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ABSTRACT 

The explosion of microbial genome sequences in public databases allows for large-

scale population studies of model organisms, such as  Escherichia coli. We have examined

more than one hundred-thousand  E. coli and  Shigella genomes. After removing outliers,

genomes were classified into two broad clusters based on a semi-automated Mash analysis,

which distinguished 14 distinct phylotypes, graphically illustrated by Cytoscape. From a set

of more than ten-thousand good quality  E. coli and Shigella genomes from GenBank, we

find roughly 2,700 gene families in the  E. coli species core, and more than 135,000 gene

families in the E. coli pan-genome. Based on a set of 2,613 single-copy core proteins taken

from one representative genome per phylotype, we constructed a robust phylogenetic tree.

This is the largest  E. coli genome dataset analyzed to date, and provides valuable insight

into the population structure of the species.

E. coli  is  a  common inhabitant  of the gastrointestinal  tract  of warm-blooded animals

including humans, and also can be found in soil and freshwater (Jang et al., 2017). The species is

comprised of both commensal and pathogenic strains, and can cause disease in a wide variety of

animal hosts. In humans, pathogenic  E. coli  strains are a leading cause of diarrhea-associated

hospitalizations  (Fischer  Walker  et  al.,  2010). Some  of  the  attributes  that  make  E.  coli an

intensely  studied  microorganism include:  rapid  growth rate  in  the  presence  of  oxygen,  easy

adaptation  to  environmental  changes,  and the relative  ease with which  it  can be genetically

manipulated  (Dunne  et  al.,  2017).  The  extraordinary  plasticity  of  E.  coli genomes  is

demonstrated  by  differences  in  their  size,  which  ranges  from  slightly  less  than  3  million

basepairs (Mbp) to more than 7 Mb. Genomic diversity of the species, to which Shigella species

should be included (Pettengill  et al., 2016; Chattaway et al., 2017), is furthermore reflected by

the  existence  of  distinct  phylogenetic  groups  (phylotypes)  that  have  been identified  using  a

variety of different methods (Clermont et al., 2000; Gordon et al., 2008; Tenaillon et al., 2010).

 Historically, four phylotypes have been recognized: A, B1, B2, and D (Clermont  et al.,

2000; Tenaillon et al., 2010) to which three more were added later: phylotypes C (closest relative

to B1) (Clermont  et al., 2013), F (as a sister group of phylotype B2), and E to which many D

members were reassigned (Clermont et al., 2013). Some studies have subdivided these into more
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groups, with D1 to D3, subdivisions of F, and separate phylotypes for Shigella species (Meier-

Kolthoff et al., 2014). These phylotypes are thought to be monophyletic (Tenaillon et al., 2010;

Meier-Kolthoff  et al., 2014) and partly coincide with different ecological niches and lifestyles,

whose members differ in metabolic characteristics such as their ability to exploit different carbon

sources,  the presence of virulence genes and even antibiotic  resistance profiles  (Walk  et al.,

2009; Carlos et al., 2010; Tenaillon et al., 2010; Vangchhia et al., 2016). 

Previously, population structure analysis has been performed using datasets of various size

and composition that did not fully capture the diversity of the species. With the availability of a

large  number  of  genome  sequences  and  high-performance  computers,  population  genomics

within the whole species can now be feasibly studied, although efficient programming is required

for analysis of large amounts of data. 

Here, we describe a comprehensive comparison of over 100,000 publicly available genome

sequences, consisting of 12,602 assembled genomic sequences from GenBank, and over 102,000

unassembled  raw  genome  sequences  from  the  Sequence  Read  Archive  (SRA).  This  study

combined  whole  genome  sequences  (WGS)  and  SRA  unassembled  genomes  using high-

performance computing resources to cover the largest and most complete analysis to date of the

population  structure  of  E.  coli.  We have quantified  the  similarities  and differences  between

phylotypes to identify genomic phylogroups that encompass the so-far recognized phylotypes

and to characterize the genetic heterogeneity of these different phylogenetic lineages. We have

identified 14 ‘medoid’ genomes, one for each phylogroup, that can be used as a representation of

the population groups within the species.  

RESULTS

To conduct the analysis, 12,602 genome sequences labeled with Escherichia or Shigella

were  downloaded  from  Genbank  on  26  June,  2018  (including  plasmid  sequences  when

applicable).  This  dataset  (Supplementary  Table  1) was  cleaned  using  a  variety  of  steps  as

described in the Methods section, to obtain an informative and diverse set of 10,667 E. coli and

Shigella genomes that captures the actual diversity of the species as sequenced to date,  with

minimal  risk  of  producing  artifactual  findings  from low quality  genomes.  Underrepresented
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genomes upon which previous research knowledge is biased against are also included. Our final

genome  dataset  is  heterogeneous  and  contains  many  different  genomes  within  each  of  the

phylotypes, thereby better reflecting the interests of the complete scientific community in the

area of genomic research on this species. In addition to the GenBank genomes, a total of 102,091

read sets were downloaded from the SRA database that were labeled as either E. coli or Shigella

(see Methods).

Mash analysis of E. coli genomic sequences reveals 14 phylotypes. After cleaning the dataset,

we used Mash distances (Ondov et al., 2016) to produce a matrix of the 10,667 genomes based

on hierarchical clustering with Pearson’s correlation coefficient.  A clustered heatmap was used

for  visualization  to  illustrate  the  population  structure  of  these genomes (Fig.  1).  This

methodology differentiated 14 different phylogroups, named: G, B2-1, B2-2, F, D1, D2, D3,

E2(O157), E1, A, C, B1, Shig1 and Shig2 [ordered as in Fig. 1], which are all distinct based on

their  genetic  sequence,  according  to  the  Mash distances.  The phylogroups  Shig1 and  Shig2

exclusively  contained  Shigella species,  but  some  Shigella sp.  genomes  were  found  in

phylogroups A, B1, B2-2, D2, D3, E and F (Supplementary Fig. 1).

The heatmap shown in Fig. 1 reveals that some phylogroups share more genetic similarity to

each other than to other phylogroups, such as B2-1 to B2-2, Shig1 to Shig2, and C to B1. On the

other  hand,  B1  is  quite  distinct  from  the  B2  groups.  We  have  utilized  Microreact

(https://microreact.org/project/10667ecoli/b4431cf8) (Argimón  et  al.,  2016) to  visualize  the

resultant Mash distance-based clustering. The assembly accession ID was used as the identifier

for each genome. To this identifier we mapped the organism name, strain name, sequence size

(Mb), Bioproject  ID, Biosample ID, phylogroup, average genome quality  score,  and genome

sequence  quality  score.  To  optimize  the  search  function  of  Microreact,  we downloaded  (on

6/20/2019) all entries from PATRIC-labeled (Wattam et al., 2017) Escherichia coli or Shigella

sp. and mapped some of their data to each genome. This allows the exploration of subclusters

within the dendrogram for a number of shared characteristics that is outside the scope of the

current study and will be a topic for future exploration to increase our understanding of the E.

coli species. 
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Fig.  1.  Heatmap representation  of  10,667 genomes using Mash distances. The color  bars  at  the top of the

heatmap identify the phylogroups as predicted from the analysis (see key). The scale to the left of the dendrogram

corresponds to the resultant cluster height of the entire dataset obtained from hclust function in R (see Methods for

more details). The colors in the heatmap are based on the pairwise Mash distance between the genomes. Blue-green

colors  represent  similarity  between  genomes  with  the  darkest  blue-green  corresponding  to  identical  genomes

reporting a Mash distance of 0. Brown colors represent low genetic similarity per Mash distance, with the darkest

brown indicating a maximum distance of ~ 0.039. Genomes of relative median genetic similarity have the lightest

color. 
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Most sequenced E. coli genomes belong to only 4 phylotypes.  To increase the utility of our

analysis,  a  minimal  set  of  genomes  was  defined  that  represents  the  diversity  of  the  10,667

genomes without suppressing any of the predicted phylogroups. As 14 main phylogroups were

predicted, we tested if one genome from each of these would be enough to accurately predict the

phylotype of any given genome sequence claiming to be Escherichia coli or  Shigella.  Each of

these 14 genomes represents the medoid  (Struyf  et al., 1997) or the “genomic center” of each

phylogroup based on the 10,667 analyzed genomes.  In order to further increase the sequence

dataset, we added a total of 102,091 read sets labeled as either  E. coli or  Shigella sp. from the

SRA database. This dataset was first filtered by quality of the sequences (see Methods) which

resulted in a set of 95,525 genomes to which a phylogroup could confidently be assigned. As a

way to reduce computational load for classifying SRA reads, we compared these to each medoid

of the 14 phylogroups in an asymmetric matrix. A heatmap plotting SRA reads that have a Mash

distance equal to or less than 0.04 for at least three medoids is shown (Fig. 2) and a breakdown

of the SRA results is summarized in Supplementary Table 2.

Two-thirds (67%) of the analyzed SRA reads  were predicted to belong to one of four

phylogroups: A (23%), C (15%), B1 (15%), and E2(O157) (14%). The most prominent predicted

phylogroup in the SRA dataset was A, covering about 23% of the reads. This large disparity in

phylogroup diversity in the SRA dataset is most likely explained by the interest of the scientific

and medical  communities.  Strains belonging to  phylogroups B1,  C, and E2(O157) are  often

pathogenic and of interest to medical research, while phylogroup A includes strains frequently

used  in  the  laboratory  (e.g.,  strain  K-12)  or  engineered  strains  (such  as  strain  BL21  and

REL606). 

Similarly, approximately two-thirds of the 10,667 assembled genomes also belong to four

phylogroups:  B1 (28%), A (21%), B2-2 (13%) and Shig2 (8%). However,  in the assembled

genomes, phylogroup C is only about 5%, whilst E2(O157) is about 7%.  
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Fig. 2. Heatmap representation of 91,261 sequence reads from the SRA database.  The heatmap colors are based

on the pairwise Mash distance between the SRA read sets and the 14 medoid genomes of each phylogroup, which

are  presented  in  the same order  as  in Fig.  1.  To be included,  SRA reads  sets had to have  3 or  more medoid

comparisons producing a Mash distance equal to or less than 0.04. This removed 4,264 SRA read sets from the

dataset. The number of SRA reads mapped to each medoids is given below the heatmap.  Supplementary Fig. 2

contains additional cut-offs ranging from one to 14 phylogroups. 

The  currently  sequenced E.  coli  and  Shigella  species  can  be  represented  by  14  medoid

genomes. To investigate whether our clustering results were due to the data itself and not due to

bias in hierarchical clustering methods, we utilized Cytoscape (Shannon et al., 2003) to represent

the raw  Mash distance outputs.  During this  clustering,  the medoids were used as anchors to
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evaluate how the rest of the genomes distributed around them. Using the graph visualization

abilities of Cytoscape, we verified the concept of our medoids being representatives of entire

phylogroups. This demonstrated the medoids were suitable to decrease visual complexity without

sacrificing accuracy. The resulting Cytoscape graphs visualize the relative genetic diversity of

the genomes as calculated by Mash genomic distance. A video is available as Supplementary

information and a collection of stills is available upon request. This analysis shows that the two

B2 phylogroups are the most genetically distinct from the remainder of the species, in terms of

sequence content, as they start to split off first. The next set of genomes to separate represent the

D/F/G phylogroups, with G splitting off from the B2 complex. Group F then splits off from the

D/F complex.  Next,  the  E complex separates  from the bulk of  the  species,  which then still

contains A/B1/C/Shig. Of the Shigella groups, Shig1 splits off before Shig2 does, showing that

Shig1 (containing predominantly S. flexneri strains) is more genetically distant from the A/B1/C

complex than Shig2 is (the latter is mainly composed of S. sonnei strains (Supplementary Fig. 1).

At the final Mash value cutoff of 0.0095, the C and B1 phylogroups become the last two groups

to separate. This last split is indicative of the relatively large shared genetic content by these two

phylogroups. Between the initial Cytoscape frame and the final frame, the number of genomes

represented decreased by 43% while the edges (connections  between genomes and medoids)

decreased by 96%. These results show that the medoids represent the species accurately.  As

expected, the overall interconnectivity of the different phylogenetic groups drops significantly

with the cutoff, but intraconnectivity within the phylotypes does not.

Members of Mash phylogroups possess different genomic characteristics. Since Mash values

provide a distance measure of similarity between a pair of genomes, the phylogroups of Fig. 1

are  the  consequence  of  differences/similarities  in  the  genetic  content  of  each  genome  with

respect  to the rest  of the genomes included in the analysis.  Differences in genome size and

percentage of GC content between these phylogenetic groups are observed (Fig. 3). Statistical

tests were performed (ANOVA and Turkey test, see methods) to identify significant differences

between the average genome size and GC content  per phylogroup. Significant  differences  in

genome size of members belonging to different phylogroups are observed for phylogroups A and

B1 (significantly smaller genomes (P<0.01)) and C and E2(O157) (significantly larger genomes
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(P<0.01)).  The  two  Shigella phylogroups  also  contain  genomes  with  significantly  smaller

genomes (P<0.01), on average, indicative of reductive genome evolution of these organisms as

was noted before (Weinert and Welch, 2017). However, reduced genome size is not associated

with pathogenicity  per se, as the large genomes of E2(O157) illustrate.  Larger genome sizes

associated with virulence may result from the accumulations of virulence genes in prophages,

pathogenicity  islands  and plasmids  (Bhunia,  2018).  We also  compared  overall  genomic  GC

content, which is less variable and only differs significantly for the two  Shigella phylogroups

(P<0.01). These characteristics might reflect the different evolutionary strategies and opposite

selection  pressures  as  a  consequence  of  adaptation  to  diverse  niches  in  which  the  different

phylotypes have evolved (Balbi et al., 2009).
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Fig. 3. Violin-plots of the distribution of genome size (A) and genomic GC content (B) by phylogroup. Bar-

plots  inside  the  violins  represent  values  for  mean  and  mean  plus  one  standard  deviation  per  phylogroup.

Phylogroups that  have values  significantly different  to all  other phylogroups (according to F statistics test) are

marked with a red asterisk.
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Level  of  preservation  of  homologous  genes  varies  between  phylotypes.  To  evaluate  the

existence of functional traits associated with each of the phylogroups, we performed pan- and

core genomic analyses using the proteomes of the set of 10,667 assembled genomes. In addition,

separate core genomes were calculated for the 14 individual phylogroups.  For this, all protein-

coding genes were newly annotated using standardized criteria.

The overall pangenome of all assembled genomes is comprised of 135,983 clusters of

homologous proteins. A core genome of this total dataset representing homologs found in 100%

of the strains (TOTcore100) only contains one gene, which happens to be a hypothetical protein with

a functional  domain of a peptidase superfamily.  This vanishingly small  core is likely due to

individual genes that are missed in genome sequencing, assembly, or gene calling; with very

large numbers of genomes, a 100% core can be quite small, regardless of high sequence quality

scores. From testing the cutoffs for conservation in 99% to 90% of the genomes (Supplementary

Fig. 4) we concluded that, while the traditional cutoff for core calculation of 95% of genomes

would suffice, a cutoff of 97% can minimize erroneous core genes due to over-representation of

genomes, in turn providing a more stringent core. Therefore, we defined the core genome as

homologous genes shared by at least 97% of the genomes, which produces a TOTcore97 of 2,663

clusters (1.96% of the total pangenome’s clusters). These core genes comprise on average a bit

more than 50% of the protein content per strain, as illustrated in Fig. 4. The TOTcore97 contains the

well-preserved  genes  that  define  the  species,  and  for  the  shortest  genomes  that  have  been

sequenced, approximately 74% of their protein content belong to this core (GCA_000350185.1;

Escherichia coli str. K-12 substr. MDS42); in contrast, for the largest genomes this fraction is

only about 32% (GCA_000937575.1; E. coli Ec138B_L1). 

By defining phylotype-specific core genomes it becomes apparent that large differences

exist between the level of gene preservation for each of the phylotypes. Table 1 summarizes the

phylogroup-specific sizes of core genomes, accessory gene clusters and singletons. Predictably,

the phylogroup with the largest number of genes in their phylogroup-specific core genome is

E2(O157).  Not  only  do  its  members  have  large  genomes,  but  this  phylogroup  is  also  very

homogeneous  and  mostly  contains  E.  coli O157:H7  strains  that  have  a  clonal  relationship

(Sharma et al., 2019). Relatively large phylogroup-specific core genomes are also observed for
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phylogroup  C,  harboring  strains  of  clinically  relevant  non-O157 enterohemorrhagic  (EHEC)

serotypes such as O111, O26 and O103. A third phylogroup with a large core genome is Shig2,

whose  members  have  relatively  short  genomes,  on  average,  suggesting  this  phylogroup  is

relatively homogeneous, which increases the size of the core genome. However, phylogroups

with fewer members produce larger core genome fractions with respect to their pangenome due

to sample size bias, as illustrated by G. The phylotype with the smallest core genome is Shig1

followed by B1 and A (Table 1). The small core genome of Shig1 is related to its small genome

size, while phylotypes A and B1 contain more diverse members, resulting in a larger fraction of

accessory genes and a smaller phylogroup-specific core.

Table 1. Summary of pangenome analysis results. Values obtained from the different pangenome analysis using

the 14 phylogroups separately and the entire set of assembled genomes (10,667 genomes) using UCLUST (Edgard,

2010). Same parameters were used to all the analysis. 

Phylogroup
Core genome
(97% strains)

Accessory genome Unique Total (Pan genome)
Core/pan

(%) 
No. of
strains

clusters proteins clusters proteins clusters proteins clusters proteins clusters
All 2,663 28,566,052 82,821 22,783,754 50,499 51,099 135,983 51,400,905 1.96 10,667
A 3,184 7,142,893 41,769 3,246,591 24,501 24,828 69,454 10,414,312 4.58 2,232
B1 3,141 9,365,646 44,019 4,887,086 24,590 24,844 71,750 14,277,576 4.38 2,960

B2-1 3,708 2,016,812 10,990 619,867 7,048 7,180 21,746 2,643,859 17.05 541
B2-2 3,425 4,709,983 22,762 1,819,538 12,566 12,763 38,753 6,542,284 8.84 1,367

C 3,899 2,132,258 10,413 738,879 5,242 5,290 19,554 2,876,427 19.94 540
D1 3,666 1,006,271 10,012 318,372 7,659 7,770 21,337 1,332,413 17.18 273
D2 3,524 626,693 11,703 221,033 6,765 7,181 21,992 854,907 16.02 177
D3 3,754 668,359 7,252 201,292 4,814 4,936 15,820 874,587 23.73 177
E1 3,151 885,018 14,883 471,354 7,969 8,088 26,003 1,364,460 12.12 279

E2(O157) 4,060 3,080,073 6,128 743,413 4,442 4,535 14,630 3,828,021 27.75 750
F 3,486 698,031 9,465 288,420 5,381 5,480 18,332 991,931 19.02 199
G 3,783 365,756 5,716 98,269 4,016 4,066 13,515 468,091 27.99 96

Shig1 3,128 564,868 4,903 256,426 2,815 2,883 10,846 824,177 28.84 177
Shig2 3,732 3,383,814 6,870 719,247 4,751 4,799 15,353 4,107,860 24.31 899
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Fig.  4.  Pangenome representation  of E.  coli and  Shigella species.  In  this circular  barplot,  each  bar  length

represents the total number of proteins of a single genome, grouped by phylogroup. The proteins belonging to the

overall core97 genome are shown in green. Additional proteins shared in each phylogroup-specific core97 genome are

shown in blue, while purple is reserved for accessory proteins. 
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The comparison of the core genomes per each phylogroup allowed us to establish the

existence of exclusive genetic signatures that would confer exclusive characteristics to each of

the phylogroups found in E. coli species using Mash. Unique phylogroup-specific core genes are

those genes present in the core genome of each phylogroup, but not found in the core genome of

the other phylogroups. Such genes represent genetic signatures for all members of a phylogroup

where they are conserved, but not members of the other phylogroups.  The existence of unique

phylogroup-specific core genes is shown in Fig. 5.

Fig. 5. Graphical representation of presence/absence of gene clusters using phylogroups core genomes sorted

by Mash dendrogram phylogroup order. The plot shows 6,719 core gene clusters. The large purple region at the

beginning of the plot represents the gene clusters present in the core genome of all phylogroups. Subsequent blocks

of purple represent core gene clusters with a large representation in the members of a phylogroup.
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 Phylogroups evolve with different rates of gain/loss of protein families. Taking advantage of

the  existence  of  the  medoids  as  representative  entities  of  the  phylogenetic  groups  and  the
TOTcore97 genome we identified, a very robust phylogenic analysis was performed based on the

concatenated alignment of 2,613 core genome clusters for the entire species (without paralogs)

and a maximum likelihood approach (see methods) using IQ-TREE software  (Nguyen  et al.,

2015). From a total of 9,293 gene families built with these core genes (defined using UCLUST

for the 14 medoid strains, see Methods), CAFE-based analysis of gene gain and loss patterns

(Han et al., 2013) was used to identify the evolution of protein family sizes across the species,

using a random birth/death process along each lineage of the phylogenetic tree. The resulting tree

is shown in Fig. 6.

Fig. 6. Phylogenetic representation of E. coli species using a set of 2,613 core clusters. Branch support is shown

at the beginning of each node. Maximum likelihood distances are showed on the middle of each branch. The number

of gained (green color) and lost (red color) protein families was estimated for each branch using an ultrametric tree

and the pangenomic matrix for the 14 phylotypes with 9,293 protein families. 

This analysis led to the observation that the different phylogroups have evolved with different

rates of gain/loss of protein families (Supplementary Table 3). Branches with higher ratios of

gene expansion correspond to phylogroups C and Shig1 and these differed largely from the other
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phylogroups. At the other end of the spectrum, phylogroups D2, F and B1 represent the lowest

ratios, indicating limited gene expansion. Note, that these observations are not related to genome

size (cf. Fig. 3) or phylogroup-specific core size (Fig. 4).

Discussion

Mash-based analyses provides a fast and highly scalable K-mer based approach that can

be used on very large sets of genomes. Based on more than a hundred thousand genomes, the

population structure of  E. coli  species appears to be more diverse than currently thought.  The

methodology applied here detected 14 phylogroups with a remarkably unequal distribution of the

number of genomes across the 14 phylogroups. The current bias in the sequencing data decreases

the probability of finding the genetic signatures that captures the relative homogeneity of all

members of the phylogroups. As a consequence, less numerously represented phylogroups may

actually  contain  additional,  as  yet  unidentified  phylogroups  within  them  and  at  presence

conclusions about their open or closed nature cannot be drawn. 

Findings based on Mash analyses were supported by differences found in the analysis of

the core genomes of the 14 phylogroups. These differences can be broadly defined into two

categories: size of the core genome and genetic content. Differences in size could be reflective of

the possible clonal nature of some of the phylogroups. Nevertheless, phylogroups that harbor

commensal and environmental strains such as B1 and A possess smaller core genomes as a result

of a wide variety of environmental pressures.  Genomes belonging to Shig1 phylogroup have one

of the smallest sets of core genes; however, this number represents almost 29% of the clusters

found in this phylogroup, which is the highest ratio of core gene clusters to total pangenome

clusters.  Therefore,  the  ratio  of  core  cluster/total  cluster  is  an  indication  of  the  intragroup

diversity (Table 1). The presence of different clusters of genes belonging to the core genome of

each  phylogroup  support  the  existence  of  multiple  non-overlapping  phylogroups  within  the

species. The comparison of shared and unique core gene clusters for each phylogroup relative to

other phylogroups provides the intergroup diversity of the species.

Findings based on Mash analyses were supported by differences found in the analysis of
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the core genomes of the 14 phylogroups. These differences can be broadly defined into two

categories:  size of the core genome and genetic  content.  Differences in core size expose the

possible  clonal  nature  of  some  of  the  phylogroups,  in  particular  those  containing  mainly

clinically relevant strains. Phylogroups that harbor commensal and environmental strains such as

B1 and A generally possess smaller core genomes while their members have adapted to a wide

variety  of  environmental  pressures.  Genomes  belonging  to  the  Shig1  phylogroup  have  the

smallest  number  of  phylogroup-specific  core  genes,  but  due  to  their  smaller  genomes  this

number represents almost 29% of the total clusters found in this phylogroup, which is the highest

ratio of core gene clusters per phylogroup-specific pangenome. The ratio of core clusters/total

clusters  can be used as  an indication  of the  intragroup diversity  (Table  1).  The presence of

different  clusters  of  genes  belonging  to  the  core  genome  of  each  phylogroup  support  the

existence of multiple non-overlapping phylogroups within the species. The comparison of shared

and unique core gene clusters for each phylogroup relative to other phylogroups provides the

intergroup diversity of the phylogroup within the species.

The dataset of 10,667 WGS genomes was used to calculate the size of the total  core

genome for E. coli that contained 2,663 gene clusters. Such analyses have been reported multiple

times in the literature, using different cut off values and criteria, as summarized in Fig. 7 and

Supplementary Table 4. The data sets and analytical parameters varied widely between these

studies,  resulting  in  a  variation  in  core  genome  size  between  867  and  3,472,  ignoring  the

comparison of the first two E. coli genomes that were published, and analyses with subsets of E.

coli. Compared to our results, most determined core genomes were too low, in part because the

parameters of inclusion were too strict for the quality of genomes that were analyzed. 
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Figure  7.  Core  genome analyses  of  E.  coli  in  the  literature. (A)  Core  genome size  related  to  the  year  of
publication. (B) Core genome size is plotted to the log 10 number of genomes included in each study. Black symbols
represent the data from this study. Oval symbols represent reported approximate sizes only. Blue symbols represent
studies in which a subset of E. coli genomes was analyzed (EHEC only in the 2014 study and ExPEC only in the
2015 study). More information, including the sources of these data, are provided in Supplementary Table 4.

METHODS

Data Acquisition and Cleaning

A set of 12,602 genomes labeled either Escherichia or Shigella were downloaded from NCBI’s

Genbank on June 26, 2018. To evaluate the quality of the data set, various sequence quality

scores were calculated as described elsewhere (Land et al., 2014). Following the recommended

cutoff value, the dataset was filtered to include only genomes with a Total Quality Score of 0.8

or higher. Applying the same cutoff value to the Sequence Quality Score alone resulted in an

extremely restricted dataset that no longer addressed the goals of this study. Genome size was

restricted to greater than 3 Mb and less than 6.77 Mb to trim questionably sized genomes. After

applying these two steps, 10,855 genomes remained in the dataset for analysis.

To further clean the dataset, we filtered genomes that were outside the statistical distribution of
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Mash distances within the dataset. Assuming that Shigella species are all members of E. coli, we

chose  to  use  type  strains  for  the  Escherichia  and  Shigella genera  (accession  numbers

GCA_000613265.1  and GCA_002949675.1,  respectively)  to  quickly  filter  the  set  of  10,855

genomes  for  erroneous or  low-quality  genomes  that  may have  slipped through the  previous

cleaning steps.  The Mash values of the 10,855 genomes compared to each type strain were

broken  into  percentiles  ranging  from  10%  to  99.995%.  A  cutoff  percentile  of  98.5%  was

determined to provide sufficient cleaning without risking a large loss of data (data not shown)

and was applied to each type strain Mash value set. Genomes that were found in both sets after

filtering were retained to produce the final dataset of 10,667 genomes.    

Mash and Clustering Analysis

Genetic distances between all 10,667 genomes were calculated using ‘Mash dist’ with a k-mer

size of 21 and a sampling size of 10,000. The resulting output was converted into a distance

matrix with matching columns and rows. To improve the clustering results  and to provide a

standard metric that allows comparison of different analytical methods, we converted the Mash

distance value into a similarity measure via the Pearson correlation coefficient (Kirch, 2008).

This returns values ranging from -1 (total negative linear correlation) to 1 (total positive linear

correlation), where 0 is no linear correlation. Since clustering-based methods require a distance

measure,  the values were subtracted from 1 to  convert  them into a distance measure.  These

distance measures were then clustered using hclust and the “ward.D2” method. A heatmap was

generated  using  the  hclust  dendrogram  to  reorder  the  heatmap,  while  values  from the  raw

distance matrix of Mash distances were mapped to color. To determine the height to cut the

hclust dendrogram and to accurately predict phylogroups that optimally overlapped with existing

phylotypes, we compared multiple different cutoff values and methods to obtain cutoff values.

Taking the maximum height present in the hclust dendrogram and multiplying it by 1.25 -02 was

found to  provide  both  accurate  predictions  and a  standard  method  that  scales  with the  data

supplied. Sufficient accuracy was defined by the cutoff at which the last accepted phylotype was

visible, in this case representing the C phylotype splitting off from B1. Some detailed results of

both  the  cutoff  percentile  and  hclust  height  testing  are  included  for  10,667  genomes  in
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Supplementary Table 1. 

Medoid Selection for Species Representation

Using the Mash values for the entire species, a medoid was defined for each phylogroup. This

was defined as the member of a phylogroup to which the average dissimilarity  for all  other

phylogroup member is the smallest. This was done by using the aggregate function of R to find

the mean across each phylotype. The alternative approach, isolating each phylogroup and then

reclustering  and calculating  the  medoid,  did  not  yield  as  accurate  results  as  calculating  the

medoid per phylogroup with respect to the entire 10,667 genome dataset. 

Scaling up to over 100,000 Escherichia coli by addition of SRA read.

The keyword “Escherichia coli” filtered with “DNA” for biomolecule and “genome” for type

was used to retrieve SRA ids from the NCBI SRA website on March 22, 2019. For large scale

data  transfer,  these  SRA genomes  were  downloaded  using  the  high  throughput  file  transfer

application Aspera (http://asperasoft.com). According to the variety of sequencing technologies

used to generate genome data, the obtained read sets of 102,091 genomes in SRA format were

divided into five subsets to ease computational and organizational load as follows: 3 Illumina

paired read sets, 1 mixed technology with paired reads, and 1 mixed technology with single

reads. The 5 sets of reads were then converted from fastq to fasta format to be processed by

Mash using a python script.

The  sequence  reads  were  sketched  using  Mash (v2.1).  This  version  change  was  due  to  the

addition of read pooling in the read mode which automatically joins paired reads, eliminating the

need  to  concatenate  or  otherwise  process  paired  read  sets.   All  read  sets  were  sketched

individually so that read sets that caused an error when sketching were dropped from the analysis

before sketching. The -m setting was set to 2 to decrease noise in the sketches of the reads.  After

sketching the reads within the subsets,  all  sketches  were concatenated  into a sketch for that

subset using the paste command of Mash. The concatenated sketch of each subset was then

compared to the 14 medoids using Mash dist. As all five subsets had the same reference, the dist
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output from each subset was concatenated to one file. This single SRA dist output file was then

analyzed to evaluate the quality of the SRA dataset. Due to how Mash distances are calculated,

the k-mer size and sketches sampled settings can consistently flag genomes of very low quality,

since major basis of a Mash value is how many hits are present out of sketches sampled. The top

5 most numerous distances of the SRA read sets corresponded to 0 to 4 hits of the possible

10,000  sketches  per  genome.  This  indicates  presence  of  extremely  low-quality  genomes.  A

histogram of the SRA Mash distance results was created to visualize the distribution of Mash

distances of the entire 102,091 SRA reads dataset (results not shown), initially using a cutoff of

0.1 Mash distance.  However,  a final  Mash distance cutoff of 0.04 was chosen based on the

maximum Mash value in the 10,667 whole set that was 0.393524. Although this higher cutoff

might  potentially  eliminate  useful  information,  it  insured  quality  of  the  SRA  dataset.  This

retained 95,525 reads that had at least one Mash distance to a phylogroup medoid. The distances

were transferred into a matrix with reads as columns and rows containing a phylogroup medoid.

For each read the smallest  Mash distance to a medoid was identified,  and the corresponding

medoid  noted  (Supplementary  Table  2).  We  then  created  a  distance  matrix  from the  Mash

distance output of the 95,525 reads that met the above cutoff with reads as rows and medoids as

columns. Due to computational pressure this distance matrix was loaded into Python 3 instead of

R. A clustered heatmap was made using Seaborn, Matplotlib,  and Scipy with the clustermap

function. Instead of clustering both rows and columns, columns (phylogroups) were ordered the

same as Figure 1 and rows were sorted as follows: number of hits to phylogroups (ascending =

True) and Mash distance (ascending = False). This provided a quick visualization method for the

SRA dataset with a consistent sorting criterion to make comparison between Figure 2 and the

Supplemental heatmaps much easier. 

Cyoscape visualization of MASH analysis

The Mash distance matrix of the 10,667 genomes was transmuted into a new 3 column matrix

where the first two columns contains two genomes to be compared and the third column contains

the Mash value for that pairwise comparison. A sliding cutoff ranging from 0.04 to 0.0095 with

increments of 0.005 was applied to the Mash value column. After each cutoff filter was applied a

data table was compiled with the cutoff identified in the name. These data tables were imported
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into  Cytoscape,  the  Prefuse  Force  Directed  layout  was  applied,  and  phylotype  membership

mapped with a metadata table. For each cutoff the resultant graph was output as an SVG. All

SVGs were then compiled into an animated transition. 

Statistical analysis of genome sizes and percent GC content

Genome sizes and percent of GC content was calculated using infoseq package from EMBOSS

suite  v6.6.0.0.  A dataframe  with  sequence  ID,  percentage  of  GC content,  genome size  and

phylogroup  ID was  made.  Library  ggplot2  from R was  used  to  plot  genome sizes  and GC

content.  Library  dplyr  from R was  used  to  perform analysis  of  Variance  ANOVA test  and

Turkey  HSD  tests.  The  homogeneity  of  variances  was  tested  using  Levene’s  test  and  the

normality assumption of the data was checked using Shapiro-Wilk test. As some of the groups

didn’t meet the criteria of the assumption of normality, Kruskal-Wallis test was performed as

well as non-parametric alternative to one-way ANOVA. Kruskal-Wallis test rejected both null

hypothesis (means of genome size or percent of GC content are similar between the different

phylogroups), with p-value < 2.2e-16 in both cases. Raw results from these test are available in

Supplementary Table 5.

Pangenome analyses and clustering

All 10,667 genomes were reannotated using Prokka v1.13 (Seemann, 2014), with parameters --

rnammer --kingdom Bacteria --genus  Escherichia –species coli --gcode 11. All protein-coding

sequences (n=51,400,905) were clustered using UCLUST from USEARCH v.10.0.240 (Edgar,

2010), into protein families using cut-off values of 80% of protein sequence similarity, 80% of

query sequence coverage, e-value equal or lower than 0.0001 (parameters -evalue 0.0001 -id 0.8

-query_cov 0.8).  The total  pangenome was recorded.  For the core genome various inclusion

percentages were compared, since we included draft genomes existing in multiple contigs. The

optimum was defined that allowed 3% omissions, giving a core genome was defined as those

genes present in 97% of the genome collection. Therefore, protein families with presence in at

least 97% of the total set strains, were considered as part of the core genome of E. coli species. 

The pan- and core genome of each of the 14 phylogroups were then separately clustered using
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the same cut-off parameters as for the entire set at species level.

Core genome matrix 

Core genome clusters for the 14 phylotypes obtained using UCLUST v.10.0.240 in the previous

analysis were used again with UCLUST v.10.0.240 using the same parameters as input to find

the intersection of core genes between the core clusters of the 14 phylotypes. A binary matrix

with cluster ID as column labels, genomes as row names, and the number of genes belonging to

that cluster as the cell value was constructed using the main output from UCLUST. This matrix

was then supplied to an “in house” python script that sorts the pangenome matrix such that the

gene clusters found in all phylogroups are placed first (species’ core genome). Then groups are

sorted by abundance per phylogroup to isolate phylogroup core genes. All leftover gene groups

are sorted by phylogroup and abundance and added to the end of the sort list. The Mash tree

obtained  earlier  for  the  10,667  dataset  was  then  loaded  and  used  to  sort  the  order  of  the

organisms. Finally, Matplotlib was used to visualize the sorted matrix.  

Phylogenetic analysis of core gene families

The set of core gene clusters of the 14 medoids was extracted from the core genome clusters of

the entire  species  and from them single copy ortholog groups were identified to construct a

phylogenomic  tree.  In  total  a  set  of  2,613  single  gene (clusters  without  paralogs  paralogs)

ortholog groups were aligned using MAFFT v.7.110 (Katoh and Standley, 2013). The model of

evolution per each of the 2,613 protein clusters was calculated using IQ-TREE v.1.6.10 (Nguyen

et al., 2015) with parameters -m TESTONLY nt AUTO. Once the best model of evolution was

obtained for each of the core protein families, those clusters that shared model of evolution were

sent together to IQ-TREE for a better estimation of the substitution model parameters using -m

MF+MERGE, -nt AUTO and selecting the final model of evolution with mset. In a last step, all

partitions obtained with their corresponding model of evolution were sent again to IQ-TREE for

final estimation of the phylogenetic tree for the 14 medoids using ultrafast bootstraping approach

(-bb 1000).

For estimation of protein family gain and loss events, the Maximum Likelihood tree was used as
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an ultrametric tree using ace library from ape (Paradis et al., 2004) in R v.3.6.0 (R Core Team,

2013). To  obtain  the  pangenome  matrix  needed  as  input  for  CAFE  program  v.4.2.1,  the

pangenome of the 14 medoids was constructed using UCLUST (with same parameters  as in

previous analyses). A pivot table was built using the main output from UCLUST and pandas

library  in  a  python3 script  using the function  pivot_table  with agglomeration  function=sum.

CAFE program was used for gene family expansion/contraction analysis, using option -s for an

optimization algorithm to find the value(s) of λ that maximize the log likelihood of the data for

all families. Families showing significant size variance were identified based on 1,000 random

samples and a p-value cutoff of 0.05. Deviated branches were further identified based on the

Viterbi algorithm in CAFE with a p-value cutoff of 0.05.
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Legends of Tables

Table  1.  Summary  of  pangenome  analysis  results.  Values  obtained  from  the  different

pangenome  analysis  using  the  14  phylogroups  separately  and  the  entire  set  of  assembled

genomes (10,667 genomes) using UCLUST (Edgard, 2010). Same parameters were used to all

the analysis 

Legends of Figures

Fig. 1. Heatmap representation of 10,667 genomes using Mash distances. The color bars at

the top of the heatmap identify the phylogroups as predicted from the analysis (see key). The

scale to the left of the dendrogram corresponds to the resultant cluster height of the entire dataset

obtained from hclust function in R (details in Methods). The colors in the heatmap are based on

the pairwise Mash distance between the genomes. Blue-green colors represent similarity between

genomes  with  the  darkest  blue-green  corresponding  to  identical  genomes  reporting  a  Mash

distance of 0. Brown colors represent low genetic similarity per Mash distance, with the darkest

brown indicating a maximum distance of ~ 0.039. Genomes of relative median genetic similarity

have the lightest color.

Fig.  2.  Heatmap representation of  91,261 sequence  reads  from the SRA database. The

heatmap colors are based on the pairwise Mash distance between the SRA read sets and the 14

medoid genomes of each phylogroup, which are presented in the same order as in Fig. 1. To be

included, SRA reads sets had to have 3 or more medoid comparisons producing a Mash distance

equal to or less than 0.04. This removed 4,264 SRA read sets from the dataset. The number of

SRA reads mapped to each medoids is given below the heatmap. Supplementary Fig. 2 contains

additional cut-offs ranging from one to 14 phylogroups. 

Fig. 3.  Violin-plots of the distribution of genome size (A) and genomic GC content (B) by

phylogroup. Bar-plots inside the violins represent values for mean and mean plus one standard

deviation  per  phylogroup.  Phylogroups  that  have  values  significantly  different  to  all  other

phylogroups (according to F statistics test) are marked with a red asterisk.
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Fig. 4. Pangenome representation of E. coli and Shigella species. In this circular barplot, each

bar length represents the total number of proteins of a single genome, grouped by phylogroup.

The proteins belonging to the overall core97 genome are shown in green. Additional proteins

shared in each phylogroup-specific core97 genome are shown in blue, while purple is reserved for

accessory proteins. 

Fig.  5. Graphical representation of presence/absence of gene clusters using phylogroups

core genomes sorted by Mash dendrogram phylogroup order.  The plot shows 6,719 core

gene clusters. The large purple region at the beginning of the plot represents the gene clusters

present in the cores genome of all phylogroups. Subsequent blocks of purple represent core gene

clusters with a large representation in the members of a phylogroup.

Fig.  6.  Phylogenetic  representation of  E. coli  species  using a set  of  2,613 core  clusters.

Branch support  is  shown at  the  beginning of  each node.  Maximum likelihood distances  are

showed on the middle of each branch. The number of gained (green color) and lost (red color)

protein families was estimated for each branch using an ultrametric tree and the pangenomic

matrix for the 14 phylotypes with 9,293 protein families. 

Figure 7. Core genome analyses of E. coli in the literature. (A) Core genome size related to

the  year  of  publication.  (B) Core genome size is  plotted  to  the log 10 number  of  genomes

included in each study. Black symbols represent the data from this study. Oval symbols represent

reported approximate sizes only. Blue symbols represent studies in which a subset of  E. coli

genomes was analyzed (EHEC only in the 2014 study and ExPEC only in the 2015 study). More

information, including the sources of these data, are provided in Supplementary Table 3.

Supplementary information

Supplementary Table 1. 10,667 WGS annotation numbers and strain names used in this study, 
their metadata and quality scores. This file also includes a list of the medoid genomes used in 
this study.

Supplementary Table 2. SRA metadata including read name, the predicted phylogroup, the 
number of hits a read has to phylogroup medoids that is above a cutoff of 0.04.  

Supplementary Table 3. Gene gain and gene loss analysis using CAFE v3 software.

28

106

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553
554
555

556
557

558

107

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2019. ; https://doi.org/10.1101/708131doi: bioRxiv preprint 

https://doi.org/10.1101/708131
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Table 4. E. coli pangenome timescale obtained from literature.

Supplementary figures

Supplementary Figure 1. Distribution of Shigella genomes over phylogroups.

29

108

559

560

562

109

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2019. ; https://doi.org/10.1101/708131doi: bioRxiv preprint 

https://doi.org/10.1101/708131
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 2. Heatmap of all SRA reads that had a Mash score of at least  0.04 to one 
medoid. 
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Supplementary Figure 3. Core genomes established at a cutoff of 90% to 100% per phylogroup. 
Last section represents the rate of cluster drop-off between percentages (90% to 99%)
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