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Abstract 

Purpose: Photovoltaic subretinal prosthesis is designed for restoration of central vision in 
patients with age-related macular degeneration (AMD). We investigated the utility of prosthetic 
central vision for complex visual tasks using augmented-reality (AR) glasses simulating reduced 
acuity, contrast and visual field. 

Methods: AR glasses with blocked central 20˚ of visual field included an integrated video 
camera and software which adjusts the image quality according to three user-defined 
parameters: resolution, corresponding to the equivalent pixel size of an implant, field of view, 
corresponding to the implant size, and number of contrast levels. The real-time processed video 
was streamed on a screen in front of the right eye. Nineteen healthy participants were recruited 
to complete visual tasks including vision charts, sentence reading, and face recognition. 

Results: With vision charts, letter acuity exceeded the pixel-sampling limit by 0.2 logMAR. 
Reading speed decreased with increasing pixel size and with reduced field of view (7-12˚). In 
the face recognition task (4-way forced choice, 5˚ angular size) participants identified faces at 
>75% accuracy, even with 100 µm pixels and only 2 grey levels. With 60 µm pixels and 8 grey 
levels, the accuracy exceeded 97%.  

Conclusions: Subjects with simulated prosthetic vision performed slightly better than the 
sampling limit on the letter acuity tasks, and were highly accurate at recognizing faces, even 
with 100 μm/pixel resolution. These results indicate feasibility of the reading and face 
recognition using prosthetic central vision even with 100 µm pixels, and performance improves 
further with smaller pixels. 

 

Introduction 

Age-related macular degeneration (AMD) is a leading cause of untreatable visual impairment. 
With the current prevalence of 8.7% worldwide, AMD is projected to affect almost 200 million 
people in 2020, and its prevalence is growing with the population aging (1, 2). Patients with 
advanced atrophic AMD (currently about 1% prevalence in Western countries (1, 2) ) suffer from 
the loss of photoreceptors in the macula, leading to compromised central vision. Although high-
resolution vision is lost, patients still can use their preserved peripheral vision and typically 
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retain acuity no worse than 20/400. Therefore, restoration of central vision may be worthwhile 
only if the restored visual acuity exceeds the residual natural level. 

In the healthy eye, photoreceptors convert incident light into electrical and chemical signals. The 
resultant neural signals are processed by the bipolar cells and other non-spiking neurons in the 
inner nuclear layer (INL) and advance to the retinal ganglion cells (RGC), which generate action 
potentials that propagate via optic nerve to the brain. Loss of photoreceptors in retinal 
degenerative diseases impairs the initial phototransduction process, while the remaining retinal 
network remains intact, albeit with some rewiring (3-5). 

Multiple approaches are being developed to address the loss of sight in the retinal 
degeneration(6), including gene therapy (7), cell transplantation (8, 9), optogenetics (10), and 
electronic implants. In the latter case, an array of electrodes is placed at the stimulation site, 
such as the retina (11), optic nerve (12), lateral geniculate nucleus (LGN) (13), or primary visual 
cortex (14). Electric current is injected into tissue to stimulate cells and thereby elicit visual 
perception. Upon electrode activation, patients report perceiving “bright spots”, termed 
phosphenes (15, 16). The number of electrodes limits the amount of information deliverable, 
and electrode density restricts the highest possible resolution. In animal studies with 
photovoltaic retinal prosthesis, we demonstrated that grating acuity matches the pixel pitch with 
55 (17) and 75μm pixels (18).  Recent clinical trial of such implants (PRIMA, by Pixium Vision) 
having 100μm pixels also demonstrated that prosthetic visual acuity in AMD patients is only 10-
30% below the sampling limit of 20/420 for the current pixel size (19).  

This subretinal implant stimulates the first layer of neurons after photoreceptors (INL), and 
therefore elicited network-mediated retinal responses retain many features of the natural signal 
processing, including flicker fusion at high frequencies (>20 Hz) (18, 20), adaptation to static 
images (21), antagonistic center-surround organization of receptive fields with linear and non-
linear summation of its subunits (22). Patients with the PRIMA implant can perceive lines of a 
single pixel in width, and identify letters with the minimum gap in the letter C of 1.1 – 1.3 pixels 
(19).  

Since AMD patients retain peripheral vision, they have little problem with ambulation. However, 
impaired reading and face recognition pose significant challenges in daily living (23). To assess 
the spatial resolution, number of levels of grey and the size of the implant required for these 
visual tasks, we simulated prosthetic central vision using augmented-reality glasses with a 
camera. Prosthetic vision was mimicked by controlled reduction in spatial resolution, contrast 
and visual field of the images projected on the built-in display. Current clinical version of the 
PRIMA subretinal array has pixel pitch of 100 μm (19). In rodents, we already validated 
feasibility of 75 (18) and 55 μm pixels (17), and they may be further reduced down to 20 μm 
using 3-dimensional electrodes (24). Here, we investigate how well healthy subjects can 
accomplish complex visual tasks, including reading and face recognition, under various levels of 
image degradation.  

Studies of simulated prosthetic vision were conducted in the past, but we find those results 
insufficient for predicting the outcomes with our current implant. With photovoltaic subretinal 
implant for restoration of central vision in AMD patients, simulation requires the following 
specifications: (a) pixel density >100 pixels/mm2, (b) no gaps between phosphenes, (c) visual 
field in the range of 7-10o, and (d) eye scanning is allowed. Since previous studies did not 
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address these specifications, we conducted a psychophysics study to assess the limits of visual 
performance of the PRIMA system and set the expectations for the upcoming clinical trials. 

 

Methods 

Subjects 

Nineteen subjects, all recruited from personnel at Stanford University, signed informed consent 
and participated in the current study. All subjects had self-reported normal vision, and their 
visual acuity was verified with both a Landolt C test and ETDRS chart prior to the experiments. 
For complex reading tasks, subjects were required to have native or near-native English 
proficiency. All subjects had limited or no prior experience with virtual- or augmented-reality 
(AR) glasses. The study was approved by the Stanford IRB panel on human subjects research 
and conducted according to the institutional guidelines, following the tenets of the Declaration of 
Helsinki. 

Experimental setup 

The experimental apparatus included two parts: a stimulus presentation system and AR glasses 
with the head-on display and an image processing unit (Figure 1).  

The stimulus presentation system involved a 24” monitor (ASUS VS248H-P) controlled by a 
laptop computer (Thinkpad 25, Lenovo) using a PsychToolbox-based (25-27) custom software 
in Matlab. This system was used to display stimulus and record subjects’ responses (such as 
accuracy and time taken) via experimenter input. The monitor was placed 30” away from a 
chinrest, where the subjects would place their head during an experiment. The monitor had 
resolution of 2400 x 1350 pixels, corresponding to 90.4 pixels per degree of visual angle (ppd).  

Camera (4 MP) mounted on the front of the AR glasses (ODG R-7, Osterhout Design Group, 
San Francisco, CA) captures a live video stream. Camera magnification was set to match the 
angular size of the natural vision. The data is then processed with an Android-based custom 
app in real time according to three user-defined parameters: pixilation (equivalent to 30-100 μm 
pixel size on the retina), number of grey levels (2-256), and field of view (FOV) (7-12 degrees). 
The resultant video was presented on the display in the glasses (specs: 30˚ FOV, 720p, 80 fps). 
The latency between the camera and the display was minimal due to fast video processing. In a 
typical AR display system, the integrated display is transparent, so that presented visual 
information can fuse with the passthrough background (hence, “augmented” reality). To mimic 
vision loss in AMD patients, an area on the glasses corresponding 20˚ of central vision, was 
blocked with black opaque tape for both eyes. In this region, only the integrated display was 
visible, while outside that region, only natural peripheral vision was present (Figure 1c). Here we 
only assess monocular prosthetic vision, so the display was only switched on for the right eye, 
which incidentally corresponded to the dominant eye of all subjects. 

The video processing was done with the OpenCV library, and the workflow was as following: A 
video frame was cropped to match the desired FOV. The frame was then converted to 
greyscale, downsized, and re-upsized back to the original image size, resulting in a tightly-
packed pixilated greyscale image. We used the default nearest-neighbor interpolation for image 
transformation in Android. The pixilation here matched the desired pixel size on the retina, e.g. 
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100 μm pixels subtend 0.35˚ on the human retina. The grey color value for each pixel was then 
rounded to the nearest 255/�, where � is the number of contrast levels. 

Subjects were instructed to wear the AR glasses and learned to adjust pixel size, contrast levels, 
and FOV using in-app controls. To familiarize our subjects with simulated prosthetic vision, they 
were instructed to look around the laboratory freely for a few minutes, and were also presented 
pictures of common animals, plants, and foodstuffs.  

Procedures 

We conducted three different experiments: (1) single-character visual acuity (SCVA), (2) 
sentence reading, and (3) face recognition. Parameters for simulated prosthetic vision are 
summarized in Table 1. Subjects were instructed to fixate their central vision to the center of the 
AR screen, but were allowed to move their eyes and head, if desired. In all experiments, 
subjects vocalized their responses, which were recorded and timed by the experimenter. 
Typically, a full set of experiments could last up to 90 minutes. If a subject got tired, a new 
session for remaining tasks was scheduled.  

 

Task Equivalent Pixel Size 
on retina (μm) 

# Grey Levels FOV (˚) 

Letter acuity 30, 60, 100 2, 8 7 
Sentence reading 30, 60, 100 8 7, 12 
Face recognition 60, 100 2, 4 ,8 7 

Table 1. Parameters of the image processing used for each experiment. 

Letter acuity 

Subjects (n=13 for 30 and 60 μm pixels; n=19 for natural vision and 100 μm pixels) were asked 
to identify the orientation of the Landolt C, presented one at a time. If the subject could identify 
at least four out of five orientations of the same size, we reduced the letter size by 0.1 LogMAR 
units and repeated. The same experiment was conducted also with ETDRS letters in Sloan font. 
The smallest feature of these characters was 1/5th of the letter size. Subjects were first tested 
for their visual acuity with normal or corrected-to-normal vision without AR glasses, and then 
with simulated prosthetic vision. As a point for comparison, we also computed the sampling limit 
for each prosthetic pixel size by calculating its geometric-equivalent visual acuity. 

Sentence reading 

Subjects (n=9 for simple sentences; n=10 for complex sentences) were asked to read aloud 
displayed sentences as fast as possible, following standard MNREAD protocol 
(http://legge.psych.umn.edu/mnread-set). Text in Arial font was presented in three lines, with 
approximately 20 characters per line. A new sentence with reduced font size (-0.1 LogMAR) 
was displayed upon successful utterance (≤2 mistaken words per sentence). The font size was 
measured as the visual angle between the top of the letter “k” and the bottom of the letter “p”. In 
between the sentences, a fixation cross was shown in the center of the screen for 2 seconds to 
re-center the subjects’ vision. Subjects were first tested with their normal/corrected binocular 
vision, and then with simulated prosthetic vision with varying pixel size and FOV. The reading 
speed (in words per minute, or WPM) for each sentence was recorded in software. We 
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evaluated reading performance on three key metrics: reading acuity (RA, smallest resolvable 
sentence), maximum reading speed (MRS), and critical font size (CFS, smallest font size at 
which MRS is reached). 

The texts used can be classified into simple and complex sentences. Simple sentences were 
either composed in-house according to the MNREAD protocol, or taken from the MNREAD iPad 
App ©2017 (https://itunes.apple.com/us/app/mnread/id1196638274?ls=1&mt=8). Complex 
sentences were selected from the Manually Annotated Sub-Corpus (MASC) from the Open 
American national Corpus (OANC) (http://www.anc.org/) with three criteria: number of 
characters between 55 and 70, average word length between 5.5 and 6.5, and the sentence can 
be segmented into three lines of similar length. Generally, simple MNREAD sentences have 
stand-alone context and involve vocabulary at elementary school level in the US (e.g. “He 
looked up at his mother and told her he was really happy”), while complex sentences may incur 
more context with advanced vocabulary (e.g. “Good housekeeping contributes to safety and 
reliable results”). Only subjects with native or near-native English level were selected for the 
complex reading task. Results for simple and complex sentences were cross-compared using a 
two-sample t-test. 

Face recognition 

Subjects (n=19 for 100 μm; n=17 for 60 μm) were shown a reference adult face and required to 
select one out of four other faces that matched the identity of the reference (Figure 2a). The 
correctness and time taken for each selection were recorded. A set of 10 trials were performed 
for each parameter combination, which were presented in a pseudorandom order to minimize 
learning effects. 

Images of non-occluded adult heads were randomly selected from the Face Place database 
(http://www.tarrlab.org/). The database is licensed under a CC BY-NC-SA 3.0 Unported License. 
For the same identity, a set of images included different viewing angles and facial expressions, 
with the background cropped out. Generally, the most prominent features above the neck were 
visible, including hair style, skin tone, and both eyes. Images were resized and cropped to 5˚x5˚. 
Five images were tiled as shown in Figure 2a, occupying a visual field of 16˚x16˚. The reference 
image was placed at the center. 

 

Results 

Letter acuity 

With both ETDRS letters and Landolt C, VA improved with reduced pixel size, as shown in 
Figure 3. VA measured by both testing paradigms agree with each other. Landolt C test yielded 
slightly better VA than ETDRS letters - by 0.05 logMAR, albeit insignificant (Supp. Figure 1). 
Decreasing contrast level from 8 to 2 did not affect VA significantly. All measured VA were at 
least 0.2 logMAR higher than the computed sampling limit for each pixel size. This could be 
attributed to oversampling by scanning and subjects looking for differences between under-
sampled letters. Letter recognition here required around 3 pixels per letter width for all pixel 
sizes, agreeing with the 3 – 7 phosphenes per letter width reported by other studies (28-30). 
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Most subjects self-reported that near the limit, they did not explicitly resolve the opening of a 
Landolt C. They employed a strategy where they scanned the object and identified the side of 
the blob that flickered more, through which correctly determining the orientation.  

Sentence reading 

With limited pixel size and FOV, reading speed with simulated prosthetic vision (Figure 4, green 
and red lines) was much slower than that with unobstructed natural vision (blue line). Reading 
acuity (RA) for both natural and prosthetic vision matched the corresponding letter acuity. As the 
font size increased above VA threshold, reading speed rapidly increased until the maximum 
reading speed (MRS) was reached at the critical font size (CFS). Further increase of the font 
size was detrimental, as fewer words and letters could fit in the FOV. For example, a nine-letter 
word of 1.5˚ font size (corresponding to 1.5° vertical height and 0.78° horizontal width allotted to 
each letter) can barely fit into 7˚ FOV. For all pixel sizes, CFS was around double the RA, and 
the smallest readable font size was about 2.5 pixels per letter width, slightly less than the letter 
acuity test and previous reports. The discrepancy can be attributed to the fact that in reading 
tasks, the loss in letter-by-letter information is compensated by contextual clues.  

Generally, smaller pixels allowed for denser sampling, resulting in better RA, MRS, and CFS. 
Meanwhile, an increased FOV did not significantly affect RA, while raising reading speed with all 
font sizes greater than CFS (t=3.2, p=0.005 for MRS). The numerical results are summarized in 
Table 2. 

Parameters (pixels/FOV) RA (deg) MRS (WPM) CFS (deg) 
100 μm / 7 ˚ 1.60±0.15 58±10 3.0±0.6 
60 μm / 7 ˚  0.81±0.08 77±16 1.7±0.7 
30 μm / 7 ˚  0.46±0.10 106±22 1.0±0.6 
30 μm / 12 ˚  0.45±0.06 141±27 1.1±0.2 
Natural 0.14±0.01 201±40 0.36±0.07 

Table 2. Reading acuity (VA), maximum reading speed (MRS), and critical font size (CFS) for 
reading MNREAD sentences using simulated prosthetic vision. All errors are reported as 
standard deviation. 

General trends with complex sentences were the same, albeit at lower speed. However, the 
effect of FOV on MRS became insignificant (e.g. t=1.45, p=0.156 for 30 μm/12˚). 
Counterintuitively, RA and CFS were slightly better (smaller) for complex sentences than for 
simple ones, possibly due to the word predictability in context-rich sentences.  

Parameters (pixels/FOV) RA (deg) MRS (WPM) CFS (deg) 
100 μm / 7 ˚ 1.63±0.11 52±7 2.7±0.4 
60 μm / 7 ˚  0.71±0.11* 73±10 1.7±0.5 
30 μm / 7 ˚  0.36±0.05* 102±18 0.80±0.15 
30 μm / 12 ˚  0.37±0.09* 121±33 0.87±0.25* 
Natural 0.14±0.01 173±34 0.32±0.09 

Table 3. Reading acuity (RA), maximum reading speed (MRS), and critical font size (CFS) for 
reading complex sentences using pixelated vision. All errors are reported as standard deviation. 
Asterisk (*) indicates p<0.05 (2-sample t-test) compared to simple sentences with the same 
parameters. 
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Face recognition 

For all pixel sizes and contrast levels, subjects could achieve above 75% accuracy on average, 
significantly higher than random choice (25%). While faces were nearly instantaneously 
recognizable with natural vision, more than 5 seconds was needed with simulated vision, since 
scanning was required to observe all faces due to limited visual field. Increasing number of grey 
levels and reducing pixel size both improved accuracy and time taken for face recognition. A 
decrease in pixel size from 100 to 60 μm shortened the response time by around 20% (p<0.025 
for all contrast levels, 2-sample t-test). There was no significant difference in accuracy between 
60 and 100 μm pixels.  

 

Discussion 

Letter acuity and reading speed are the most common metrics for assessment of the quality of 
vision, especially for low vision patients (31). We added a face recognition task since it is of high 
priority for patients with atrophic AMD (32). Many psychophysics studies with simulated 
prosthetic vision were designed to investigate potential capabilities of implants with various 
numbers of pixels (28, 33-35). Recent clinical results with photovoltaic subretinal prosthesis 
having 100μm pixels (PRIMA, Pixium Vision) confirmed that prosthetic acuity in AMD patients 
nearly matches the pixel pitch (19). Moreover, recent measurements with 55 μm pixels in rats 
demonstrated that grating acuity matches the pixel pitch of this size as well(17). Development of 
3-dimensional electrodes enable even smaller pixels, which might provide higher resolution in 
the future(24). To assess the minimum requirements of a system for restoration of central vision 
in AMD patients sufficient for reading and face recognition, we decided to evaluate its simulated 
performance as a function of three parameters: pixel size, field of view (FOV), and number of 
grey levels. 

Previous studies with simulated vision used “phosphenated” images (28, 36, 37). A dot with 
either a 2D-Gaussian or flat profile was displayed to simulate an activated pixel, while adjacent 
dots were spaced according to the pixel pitch of the implant, resulting in dark gaps between the 
simulated phosphenes (38). However, in the PRIMA clinical study, when viewing various line 
patterns, patients reported perceiving continuous lines, instead of a row of disconnected 
phosphenes. Therefore, in our study, we used tightly packed pixels, akin to those of a typical 
consumer monitor, with no dark gaps in between. 

Another difference between the current study and previous ones is the choice of FOV. Since 
other implants were designed for inherited retinal degenerations which cause complete 
blindness, their functional FOV could be as large as 22˚(39). However, geographic atrophy 
rarely exceeds 4 mm in diameter, and in order to avoid any damage to the adjacent healthy 
retina, the implant can cover only a part of the scotoma. Hence, subretinal implants for AMD are 
unlikely to exceed 3 mm in width, corresponding to approximately 10˚ of the visual angle. In the 
first feasibility study, the size of the PRIMA implant is 2 mm, corresponding to about 7o of the 
visual field (19). Therefore, we studied the effect of the FOV on reading speed in the range of 7˚ 
to 12˚, while all the visual information for a letter acuity or face recognition tasks was packed 
within 5˚of the visual angle.  

When our subjects initially were unable to identify the orientation of small Landolt C, they were 
asked to guess without the experimenter affirming the answer. Typically, the subjects could 
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correctly detect an extra line or two of the acuity chart, which explains their performance 
exceeding the sampling limit by about 0.2 LogMAR, as can be seen in Figure 3. This strategy is 
based on scanning the object and identifying a darker or a flickering size of the unresolved blob, 
which is sufficient for determining the Landolt C orientation. Such strategy can be used for other 
tasks within a small pool of target patterns, such as letter recognition, but is unlikely to help in 
identification of unknown objects and patterns.  

It was repeatedly shown in the past that accuracy of the face recognition is highly dependent on 
image resolution, as summarized in (35). With 16x16 phosphenes per face over 9.4˚ visual field, 
and 10 levels of grey without scanning, subjects could differentiate faces with up to 84% 
accuracy (40), one of the highest reported. In another study with 24x24 phosphenes within 18˚ 
FOV, accuracy was 65%, and it reached 88% with 32x32 arrays (41).  In the current study, 
focused on modeling small implants in the central macula, we used substantially smaller images 
(face spanning 5˚ x 5˚) with higher pixel density, while the numbers of pixels per image were 
comparable to those in previous studies. We found that nearly perfect accuracy can be 
achieved at 8 grey levels with 60 μm pixels, corresponding to a 24 x 24 grid. On top of using 
tightly packed pixels and allowing for head scanning, another likely explanation of improved 
performance is that when the most prominent facial features lie within the fovea (<2 mm in 
diameter), subjects can spend less effort on scanning, and focus more on evaluating the facial 
details. 

Interestingly, forced-choice face differentiation in our study required significantly fewer pixels 
than object recognition in a previous study (42). With 100 μm pixels, corresponding to 
approximately 200 pixels per face, our subjects could differentiate faces at >75% accuracy. This 
is much less than about 560 pixels needed to recognize objects covering about 10° visual field 
on a de-cluttered background. The difference could be due to great simplification of the task 
when a reference is immediately available, compared to naming an object from a large pool of 
options. Another possibility is that faces could be a surprisingly easy class of images to discern. 
In a study involving different classes of objects and animals (43), subjects demonstrated >80% 
recognition rate on all images using 24 x 24 pixels. However, with 16 x 16 pixels, no one could 
recognize a car, but 90% could identify a dog, which coincides with the accuracy and 
parameters in our face recognition task. It is also important to keep in mind that in our study the 
faces we presented on a white background, while with a more cluttered natural background, 2-3 
times more pixels maybe needed to achieve the same accuracy (42). 

In conclusion, with simulated prosthetic vision in AR glasses, subjects demonstrated letter 
acuity slightly exceeding the sampling limit, and high efficacy in face recognition even with 100 
µm pixels. These results indicate that photovoltaic subretinal implants with 100μm pixels 
currently available for clinical testing may be helpful for reading and face recognition in patients 
who lost central vision due to retinal degeneration. As expected, smaller pixels significantly 
improve visual performance, and therefore, further reduction in pixel size may greatly enhance 
the outcomes in the future.  
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Figure Captions 

Figure 1. Experimental setup. (a) Schematic of the experimental setup. High resolution images 
are presented on a monitor. The front camera of the augmented-reality (AR) glasses captures 
the video stream. Custom software pre-loaded on the AR glasses adjusts the video quality to 
mimic prosthetic vision and displays it in the AR glasses. (b) A subject in front of the apparatus. 
(c) Illustration of vision through the AR glasses. 

Figure 2. Face recognition task. (a) An example set of five faces presented. Subjects were 
asked to pick the face that matches the identity of the central person. Each face spanned 
approximately 5˚x5˚. (b) Effects of the number of grey levels and resolution on an image. 

Figure 3. Letter acuity results (n=13 for 30 and 60 μm pixels; n=19 for natural vision and 100 
μm pixels). The leftmost data point at 5 μm indicates VA for natural vision of the subjects. Error 
bars are presented in terms of s.d. 

Figure 4. Sentence reading speed. (a) Simple sentences. (b) Complex sentences. Faded lines 
represent individual measurements, and the bold lines represent the population mean.  

Figure 5. Face recognition. (a) Accuracy. (b) Response time. (c) Response time normalized to 
100 μm pixels and 8 grey levels. Each dot represents an independent measurement. Error bars 
are presented in terms of s.d. 

 

Supplemental Materials 

Supp. Figure 1. Single-character visual acuity (n=13 for 30 and 60 μm pixels; n=19 for natural 
vision and 100 μm pixels). In addition to the data presented in Figure 3, the results of ETDRS 
and Landolt C VA are shown separately here. Error bars are presented in terms of s.d. 
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