

1 **Vascular Expression of Hemoglobin Alpha in Antarctic Icefish Supports** 2 **Iron Limitation as Novel Evolutionary Driver**

3

4 **Authors and Affiliations:** Bruce A. Corliss¹, Leon J. Delallo², T.C. Stevenson Keller IV^{2,3},
5 Alexander S. Keller², Douglas A. Keller⁴, Bruce H. Corliss⁵, Adam C Bjork⁶, Jody M. Beers⁷,
6 Shayn M. Peirce¹, Brant E. Isakson^{2,3} *

7

8 ¹Biomedical Engineering Department, University of Virginia

9 ²Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine

10 ³Department of Molecular Physiology and Biophysics, University of Virginia School of
11 Medicine

12 ⁴Sanofi, Paris, France

13 ⁵Graduate School of Oceanography, University of Rhode Island, Kingston, Rhode Island

14 ⁶Center for Disease Control, Atlanta, Georgia

15 ⁷Hopkins Marine Station, Stanford University, Pacific Grove, California.

16

17

18 *to whom correspondence should be addressed

19 PO Box 801394

20 Charlottesville, VA 22902 USA

21 E: brant@virginia.edu

22 P: +1 434.924.2093

23 F: +1 434.924.2828

24

25 **Running title:** Hemoglobin in Antarctic ice fish

26 **Main text word count:** 8,021

27 **Figures:** 6

28 **Abstract**

29 Frigid temperatures of the Southern Ocean are known to be an evolutionary driver in Antarctic
30 fish. For example, many fish have reduced red blood cell (RBC) concentration to minimize
31 vascular resistance. Via the oxygen-carrying protein hemoglobin, RBCs contain the vast majority
32 of the body's iron, which is known to be a limiting nutrient in marine ecosystems. Since lower
33 RBC levels also lead to reduced iron requirements, we hypothesized that low iron availability
34 was an additional evolutionary driver of Antarctic fish speciation. Antarctic Icefish of the family
35 *Channichthyidae* are known to have extreme alteration of iron metabolism due to loss of two
36 iron-binding proteins, hemoglobin and myoglobin, and no RBCs. Loss of hemoglobin is
37 considered a maladaptive trait allowed by relaxation of predator selection, since extreme
38 adaptations are required to compensate for the loss of oxygen-carrying capacity. However, iron
39 dependency minimization may have driven hemoglobin loss instead of a random evolutionary
40 event. Given the variety of functions that hemoglobin serves in the endothelium, we suspected
41 the protein corresponding to the 3' truncated Hb α fragment (Hb α -3'f) that was not genetically
42 excluded by icefish, may still be expressed as a protein. Using whole mount confocal
43 microscopy, we show that Hb α -3'f is expressed in the vascular endothelium of icefish retina,
44 suggesting this Hb α fragment may still serve an important role in the endothelium. These
45 observations support a novel hypothesis that iron minimization could have influenced icefish
46 speciation with the loss of the iron-binding portion of Hb α in Hb α -3'f, as well as hemoglobin β
47 and myoglobin.

48

49 **Keywords**

50 Hemoglobin alpha, Antarctic icefish, iron flux, Antarctic evolution, Antarctic Iron Flux
51 Hypothesis, Channichthyidae

52 Introduction

53 The waters of the Southern Ocean are the coldest on Earth, with temperatures beneath the surface
54 varying between -1.9 and +1.5 Celsius (Sidell and O'Brien 2006). Such frigid conditions are
55 lethal for most mammals, in which blood plasma will quickly freeze (Verde et al. 2007), yet this
56 marine environment hosts many fish species in an ecosystem that exhibits an unexpectedly high
57 amount of biomass despite the harsh conditions (Lam and Bishop 2007; Thresher et al. 2011).
58 Species of the suborder Notothenioid make up 90 percent of the fish biomass in the seas
59 surrounding Antarctica (Sidell and O'Brien 2006), and to withstand cold conditions, they have
60 evolved adaptations such as decreased concentration of red blood cells to minimize blood
61 viscosity, with hematocrit correlating with temperature tolerance across species (Beers and Sidell
62 2011). An underappreciated consequence of reduced hematocrit is a significant decrease in
63 utilization of elemental iron, since 70 percent of red-blooded mammals' iron is found in red
64 blood cells in the oxygen-carrying protein hemoglobin (Andrews 2000). Iron is not only
65 considered an essential nutrient for use in various iron-binding proteins (Cairo et al. 2006), but is
66 also established as a limiting nutrient in many aquatic ecosystems (Martin and Fitzwater 1988)
67 including the Southern Ocean (Thomas 2003), where addition of iron is sufficient to induce
68 transient spikes in biomass (Buesseler et al. 2004). Other limiting nutrients have been shown to
69 contribute directly to natural selection in bacteria and yeast (Lewis et al. 1986; Merchant and
70 Helmann 2012). Therefore, we propose that iron limitation could be a selection pressure
71 resulting in adaptations associated with iron binding proteins in the oceans surrounding
72 Antarctica.

73 Out of all the Notothenioids, Antarctic Icefish of the family *Channichthyidae* are canonically
74 known for the most extreme alterations in iron requirement, lacking expression of hemoglobin,
75 and in half of all species, also myoglobin (Kock 2005a). In this family of icefish, oxygenation is
76 thought to occur purely through diffusion-based transport of dissolved oxygen in the blood
77 (Sidell and O'Brien 2006). The high energetic cost of circulating blood at a rate sufficient for
78 diffusion-based oxygen transport has led previous research to conclude that hemoglobin loss is a
79 net-negative or neutral trait that evolved by chance and remained due to relaxed predator
80 selection (Sidell and O'Brien 2006). However, preservation of such a deleterious trait, even
81 when paired with relaxed selection pressure, is not consistent with the extreme cardiovascular
82 adaptations found in icefish that are required in order to compensate for such inefficient
83 diffusion-based oxygen transport (Kock 2005a). Rather than the random loss of a beneficial trait
84 followed by selection for several necessary compensatory traits, it is plausible that these traits are
85 the product of directional selection resulting from an environmental factor such as limited iron
86 availability.

87 Knock-out of hemoglobin occurred with the complete genomic deletion of hemoglobin beta
88 ($Hb\beta$), and partial ablation of hemoglobin alpha ($Hb\alpha$). Given $Hb\alpha$'s significant role in
89 modulating endothelial nitric oxide signaling (Straub et al. 2012a) in vertebrates, independent of
90 its function in blood oxygen transport, as well as the preservation of a 3' fragment of hemoglobin
91 alpha ($Hb\alpha\text{-}3'\text{f}$) across the genomes of all icefish (Near et al. 2006), we examine whether $Hb\alpha\text{-}$
92 $3'\text{f}$ is actively expressed in icefish tissue. While this gene fragment has been classified as an
93 inactive pseudo-gene, we present evidence that $Hb\alpha$ expression in the endothelium has been
94 preserved in icefish retina. This result prompts a reconsideration of whether Antarctic icefish are

95 truly a complete hemoglobin knockout, and reveals the limitation of iron as a possible novel
96 selection pressure in aquatic Antarctic environments. Studying hemoglobin expression in
97 Antarctic icefish may yield insights into how icefish avoid pathological consequences from
98 heightened endothelial nitric oxide production seen in other species and could inform future
99 therapeutics modulating this fundamental vascular signaling pathway.

100 **Materials and Methods**

101 *Animal Collection & Sample Preparation:* Two species of Antarctic notothenioid fishes were
102 collected from the waters of the Antarctic Peninsula region during the austral autumn (April-
103 May) of 2009. *Champsocephalus gunnari*, an icefish species, was caught by otter trawls
104 deployed from the ARSV *Laurence M. Gould* at water depth of 75-150 m in Dallmann Bay
105 (64°08'S, 62°40'W). *Lepidonotothen squamifrons*, a red-blooded notothenioid, was collected in
106 baited traps set at a depth of 200-500 m in both Dallmann Bay and Palmer Basin (64°50'S,
107 64°04'W). Animals were transferred to the US Antarctic research base Palmer Station, where
108 they were maintained in flowing-seawater aquaria at ambient water temperatures of 0° ± 0.5°C
109 prior to sacrifice. Individuals were first anesthetized in MS-222 in seawater (1:7,500 w/v), and
110 then killed by cervical transection. Retinal tissues were excised quickly, frozen in liquid
111 nitrogen, and stored at -80°C until use. All research was in compliance with the University of
112 Alaska guidelines for work conducted on vertebrate animals (institutional approval 134774-2)
113 and endorsed by the University of Maine (UM) Institutional Animal Care and Use Committee.

114 *Whole mount & Immunostaining:* Retinal samples were thawed from storage at -80°C for 30
115 minutes or until equilibrium reached with room temperature. Samples were placed in a petri dish,
116 freezing medium drained, and incubated in 4% PFA for 40 minutes, and washed 3 times with
117 PBS for 5 minutes each. Tissue was then flat mounted on a microscope slide outlined with a
118 hydrophobic pen (Sigma-Aldrich Z377821). For staining, samples were blocked and
119 permeabilized with 1 mg/mL Digitonin (Sigma-Aldrich D141) with 10% normal donkey serum
120 (Jackson ImmunoResearch Laboratories 017-000-121) for 3 hours. The following primary
121 antibodies were applied in Digitonin and samples incubated overnight: rabbit anti-hemoglobin
122 beta (1:400, Abcam cat #), rabbit anti-hemoglobin alpha (1:200, Abcam cat 102758), rat anti-
123 CD31 (1:300, Biolegend 102504), and IB4 Lectin conjugated to Alexa Flour 488 (1:200,
124 ThermoFisher 121411). Samples were washed with 0.2% saponin in PBS (Sigma-Aldrich
125 S7900) and incubated overnight with the follow secondary antibodies in 1 mg/mL Digitonin:
126 Donkey anti-rabbit (1:500, Abcam ab150155), Donkey anti-rat, DAPI (1:200, ThermoFisher
127 D1306). Samples were then washed in 0.2% saponin in PBS 6 times for 30 minutes for two days
128 and the mounted with a coverslip, sealed with nail polish.

129 *Imaging:* samples were imaged on a laser point-scanning confocal microscope (Nikon Eclipse
130 TE2000-E Confocal). Z stacks were acquired with a 20x/0.6 oil lens, using a 488 nm laser paired
131 with a 515/30 bandpass, a 546 laser with a 590/50 bandpass, and 647 nm laser with a 650 long
132 pass filter. Fluorophores were excited and imaged sequentially with each laser and filter
133 combination to minimize crosstalk with 1024 pixel resolution and saved as 8-bit images.

134 **Results**

135 *Vascular Network and Hba fragment Localization via Wholemount*

136 First we mapped the predicted Hba-3'f onto the hemoglobin alpha protein (blue; Figure 1) and
137 identified topographically the protein was lacking the heme-binding region. Next, we mapped an
138 alpha globin antibody on the predicted Hba-3'f (magenta; Figure 1).

139 Using our antibody against the Hba-3'f, we investigated where Hba protein was localized in
140 whole-mount retinal tissue. In the hyaloid vessels of the vitreoretinal interface of *C. gunnari*,
141 Hba expression was localized within the vessel wall, denoted by CD31 and IB4 lectin, in blood
142 vessels of all sizes (Figure 2A). As a negative control, there was no detectable expression of Hb β
143 as expected with its ablation from the icefish genome (Near et al. 2006) (Figure 2B), and no
144 comparable signal observed in unstained tissue with only the secondary antibody present (Figure
145 2C).

146 Whole mount and immunostaining of *C. gunnari* retina revealed a dense network of IB4 lectin
147 labeled hyaloid blood vessels in the vitreoretinal interface radiating from a central optic disk
148 (Figure 3). Of note were the large luminal diameters of the vessel network, with the smallest
149 capillary diameter approximately 30 micrometers and the diameters of the primary vessels
150 ranging from 30 to 150 micrometers.

151 To confirm that Hba expression is present in more than one notothenioid, the retina of
152 *Lepidonotothen squamifrons* was also examined. Wholemount immunostaining revealed Hba
153 expression localized to the endothelial cells contained within the vessel wall of the vasculature
154 residing at the vitreoretinal interface (Figure 4A). Similar to *C. gunnari*, there was no detectable
155 Hb β expression in *L. squamifrons* (Figure 4B), and no comparable signal was observed in
156 unstained tissue with only the secondary antibody present (Figure 4C).

157 **Discussion**

158 Our data demonstrate using high-resolution confocal microscopy that fish devoid of RBCs and
159 the genetic deletion of myoglobin and hemoglobin β , express the alpha hemoglobin fragment
160 (Hba-3'f) in their endothelium. This remarkable discovery demonstrates that alpha hemoglobin
161 localization to endothelium is not confined to mammalian species, and more importantly, it may
162 have more broad implications than originally thought. Some of these concepts are discussed
163 below.

164 The frigid temperatures of Antarctica have contributed to numerous adaptations for organism to
165 survive in low temperatures (Whittow 1987; Cossins and Macdonald 1989). The Southern Ocean
166 is an especially unique environment because frigid temperatures lead to an oxygen-rich
167 environment with near maximal oxygen saturation (Kock 2005b). This unique combination of
168 extreme environment conditions, paired with relaxation of selection from predation from a
169 historical lack of apex predators on the food chain (Cocca et al. 1995), has led to especially
170 extensive and unique temperature adaptations compared to more temperate locations.

171 Adaptations in the fish of the suborder Notothenioid, which make up 90% of the biomass in the
172 Southern Ocean, include the formation of antifreeze glycoproteins that confer resistance to
173 freezing (Coppes Petricorena and Somero 2007) and enzymes optimized for activity at low
174 temperatures to maintain metabolism in frigid conditions (Coppes Petricorena and Somero
175 2007). These adaptations are mirrored by selection against traits for heat tolerance, such as the
176 loss of functional heat-shock response genes found in other fish species that allow survival at
177 warmer temperatures (Coppes Petricorena and Somero 2007). These highly specialized
178 adaptations to cold come at a cost, however, in that they make notothenioids highly
179 stenothermal, able to survive only in a narrow temperature range from approximately -1.86 to
180 4°C (Ostadal and Dhalla 2012).

181 Antarctic icefish of the family Channichthyidae are even more stenothermal than the other
182 members of the suborder Notothenioidei (Cheng and William Detrich 2007; Mueller et al. 2011:
183 11), with noticeable stress to the organism outside of the -2 to 2 °C range (Sidell and O'Brien
184 2006). These species are unique in the animal kingdom, exhibiting complete loss of red blood
185 cells and Hb β , as well as nearly complete loss of Hb α (Sidell and O'Brien 2006). Yet the
186 Channichthyidae family inhabits much of the same aquatic environment as the other
187 notothenioids, typically between 800m and 1,500m depth below sea level (Kock 2005b). Since
188 they cohabit the same environment, comparing the evolution and physiology of icefish to those
189 of closely related red-blooded notothenioids may yield insight into their diversification. This
190 examination may reveal whether other evolutionary factors, such as minimization of the limiting
191 nutrient iron, played a role in the unique adaptations found these fish and other species of the
192 Southern Ocean.

193 *Iron Flux Hypothesis: Iron Limitation as a Notothenioid Evolutionary Driver*

194 Similar to the hemoglobin loss found in channichthyids, other notothenioids have evolved a low
195 red blood cell count to counteract the approximately 40% increase of blood viscosity as salt
196 water temperatures near freezing (Near et al. 2006). Hematocrit correlates robustly with thermal
197 tolerance across species (Beers and Sidell 2011). The loss of oxygen carrying capacity that
198 results from reduced hemoglobin expression is viable in cold water environments because
199 oxygen saturation in saltwater nears maximal levels as temperature approaches freezing
200 (Mel'nicenko et al. 2008). Since hemoglobin (with iron bound) makes up 90% of the dry
201 weight content of red blood cells (Rishi and Subramaniam 2017), iron levels in an organism
202 correlate with hematocrit. Hematocrit levels for many of the Notothenioids species are often
203 below 25% (Beers and Sidell 2011), with Antarctic icefish lacking hematocrit entirely, compared
204 to 40-50% typically found in humans.

205 Iron is critical for several basic biologic functions, including cellular aerobic respiration, oxygen
206 transport through the circulatory system via hemoglobin, and myoglobin function in skeletal
207 muscle (Kaplan and Ward 2013). In humans and red-blooded vertebrates, approximately 70% of
208 the body's iron content is found in hemoglobin in red blood cells (Andrews 2000), 15% in
209 myoglobin in muscle tissue (Kaplan and Ward 2013), and 6% in other proteins essential for cell
210 metabolism, neurotransmission, and immune system function, with the remaining 9% kept in
211 reserve. An organism with 25% hematocrit would have as much as a 35% reduction in iron

212 requirements. Considering the additional storage and trafficking requirements needed to supply
213 iron for higher hematocrit (Gammella et al. 2014), Notothenioids could have a reduction in iron
214 demand approaching 50% of that needed by many temperate fish species (Gallaugh and Farrell
215 1998).

216 In oceanography, the Iron Hypothesis posits that iron is a limiting nutrient in oceanic
217 ecosystems, sufficient to produce phytoplankton blooms on a large scale (Martin et al. 1994).
218 Iron has been demonstrated as a limiting nutrient for biomass in a multitude of open ocean
219 experiments, including the Southern Ocean (Conway et al. 2015). Arctic oceans are especially
220 known to have deficiencies in iron content and flux (Street and Paytan 2005), resulting from the
221 limited input from benthic sediment, atmospheric deposition, and icebergs, alongside limited
222 trafficking of iron between vertical layers of ocean waters (Graham et al. 2015). There have been
223 previous documented cases of limiting nutrients serving as a driver for evolution with plants
224 (Lynch and Brown 2001; López-Bucio et al. 2003; Rennenberg and Schmidt 2010) and
225 microorganisms (Lewis et al. 1986; Merchant and Helmann 2012), providing ample precedent
226 for the possibility that iron limitation may be an underappreciated driver for of Antarctic aquatic
227 species. Mammals have all developed highly specialized iron-binding proteins that act as means
228 of transport and storage (Ganz and Nemeth 2012), offering further demonstration that iron
229 availability can be an significant evolutionary driver. Such extensive biological machinery is
230 necessary because iron is an essential nutrient for all vertebrates (Chen and Paw 2012), and while
231 plentiful on the earth's surface, is found in low amounts in bioavailable forms (Monsen 1988).
232 Additionally, atomic iron must be kept bound to proteins in a chaperoned state because free iron
233 induces free radical formation that can damage tissue (Emerit et al. 2001).

234 Further evidence of iron minimization adaptations include Southern Ocean phytoplankton,
235 autotrophs that form the base of the aquatic food chain (D'Alelio et al. 2016), that exhibit unique
236 adaptations that reduce biochemical demand and increase the intracellular flux of bioavailable
237 forms of iron (Strzepek et al. 2011), leading to an 80% reduction in iron requirements compared
238 to temperate oceanic species (Lane et al. 2009). This scarcity of iron availability at the bottom of
239 the food chain means that organisms higher on the food chain only receive a fraction of the iron
240 per mass from phytoplankton compared to other environments, hinting at the Southern Oceans'
241 unique iron flux. Minimization of iron requirements across the food chain could lead to an
242 ecosystem to support more biomass than otherwise possible. Despite the harsh conditions, there
243 is indeed evidence of higher total biomass than expected in the Southern Ocean (Lam and Bishop
244 2007; Thresher et al. 2011). Comparing biomass production and iron flux between Antarctic and
245 temperate aquatic environments with ecosystem-level modeling awaits confirmation, but may
246 provide insight to unique iron utilization efficiency between them.

247 We posit that limited iron availability in aquatic Antarctic environments has led to the selection
248 of traits that conserve its use. In warmer aquatic environments, reducing hemoglobin iron content
249 comes at a steep cost of oxygen-carrying capacity, aerobic respiration ability, and overall
250 organismal fitness. In frigid environments, however, organisms that minimize red blood cell
251 count and iron content would theoretically have the dual benefits of decreased dependence on
252 iron for biomass support paired with an added benefit of lower blood viscosity from reduced
253 hematocrit. Therefore, the oxygen-rich cold waters surrounding Antarctica are uniquely
254 positioned to encourage decreased independence on iron via tenable trade-offs for organismal

255 survival and species fitness. We propose that iron limitation could be a significant driver of
256 icefish evolution, and possibly of portions of the Antarctic ecosystem as a whole.

257 *Antarctic Icefish as Model of Extreme Iron Metabolism Adaptations*

258 Icefish from the family *Channichthyidae* are known for especially extreme alterations in iron
259 metabolism, making their phylogenetic history ideal for examining the evolutionary drivers related
260 to iron minimization. Analysis of iron metabolism in icefish reveals an organism optimized for
261 low iron requirements. Although we present evidence of the expression of a truncated Hba
262 fragment in icefish tissue, the iron-binding portion of the protein has been ablated along with the
263 entire Hb β reading frame in all but one icefish species, with *Neopagetopsis ionah* retaining both
264 hemoglobin subunits but thought to form a nonfunctioning complex (Cocca et al. 1995; Near et
265 al. 2006). Loss of hemoglobin and red blood cells leads to 90% decrease in oxygen-carrying
266 capacity (Wujcik et al. 2007) and up to 40% decrease in blood viscosity (Sidell and O'Brien
267 2006) compared to red-blooded notothenioids. Oxygen transport is therefore purely driven from
268 passive diffusion of surrounding blood vessels into peripheral tissues, dramatically reducing the
269 ability of the circulatory system to deliver sufficient oxygen (F. Garofalo et al. 2009). Not only is
270 the iron demand from hemoglobin absent in icefish, but 6 of the 16 species of Antarctic icefishes
271 have also lost myoglobin expression, an iron binding protein in muscle tissue used for oxygen
272 storage (Sidell and O'Brien 2006). Intriguingly, previous research has concluded that this
273 myoglobin loss was carried out via four independent events during radiation of the species
274 (Sidell and O'Brien 2006), illustrating what could be a strong diversifying selection pressure on
275 icefish myoglobin expression.

276 Based on iron distribution of red-blooded vertebrates, exclusion of hemoglobin and myoglobin in
277 an organism could lead up to a 90% reduction in iron demands required for homeostasis. Indeed,
278 without iron-binding hemoglobin, iron content in icefish blood plasma is less than 5% of closely
279 related red-blooded species (di Prisco et al. 2002). Yet there is even further evidence of
280 additional iron minimization beyond loss of hemoglobin and myoglobin: concentrations of non-
281 heme iron in Antarctic icefish plasma are one-sixth of that in closely related red-blood species,
282 and are lower by roughly half across various tissues (Kuhn et al. 2016). With a tissue level
283 reduction in iron content, paired with the knockout of two primary iron binding proteins, the iron
284 requirements of icefish normalized to biomass could be greater than 95% compared to other
285 organisms and awaits confirmation.

286 *Iron Minimization Explains Antarctic Icefish Hemoglobin loss*

287 The loss of hemoglobin is thought to be a non-beneficial evolutionary event paired with a series
288 of compensatory vascular adaptations meant to counteract the loss of oxygen-carrying capacity
289 (Kock 2005a). An energetic analysis of icefish suggests that cardiac function accounts for 22%
290 of resting metabolic demand in icefishes, compared to around 3% with other notothenioids
291 (Sidell and O'Brien 2006). Consequently, hemoglobin loss is perceived as an energetic net
292 negative, requiring far more energy for circulating the high volume of blood plasma required for
293 sufficient oxygen transport than with hemoglobin-mediated oxygen transport (Sidell and O'Brien
294 2006). Hemoglobin loss is seen as an evolutionary accident, hypothesized to be caused by the

295 presence of a recombination hotspot within the hemoglobin reading frame (Cheng and William
296 Detrich 2007). This predisposition of the disruption of the hemoglobin gene complex (Cocca et
297 al. 1995), paired with a relaxation of selection pressure from predators and oxygen transport
298 from colder temperatures during the speciation of icefish, allowed for the non-beneficial trait to
299 be passed on (Cocca et al. 1995).

300 We show that a conserved fragment of Hba is expressed in the vessel walls of the retina of an
301 icefish species, providing evidence that the protein is translationally active. While previous
302 research uniformly references the complete lack of hemoglobin expression in icefish (di Prisco et
303 al. 2002; Kock 2005a; Sidell and O'Brien 2006; Cheng and William Detrich 2007; Mueller et al.
304 2011), Hba expression has only been examined in a single species, with mRNA probed
305 indirectly via southern blot with Hba cDNA fragments from a related red-blooded species
306 (Cocca et al. 1995). Intriguingly, the protein fragment that is detected excludes known
307 interaction and coordination sites, lacking known binding sites for heme (from Leu(F1) to
308 Phe(G5) (Inaba et al. 1998)), eNOS (amino acid sequence LSFPTTKTYF (Keller et al. 2016)),
309 and the α -hemoglobin stabilizing protein that inhibits Hba precipitation (Feng et al. 2004)
310 (Figure 1). In addition to the endothelial-specific promoter machinery preserved in icefish,
311 BLAST analysis of the Hba fragment demonstrates high homology with red-blooded vertebrates
312 and humans (Figure 5), and the fragment has been conserved with the species and other
313 vertebrates throughout the phylogenetic tree (Figure 6).

314 The preservation of functional endothelial-specific expression and conservation of amino acid
315 sequence despite ablation of the majority of the gene suggests that a selection pressure has
316 prevented the complete loss of Hba. This resistance to complete ablation is most likely explained
317 by Hba-3'f expression significantly contributing to the fitness of the organism, with complete
318 loss or variation in amino acid sequence being detrimental or even lethal. When considered with
319 the genomic ablation of related iron-binding genes Hb β and myoglobin, the extreme alterations
320 of three iron binding genes makes it unlikely that these changes are a result of random genetic
321 drift, but implies instead that there was some selection pressure. These changes suggest that
322 rather than a maladaptive (Near et al. 2006) or coincidental neutral benefit trait (Sidell and
323 O'Brien 2006), loss of Hba could have been the product of diversifying selection pressure,
324 favoring a range of hemoglobin phenotypes (Bargelloni et al. 1998) driven by the recombination
325 hotspot found in close proximity in the genome to Hba (Cheng and William Detrich 2007), with
326 a niche favoring the near complete loss of the gene.

327 The existence of an evolutionary driver for hemoglobin loss is further supported by the extreme
328 vascular adaptations required to compensate for the loss of hemoglobin-mediated oxygen
329 carrying capacity. Antarctic icefish exhibit dramatic cardiac hypertrophy (Doake 1987) and a 6-
330 15 fold increase in pump volume compared to other teleosts (Hemmingset al. 1972), leading
331 to a dramatic increase in cardiac output (F. Garofalo et al. 2009). Thin, scaleless skin facilitates
332 cutaneous oxygen absorption (Kock 2005a), although its contribution to total oxygen supply is
333 thought to be minor (Doake 1987). Via higher blood vessel density and larger capillary diameter
334 (Wujcik et al. 2007), the icefish vasculature contains 4-fold greater blood volume than red-
335 blooded notothenioids (F. Garofalo et al. 2009), resulting in higher oxygen flux to compensate
336 for the reduced oxygen carrying capacity of diffusion-based oxygen delivery. To minimize

337 oxygen demand, icefish have also evolved lower metabolism (O'Brien et al. 2003; Kock 2005a)
338 and enhanced mitochondrial biogenesis (Coppe et al. 2013).

339 Building upon prior findings, our results indicate a unique vascular structure of hyaloid vessels at
340 the vitreoretinal interface in icefish. Icefish retinae have been previously visualized on a
341 macroscopic scale through perfusion of opaque silicon rubber and imaged with light photography
342 (Wujcik et al. 2007). Those images revealed a dense hyaloid vascular network branching out
343 from a central optic disk connected to a dense and high-volume capillary network composed of
344 highly isolated branches with few cross-connecting vessels. Higher resolution confocal images of
345 immunostained icefish retina reveal a similar basic vascular network structure, but also a
346 prevalence of smaller vessels connecting vessel branches to form a highly interconnected vessel
347 network. Vessels ranged from 30 μm for the smallest connecting capillaries to 150 μm for the
348 primary vessels emerging from the optic disk. The unusual thickness of these vessels compared
349 to those typically found in vertebrates (Egginton et al. 2002) corroborates previous research
350 demonstrating that mean capillary diameters in Antarctic icefish are 50% larger than capillary
351 diameters in the retina (Wujcik et al. 2007) and skeletal muscles (Egginton et al. 2002) of red-
352 blooded notothenioids. The high density and thickness of the retinal capillary bed is attributed to
353 adaptation to the cold environment of the Antarctic waters (Cheng and William Detrich 2007) to
354 minimize vasculature resistance and maximize oxygen diffusion. The energetic investment
355 needed to maintain such a wide range of adaptations that are required to oxygenate tissues
356 without hemoglobin-mediated oxygen transport further suggests that intense selection pressures
357 are responsible for their initiation and preservation in the gene pool. While there is precedence of
358 complex compensatory adaptations for traits seen as maladaptive, such as the evolution the
359 mammalian retina with sight cells positioned on the far side of the tissue opposite incoming light
360 (Lamb 1995), there are a lack of cases where a maladaptive trait associated with organism
361 morbidity is retained through a series of compensatory adaptations (Crespi 2000) as seen with
362 icefish hemoglobin loss.

363 Icefishes co-inhabit the same environments as closely related red-blooded notothenioids, and
364 there is no evidence of any advantages to fitness with hemoglobin loss (Sidell and O'Brien
365 2006). In fact, evidence points to the reverse, where hemoglobin loss is paired with significant
366 metabolic trade-offs compared to closely related red-blooded notothenioids (Sidell and O'Brien
367 2006), casting doubt on the possibility of a pure directional selection pressure on hemoglobin
368 concentration, where the extreme phenotype of hemoglobin loss yields a competitive advantage.
369 If the near complete loss of hemoglobin is driven by a diversifying selection pressure, rather than
370 a maladaptive event or neutral drift, then an additional driver could be required to more fully
371 explain why a diversity of phenotypes of hemoglobin concentration are found in fish of the
372 Southern Ocean (Beers and Sidell 2011). We propose that iron limitation may be the missing
373 evolutionary force behind icefish adaptation, and an underappreciated driver with the evolution
374 of many of Antarctic aquatic species in general. We present evidence that supports the notion
375 that a diversifying selection pressure may have driven icefish evolution with hemoglobin-
376 mediated oxygen transport, where frigid temperatures and minimization of blood plasma
377 viscosity are insufficient to explain the driving forces behind icefish evolution. Minimization of
378 iron requirements could contribute to organism fitness when prey populations are restricted or
379 contain reduced iron content, as found with phytoplankton (Strzepek et al. 2011) and fish (Beers
380 and Sidell 2011) in the Southern Ocean. Low iron usage may have aided survival during the

381 crash in Antarctic biodiversity that co-occurred with icefish speciation (Eastman 1993) roughly
382 8.5 million years ago (Near 2004). The evolutionary importance of conservation of metabolic
383 inputs has precedence that includes adaptations with hibernation of mammals in winter (Geiser
384 2013), dormant states in bacteria during environmental stress (Watson et al. 1998), and starvation
385 responses found across mammals (Wang et al. 2006).

386 *Antarctic Icefish as a Model of Heightened Endothelial NO Bioavailability*

387 Recently, hemoglobin alpha, canonically known for its role in oxygen transport via binding with
388 hemoglobin beta in red blood cells, has been shown to modulate vascular remodeling in
389 protrusions of endothelial cells called myoendothelial junctions (MEJ) (Straub, Zeigler, et al.
390 2014). These regions are on the basolateral membranes of endothelial cells, proximal to smooth
391 muscle cells, and facilitate communication between the two cell types in the vascular wall. Hba
392 modulates endothelial NO flux at the MEJ (Straub et al. 2012b) in resistance arteries by binding
393 to eNOS and acting as a scavenger of NO (Butcher et al. 2014). Due to NO's short biological
394 half-life (Thomas et al. 2001), Hba serves as a significant negative regulator for the availability
395 of endothelial NO reaching proximal smooth muscle cells. Disruption of the Hba-eNOS
396 interaction can lead to smooth muscle vasodilation and reduction in blood pressure (Keller et al.
397 2016), while eNOS inhibition leads to vasoconstriction of the peripheral vasculature and can
398 induce significant increases in blood pressure (Li and Förstermann 2000). Indeed,
399 pharmacologically increasing the bioavailability of endothelial NO (Kurowska 2002) is
400 perceived as a promising therapeutic strategy in atherosclerosis (Barbato and Tzeng 2004),
401 ischemia (Barbato and Tzeng 2004), diabetes (Masha et al. 2011), and hypertension (Hermann et
402 al. 2006). Paradoxically, completely unregulated hyperactive endothelial NO generation can be
403 pathological. A pronounced example is a recent preclinical study in rhesus monkeys, where an
404 antibody exhibiting off-target effects leading to elevated NO production (Pai et al. 2016) caused
405 severe systemic vasodilation, as well as hypotension, hematemesis, hematochezia, and
406 morbidity. Additionally, elevated levels of NO is used a biomarker in various diseases (Arkenau
407 et al. 2002; Pham et al. 2003), results in apoptosis (Blaise et al. 2005), produces cytotoxic
408 oxygen radicals, exerts cytotoxic and antiplatelet effects (Sim 2010), inhibits enzyme function,
409 promotes DNA damage, and activates inflammatory processes (Hollenberg and Cinel 2009).

410 In the absence of Hba scavenging NO, as evident via the exclusion of the binding sites for NOS
411 and heme in Hba-3'f, production of NO might be up regulated. Icefish could potentially serve as
412 a model organism to study up regulation of endothelial nitric oxide signaling (Beers and
413 Jayasundara 2015) while avoiding the pathological ramifications that are experienced in Hba-
414 expressing vertebrates (Pai et al. 2016). A possible function of Hba-3'f could include NO
415 binding at Cysteine 5 in a similar fashion to the established Cysteine-NO interaction found at
416 Cysteine 93 in Hb β (Sampath et al. 1994; Helms and Kim-Shapiro 2013). Instead of trapping NO
417 in the Hba-eNOS complex at the point of generation, NO trapping would be carried on in a
418 diffuse form with the freely disassociated Hba fragment throughout the cytosol. Altered nitric
419 oxide kinetics could represent a safe method to up regulate nitric oxide metabolites in the vessel
420 wall while still maintaining negative regulation that avoids NO toxicity.

421 The vascular evolutionary adaptations compensating for loss of heme-mediated oxygen-carrying
422 capacity are thought to be facilitated through nitric oxide signaling (Cheng and William Detrich
423 2007). Enriched endothelial NO has been shown to play a role in modulation of vasodilation
424 (Palmer et al. 1987), angiogenesis (Ziche and Morbidelli 2000), cardiac hypertrophy (Wollert
425 and Drexler 2002), mitochondria size (Urschel and O'Brien 2008), and mitochondrial biogenesis
426 (Nisoli and Carruba 2006; O'Brien and Mueller 2010), all of which are exaggerated phenotypes
427 found in hemoglobin-lacking icefish (Kock 2005a). Several studies provide evidence of the
428 presence of a functional NOS signaling system (Pellegrino et al. 2004) and expression of eNOS
429 has been preserved in endothelial cells of icefishes (Filippo Garofalo et al. 2009), along with a
430 50% greater plasma load of NO metabolites (NO_x) in icefish compared to red-blooded
431 notothenioids (Beers et al. 2010). However, it is important to note that a significant portion of
432 this elevated NO metabolite load could be from a physiologic response to hemoglobin loss,
433 revealed that, at least in a transient fashion, when red-blooded notothenioids were subject to
434 chemically induced anemia that resulted in a 70-90% reduction in hemoglobin concentration,
435 NO_x metabolites also increased by 30% (Borley et al. 2010).

436 Nitric oxide metabolite buildup in icefish is theorized to be caused by reduced degradation rather
437 than increased generation. Previous studies have shown that vascularized icefish tissue has a
438 50% decrease of NOS (Beers et al. 2010), the primary source of endothelial NO generation,
439 compared to closely related red-blood species. The alteration of Hb α 's heme-based NO
440 scavenging ability in the Hb α -3'f could explain how icefish simultaneously express less NOS
441 but exhibit greater NO load in the vasculature (Beers et al. 2010).

442 Conclusion

443 We demonstrate that Hb α -3'f is expressed transcriptionally, translationally, and localized to the
444 vasculature. Conservation of the Hb α -3'f amino acid sequence between icefish species and red-
445 blooded vertebrates, along with preservation of endothelial-specific promoter machinery
446 alongside loss of all known Hb α interaction regions, suggests that this Hb α -3'f fragment plays a
447 novel, unknown role in the endothelium. These findings demonstrate that icefish do not
448 technically have both hemoglobin genes knocked out, but do suggest that all known Hb α
449 functions have been disabled, including known interaction regions with eNOS, heme, and NO.
450 The ablation of the majority of the Hb α gene may essentially represent a natural mutagenesis
451 experiment where nonlethal portions of the gene are eliminated, offering a possible opportunity
452 to identify a novel role of the Hb α fragment region that may translate back to red-blooded
453 vertebrates.

454 Preservation of the Hb α -3'f protein fragment suggests that a diversifying selection pressure
455 could have driven the process. We propose that iron is a novel evolutionary driver for icefish
456 hemoglobin loss, and perhaps even for the decreased hemoglobin concentration found in various
457 other Antarctic aquatic species. Testing this hypothesis will require an examination of iron flux
458 and iron utilization on an organism and ecosystem level.

459

460 **Conflict of Interest**

461 Author D.A.K. was employed by the company Sanofi, Paris France. All other authors declare no
462 competing interests.

463

464 **References**

465 Andrews NC. 2000. Iron homeostasis: insights from genetics and animal models. *Nat Rev Genet.* 1:208–217.

466

467 Arkenau HT, Stichtenoth DO, Frölich JC, Manns MP, Böker KHW. 2002. Elevated nitric oxide
468 levels in patients with chronic liver disease and cirrhosis correlate with disease stage and
469 parameters of hyperdynamic circulation. *Z Gastroenterol.* 40:907–913.

470 Barbato JE, Tzeng E. 2004. Nitric oxide and arterial disease. *J Vasc Surg.* 40:187–193.

471 Bargelloni L, Marcato S, Patarnello T. 1998. Antarctic fish hemoglobins: Evidence for adaptive
472 evolution at subzero temperature. *Proc Natl Acad Sci.* 95:8670–8675.

473 Beers JM, Borley KA, Sidell BD. 2010. Relationship among circulating hemoglobin, nitric oxide
474 synthase activities and angiogenic poise in red- and white-blooded Antarctic notothenioid fishes.
475 *Comp Biochem Physiol A Mol Integr Physiol.* 156:422–429.

476 Beers JM, Jayasundara N. 2015. Antarctic notothenioid fish: what are the future consequences of
477 ‘losses’ and ‘gains’ acquired during long-term evolution at cold and stable temperatures? *J Exp
478 Biol.* 218:1834–1845.

479 Beers JM, Sidell BD. 2011. Thermal tolerance of Antarctic notothenioid fishes correlates with
480 level of circulating hemoglobin. *Physiol Biochem Zool PBZ.* 84:353–362.

481 Blaise GA, Gauvin D, Gangal M, Authier S. 2005. Nitric oxide, cell signaling and cell death.
482 *Toxicology.* 208:177–192.

483 Borley KA, Beers JM, Sidell BD. 2010. Phenylhydrazine-induced anemia causes nitric-oxide-
484 mediated upregulation of the angiogenic pathway in *Notothenia coriiceps*. *J Exp Biol.* 213:2865–
485 287.

486 Buesseler KO, Andrews JE, Pike SM, Charette MA. 2004. The Effects of Iron Fertilization on
487 Carbon Sequestration in the Southern Ocean. *Science.* 304:414–417.

488 Butcher JT, Johnson T, Beers J, Columbus L, Isakson BE. 2014. Hemoglobin alpha in the blood
489 vessel wall. *Free Radic Biol Med.* 0:136–142.

490 Cairo G, Bernuzzi F, Recalcati S. 2006. A precious metal: Iron, an essential nutrient for all cells.
491 *Genes Nutr.* 1:25–39.

492 Chen C, Paw BH. 2012. Cellular and mitochondrial iron homeostasis in vertebrates. *Biochim
493 Biophys Acta BBA - Mol Cell Res.* 1823:1459–1467.

494 Cheng C-HC, William Detrich H. 2007. Molecular ecophysiology of Antarctic notothenioid
495 fishes. *Philos Trans R Soc B Biol Sci.* 362:2215–2232.

496 Cocca E, Ratnayake-Lecamwasam M, Parker SK, Camardella L, Ciaramella M, Prisco G di,
497 Detrich HW. 1995. Genomic remnants of alpha-globin genes in the hemoglobinless antarctic
498 icefishes. *Proc Natl Acad Sci.* 92:1817–1821.

499 Conway TM, Wolff EW, Röthlisberger R, Mulvaney R, Elderfield HE. 2015. Constraints on
500 soluble aerosol iron flux to the Southern Ocean at the Last Glacial Maximum. *Nat Commun.*
501 6:7850.

502 Coppe A, Agostini C, Marino IAM, Zane L, Bargelloni L, Bortoluzzi S, Patarnello T. 2013.
503 Genome Evolution in the Cold: Antarctic Icefish Muscle Transcriptome Reveals Selective
504 Duplications Increasing Mitochondrial Function. *Genome Biol Evol.* 5:45–60.

505 Coppes Petricorena ZL, Somero GN. 2007. Biochemical adaptations of notothenioid fishes:
506 Comparisons between cold temperate South American and New Zealand species and Antarctic
507 species. *Comp Biochem Physiol A Mol Integr Physiol.* 147:799–807.

508 Cossins AR, Macdonald AG. 1989. The adaptation of biological membranes to temperature and
509 pressure: Fish from the deep and cold. *J Bioenerg Biomembr.* 21:115–135.

510 Crespi BJ. 2000. The evolution of maladaptation. *Heredity.* 84:623–629.

511 D'Alelio D, Libralato S, Wyatt T, d'Alcalà MR. 2016. Ecological-network models link diversity,
512 structure and function in the plankton food-web. *Sci Rep.* 6:21806.

513 Doake CSM. 1987. Antarctic Science. CUP Archive.

514 Eastman JT. 1993. Antarctic fish biology : evolution in a unique environment. San Diego, CA:
515 Academic Press.

516 Egginton S, Skilbeck C, Hoofd L, Calvo J, Johnston IA. 2002. Peripheral oxygen transport in
517 skeletal muscle of Antarctic and sub-Antarctic notothenioid fish. *J Exp Biol.* 205:769–779.

518 Emerit J, Beaumont C, Trivin F. 2001. Iron metabolism, free radicals, and oxidative injury.
519 *Biomed Pharmacother Biomedecine Pharmacother.* 55:333–339.

520 Feng L, Gell DA, Zhou S, Gu L, Kong Y, Li J, Hu M, Yan N, Lee C, Rich AM, et al. 2004.
521 Molecular Mechanism of AHSP-Mediated Stabilization of α -Hemoglobin. *Cell.* 119:629–640.

522 Gallagher P, Farrell AP. 1998. Hematocrit and Blood Oxygen-Carrying Capacity. In: *Fish
523 Physiology.* Vol. 17. Elsevier. p. 185–227.

524 Gammella E, Buratti P, Cairo G, Recalcati S. 2014. Macrophages: central regulators of iron
525 balance. *Metalloomics.* 6:1336–1345.

526 Ganz T, Nemeth E. 2012. Iron Metabolism: Interactions with Normal and Disordered
527 Erythropoiesis. *Cold Spring Harb Perspect Med.* 2:a011668.

528 Garofalo Filippo, Amelio D, Cerra MC, Tota B, Sidell BD, Pellegrino D. 2009. Morphological
529 and physiological study of the cardiac NOS/NO system in the Antarctic (Hb-/Mb-) icefish
530 *Chaenocephalus aceratus* and in the red-blooded *Trematomus bernacchii*. Nitric Oxide. 20:69–
531 78.

532 Garofalo F., Pellegrino D, Amelio D, Tota B. 2009. The Antarctic hemoglobinless icefish, fifty
533 five years later: a unique cardiocirculatory interplay of disaptation and phenotypic plasticity.
534 Comp Biochem Physiol A Mol Integr Physiol. 154:10–28.

535 Geiser F. 2013. Hibernation. Curr Biol. 23:R188–R193.

536 Gong H, Liu M, Klomp J, Merrill BJ, Rehman J, Malik AB. 2017. Method for Dual Viral Vector
537 Mediated CRISPR-Cas9 Gene Disruption in Primary Human Endothelial Cells. Sci Rep. 7.

538 Graham RM, De Boer AM, van Sebille E, Kohfeld KE, Schlosser C. 2015. Inferring source
539 regions and supply mechanisms of iron in the Southern Ocean from satellite chlorophyll data.
540 Deep Sea Res Part Oceanogr Res Pap. 104:9–25.

541 Helms C, Kim-Shapiro DB. 2013. Hemoglobin-mediated nitric oxide signaling. Free Radic Biol
542 Med. 0:464–472.

543 Hemmingsen EA, Douglas EL, Johansen K, Millard RW. 1972. Aortic blood flow and cardiac
544 output in the hemoglobin-free fish *Chaenocephalus aceratus*. Comp Biochem Physiol A Physiol.
545 43:1045–1051.

546 Hermann M, Flammer A, Lüscher TF. 2006. Nitric oxide in hypertension. J Clin Hypertens
547 Greenwich Conn. 8(12 Suppl 4):17–29.

548 Hollenberg SM, Cinel I. 2009. Bench-to-bedside review: Nitric oxide in critical illness – update
549 2008. Crit Care. 13:218.

550 Inaba K, Ishimori K, Morishima I. 1998. Structural and functional roles of heme binding module
551 in globin proteins: identification of the segment regulating the heme binding structure11Edited
552 by K. Najai. J Mol Biol. 283:311–327.

553 Kaplan J, Ward DM. 2013. The essential nature of iron usage and regulation. Curr Biol CB.
554 23:R642–R646.

555 Keller TCS, Butcher JT, Broseghini-Filho GB, Marziano C, DeLallo LJ, Rogers S, Ning B,
556 Martin JN, Chechova S, Cabot M, et al. 2016. Modulating Vascular Hemodynamics With an
557 Alpha Globin Mimetic Peptide (Hb α X). Hypertens Dallas Tex 1979. 68:1494–1503.

558 Kock K-H. 2005a. Antarctic icefishes (Channichthyidae): a unique family of fishes. A review,
559 Part I. Polar Biol. 28:862–895.

560 Kock K-H. 2005b. Antarctic icefishes (Channichthyidae): a unique family of fishes. A review,
561 Part II. Polar Biol. 28:897–909.

562 Kuhn DE, O'Brien KM, Crockett EL. 2016. Expansion of capacities for iron transport and
563 sequestration reflects plasma volumes and heart mass among white-blooded notothenioid fishes.
564 *Am J Physiol-Regul Integr Comp Physiol.* 311(4):R649–R657. doi:10.1152/ajpregu.00188.2016.

565 Kurowska EM. 2002. Nitric oxide therapies in vascular diseases. *Curr Pharm Des.* 8(3):155–166.

566 Lam PJ, Bishop JKB. 2007. High biomass, low export regimes in the Southern Ocean. *Deep Sea*
567 *Res Part II Top Stud Oceanogr.* 54:601–638.

568 Lane ES, Semeniuk DM, Strzepek RF, Cullen JT, Maldonado MT. 2009. Effects of iron
569 limitation on intracellular cadmium of cultured phytoplankton: Implications for surface dissolved
570 cadmium to phosphate ratios. *Mar Chem.* 115:155–162.

571 Lewis DL, Kollig HP, Hodson RE. 1986. Nutrient Limitation and Adaptation of Microbial
572 Populations to Chemical Transformations. *Appl Environ Microbiol.* 51:598–603.

573 Li H, Förstermann U. 2000. Nitric oxide in the pathogenesis of vascular disease. *J Pathol.*
574 190:244–254.

575 López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L. 2003. The role of nutrient availability in
576 regulating root architecture. *Curr Opin Plant Biol.* 6:280–287.

577 Lynch JP, Brown KM. 2001. Topsoil foraging – an architectural adaptation of plants to low
578 phosphorus availability. *Plant Soil.* 237:225–237.

579 Martin JH, Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner SJ, Hunter CN, Elrod
580 VA, Nowicki JL, Coley TL, et al. 1994. Testing the iron hypothesis in ecosystems of the
581 equatorial Pacific Ocean. *Nature.* 371:123–129.

582 Martin JH, Fitzwater SE. 1988. Iron deficiency limits phytoplankton growth in the north-east
583 Pacific subarctic. *Nature.* 331:341–343.

584 Masha A, Dinatale S, Allasia S, Martina V. 2011. Role of the decreased nitric oxide
585 bioavailability in the vascular complications of diabetes mellitus. *Curr Pharm Biotechnol.*
586 12:1354–1363.

587 Mel'nicenko NA, Koltunov AM, Vyskrebentsev AS, Bazhanov AV. 2008. The temperature
588 dependence of the solubility of oxygen in sea water according to the pulsed NMR data. *Russ J*
589 *Phys Chem A.* 82:746–752.

590 Merchant SS, Helmann JD. 2012. Elemental Economy: microbial strategies for optimizing
591 growth in the face of nutrient limitation. *Adv Microb Physiol.* 60:91–210.

592 Monsen ER. 1988. Iron nutrition and absorption: dietary factors which impact iron
593 bioavailability. *J Am Diet Assoc.* 88:786–790.

594 Mueller IA, Grim JM, Beers JM, Crockett EL, O'Brien KM. 2011. Inter-relationship between
595 mitochondrial function and susceptibility to oxidative stress in red- and white-blooded Antarctic
596 notothenioid fishes. *J Exp Biol.* 214(Pt 22):3732–3741.

597 Near TJ. 2004. Estimating divergence times of notothenioid fishes using a fossil-calibrated
598 molecular clock. *Antarct Sci.* 16:37–44.

599 Near TJ, Parker SK, Detrich HW. 2006. A genomic fossil reveals key steps in hemoglobin loss
600 by the antarctic icefishes. *Mol Biol Evol.* 23:2008–2016.

601 Nisoli E, Carruba MO. 2006. Nitric oxide and mitochondrial biogenesis. *J Cell Sci.* 119:2855–
602 2862.

603 O'Brien KM, Mueller IA. 2010. The unique mitochondrial form and function of Antarctic
604 channichthyid icefishes. *Integr Comp Biol.* 50:993–1008.

605 O'Brien KM, Skilbeck C, Sidell BD, Egginton S. 2003. Muscle fine structure may maintain the
606 function of oxidative fibres in haemoglobinless Antarctic fishes. *J Exp Biol.* 206(Pt 2):411–421.

607 Ostadal B, Dhalla NS. 2012. *Cardiac Adaptations: Molecular Mechanisms.* Springer Science &
608 Business Media.

609 Pai R, Ma N, Connor AV, Danilenko DM, Tarrant JM, Salvail D, Wong L, Hartley DP, Misner
610 D, Stefanich E, et al. 2016. Therapeutic Antibody-Induced Vascular Toxicity Due to Off-Target
611 Activation of Nitric Oxide in Cynomolgus Monkeys. *Toxicol Sci.* 151:245–260.

612 Palmer RM, Ferrige AG, Moncada S. 1987. Nitric oxide release accounts for the biological
613 activity of endothelium-derived relaxing factor. *Nature.* 327:524–526.

614 Pellegrino D, Palmerini CA, Tota B. 2004. No hemoglobin but NO: the icefish (*Chionodraco*
615 *hamatus*) heart as a paradigm. *J Exp Biol.* 207(Pt 22):3855–3864.

616 Pham TNQ, Rahman P, Tobin YM, Khraishi MM, Hamilton SF, Alderdice C, Richardson VJ.
617 2003. Elevated serum nitric oxide levels in patients with inflammatory arthritis associated with
618 co-expression of inducible nitric oxide synthase and protein kinase C-eta in peripheral blood
619 monocyte-derived macrophages. *J Rheumatol.* 30:2529–2534.

620 di Prisco G, Cocca E, Parker S, Detrich H. 2002. Tracking the evolutionary loss of hemoglobin
621 expression by the white-blooded Antarctic icefishes. *Gene.* 295:185–191.

622 Rennenberg H, Schmidt S. 2010. Perennial lifestyle—an adaptation to nutrient limitation? *Tree*
623 *Physiol.* 30:1047–1049.

624 Rishi G, Subramaniam VN. 2017. The relationship between systemic iron homeostasis and
625 erythropoiesis. *Biosci Rep.* 37.

626 Sampath V, Zhao XJ, Caughey WS. 1994. Characterization of interactions of nitric oxide with
627 human hemoglobin A by infrared spectroscopy. *Biochem Biophys Res Commun.* 198:281–287.

628 Sidell BD, O'Brien KM. 2006. When bad things happen to good fish: the loss of hemoglobin and
629 myoglobin expression in Antarctic icefishes. *J Exp Biol.* 209:1791–1802.

630 Sim J-Y. 2010. Nitric oxide and pulmonary hypertension. *Korean J Anesthesiol.* 58:4–14.

631 Straub AC, Butcher JT, Billaud M, Mutchler SM, Artamonov MV, Nguyen AT, Johnson T, Best
632 AK, Miller MP, Palmer LA, et al. 2014. Hemoglobin α / eNOS Coupling at Myoendothelial
633 Junctions is Required for Nitric Oxide Scavenging During Vasoconstriction. *Arterioscler
634 Thromb Vasc Biol.* 34:2594–2600.

635 Straub AC, Lohman AW, Billaud M, Johnstone SR, Dwyer ST, Lee MY, Bortz PS, Best AK,
636 Columbus L, Gaston B, et al. 2012a. Endothelial cell expression of hemoglobin α regulates nitric
637 oxide signaling. *Nature.* 491:473–477.

638 Straub AC, Lohman AW, Billaud M, Johnstone SR, Dwyer ST, Lee MY, Bortz PS, Best AK,
639 Columbus L, Gaston B, et al. 2012b. Endothelial cell expression of haemoglobin α regulates
640 nitric oxide signalling. *Nature.* 491:473–477.

641 Straub AC, Zeigler AC, Isakson BE. 2014. The myoendothelial junction: connections that deliver
642 the message. *Physiol Bethesda Md.* 29:242–249.

643 Street JH, Paytan A. 2005. Iron, phytoplankton growth, and the carbon cycle. *Met Ions Biol Syst.*
644 43:153–193.

645 Strzepek RF, Maldonado MT, Hunter KA, Frew RD, Boyd PW. 2011. Adaptive strategies by
646 Southern Ocean phytoplankton to lessen iron limitation: Uptake of organically complexed iron
647 and reduced cellular iron requirements. *Limnol Oceanogr.* 56:1983–2002.

648 Thomas DD, Liu X, Kantrow SP, Lancaster JR. 2001. The biological lifetime of nitric oxide:
649 Implications for the perivascular dynamics of NO and O₂. *Proc Natl Acad Sci U S A.* 98:355–
650 360.

651 Thomas DN. 2003. Iron Limitation in the Southern Ocean. *Science.* 302:565–566.

652 Thresher RE, Adkins J, Fallon SJ, Gowlett-Holmes K, Althaus F, Williams A. 2011.
653 Extraordinarily high biomass benthic community on Southern Ocean seamounts. *Sci Rep.* 1:119.

654 Urschel MR, O'Brien KM. 2008. High mitochondrial densities in the hearts of Antarctic
655 icefishes are maintained by an increase in mitochondrial size rather than mitochondrial
656 biogenesis. *J Exp Biol.* 211(Pt 16):2638–2646.

657 Verde C, Giordano D, di Prisco G. 2007. The adaptation of polar fishes to climatic changes:
658 Structure, function and phylogeny of haemoglobin. *IUBMB Life.* 60:29–40.

659 Wang T, Hung CCY, Randall DJ. 2006. THE COMPARATIVE PHYSIOLOGY OF FOOD
660 DEPRIVATION: From Feast to Famine. *Annu Rev Physiol.* 68:223–251.

661 Watson SP, Clements MO, Foster SJ. 1998. Characterization of the Starvation-Survival
662 Response of *Staphylococcus aureus*. *J Bacteriol.* 180:1750–1758.

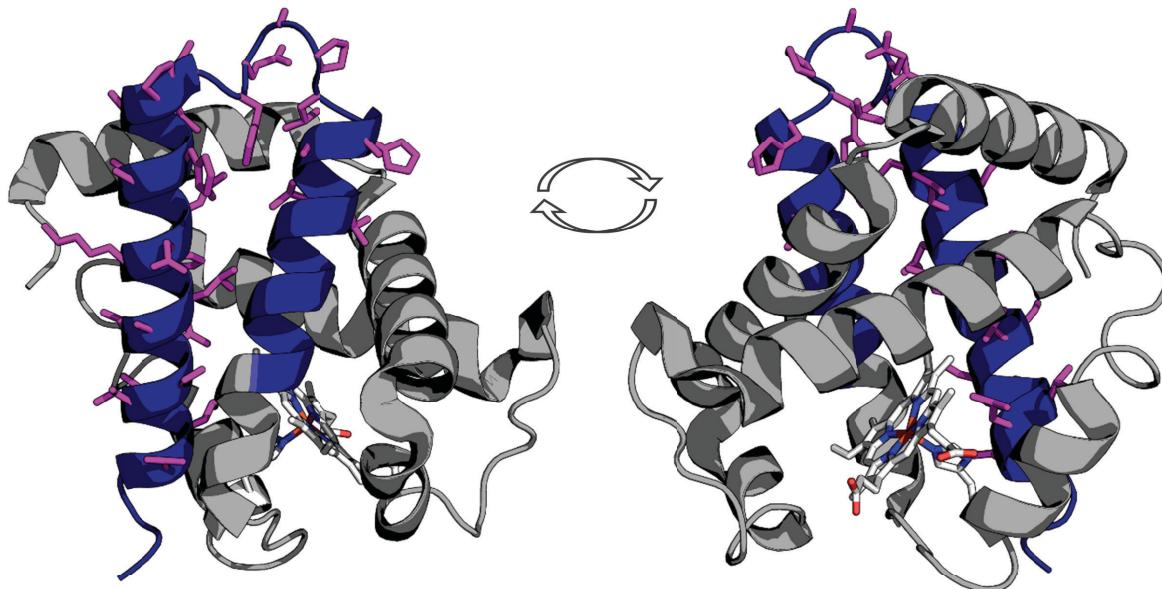
663 Whittow GC. 1987. Thermoregulatory Adaptations in Marine Mammals: Interacting Effects of
664 Exercise and Body Mass. a Review1. *Mar Mammal Sci.* 3:220–241.

665 Wollert KC, Drexler H. 2002. Regulation of cardiac remodeling by nitric oxide: focus on cardiac
666 myocyte hypertrophy and apoptosis. *Heart Fail Rev.* 7:317–325.

667 Wujeck JM, Wang G, Eastman JT, Sidell BD. 2007. Morphometry of retinal vasculature in
668 Antarctic fishes is dependent upon the level of hemoglobin in circulation. *J Exp Biol.* 210:815–
669 824.

670 Ziche M, Morbidelli L. 2000. Nitric oxide and angiogenesis. *J Neurooncol.* 50(1–2):139–148.

671


672

673 **Figure Legends**

674

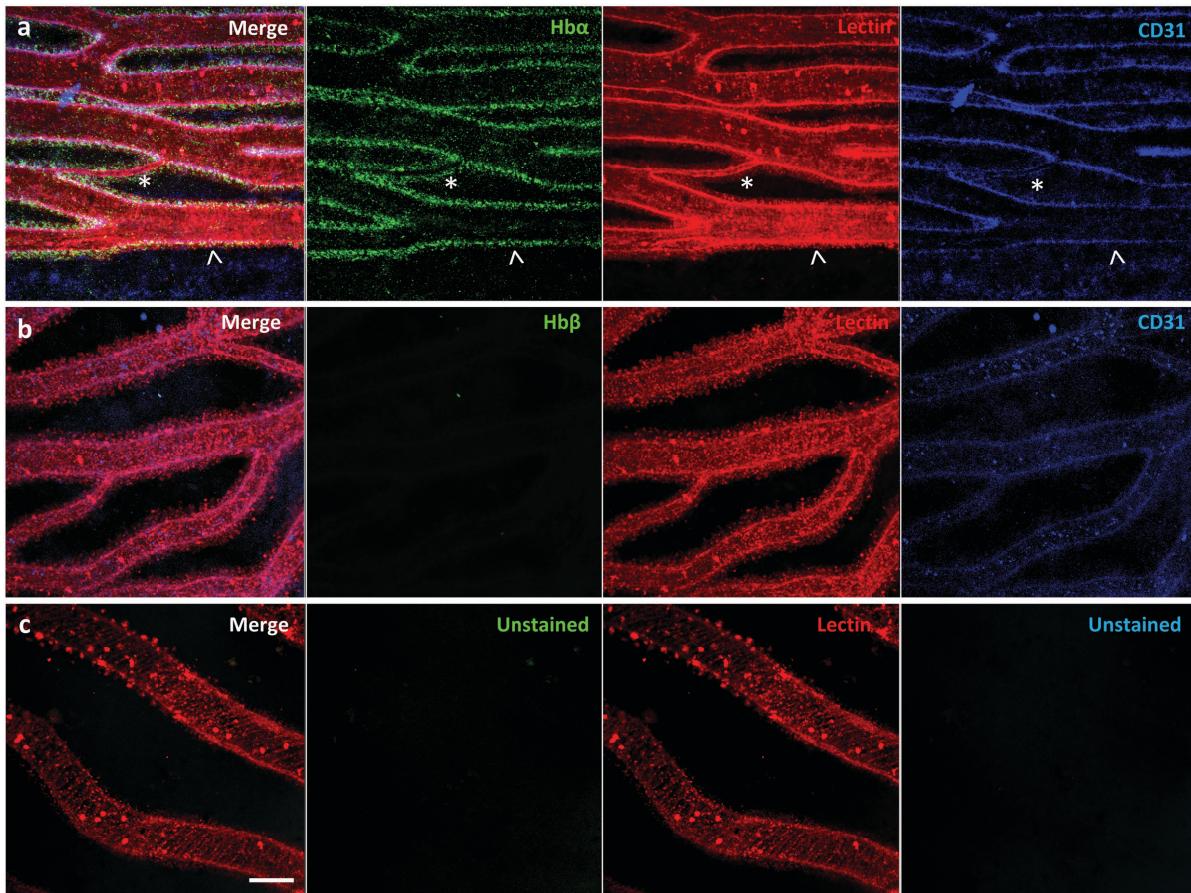
675

676

677

678 **Figure 1: Representation of the truncated icefish alpha globin protein (blue) imposed on**
679 **human deoxyhemoglobin (gray).** Representation of the truncated icefish alpha globin protein
680 (blue) imposed on human deoxyhemoglobin (gray). The epitope for the antibody used in
681 immunofluorescence is represented by magenta side chains, and the entire epitope lies within the
682 truncated gene region. The prosthetic heme group is shown in elemental color scheme.
683 Truncation of the hemoglobin in icefish removes residues critical for heme group stabilization
684 and O₂ binding ability. The views are a 180° degree rotation of the alpha globin molecule. Using
685 PDBid: 2HKB.

686

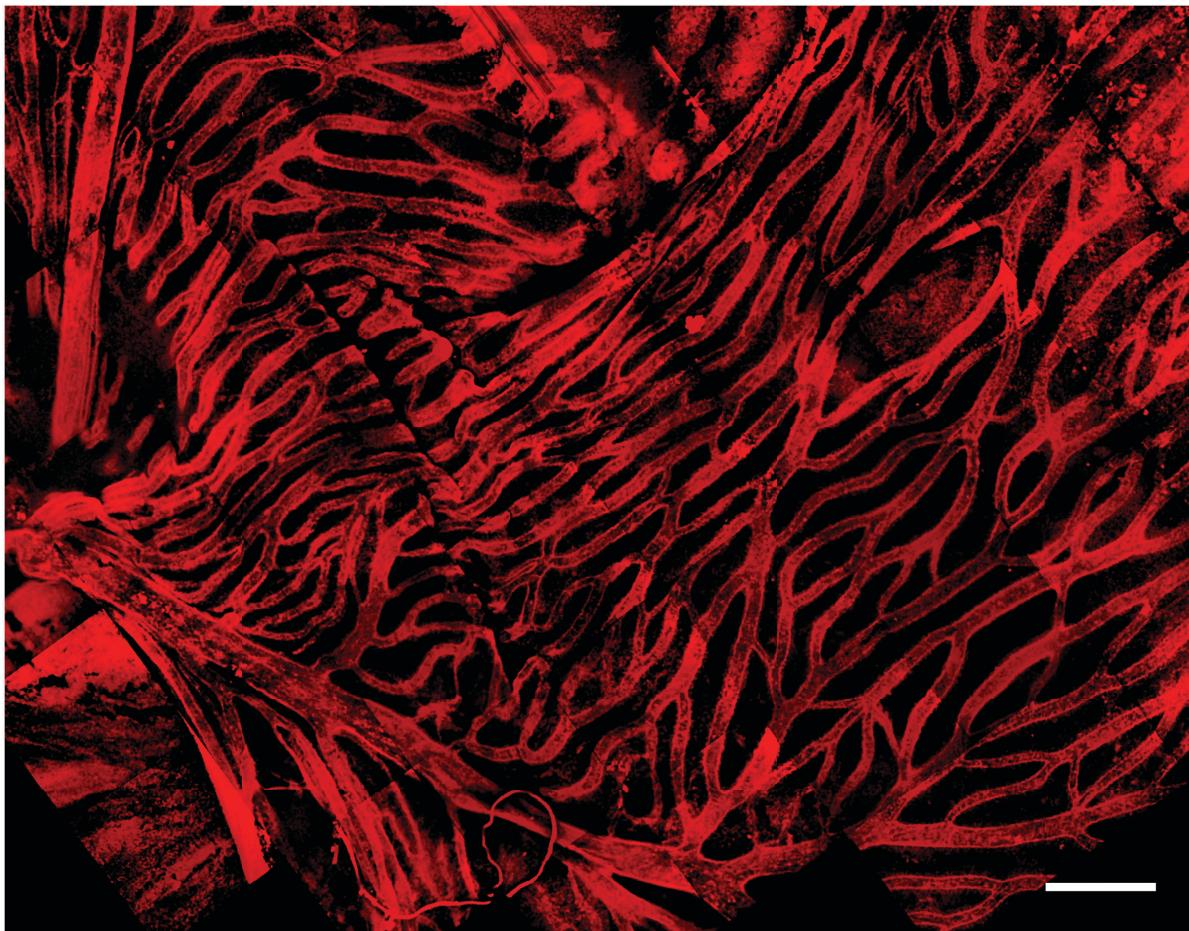

687

688

689

690

691



692

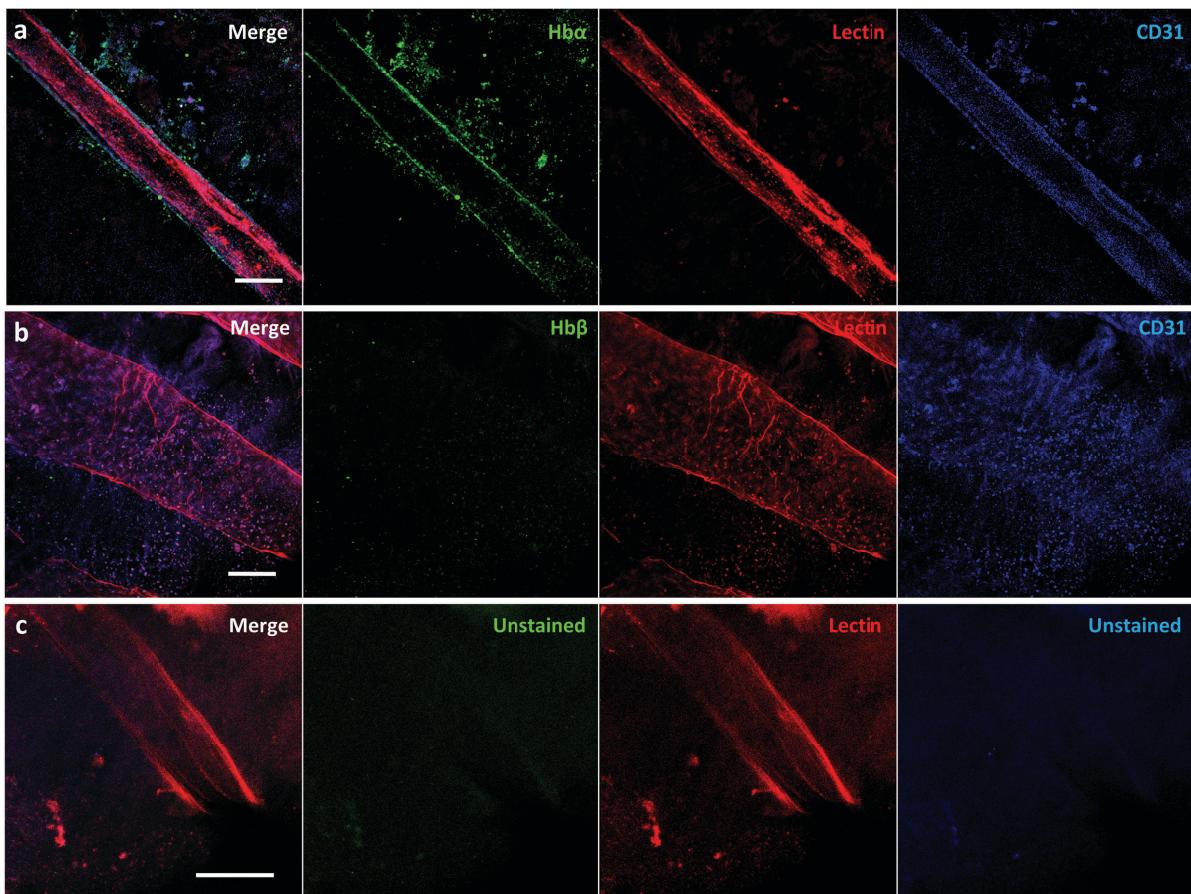
693 **Figure 2: Icefish (*Champscephalus gunnari*) hyaloid endothelial cells express hemoglobin**
694 **alpha, while lacking hemoglobin beta expression.** (A) Retinal surface labeled with anti-Hb α
695 (green), IB4 lectin (red), and anti-CD31 (blue), with a network comprised of both large (arrow)
696 and small (star) vessels. (B) Retinal surface labeled with anti-Hb β (green), IB4 lectin (red) and
697 anti-CD31 (blue). (C) Retina with lectin as stain control for other channels. Scale bar 100 um,
698 images acquired with 20x/0.75 objective.

699

700

701

702 **Figure 3: Hyaloid vascular network in vitreoretinal interface of icefish (*Champscephalus***


703 ***gunnari***). Vasculature labeled with IB4 lectin (red). Scale bar 1 mm, Images acquired with a

704 20x/0.5 objective.

705

706

707

708

709 **Figure 4: Red-blooded notothenioid (*Lepidonotothen squamifrons*) hyaloid endothelial cells**
710 **express hemoglobin alpha, while lacking expression in hemoglobin beta.** (A) Retinal surface
711 labeled with anti-Hb α (green), IB4 lectin (red), and anti-CD31 (blue). (B) Retinal surface labeled
712 with anti-Hb β (green), IB4 lectin (red) and anti-CD31 (blue). (C) Retina labeled with lectin as
713 stain control for other channels. Scale bar 100 um, images acquired with 20x/0.75 objective.

714

715

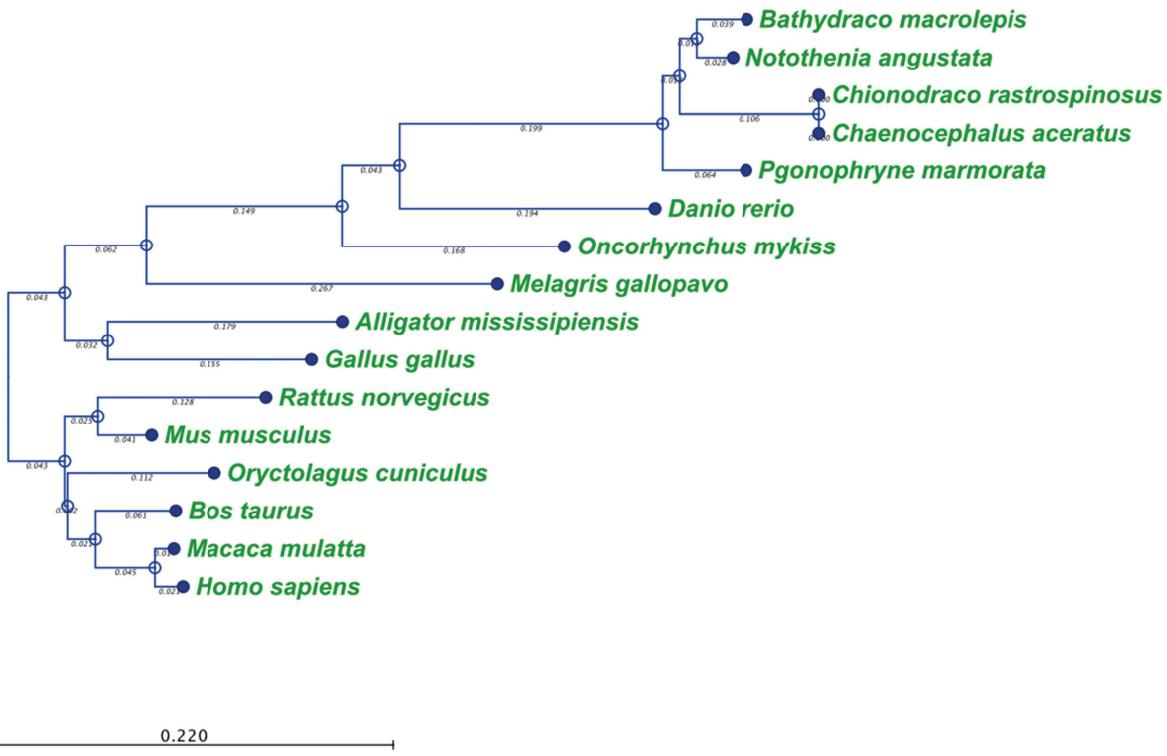
716

717

CLUSTAL O(1.2.4) multiple sequence alignment		
hba_human	MVLSPADKTNVKAAGKVGAGAHAGEYGAELERMFLSFPTTKTYFPHFD-LSHGSAQVKGH	59
hba_ocellatedicefish	-----	0
hba_blackfinicefish	-----	0
hba_rockcod	-SLSDKDKAAVKALWSKIGKSADAIGNDALSRMIVVYQPQTCKTYFSHWPSVTGHPDIKAH	59
hba_antarcticicefish	MSLSDKDKAVALWNKIGKSADVIGNDALSRMIVVYPETKTYFSHWPDLAPGSPIKAH	60
hba_human	GKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFT	119
hba_ocellatedicefish	-----ILNHCILVVITTMFPTEFT	19
hba_blackfinicefish	-----ILNHCILVVITTMFPTEFT	19
hba_rockcod	GKKVMGGLIAVSKINDLKAGLSNLSQQHAYKLRVDPANFKILNHCILVVISTMFPKNFT	119
hba_antarcticicefish	GKKVMGGIALAVTKIDDLKAGLSELSEQHAYKLRVDPNSFKILNHCILVVVISIMFPKEFT	120
	:*.*:***.: :* :**	
hba_human	PAVHASLDKFLASVSTVILSKYR	142
hba_ocellatedicefish	PEAHVSLDKFLSAVALSLADRYR	42
hba_blackfinicefish	PEAHVSLDKFLSAVALSLADRYR	42
hba_rockcod	PQAHVSLNKFLSGVALALAQRYR	142
hba_antarcticicefish	PDAHVSLDKFLSGVALALAERYR	143
	* .*.*:***.:* :*.*	

718

719 **Figure 5: The truncated alpha globin found in icefish is similar to sequences found in other**
720 **species of fish and the human sequence.** Alignment of icefish, icefish-related fish, and human
721 alpha globin sequences using Clustal Omega sequence alignment tool. Symbols *, :, and .
722 represent degree of similarity between amino acids across the sequences. The truncated alpha
723 globin found in icefish is similar to sequences found in other species of fish and the human
724 sequence.


725

726

727

728

729

730

731 **Figure 6: Phylogenetic analysis of alpha-globin protein in selected eukaryotic species.**
732 Phylogenetic tree was constructed using distance-based Neighbor Joining method and protein
733 distance measured with Jukes-Cantor distance adjustment. Scale bar denotes branch length for
734 the amount of change between sequence nodes.

735