P., Gibson, J.S., Ingram, P.R., et al. (2016) Phylogenetic diversity, antimicrobial susceptibility and virulence characteristics of phylogroup F *Escherichia coli* in Australia. *Microbiology* **162**: 1904–1912.

Ondov, B.D., Treangen, T.J., Melsted, P., Mallonee, A.B., Bergman, N.H., Koren, S., and Phillippy, A.M. (2016) Mash: fast genome and metagenome distance estimation using MinHash. *Genome Biology* **17**(1):132.

Struyf, A., Hubert, M., and Rousseeuw, P. (1997) Clustering in an Object-Oriented Environment. *J Stat Soft* **1**:1-30.

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., et al. (2003) Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. *Genome Res* **13**: 2498–2504.

Weinert, L.A. and Welch, J.J. (2017) Why Might Bacterial Pathogens Have Small Genomes? *Trends in Ecology & Evolution* **32**: 936–947.

Bhunia, A.K. (2018) *Escherichia coli*. In, *Foodborne Microbial Pathogens*. New York, NY: Springer New York, pp. 249–269.

Balbi, K.J., Rocha, E.P.C., and Feil, E.J. (2009) The Temporal Dynamics of Slightly Deleterious Mutations in *Escherichia coli* and *Shigella* spp. *Mol Biol Evol* **26**: 345–355.

Sharma, V.K., Akavaram, S., Schaut, R.G., and Bayles, D.O. Comparative genomics reveals structural and functional features specific to the genome of a foodborne *Escherichia coli* O157:H7. *BMC Genomics*. 2019;20(1):196.

103 Nguyen, L.-T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q. (2015) IQ-TREE: A Fast and  
Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. *Mol Biol Evol*  
32: 268–274.

104 Han, M.V., Thomas, G.W.C., Lugo-Martinez, J., and Hahn, M.W. (2013) Estimating Gene Gain  
and Loss Rates in the Presence of Error in Genome Assembly and Annotation Using CAFE 3.  
*Mol Biol Evol* 30: 1987–1997.

105 Land, M.L., Hyatt, D., Jun, S.R., Kora, G.H., Hauser, L.J., Lukjancenko, O., Ussery, D.W.  
Quality scores for 32,000 genomes (2010). *Stand Genomic Sci.* 2014;9:20.

106 Kirch, W. ed. (2008) Pearson's Correlation Coefficient. In, *Encyclopedia of Public Health*.  
Dordrecht: Springer Netherlands, pp. 1090–1091.

107 Seemann, T. (2014) Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 30: 2068–  
2069.

108 Edgar, R.C. (2010) Search and clustering orders of magnitude faster than BLAST.  
*Bioinformatics* 26: 2460–2461.

109 Katoh, K. and Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Software Version  
7: Improvements in Performance and Usability. *Mol Biol Evol* 30: 772–780.

110 Paradis, E., Claude, J., and Strimmer, K. (2004) APE: Analyses of Phylogenetics and Evolution  
in R language. *Bioinformatics* 20: 289–290

494 111 R Core Team (2013). R: A language and environment for statistical computing. R Foundation for  
495 Statistical Computing, Vienna, Austria. URL <http://www.R-project.org/>.

496

497 **ACKNOWLEDGMENTS**

498 112 This work was supported by NIH/NIGMS grant 1P20GM121293 and from the Helen Adams &  
499 Arkansas Research Alliance Endowment in the Department of Biomedical Informatics, College of  
500 Medicine.

501

502 **Conflict of interest**

503 113 None declared

504

103

26

505 **Legends of Tables**

506 **Table 1. Summary of pangenome analysis results.** Values obtained from the different  
507 pangenome analysis using the 14 phylogroups separately and the entire set of assembled  
508 genomes (10,667 genomes) using UCLUST (Edgard, 2010). Same parameters were used to all  
509 the analysis

510 **Legends of Figures**

511 **Fig. 1. Heatmap representation of 10,667 genomes using Mash distances. The color bars at**  
512 the top of the heatmap identify the phylogroups as predicted from the analysis (see key). The  
513 scale to the left of the dendrogram corresponds to the resultant cluster height of the entire dataset  
514 obtained from hclust function in R (details in Methods). The colors in the heatmap are based on  
515 the pairwise Mash distance between the genomes. Blue-green colors represent similarity between  
516 genomes with the darkest blue-green corresponding to identical genomes reporting a Mash  
517 distance of 0. Brown colors represent low genetic similarity per Mash distance, with the darkest  
518 brown indicating a maximum distance of ~ 0.039. Genomes of relative median genetic similarity  
519 have the lightest color.

520 **Fig. 2. Heatmap representation of 91,261 sequence reads from the SRA database.** The  
521 heatmap colors are based on the pairwise Mash distance between the SRA read sets and the 14  
522 medoid genomes of each phylogroup, which are presented in the same order as in Fig. 1. To be  
523 included, SRA reads sets had to have 3 or more medoid comparisons producing a Mash distance  
524 equal to or less than 0.04. This removed 4,264 SRA read sets from the dataset. The number of  
525 SRA reads mapped to each medoids is given below the heatmap. Supplementary Fig. 2 contains  
526 additional cut-offs ranging from one to 14 phylogroups.

527 **Fig. 3. Violin-plots of the distribution of genome size (A) and genomic GC content (B) by**  
528 **phylogroup.** Bar-plots inside the violins represent values for mean and mean plus one standard  
529 deviation per phylogroup. Phylogroups that have values significantly different to all other  
530 phylogroups (according to F statistics test) are marked with a red asterisk.

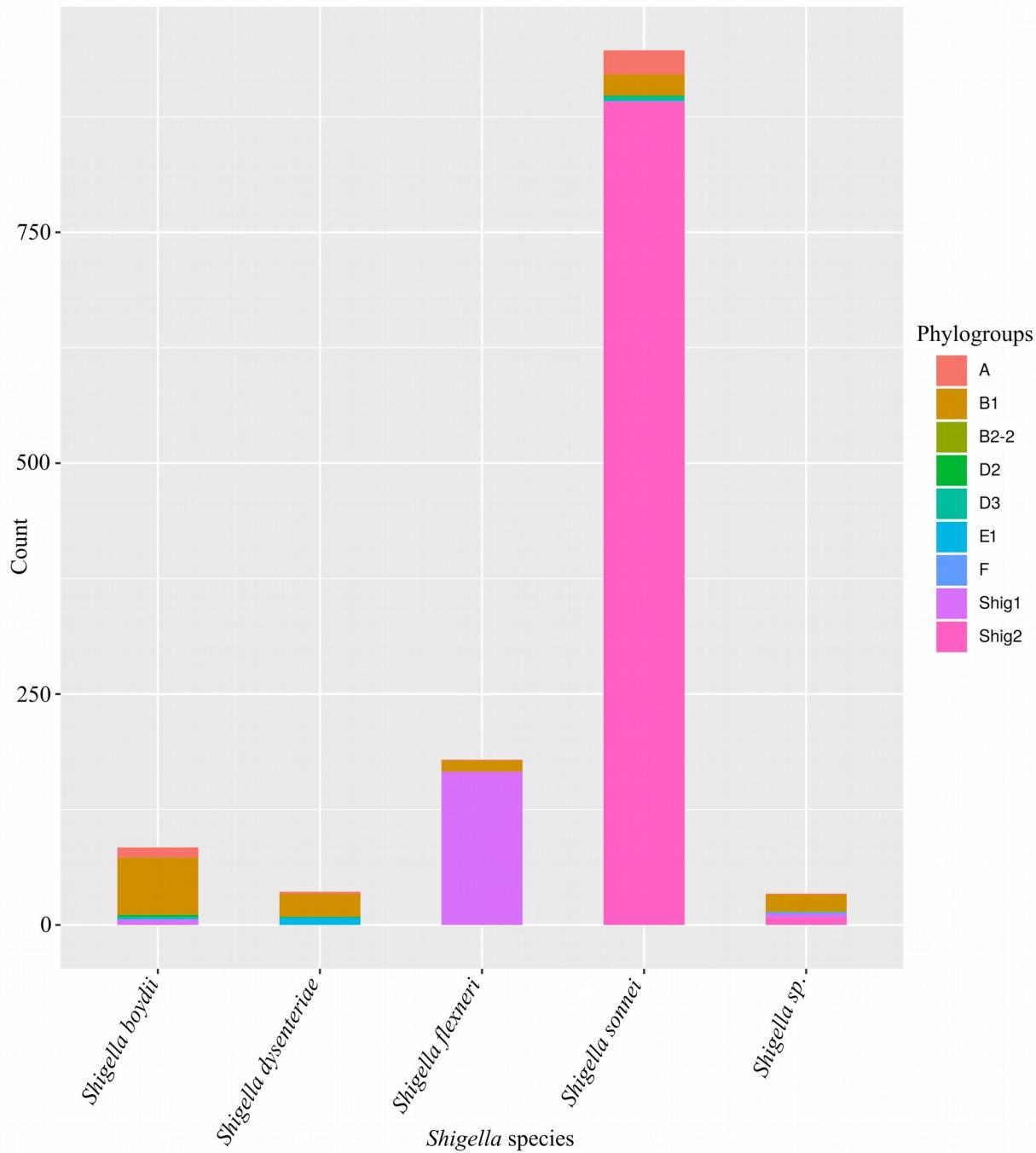
531 **Fig. 4. Pangenome representation of *E. coli* and *Shigella* species.** In this circular barplot, each  
532 bar length represents the total number of proteins of a single genome, grouped by phylogroup.  
533 The proteins belonging to the overall core<sub>97</sub> genome are shown in green. Additional proteins  
534 shared in each phylogroup-specific core<sub>97</sub> genome are shown in blue, while purple is reserved for  
535 accessory proteins.

536 **Fig. 5. Graphical representation of presence/absence of gene clusters using phylogenetic  
537 core genomes sorted by Mash dendrogram phylogroup order.** The plot shows 6,719 core  
538 gene clusters. The large purple region at the beginning of the plot represents the gene clusters  
539 present in the cores genome of all phylogroups. Subsequent blocks of purple represent core gene  
540 clusters with a large representation in the members of a phylogroup.

541 **Fig. 6. Phylogenetic representation of *E. coli* species using a set of 2,613 core clusters.**  
542 Branch support is shown at the beginning of each node. Maximum likelihood distances are  
543 showed on the middle of each branch. The number of gained (green color) and lost (red color)  
544 protein families was estimated for each branch using an ultrametric tree and the pangenomic  
545 matrix for the 14 phylotypes with 9,293 protein families.

546 **Figure 7. Core genome analyses of *E. coli* in the literature.** (A) Core genome size related to  
547 the year of publication. (B) Core genome size is plotted to the log 10 number of genomes  
548 included in each study. Black symbols represent the data from this study. Oval symbols represent  
549 reported approximate sizes only. Blue symbols represent studies in which a subset of *E. coli*  
550 genomes was analyzed (EHEC only in the 2014 study and ExPEC only in the 2015 study). More  
551 information, including the sources of these data, are provided in Supplementary Table 3.

## 552 **Supplementary information**

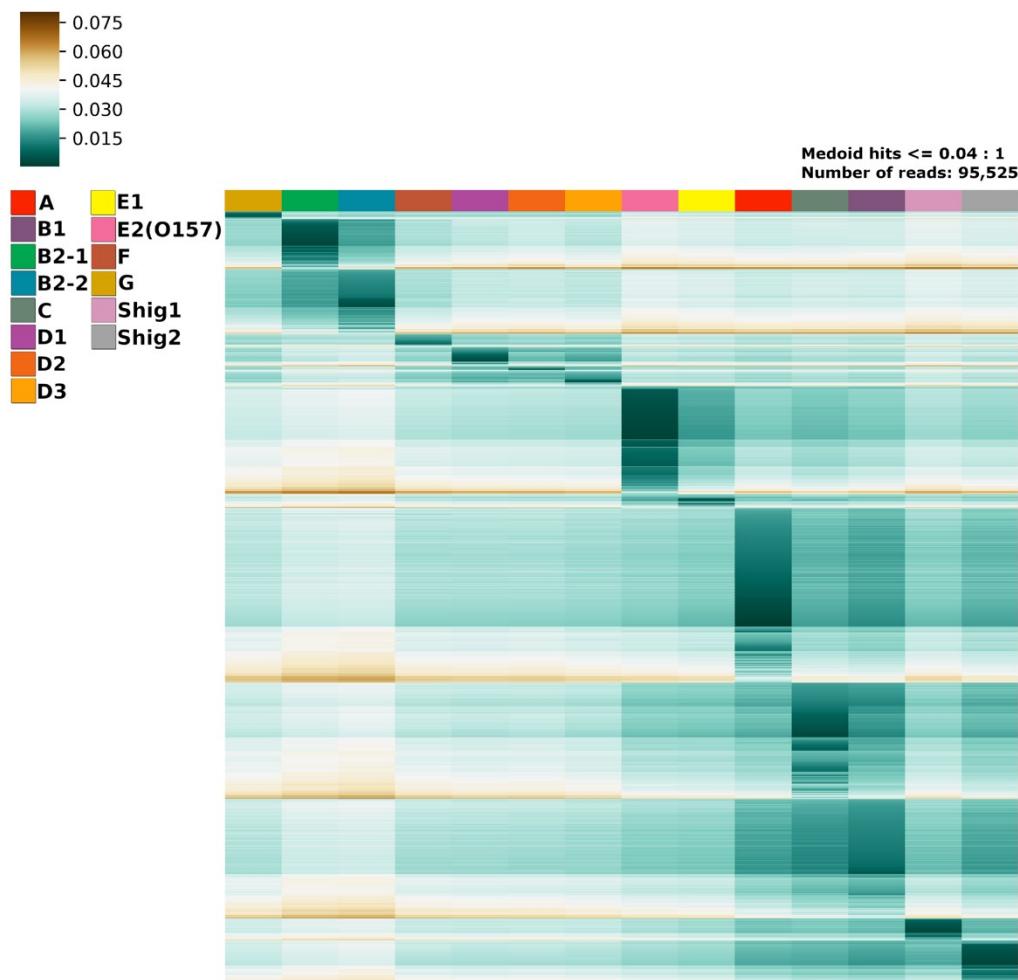

553 **Supplementary Table 1.** 10,667 WGS annotation numbers and strain names used in this study,  
554 their metadata and quality scores. This file also includes a list of the medoid genomes used in  
555 this study.

556 **Supplementary Table 2.** SRA metadata including read name, the predicted phylogroup, the  
557 number of hits a read has to phylogroup medoids that is above a cutoff of 0.04.

558 **Supplementary Table 3.** Gene gain and gene loss analysis using CAFE v3 software.

559 **Supplementary Table 4.** *E. coli* pangenome timescale obtained from literature.

560 **Supplementary figures**



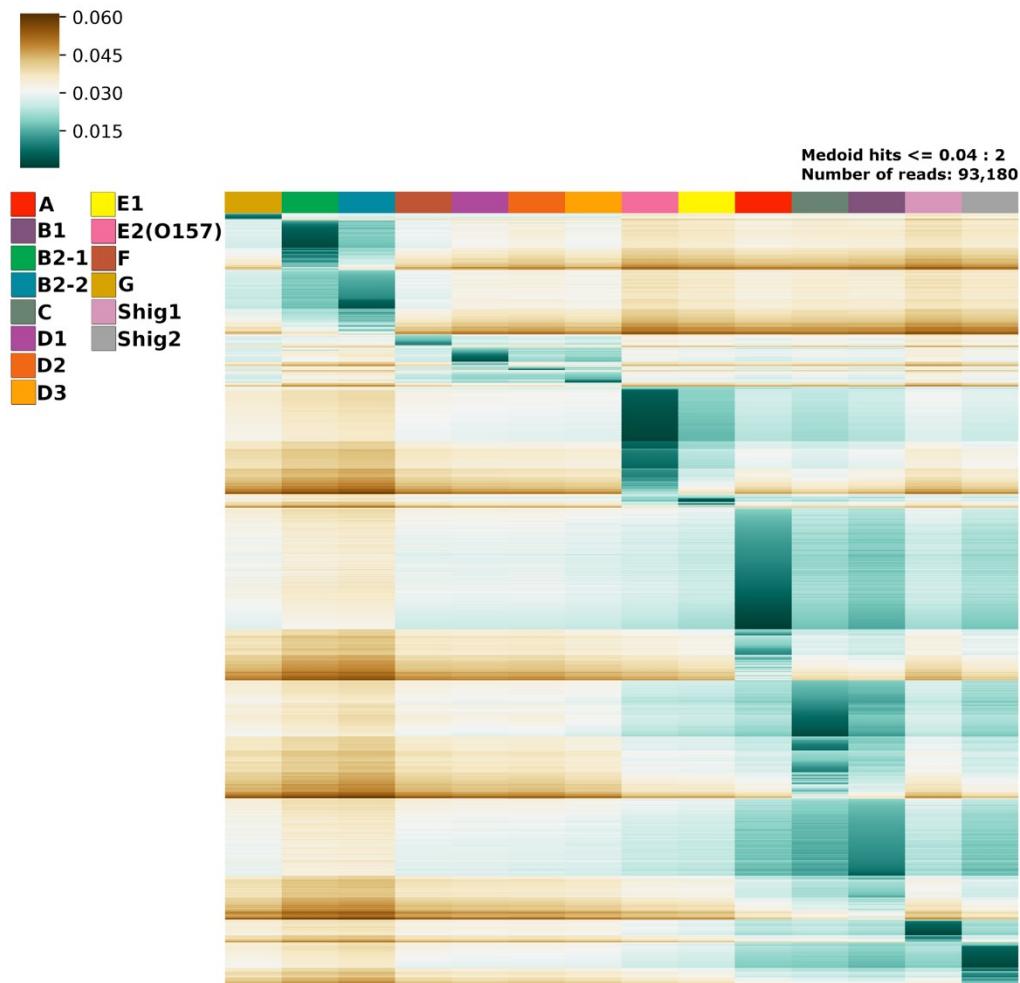

562 Supplementary Figure 1. Distribution of *Shigella* genomes over phylogroups.

563

564 Supplementary Figure 2. Heatmap of all SRA reads that had a Mash score of at least 0.04 to one  
565 medoid.

566 a)



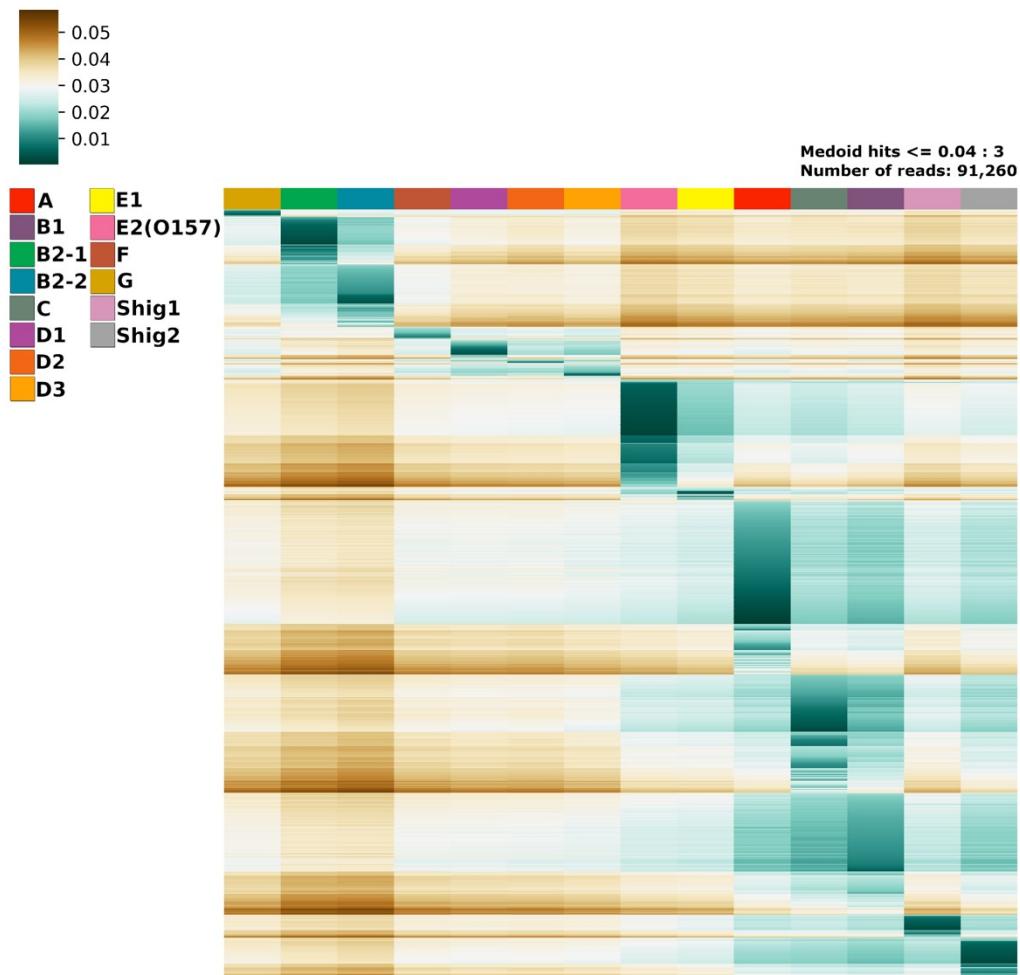

567

111

30

568

569 b)




570

571

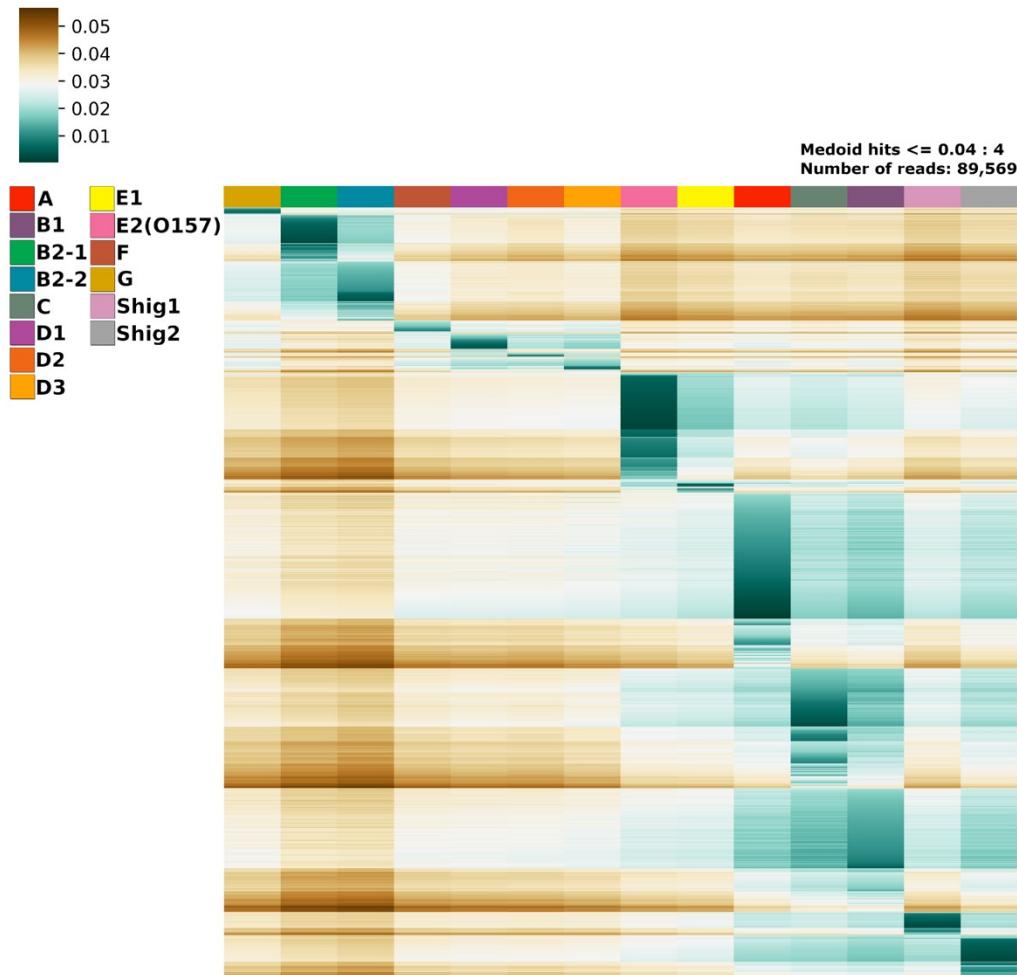
572

573 c)



574

575


576

115

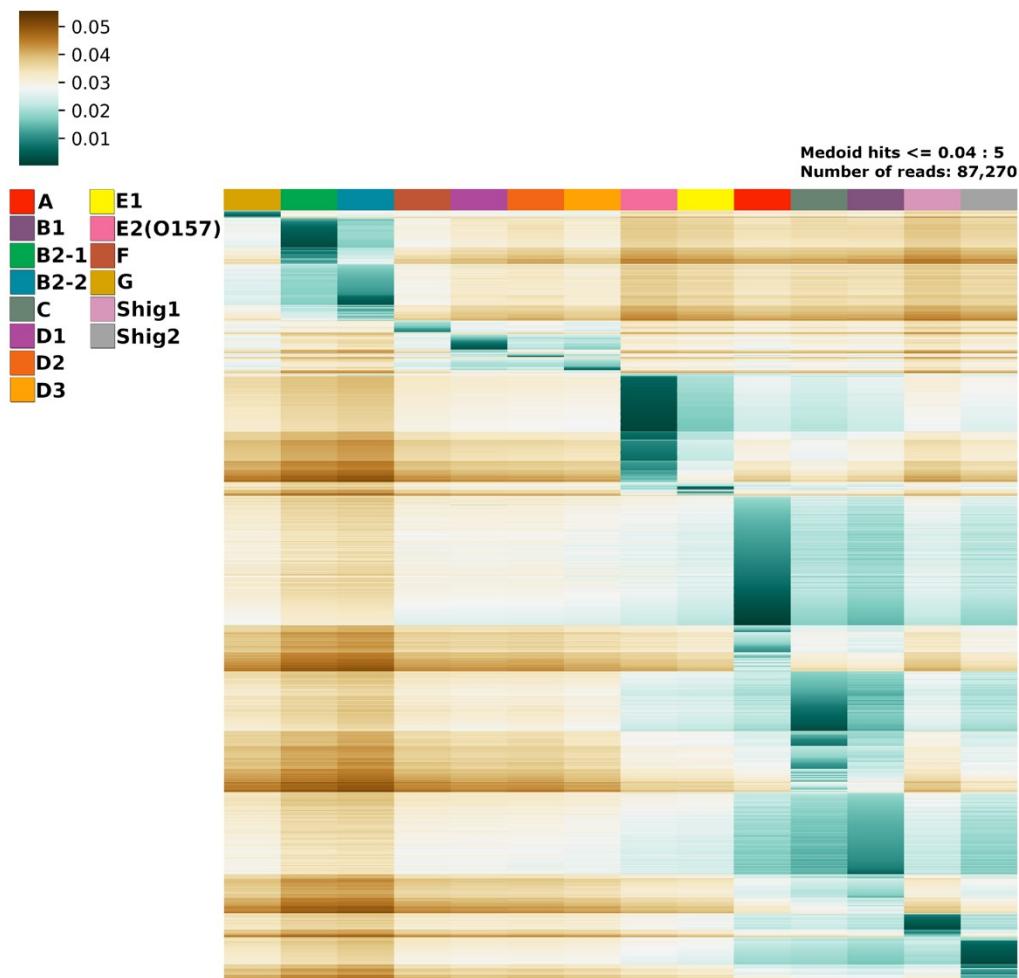
32

577

578 d)



579


580

117

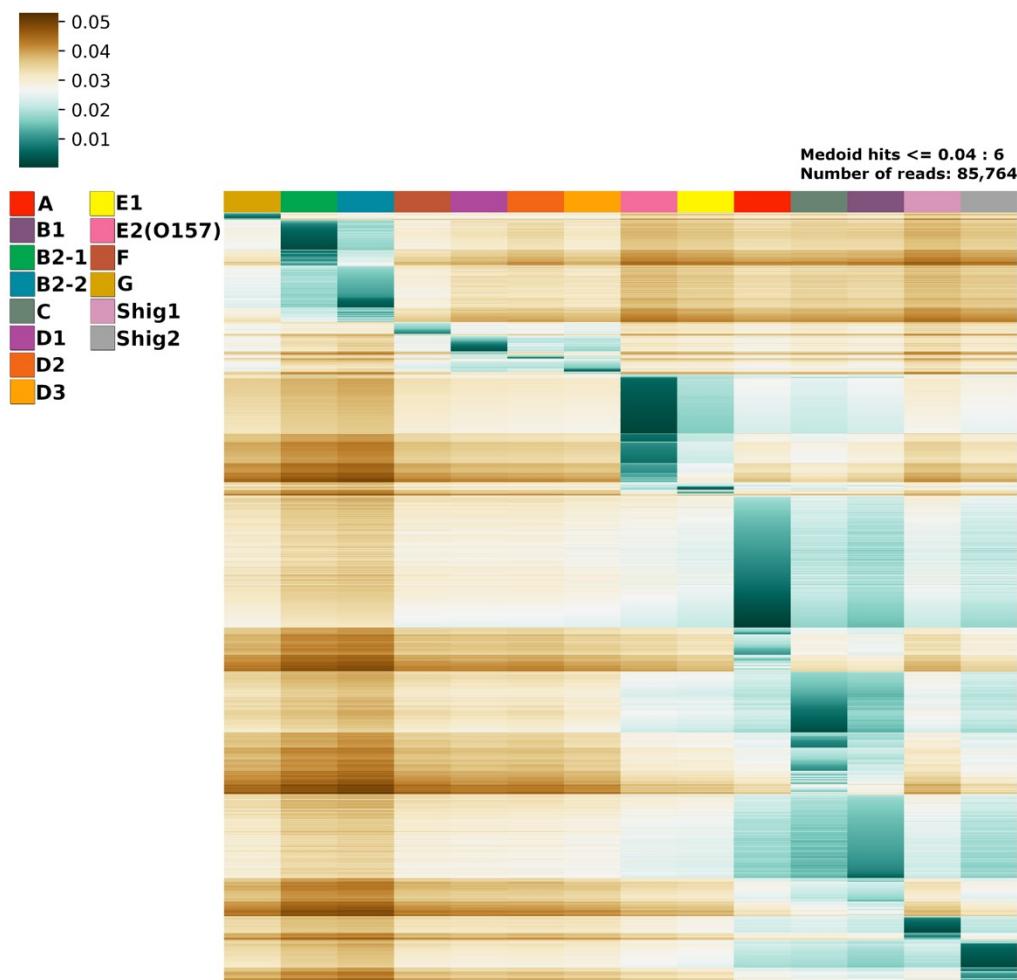
33

581

582 e)



583


584

119

34

585

586 f)



587

588

121

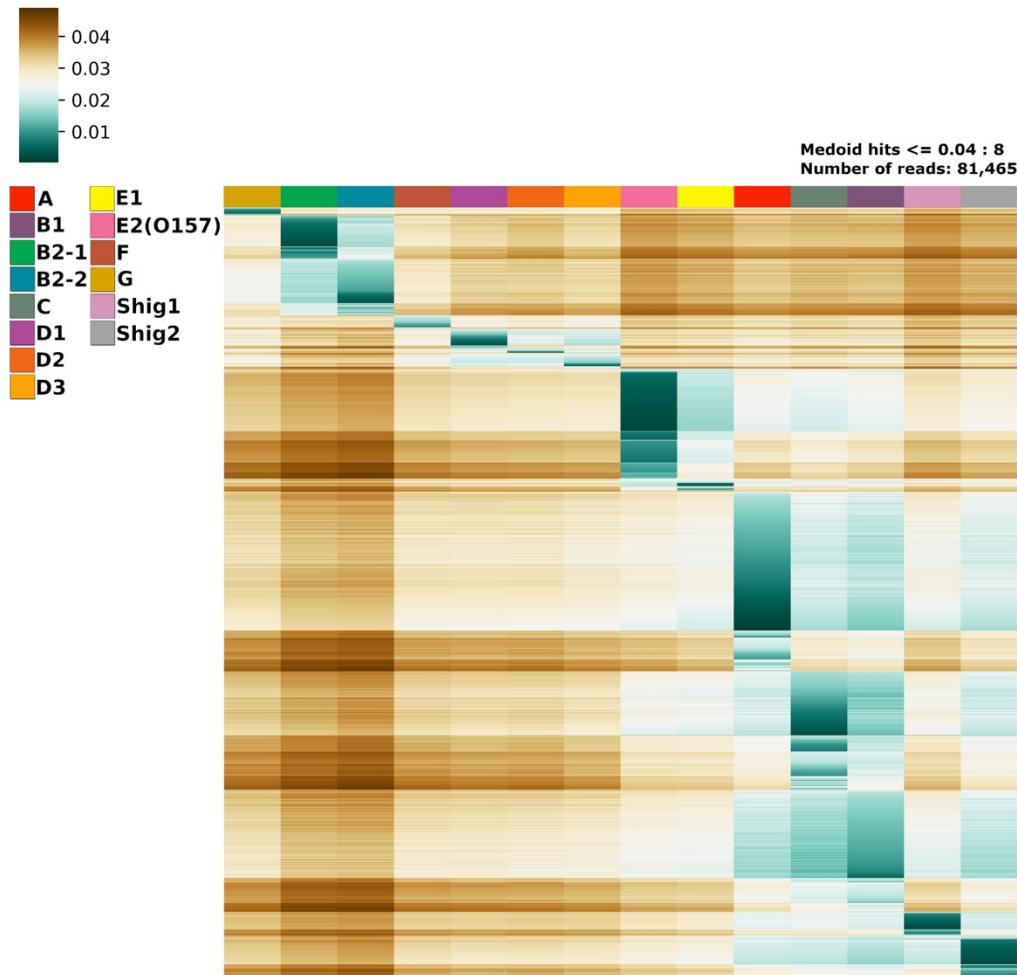
35

589

590 g)



591


592

123

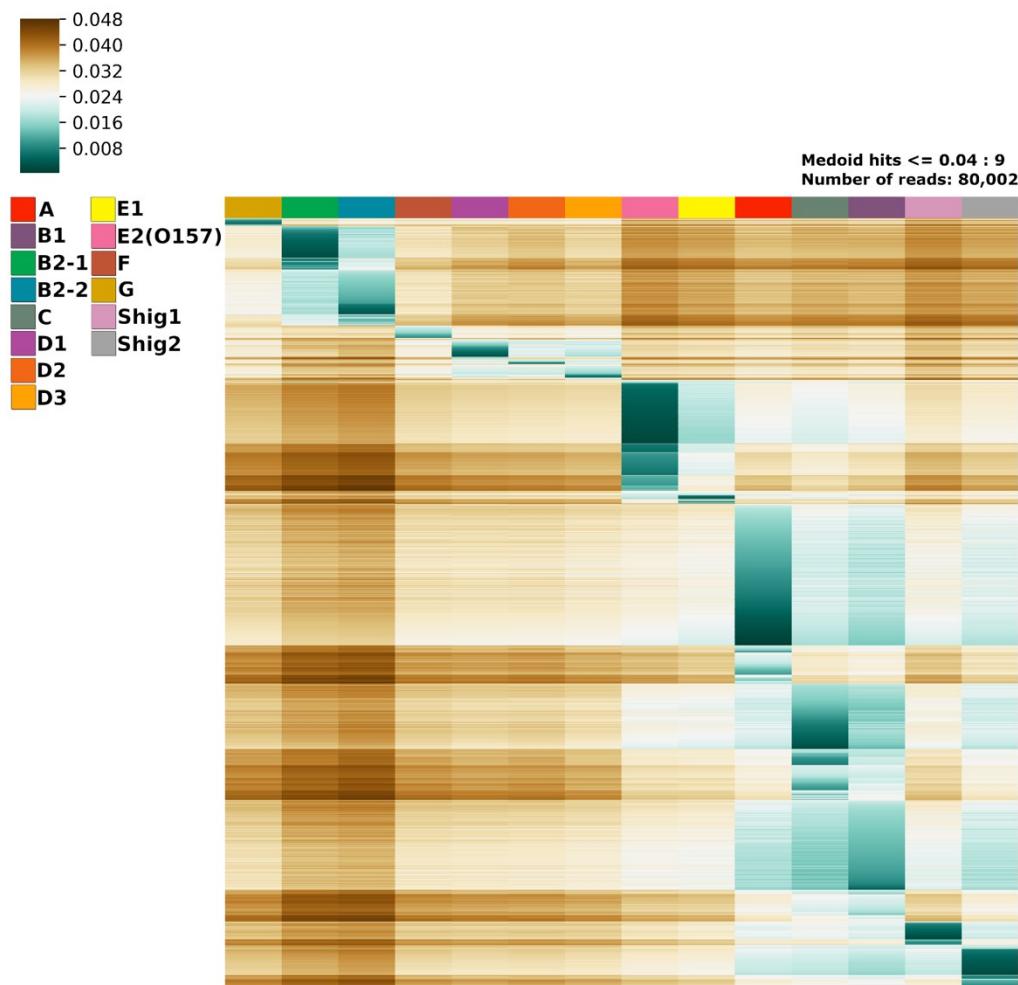
36

593

594 h)



595


596

125

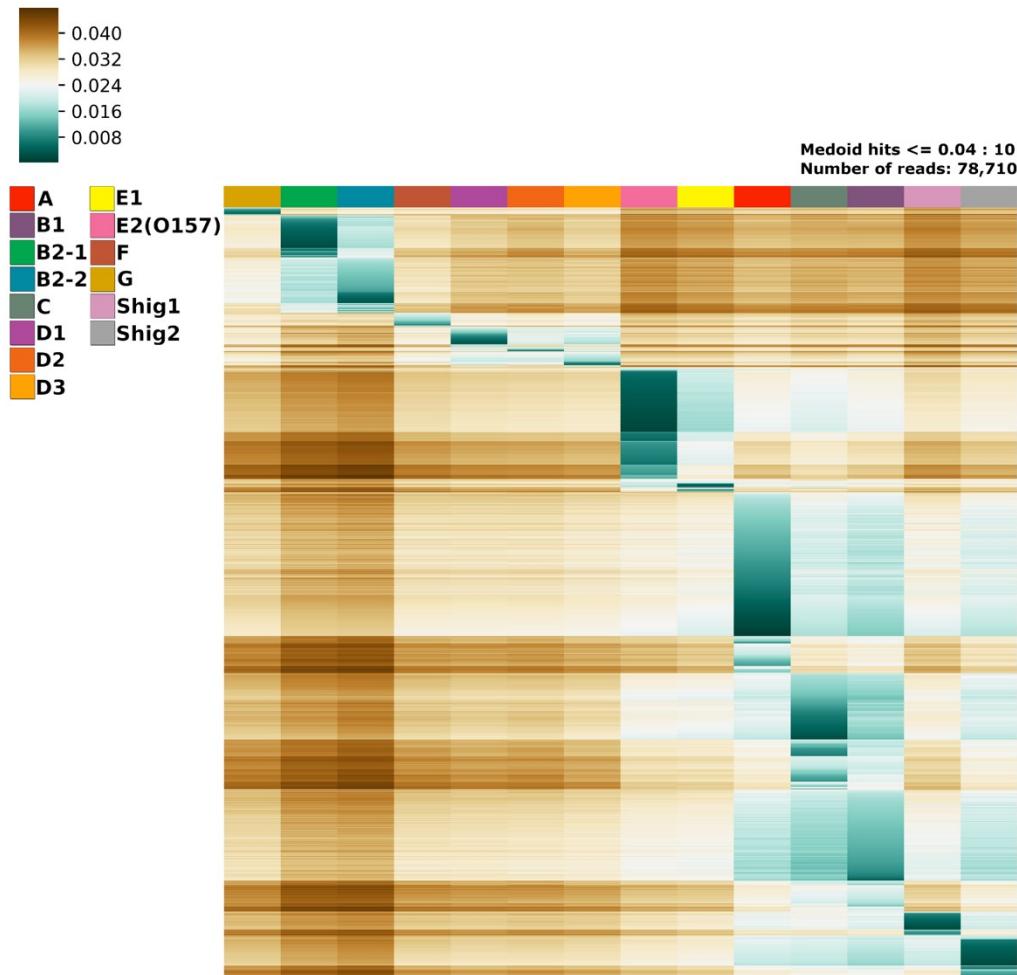
37

597

598 i)



599


600

127

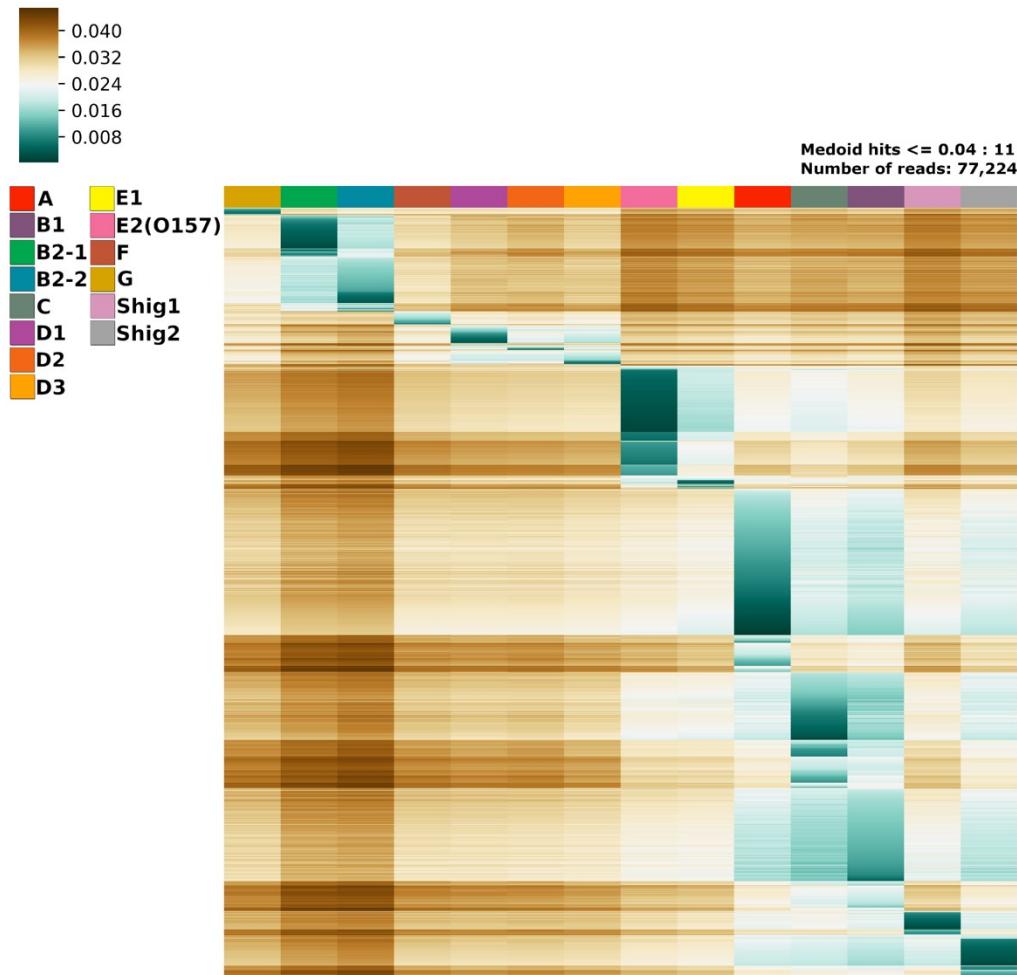
38

601

602 j)



603


604

129

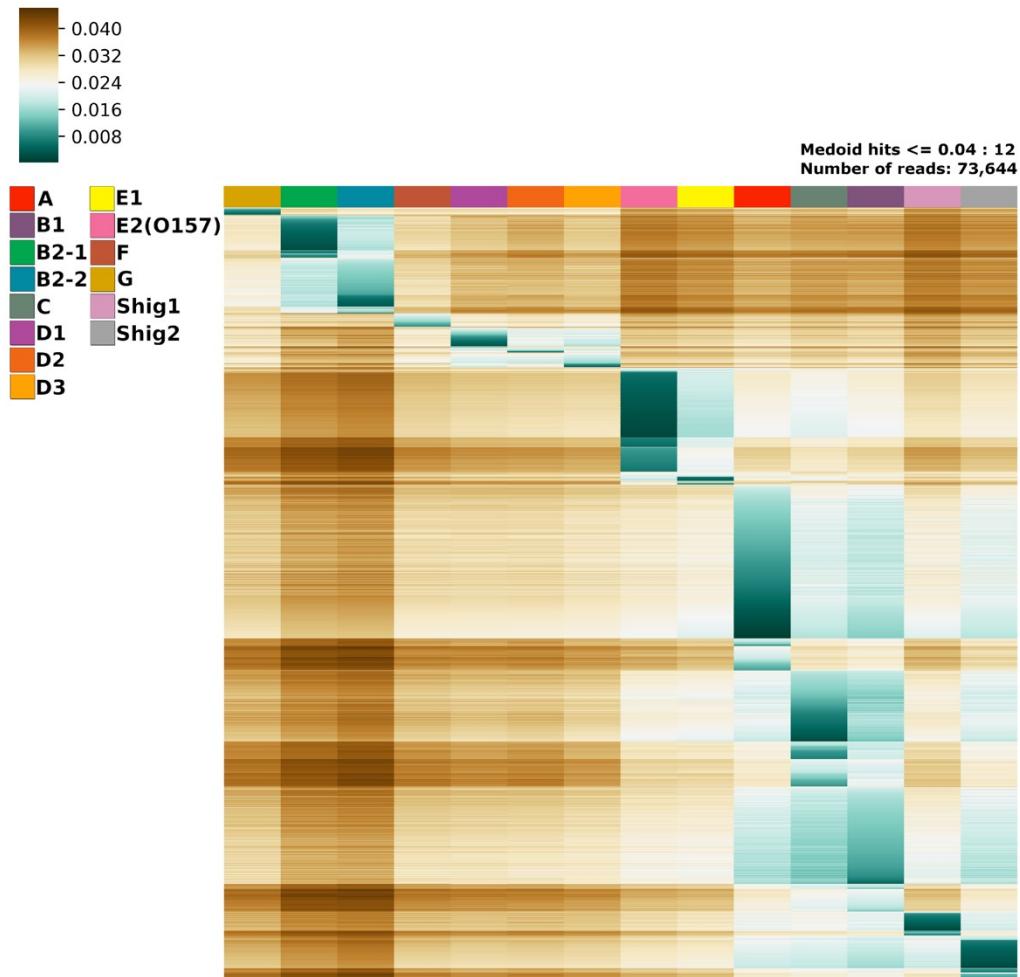
39

605

606 k)



607


608

131

40

609

610 I)



611


612

133

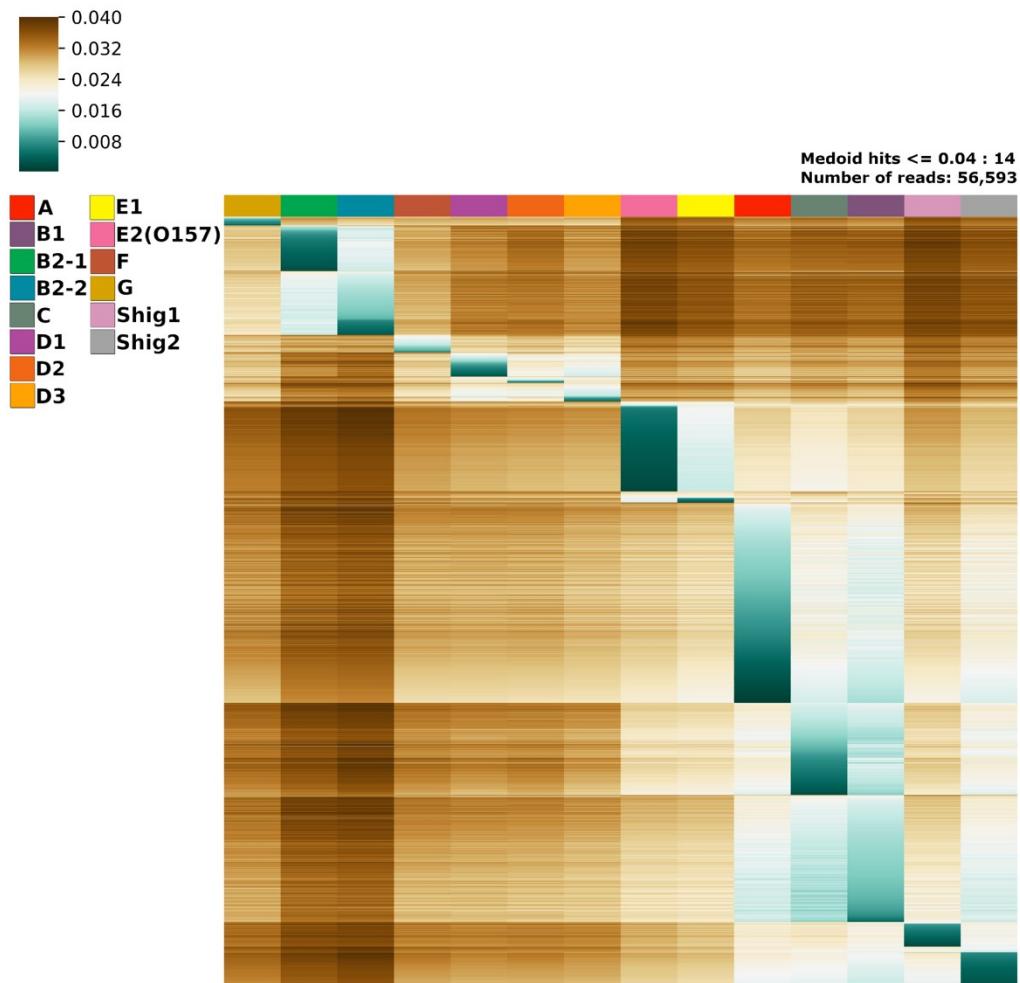
41

613

614 m)



615


616

135

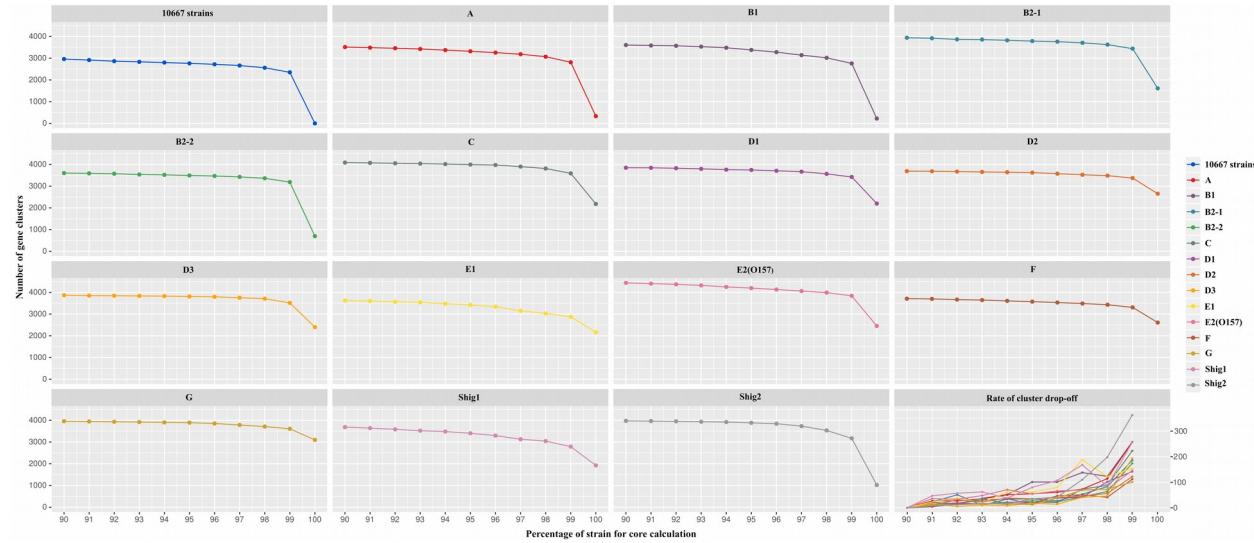
42

617

618 n)



619


620

137

43

621

622 Supplementary Figure 3. Core genomes established at a cutoff of 90% to 100% per phylogroup.  
623 Last section represents the rate of cluster drop-off between percentages (90% to 99%)



625

626

627

628

629

139

44