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Abstract

Alterationsin vascular networks, including angiogenesis and capillary regression, play key roles
in disease, wound healing, and development. Imaging of microvascular networks can reveal their
gpatial structures, but effective study of network architecture requires methods to accurately
guantify them using a variety of metrics. We present REAVER (Rapid Editable Analysis of
Vessel Elements Routine), afreely available open source tool that researchers can use to analyze
and quantify high resolution fluorescent images of blood vessel networks, and assessiits
performance compared to alternative state-of-the-art image analysis software programs. Top
performing programs for each metric are identified by assigning a rank based on statistical
multiple comparisons of accuracy and precision, modeled as matches in around-robin style
tournament. This comparison method yields a clearly defined and consistent standard for
characterizing program performance, avoiding the use of non-standard ad hoc interpretations of
multiple comparisons between programs. Using this comparison method and a dataset of
manually analyzed images as a ground-truth, we show that REAVER was the top ranked
program for both accuracy and precision for all metrics quantified, including vessel length
density, vessel area fraction, mean vessdl diameter, and branchpoint count. REAVER can be
used to quantify differencesin blood vessel architectures between study groups, which makesit
particularly useful in experiments designed to evaluate the effects of different external

perturbations (e.g. drugs or disease states).
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Introduction

The vast networks of interconnected blood vessels found in tissues throughout the body play
significant roles in oxygen transport, nutrient delivery, and inflammatory response. The
microvasculature is akey effector system in healthy and pathological conditions: serving primary
roles in maintaining tissue homeostasis™ as well as the pathogenesis of disease”. The
morphological structure of a microvessal network is closely intertwined with its biological
functions, and quantitative changes in structure provide evidence of an altered physiological or
pathological state. Examples include vessel diameter as an indicator of vasodilation,
vasoconstriction, or arteriogenesis?, and vascular length density as an indicator of altered levels
of tissue oxygenation® or tissue regeneration”. Since the structural architecture of microvessel
networks is closdly intertwined with function, changes in microvessel architecture can, therefore,
be used to assess cellular and tissue level responses to disease and treatments. Fluorescently
labeled vascular networks can mark cellsin a cell-type specific fashion at high signal-to-noise’,
and when combined with widely available high-resolution imaging modalities such as confocal
laser-scanning microscopy, serves as awell-established gold standard method for imaging

cellular structures such as vascular networks®.

Several image processing programs have been previously used to quantify fluorescent images of
microvessel architecture in an automated manner, including Angioquant’, Angiotool®, and
RAVE®. While these programs have been used in various studies, they are estimated to have a
low degree of adoption by the research community relative to the multitude of studies that have
quantified microvascular architecture using amanual apprach?. Furthermore, the publications
that introduce these tools for automation often provide nonstandard forms of metrics that make

comparison between them difficult® and lack a common method for evaluating performance. For
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image segmentation, manual analysis through visual inspection remains the gold standard
technique'®™?, defined as the method accepted to yield results closest to the true segmentation.
Manual analysis can therefore be used as an approximation of ground-truth®® and a basis to
compare performance of other automated analysis methods, with any perceived disagreement

classified as error'®.

In this paper, we establish and validate a new open source tool, named REAVER, for quantifying
various aspects of structural architecture in fluorescent images of microvascular networks (Fig.
1A) that uses simple image processing algorithmsto automatically segment and quantify
vascular networks while offering the option for manual user curation (Fig 1B). We use a
benchmark dataset of fluorescently labeled images from a variety of tissues that exhibit a broad
range of vascular architectures as a means of assessing each program’s general ability to
automatically analyze vessel structure and minimize possibility of bias resulting from examining
any single tissue. The error of REAVER’ s output to ground-truth for various output metrics,
including vesseal length density, vessel area fraction, vessdl tortuosity, and branchpoint count, is
compared to other available vascular image analysis programs. Error is evaluated through
accuracy of the output metrics, defined as the closeness of a measured value to ground-truth™,
and measured with absolute error'®™8, Precision, the random errors caused by statistical

variability, is measured by comparing the variance of error between programs.

An effective measurement technique exhibits high accuracy and precision with output metrics'™,
but traditional two-tailed multiple comparisons do not yield a clear interpretation of which
programs have the lowest error among many since two-tailed tests yield non-directional
conclusions™® and alack of significant differences between programs can lead to ambiguous

results. Thisisillustrated by comparing absolute error between hypothetical measurement
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methods A-E in Figure 3: thereis alack of standard interpretation of which groups are the best
using post-hoc two-tailed multiple comparisons, especially with method A, B, and C that seem to
have the lowest error with no significant difference between them (Fig. 1C). We developed a
statistical method to identify the programs with lowest error by performing bi-directional one-
tailed hypothesis tests, where we tested which groups had less error in a pairwise fashion, with
comparisons serving as matches in a round-robin tournament between the programs.
Comparisons with statistical significance were classified as wins, providing abasisto rank the
programs based on their performance against other programs. In the example case, method C
would be top ranked because it is significantly better than two other programs, both D and E,

providing a standard interpretation of performance (Fig. 1D).

REAVER' s effectivenessis highlighted by being atop-ranking program across all metricsin
both accuracy and precision. Given the ubiquity of high-resolution fluorescent microscopy and
the established need for automated, rigorous, and unbiased methods to quantify vessel
architectural features, we present REAVER as an image analysis tool to further microvascular

research.

Results

REAVER was developed to analyze and quantify fluorescent images of vessel architecture using
basi ¢ image processing techniques, including adaptive thresholding and various filters for
segmentation refinement (Supplementary Fig. 1A-G, see Methods: REAVER Algorithm). A
dataset of images was acquired from multiple mouse tissues (Supplementary Fig. 2A-F) and
analyzed both manually and in an automated fashion using the REAVER, Angioquant’,
Angiotool®, and RAVE?® software packages (Fig 2A-E). The metrics quantified from the manual

segmentation, along with the segmentation itself, were used as ground-truth data. Any
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disagreement between the automated techniques to ground-truth was classified as error, allowing
for comparison of performance between programs. Some of the programs had adjustable settings
that altered the image analysis process. default image processing settings were used for all
programs as atest of general performance with quantifying vascular architecture from

fluorescently labeled images.

REAVER demonstrates higher accuracy and precision across metrics

When the accuracy of vessel length density measurements was examined across the different
automated image analysis tools (Fig. 3A), REAVER exclusively held the top rank, having a
mean absolute error that was lower than all other programs (76.5% reduction with p=6.57e-3,
AngioTool, one-tailed paired t-tests with Bonferroni adjustment). All programs except
AngioQuant had evidence of a nonzero bias revealed through individual two-tailed t-tests for a
mean of zero (p<0.05). When the precision of vessel length density measurements was compared
across analysis programs, REAVER exclusively held top rank, having lower random error than
all other programs (84.6% reduction with p=1.61e-3 from next closest group, AngioTool, one-

tailed paired t-tests with Bonferroni adjustment) (Fig. 3B).

REAVER also held the top rank for accuracy with quantifying vessel area fraction, having a
mean absolute error that was lower than all other programs (75.8% reduction with p=6.16e-8
from next ranked group, AngioTool, one-tailed paired t-tests with Bonferroni adjustment) (Fig.
3C). All programs except REAVER had anonzero bias, revealed through individual two-sided t-
tests for amean of zero (p<0.05). When the precision of vessel area fraction was examined,
REAVER was exclusively assigned the top rank, having lower random error than all other

programs except RAVE (53.3% reduction with p=8.62e-3 from next ranked group with
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significant difference, AngioTool, one-tailed paired t-tests with Bonferroni adjustment) (Fig.

3D).

REAVER aone held the top rank with lower absolute error in vessel diameter than all of the
other programs (83.9% reduction with p=8.29e-7 from next ranked group, AngioTool, one-tailed
paired t-tests with Bonferroni adjustment) (Fig. 3E). All programs, including REAVER,
exhibited evidence of nonzero bias revealed through individual two-tailed t-tests for a mean of
zero (p<0.05). In terms of the precision of the vessel diameter measurement, REAVER was
exclusively assigned the top rank, having lower random error than all other programs (72.3%
reduction from next ranked group AngioQuant, with p=1.66e-3, one-tailed paired t-tests with

Bonferroni adjustment) (Fig. 3F).

When it cameto quantifying the accuracy of the branchpoint density measurement, REAVER
was exclusively assigned the top rank, having a mean absolute error that was lower than all other
programs (94.6% reduction with p=4.43e-5 from next ranked group, AngioTool, one-tailed
paired t-tests with Bonferroni adjustment) (Fig 3G). All programs except REAVER had a
nonzero bias, revealed through individual two-tailed t-tests for a mean of zero (p<0.05).
REAVER was exclusively assigned the top rank for precision in quantifying branchpoint density,
having lower random error than all other programs (93.2% reduction with p=4.70e-5 from next

ranked group, AngioTool, one-tailed paired t-tests with Bonferroni adjustment) (Fig. 3H).

REAVER exhibits higher segmentation accuracy and sensitivity with faster execution time
The error in the automated vessel segmentation was examined across all imagesin the
benchmark dataset relative to the segmentation from manual analysis®. REAVER was
exclusively assigned the top rank in segmentation accuracy, with a mean accuracy that was

higher than all of the other programs (6.4% increase from next ranked group AngioTool,
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p=1.73e-7, one-tailed paired t-tests with Bonferroni adjustment) (Fig. 4A). In terms of
sengitivity, REAVER was exclusively assigned the top rank with mean sengitivity that was
greater than all of the other programs (34.1% increase from next ranked group AngioTool, with
p=1.00e-15, one-tailed paired t-tests with Bonferroni adjustment) (Fig. 4B). In terms of
specificity, RAVE and AngioQuant were assigned the top rank with a higher specificity than the
other two programs (0.4% increase from next ranked group AngioTool, with p=4.39e-2, one-
tailed paired t-tests with Bonferroni adjustment) (Fig. 4C). With regards to execution time,
REAVER was exclusively assigned the top rank with a faster execution time compared to all of
the other programs (36.4% reduction from next ranked group, with p=1.8e-16, one-tailed paired
t-tests with Bonferroni adjustment) (Fig. 4D). All automated program execution times were <1%
of the time required for manual analysis (3,089 + 1,355 seconds per image, not displayed dueto

orders of magnitude difference), highlighting a major benefit of automated techniques.

Blinded manual segmentation curation can improve accuracy of metrics

The errors for each of the output metrics relative to the manual analysis were compared for: 1)
metrics obtained by REAVER using purely automated analysis, and 2) metrics obtained by using
a combination of automation paired with manual curation of the image segmentation. Using the
same images and internal image processing parameters (as used in Figure 2), the absolute error
across all images were compared before and after manual curation where the user was blinded to
the group each image belonged to. The absolute error for vessd length density was reduced 45%
(p=6.4E-5, paired two-tailed t-test with Bonferroni adjustment, Fig. 5A) while there was no
change to the vessel area fraction error (p=1, paired two-tailed t-test with Bonferroni adjustment,
Fig. 5B). Absolute error in vessdl diameter measurements had a decreasing trend, with a25.0%

reduction in absolute error (p=0.188, paired two-tailed t-test with Bonferroni adjustment, Fig.
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5C), and absolute error in branchpoint density measurements experienced a similar decreasing
trend with 17.7% reduction in absolute error (p=0.112, paired two-tailed t-test with Bonferroni

adjustment, Fig. 5D).

Since REAVER demonstrated superior performance with thisimage dataset compared to the
other programs, the error for many of the metrics was small, consequently lowering the potential
effect size that manual curation may provide. To test if manual curation is useful for lower
quality results that could benefit more from manual curation, REAVER' sinternal image
processing parameters were intentionally set to extreme values to produce a heavily flawed
segmentation. Using the same dataset of images, user curation increased the accuracy for all of
the metrics: the absolute error for vesseal length density was reduced by 75.9% (p=1.64e-11,
pared two-tailed t-test with Bonferroni adjustment, Fig. 5E), the vessel area fraction absolute
error was reduced 57.5% (p=9.99e-6, pared two-tailed t-test with Bonferroni adjustment, Fig.
5F), vessel diameter absolute error was reduced 44.5% (p=4.79e-3, pared two-tailed t-test with
Bonferroni adjustment, Fig. 5G) and branchpoints absolute error was reduced by 73.2%

(p=1.36e-6, pared two-tailed t-test with Bonferroni adjustment, Fig. 5H).

REAVER reveals differences in microvascular architectures across spatial locationsin murine
retina

An effective microvascular image anaysis program can separate between groups of images with
known differences in microvascular architecture. The blood vessels of the murineretinaare a
well characterized microvascular network that exhibits extensive heterogeneity of vessel
architecture depending location in the tissue?, both with radial distance from optic disk, and with
each of the three discrete layers of vasculature beds. the deep plexus, intermediate plexus, and

superficial capillary plexus®. With a dataset of images separated by two radial distances from
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the center of the retina, at each of the three vascular layers (Supplementary Figure 3A, B),
REAVER could discern unique vessel architectural features across the metrics quantified
(Supplementary Figure 3D-L). These metrics were able to achieve a partial linear separation
between retina locations with the first two components of a principle components analysis

(Supplementary Figure 3C).

Discussion

We present anovel software package, REAVER, for quantifying metrics that have been
classically used to describe microvascular network architectures. Through a novel application of
round-robin ranking, we simultaneoudy examined and ranked the accuracy and precision of
REAVER compared to three published automated image analysis tools. This comparison
revealed that REAVER isthe top ranked program in terms of accuracy and precision across all
four metrics of vessel architecture examined. We believe thisis explained by the fact previous
programs were originally developed when basic image processing algorithms were
computationally expensive®®, or for other image modalities (such as vascular images from
transmission light microscopy’). REAVER may have outperformed the other programs because
of its higher degree of accuracy with automated image segmentation, yielding a ssgmented
structure closer to truth than the other programs. REAVER' s higher sensitivity in segmentation
demonstrated in this dataset highlightsitsimproved ability to correctly discern foreground pixels
of vessel architecture, whileit’s lower performance in specificity suggests that other programs
are better at correctly discerning background non-vessel pixels. For this particular application,
we argue that sensitivity and specificity are not asimportant as accuracy for evaluating a
program’s overall performance: higher sensitivity can smply be accomplished with over-

segmenting the vessel architecture, while higher specificity can be attained by under-segmenting
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the image. Although REAVER had the fastest execution time compared to other programs, we
argue that all programs demonstrated acceptabl e execution times given the low cost of

computational processing power>%,

Performance of image analysis programs can be examined with the Bland-Altman analysis
(Supplementary Fig. 4 A-P), atechnique that compares two measurement methods based on
paired measures®*? and establishes agreement if the range of the agreement interval
(encompassed by the inner 95% span of the distribution of error between the two techniques) has
an acceptable magnitude based on a priori defined limits that are application-specific®. This
analysis is often used to compare a new measurement method with a previously developed gold
standard method in order to test whether the new technique can be used in place of the previous
one. Although some studies assert Bland-Altman is the only correct technique to compare
methods of measurement?’, we highlight that it does not provide a means to compare
performance of multiple measurement methods to ground-truth. The 16 Bland-Altman plots
generated across the 4 programs and 4 metrics tested yields little insight into how well these
measurement techniques performed relative to one another. Furthermore, it is frequently left up
to the user to define the acceptable range for the agreement interval: in the absence of

standardized approaches, this process can be influenced by perspective, opinion, and bias.

While our results present arelatively straightforward case where one program performed better
relative to the others in terms of ranking for accuracy and precision, our analysis approach can be
useful in investigations where the results across metrics are less consistent. Since multiple
programs can be assigned top rank, this technique can be used asimage analysis pipelines mature
and the remaining effect size for potential improvement to ground-truth diminishes. We note that

while the top ranked programs are the top performers, there are cases where it could be argued
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that lower ranked programs should be consdered as well, such asin Fig. 4D where RAVE
exhibited better precision than one of the programs and was not discernably different than
REAVER, but REAVER aone held top rank because it had better precision than two of the other
programs. We recommend that instances such as these be examined on a case-by-case basis that
takes into account effect size and potentially adjusting the significance leve for the ranking
comparisons. Regardless, by identifying the best programs for accuracy and precision for each
metric, researchers can prioritize program performance based on the most relevant metric for a
specific biological hypothesis. For example, if a hypothesisis focused on changes to blood vessel
density that is observed in pathologies like diabetes’®, then performance of the program in terms
of vessel length density would be prioritized in selecting the best program for this application.
For studies focusing on developing better general tools to quantify vascular architecture, this
framework will allow for comparing the performance of new software packages to preexisting
versions, and provides a meansto select for programs that have acceptable performance, defined
as being amember of the top rank. A program within the top ranked group would provide
judtification for use, or for amore focused and detailed post-hoc paired examination using
techniques like Bland-Altman analysis to examine effects of systemic and proportional error in

more detail.

While automated results have the benefit of minimizing human interaction time with processing
images and maintaining an unbiased analysis of data, there are instances where image
segmentation may perform poorly and a higher degree of accuracy is needed. To accomplish this,
we propose that manual curation of segmentations derived from automated analysis, with the
user blinded to group assignment, would reduce error of output metrics. While manual curation

of images using default image processing parameters for REAVER showed little improvement in
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accuracy across all metrics, the potential effect size for improvement was small due to
REAVER'’s high level of accuracy and precision. To probe whether manual curation can enhance
quality of results, the same images were processed using extreme values for image processing
parameters that led to a poor segmentation. Manual curation reduced mean absolute error
approximately 60% across metrics, demonstrating the utility of hybrid approaches of data
analysis where automated and manual techniques can be combined to enhance data quality. Our
results indicate there are cases where manual curation can range from showing little benefit in
enhancing data quality to profoundly improving the accuracy and precision of results. Using a
pilot study of a small dataset of images comparing both automated results and automation with
curation to ground-truth will reveal to aresearcher if curation is worth the time investment for a
particular application. Furthermore, manual curation of automated segmentation represents a
promising technique for efficiently generating ground-truth analysis of images that requires
much less time than purely manual techniques. It is important to note that we only investigate
each program’ s ability to automatically segment the vasculature: many of them include severa
manually adjustable image processing settings (although none offer the option for direct manual
curation), and thereis a possibility that one of the other programs would perform better than
REAVER with optimal parameters. Testing performance with manual adjustments would be a
complex undertaking reserved for future research, requiring not only afair method for
identifying optimal parameters for each image and program under realistic use cases, but also
evaluating how effective a user can be at identifying the optimal parameters and obtaining the

optimal segmentation.

While our comparison of the precision and accuracy of four different automated image analysis

programs was achieved by performing a separate comparison for each metric, in the future, it
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would be beneficial to compare program performance across all metrics smultaneously. This
could require amethod of weighting metrics based on a metric’ s ability to discern alterationsin a
relevant biological dataset, while accounting for covariance and dependence between metrics
(such asvessel length density being closaly correlated with vessel area fraction for vessel
networks with nearly uniform vessel diameters). Program performance could also be compared
by combining the examinations of accuracy and precision for all metrics into a multi-round-robin
tournament and calculating rank across them®. The evaluation of trueness or bias, defined as the
average distance between an output metric across images and ground-truth values®™, is not
included in this study because no method exists to statistically compare trueness between study
groups since distributions must be compared to each other and their distance to zero
bidirectionally at the same time. The development of such atechnique would be required for
discerning differences in trueness and lead to a more complete characterization of error and
performance of the programs examined. Furthermore, our representation of ground-truth could
be improved by having multiple users manually analyze the images to generate a gold standard

from the consensus, as done previously with image object classification™.

In summary, we introduce REAVER, a new software tool for analyzing architectural featuresin
microvascular networks, that achieved top ranked accuracy and precision for all metrics
quantified in our study. We introduce a method for quantitatively comparing accuracy and
precision using one way pairwise comparisons analyzed with round-robin tournament ranking to
identify top performers. Both of these contributions fill an existing void by providing a better
image processing program for blood vessel architecture quantification, as well as a framework

for evaluating effectiveness and performance of measurement techniques in an unbiased manner.
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M ethods

Code and Data Availability
REAVER Source code available under aBSD 3.0 open source license at:

https://github.com/bacorliss/public REAVER. It was written MATLAB 2018a and requires the

image processing toolbox to run. Benchmark image dataset and annotations are publicly

available and linked from the repository main page.

Murine Retinal Harvest

All procedures were approved by the Institutional Animal Care and Use Committee at the
University of Virginia, and completed in accordance with our approved protocol under these
guidelines and regulations. We used C57B16/J mice from The Jackson Laboratory (JAX stock
#000664, Bar Harbor, ME). Mice were sacrificed via CO2 asphyxiation with cervical
dislocation for secondary sacrifice, eyes enucleated, and incubated in 4% PFA for 10 minutes.
Single mice were used for the 36-image dataset across tissues (Fig. 3-4, Supplementary Fig.
1) and for the retinal location dataset (Supplementary Fig. 3) to examine vascular

heterogeneity within a single biological sample.

I mmunohistochemistry and Confocal Imaging of Retinas

Retinas were labeled with IB4 Lectin Alexa Flour 647 (ThermoFisher Scientific, Waltham, MA,
132450) and imaged at using a 20x objective (530 um field of view) and a 60x objective (212 um
field of view) with a Nikon TE-2000E point scanning confocal microscope. A total of 36 z-
stacks from six different tissues were flattened to 2D images with a maximum intensity
projection and used as a benchmark dataset for segmenting vessels and quantifying metrics of

vessel architecture. To establish ground-truth, all images were manually analyzed in Imagel.
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REAVER Algorithm

REAVER's algorithm was implemented in MATLAB and designed to process the image in two
Separate stages. segmentation based on intensity over local background and then skeletonization
and refinement. Segmented vasculature is identified through a combination of filtering,
thresholding, and binary morphological operations. The image is first blurred with alight
blurring averaging filter with an 8-pixel neighborhood, and then an image of the background
(low frequency features) is calculated with alarger user-defined heavier averaging filter (default:
128 pixels). To create a background-subtracted image, the heavily blurred background image is
subtracted from the lightly blurred image. The background-subtracted image is thresholded by a
user-defined scalar (default: 0.045) to generate an initial segmentation. Next, the segmentation
border is smoothed and extraneous pixels are removed with an 8-neighborhood convolution filter
that isthresholded such that only pixels with at least 4 neighbors are kept. Leveraging the
domain-specific knowledge that vessel networks are comprised of large connected components,
those with area less than a user-defined value are removed (default: 1600 pixels). To further
smooth segmentation borders, the complement of the segmented image is convolved with an 11-
square averaging filter and values are thresholded above 0.5. To fill in holes within segmented
vasculature, connected components of the complemented segmentation with less than 800 pixels
are set to true. The images are then thinned to compensate for a net dilation of segmentation from
earlier processing steps. Finally, connected components of size less than a user-set value

(default: 1600 pixels) are removed again to generate the final segmented image.

To generate the vessel centerline, the segmented image border is further smoothed with eight
iterative applications of a 3-pixel square true convolution kernel thresholded such that pixels

with at least 4 neighbors are set to true. To fill in small holes and further clean the segmentation


https://doi.org/10.1101/707570
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/707570; this version posted July 18, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

edge, the MATLAB binary morphological operations “bridge’ and “fill” are applied in that order
four times, along with an application of a 3-pixel square mgjority filter where every pixel needs 5
or more true pixelsin the square to pass. Connected components in the complement of the
segmentation with pixel arealess than 80 pixels are set to truein order to fill in holes within
segmented vessels. Theinitial vessel centerlineisidentified by applying the binary
morphological ‘thin’ an infinite number of times to the segmentation with replication padding

applied; otherwise thinned centerlines would not extend to the end of theimage.

To filter out centerlines for segments that are too thin, a Euclidean distance transform is
calculated from the complement of the segmented image and sampled at the pixel locations of
the vessel centerline, resulting in athickness centerline image where the vessel centerline
contains values for the radius of the vessel in that region. The thickness centerline is divided into
individual vessel segments viaits branchpoints, the average radius calculated for each, and
segments that fall below the user-defined thickness threshold were removed (default: 3). The
refined vessel centerline was further cleaned with MATLAB'’s “spur” and “clean” morphol ogical
operations, along with a final morphological thinning. Branchpoints and endpoints are identified
with MATLAB'’s built in morphological operations, ignoring features located at the image

border because edge effects cause false positives.

We note that while this algorithm was tested with a benchmark image dataset that included a
practical range of resolutions with the default image processing set of parameters, the parameters
are resolution-dependent to some degree. We argue that the resolution range we used, images
acquired at 20x and 60x magnification, represent the most relevant range of modalities for
probing complete microvascular structures. Lower magnification below 20x lacked sufficient

resolution to discern the structure of the smallest vessals of the microvascular network, while
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higher magnification over 60x sampled such small areas of vasculature that estimates of various
metrics of vascular structure would be unreliable. Using resolutions far outside this range would

require changing the default image processing parameters.

Manual Analysis of Benchmark Dataset

To make the time demands for establishing ground-truth manageable, a mixed-manual analysis
approach was used to analyze the benchmark dataset, where a simple set of ImageJ macros
provided an initial guess for thresholding and segmenting blood vessels, and then the user
manually used the paintbrush to draw in changes required. The initial automated guess was used
to save time, but thereis apossibility that it biased the ground-truth data to unfairly favor
REAVER'sresults. To check if biasin ground-truth could alter statistical outcomes, a
completely manual segmentation was compared to the mixed manual method in a subset of
images from the benchmark dataset (N=6 images, one from each tissue type, Supplementary Fig.
5A-D). The completely manual analysis was conducted by a different user with no cross-training
between those who did the mixed manual analysis to represent the worst-case estimation of
disagreement between the two methods. The disagreement of four output metrics (vessel length
density, vessel area fraction, vessal diameter, and branchpoints) was examined via Bland-Altman
plots, and all metrics had no evidence of bias (N=6 images, p-values displayed in each chart,
Supplementary Fig. 5E-H, no Bonferroni correction applied for conservative interpretation). The
width of the confidence intervals of the mean was calculated based on the 6 sample images
(normality approximation, Supplementary Fig. 5, ObsW Clgs). Since the confidence interval is
based on the standard error (and decreases by 1/n), the confidence intervals for the entire
benchmark dataset is estimated based on increasing the sample size from 6 to 36 images with

sample standard deviation fixed (Supplementary Fig. 5, EstW Clgs). We found these estimated
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confidence intervals were minor in size compared to the effect sizes observed with the mean
absolute error of the automated segmentation between the programs tested (Supplementary Fig.

5, columns labeled AngioQuant - REAVER).

The mixed manual analysis used for ground-truth for the benchmark dataset was acquired
through manual curation of an initial automated threshold using macros in ImagelJ to provide an
initial guess of what structures in the image were considered vessels. Each image was loaded into
Imaged and an initial segmentation was calculated as a basis for manual curation. The image was
segmented using a macro that removed high frequency features, applied local thresholding using
the Phansalkar method™, decreased noise with the despeckle function, removed binary objects of
pixel arealess than 100 pixels, morphologically opened the image (erosion followed by dilation),
applied a median filter on the adjacent four pixel neighborhood, and finally enhanced the

brightness of the image for visibility.

Following thisinitial segmentation, trained editors used the paintbrush tool to correct errorsin
the segmentation. The total time to correct the segmentation was recorded. After the
segmentation was adjusted to satisfaction, another ImageJ macro was run to generate a
preliminary skeleton of the image. This script applied a median filter of radius 9 and the ImagelJ
Skeletoni ze operation. Once again, the curator used the paintbrush tool to correct the
automatically generated skeleton. Special care was taken to ensure the skeleton had a width of
only one pixel. Thetotal timeto correct the skeleton was recorded. The segmentation was run
through the same analysis code that the other automated methods were analyzed with. The
curator then tagged each branchpoint in the skeleton and recorded the total count and locations.
This data was used as ground-truth to compare the automated analysis of several vessel

architecture image processing pipelines.
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Image Quantification of Benchmark Dataset

Each software package provided different collections of metrics calculated in different ways. To
fairly evaluate program performance in an unbiased fashion, a collection of four metrics was
selected that could be calculated from the output data supplied by each program: specifically, the
segmented vasculature image and the vessel centerline image. These output images were
collected from each program, and then analyzed with the same code to quantify the vessel length
density, vessel area fraction, mean vessel diameter, and number of branchpoints. If these output
images were not available in the program, we either inserted code to export them to disk, or

capture them from the program graphical display.

Angiotool is an open-source package written in JAVA. We could not successfully recompile the
program to access and export the output images directly, and therefore had to use indirect means
to obtain output images. An image was imported and processed with default settings (vessel
diameter: 20, vessdl intensity: [15,255], no removal of small particles, and no filling of holes).
Images of the segmentation and centerline were derived by adjusting the display settings of the
post-processed image and exported using the built-in Windows Print Screen function to capture
images without distortion or compression. AngioQuant iswrittenin MATLAB, and the source
code was modified to output the segmented image and vessel centerline. Input images were
inverted prior to importation to AngioQuant, and the default batch image processing parameters
(kernel size: 1, edge tubules were not removed, and prune size: 10). All other numeric values
were the default values for the program. RAVE was written in MATLAB, and the source code
was modified to directly export the generated segmentation and skeleton for quantification. Each

image was processed individually with default settings.
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REAVER was written in MATLAB, and outputs the segmentation vessal centerlineimagesin
datafiles that are stored in the same directory as the analyzed images. All images were processed
in batch mode with the default values (Averaging Filter Size: 128, Grey to Binary Threshold:
0.045 Minimum Connected Component Area: 1600, Wire Dilation Threshold: 0, and Vessdl
Thickness Threshold: 3). Once all images were processed and the associated mat files created by

REAVER, the output images were extracted from these datafiles.

Once all 36 composite images containing the segmented image and the image centerline for each
program were generated, aMATLAB script was used to calculate the values for the metrics from
the composites. The vessel area fraction was calculated as the fraction of true pixelsin the
segmentation image. Vessal length density was calculated first by obtaining vessel pixel length
through summing up all pixelsin the vessel centerlineimages, converting thisto millimeter units
using the image resolution, and then dividing this by theimage field of view in units of mm? To
calculate mean vessel diameter, a Euclidean distance transform of the segmentation channel was
calculated where each pixel’s value was equal to its distance from the nearest false or un-
segmented pixel. Then, the skeleton channel was used as a mask to sample the distance values
corresponding to the vessdl centerlines to obtain the radius of vessel segments. These values
were multiplied by two and subtracted by 1 to get diameter values, and were converted to
micrometer lengths using the image resolution. The MATLAB binary branchpoints
morphological operation was used to find the branchpoints, and the number of branchpoints was

calculated.

For analyzing the performance of the segmentation, true positive (TP) values for the image
segmentation were calculated by taking the sum of the number of pixels that the program marked

astrue and that were also marked as true in the manual segmentation. True negatives (TN), false
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positives (FP), and false negatives (FN) were calculated and used to measure segmentation

accuracy, sensitivity, and specificity (See Methods: Program Evaluation Metrics).

Image Processing Execution Time

The processing times for the manual data were recorded using a stopwatch while the curator was
editing the segmentation and skeleton images in Imagel. The processing times for AngioQuant,
RAVE, and REAVER were all collected by adding tic/toc statements that logs execution time
into their MATLAB codes immediately before processing began and immediately after

processing finished. This generated measurements for each program which were recorded.

Since AngioTool was provided as an executable file and the source code could not be
successfully compiled without editing the code for dependency issues, reorganizing the file
structure, and downloading external required libraries, the processing times were collected
differently than the other three programs. The third-party application “Auto Screen Capture’

(https.//sourceforge.net/p/autoscreen/wiki/Home/) was used to capture images of the AngioTool

application’s progress bar approximately every 15ms starting from before the start of processing
to after it finished. The screenshots were automatically named as the exact time they were taken
at the resolution of 1 ms. The collection of screenshots was inspected to identify the start time for
processing based on the mean time of the final screenshot before the progress bar changed and
the one immediately after. The end time for processing was determined by taking the mean time
between the final image before the progress bar completed and the image immediately after. The
difference between these two mean times was taken to get atotal processing time. The total
measurement error from collecting processing times in this way works out to be less than 3% of

the total processing time.


https://doi.org/10.1101/707570
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/707570; this version posted July 18, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

All processing times were gathered on a computer with 32GB of DDR4-2666 RAM with CAS
Latency of 15, an Intel i7-8700K 3.7 GHz 6-Core Processor, and a GeForce GTX 1080 graphics

card with 8GB of VRAM. No overclocking, parallel processing, or GPU processing was used.

REAVER Curation Analysis

REAVER'’ s code was modified to include a timer object which triggered every 20 secondsto
save data to disk in the same manner as when manually specified. This timer started as soon as
the curator used REAVER'’ s automatic segmentation and finished when the curator saved the
curation results. After the automatic segmentation finished, the curator manually edited the
segmentation using REAVER’s GUI and periodically updated the wire frame button. The
accuracy of metrics from the pre-curation output were compared to post-curation output with
output from the manual analysis serving as ground-truth. This process was initially conducted
with default parameter values for REAVER'’ simage processing, but thisyielded error with very
small effect size across metrics, making it difficult to test for the potential benefits of manually

curating automated results.

Totest if image curation could help with lower quality image analysis results, this process was
repeated with extreme shiftsin default parameters, leading to a highly sub-optimal set of
parameters that artificialy created alower quality segmentation with larger effect size for error
to ground-truth (Averaging Filter Size: 64, Grey to Binary Threshold: 0.07). Additionally, within
the image segmentation algorithm, reducing the extent of background subtraction, and the
smoothing filter was changed to a minimum of 6 neighbors instead a minimum of 4 to yield a

true pixel.
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Program Evaluation Metrics
The accuracy of the vessd structure metrics, defined as the closeness of a measured valueto a
ground-truth™, was examined with absolute error'®*® (Fig 3 A, C, E, G). Let Y;; bethe value of a
given vessel structure metric (vessd length density, vessel area fraction, branchpoint count, and
vessel diameter) from thei™ image and ™ program, and Gi; be the corresponding ground-truth
value derived from manual analysis. We define error, E;j, as the difference between a
measurement and its corresponding ground-truth, and assess accuracy with the absolute error,
Aij:

E

=Y Gi, j (1)

i J

Aij = |Eyl )

M easurements with low absolute error are considered highly accurate. We define precision® P, i

of thej™ program for i™ image to be
P =|E; - E, ©)

where Ejis the median of E;; acrossimages, withi=1,..., 36 images, using the variable transform

from the Brown-Forsythe test of variance® (Fig 3 B, D, F, H).
g

Additionally, we evaluated metrics that quantify the agreement between each program’ s vessel
segmentation and the ground-truth (i.e., manual segmentation) across the entire image,
evaluating accuracy (S°), specificity (S°), and sensitivity (S) (Figure 4A-C). The definitions of
these metrics depend on four quantities: true positives (TF), defined as the number of pixels
classified as vasculature that agree with manual segmentation, true negatives (TN), the number

of pixels classified as background in agreement with the manual segmentation, false positive
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(FP), the number of vasculature pixels in disagreement with manual analysis, and false negative

(FN), the number of background pixels in disagreement with manual analysis. The metrics are™:

e (4)
N_ TP
ST = TP+FP ®)
¢c_ TN
5¢= TN+FP (6)

For evaluating the effectiveness of manual user curation of automated segmentation, we
compared the accuracy before and following user curation of automatically processed images for
each vessdl structure metric (vessel length density, vessel area fraction, branchpoint count, and
vessel diameter) with REAVER (Fig. 5A-D). Let Y, denote the value of a given vessdl
structure metric before any user curation (superscript B) using default image processing
parameters (superscript D) for thei™ image from REAVER (program index j program set to
theindex for REAVER), and G, be the corresponding ground-truth value (as defined

previously). The absolute error AP, used to evaluate accuracy would be defined as
Ay = V50 = G| ™

Let Y™P; ; denote the value of a given vessel structure metric following user curation (superscript
F) using default image processing parameters (superscript D) from REAVER (program index |

set tor, theindex for REAVER). The absolute error A7, is

AP = |V =Gy 8)
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Error was also examined before and after user curation with adifferent set of internal image
processing parameters set to substandard values (Fig. 5E-H). Let Y25 denote the value of a
given vessel structure metric before any user curation (superscript B) using substandard internal
image processing parameters (superscript S) from REAVER (program index j set to r, theindex

for REAVER). The absolute error A®S | is

AP =Y -G, ©)

ir
Let Y™5 , denote the value of a given vessel structure metric following user curation (superscript

F) using default image processing parameters (superscript S) from REAVER and not any other

program (with j set to r, the program index for REAVER), The absolute error A™5 ; is

A7 =Y = Gyl (10)

ir
Summary of Metric Classes
Metrics used in this study are split into two main classes (Table 1). Vessdl structure metrics are
the measures that describe architectural features of a vessel network and used for biological
research. Program evaluation metrics are measures of error calculated from vessel structure
metrics or derived from differences between each program’ s image segmentation and
corresponding manually segmented image. Program evaluation metrics are specifically used to
compare error between programs and determine performance. To clarify the notation used for

examining error before and after manual user curation, conventions are illustrated in Table 2.

Satistical Analysis
To probe how programs performed relative to one another, we compared the distributions of
absolute error A;j and precision P; for all pairs and ordering of programs via one-sided paired t-

tests (Fig 3). Specifically, for every two programs | and I, we tested both whether program | is
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better than program |1 and whether program |1 is better than program |. One-sided tests were
used to determine which program among the two was better: that is, programs with vessel
structure metrics exhibiting lower mean absolute error, standard deviation of error (Fig. 3), and
execution time (Fig 4D) were preferable, while programs with higher segmentation accuracy,
specificity, and sengtivity (Fig. 4A-C) considered better. We categorized these comparisons as
wins and losses in around-robin style tournament, assembled them into a dominance matrix, and
ordered them through previously developed ranking algorithms* to determine the best programs.
(see Methods: Ranking Algorithm for detailed discussion). Members of the top rank for a given

metric were annotated with atriangle above the plot.

For the 4 programs under study, we performed 12 one-sided testsin total ssmultaneously to
compare them in a pairwise fashion with ordering in both directions. P-values were corrected

with a Bonferroni adjustment™® using the following equation:
p'i =min{p;xm,1} (1 <i <m) (12)

Where p; isthe unadjusted p value, mis the total number of comparisons (12 comparisons), and
pi’ isthe p-value adjusted for the number of the multiple hypothesis tests. We use a family wise

error rate of 0.05 to reect the hypothesis.

In addition to using one-sided tests on accuracy and specificity, we tested whether each program
had zero bias or equivalently, whether the mean error terms equals zero via a two-tailed t-test
(Fig. 3A, C, E, G, Bonferroni adjustment applied for 4 comparisons, one for each program). For
illustrative purposes, the accuracy data from Fig. 3 was also visualized as a series of Bland-
Altman plots® (Supplemental Fig. 4), where the difference between a program’s output metric

and ground-truth was plotted against their mean value for each image (meaning Y ;-Gi; was
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plotted against (Yi;+G;;)/2). This analysis offers an illustration of a method commonly used in
science to compare measurement methods, and highlights the difficulty in interpreting results

from several measurement methods, each with a collection of output variables.

The accuracy of vessel structure metrics was compared before and after user curation with paired
t-tests with a Bonferroni adjustment to the p-value for 4 comparisons, one for each of the vessel
structure metrics. Since REAVER'’ s automated results were extremely accurate (Fig. 3)
compared to the other programs, and consequently the potential effect size for improvement from
user curation was small, the analysis was conducted with default internal image processing
parameters with REAVER and then repeated with a separate set of substandard parameters:

comparing A®®;, to A™P; | (Fig. 5A-D) and then separately comparing A®S , to A™S; (Fig. 5E-H).

All of the test statistics examined may not follow a normal distribution. Nevertheless, the sample
size of 36 images ensures the robustness of the paired t-test to the violation of the normality

assumptions because of the central limit theorem®.

Images of vessdl architecture in the retina was analyzed across distinct spatial locations with
regards to radius and depth from the optic nerve (Supplemental Fig 3) and processed with default
REAVER parameters. Each of the vessel structure metrics (vessel length density, vessel area
fraction, branchpoint count, vessel radius, and others developed previously?) were compared
between the six locationsin the tissue (inner radial region, superficial depth; inner radial region,
intermediate depth; inner radial region, deep depth; outer radial region, superficial depth; outer
radial region, intermediate depth; outer radial region, deep depth) with pairwise 2-sample t-tests
using a Bonferroni correction as stated in Equation 11 (15 comparisons between 6 locations). A
principle components analysis was conducted to visualize the qualitative separation of groups

across dimensions that maximizes separation®”.
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Ranking Algorithm

Test results were ranked using a simplified version of an algorithm developed previously®, using
a conservative approach that assigns the same rank for instances of rank ambiguity. Ranks are
assigned by converting the statistical conclusions of pairwise one-sided tests into a dominance
matrix, denoted by D, where D;; is set to 1 if we rgject the null hypothesis that program i isno

less than program j, and set to zero otherwise, with zeros also found along the principal diagonal.

[0 Dy - D1j}
Dy 0 - Dy

D= . ‘ (12)
\‘Dil Diz e OJ

The wins for each program are summed across columnsinto a column vector w of wins, and then

values are sorted from most to least asw'.

w =Zdij fori=1,..,n (13)
=1
w' = sort(w, descending) (14)

Standard competition ranking (“ 1224” )% is then applied tow’ to yield r’, an ordered vector of

assigned ranks, with weak ranking allowing ties to be assigned with the same ranks. As such,

each item'srank is 1 plus the number of items ranked aboveit.
'y = f(w) fori=1,..,n (15)

This ranking functionisdefined asf : w'— r’, and applied to each element of w' according to the

following formula:
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n ifwm<wmnh-1)

Fm=1 fm={." . (16)

We define an inverse function of the sorting function in equation 14, that restores the ordered
vector of assigned ranks from r’ to yield r, a vector of ranks with the original order of programs

(found in w):
r; = sort™(r}) fori=1,..,n (17)

Programs with the top rank are annotated with an up triangle in the plots of vessel structure
metric accuracy and precision, segmentation accuracy, specificity, and sengitivity, along with
execution time. We note that there are cases when programs assigned the second-best rank, yet
are not significantly different from the highest ranked program. It could be argued that the
second ranked program should also be considered a top performer under these circumstances,

and should be examined on a case-by-case basis based on the effect size and variance.
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FigureLegends

Figurel: REAVER isan image analysis program for quantification of vascular networks
in fluor escent images, while round-robin rankings allowsfor evaluating program error
when multiple comparisons resultsare unclear. (A) Screenshot of REAVER graphical user
interface. (B) Flow chart of data processing pipeline. (C) Comparison of absolute error between
hypothetical image analysis programs, with letters denoting significant two-tailed relationsin
multiple comparisons (two-tailed pairwise t-tests, with Bonferroni correction of 10 comparisons,

N=36 measurements, a=0.05, simulated data). (D) Identical dataset with proposed round-robin
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ranking analysis of performance (one-tailed less-than pairwise t-tests, with Bonferroni correction
of 20 comparisons, N=36 measurements, 0=0.05, smulated data). Annotations above graph:
groups assigned top rank (triangle) when assigned the first rank (numbers) from a round robin
tournament analysis of one-way less-than multiple comparisons (significance relations between

groups denoted by letters).

Figure 2: Manual segmentation and analysis can be used as ground-truth in comparing
guantification pipelines. Representative image processed with (A) manual analysis, (B),
AngioQuant, (C) AngioTool, (D) RAVE, and (E) REAVER with input (green), segmentation
(yellow), centerline (blue), and branchpoints and endpoints (red) of vascular network (scale bar

50 um).

Figure 3: REAVER demonstrates top ranked accuracy and precision across metrics
compar ed to alter native blood vessel image analysis programs. To evaluate accuracy,
absolute error of (A) vessel length density (mm/mm?), (C) vessel area fraction, (E) vessel
diameter (um), and (G) branchpoint count compared to manual results (one-tailed less-than
paired t-tests, forward and reverse order of al combinations with Bonferroni correction, 12
comparisons, 04=0.05, N=36 images). For analysis of precision, the absolute value of residual
error to group’s median error for (B) vessel length density (mm/mm?), (D) vessel area fraction,
(F) vessel diameter (um), and (H) branchpoint count (one-tailed less-than paired t-tests, forward
and reverse order of all combinations with Bonferroni correction, 12 comparisons, 0=0.05, N=36

images). For the annotations above each plot, top performers in each group defined by round-
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robin ranking of statistical outcomes (triangle), along with significant pairwise less-than
comparisons between groups with Bonferroni adjusted p-values (letters). Groups are annotated
when there is no evidence of nonzero bias with error, as determined by the origin falling within
the bounds of the 95% confidence interval of the mean with Bonferroni adjustment of 4

comparisons (pound sign). Vessel metric diagrams were modified from?.

Figure4: REAVER exhibits higher sensitivity and specificity with vessel segmentation,
along with lower execution time compar ed to alter natives. Using the test dataset of images
with manual analysis as ground-truth, the (A) accuracy, (B) sengitivity, and (C) specificity of the
segmentation for each program, along with (D) execution time for each image (one-tailed
greater-than (A-C) or less-than (D) paired t-tests, forward and reverse order of all combinations,
with Bonferroni correction; 12 comparisons, a=0.05, N=36 images). For the annotations above
each plot, top performers in each group defined by round-robin ranking based on statistical
comparisons (triangle), along with significant pairwise greater-than (A-C) or less-than (D)
comparisons between groups with Bonferroni adjusted p-values below significance level

(letters).

Figure 5: I mage segmentation curation can enhance accur acy of output metrics.
Comparison of error with (A) vessel length density (mm/mm?), (C) vessel area fraction, (E)
vessel diameter (um), and (D) branchpoint count from automated analysis using default
parameters before and after manual curation of image segmentation. Comparison of error with

(E) vessdl length density, (F) vessel areafraction, (G) vessel diameter, and (H) branchpoint
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count from automated analysis using degraded parameters before and after manual curation of
image segmentation (for each of the two datasets, two-tailed paired t-tests with Bonferroni

correction, 4 comparisons, 0=0.05, N=36 images).

Tables

Table 1: Metric Classes

Vessel Structure Program Evaluation
Vessel length density, vessel Aj, P‘g’
areafraction, branchpoint count, ABP AP APS ARS
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Table 2: Metrics for Examining User Curation
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