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Abstract

The STN-GPe circuit is integral to generation and modulation of S oscillations in basal
ganglia. However, how do their firing rates and spike bursting affect the oscillations is
unclear. In order to uncouple their effects, we performed spiking neural network
simulations of STN-GPe using a neuron model, where firing rates and spike bursting
can be independently controlled. We find that the presence of oscillations are reliant on
STN firing rates but not on GPe rates. The effect of GPe/STN bursting is
state-dependent i.e only in network states on the border of oscillatory and
non-oscillatory regime, an increase in GPe bursting strengthens the oscillations whereas
an equivalent proportion of STN bursting suppresses them. We propose that these
incursions into oscillatory and back to non-oscillatory state constitutes what we know as
“B bursts”. During PD, however, the network shifts deeper into oscillatory regime where
this mechanism fails leading to run away oscillations.

Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative brain disease caused by the
depletion of dopamine neurons in the substantia nigra pars compacta (SNc¢). PD
patients suffer from a host of cognitive and motor impairments, the behavioral
symptoms of which are accompanied by various changes in the neuronal activity in
Basal Ganglia (BG): e.g, increased firing rate of D2 type dopamine receptors expressing
striatal neurons [1H3]; increased bursting in striatum, globus pallidus externa (GPe),
globus pallidus interna (GPi) and subthalamic nuclei (STN) [2] and increased synchrony
in all BG nuclei [4] including striatum [5], GPe [6[7], STN [3}8L|9] and

GPi/SNr [6|{10,/11]. Besides these changes in neuronal activity, at the population level,
there is an increase in the power and duration of 8 band oscillations (15-30 Hz) in local
field potential (LFP) recorded from the basal ganglia of PD patients [8l{11H13]. The
band oscillations are mainly correlated with motor deficits such as rest tremor and
akinesia [3},8,/14,/15] and, suppression of these oscillations, for example, by deep brain
stimulation (DBS) ameliorates motor symptoms of PD. Therefore, there is a great
interest in understanding the mechanisms underlying the origin of 8 band oscillations
which are still not well understood [16]. For instance, it is unclear whether the
oscillations are imposed by cortical inputs [17H19] or they are generated within the BG,
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either in striatum [20], in pallidostriatal circuit [21] or the GPe-STN

circuit [2|16L[22H28]. Several experimental results indicate that GPe-STN network plays
an integral role in generating and modulating these oscillations [8|11}|12L29] and their
stimulation have been shown to affect (disrupt/modulate) oscillations [2,/30,31].

From a dynamical systems perspective, interaction between excitatory and inhibitory
neuronal population form the necessary substrate for oscillations where an imbalance of
timing and/or strength of effective excitation and inhibition leads to population
oscillations [32]. Several excitatory and inhibitory loops can be identified in the BG
which may underlie the emergence of # band oscillations among which GPe-STN circuit
has emerged as a primary candidate. In both firing rate-based and spiking neuronal
network models, an increase in the coupling between STN and GPe is sufficient to
induce strong persistent oscillations [23}2627]. However, the oscillations may also be
created if effective excitatory input to STN neurons (from the cortex) or effective
inhibitory input to GPe neurons (from the striatum) is increased [24128]. Besides, the
GPe-STN network,the imbalance of the direct (effectively excitatory) and hyper-direct
(effectivey inhibitory) pathways of the BG can also cause oscillations [33]. These
computational models not only suggest possible mechanisms underlying the 3
oscillations but also provide explanations for the altered synaptic connectivity within
the BG and how increased firing rates in the striatal neuron projecting to the GPe [1]
can lead to pathological oscillations.

The S band oscillations are also accompanied by an increase in spike bursting along
with the firing rate changes. In MPTP models of non-human primates, the proportion
of bursty spikes in STN and GPe is significantly higher in animals with PD than the
healthy animals [2,/34]. Increased spike bursting in GPe and STN is also observed in
6-OHDA treated rodents [35,36]. But it remains unclear how increased spike bursting
affects the duration and power of 8 band oscillations.

However, it should be noted neurons in the STN-GPe network show spike bursting
even in healthy conditions [2[34]. Therefore, it is important to understand whether the
bursting spikes and the pathological oscillations share a causal relationship and if this is
the case, then why spike bursts are also observed in healthy states [2,/34].

To understand the role of spike bursting in shaping the beta oscillations here, we
investigated the effect of firing rates and patterns on the presence of oscillations using a
computational model of the STN-GPe network. Usually, the average firing rate is
tightly coupled to spike bursting and it is not easy to disentangle the effect of these two
variables independently. To solve this we used the State-dependent Stochastic Bursting
Neuron Model (SSBN) model [37], which allowed us to vary firing rate and firing
pattern (spike bursting) of the neuron independently and hence uncouple the effects of
firing rate and bursting on the S band oscillations.

Using the model, we found that the average firing rate of STN neurons is predictive
of oscillation but surprisingly, the average firing rate of GPe neurons was not. The effect
of GPe and STN bursting on STN-GPe oscillations was however, state dependent.
When the network exhibited strong oscillations or aperiodic activity, spike bursting in
STN and GPe had no effect on the global state of network activity. However, in the
regime at the border of oscillatory and non-oscillatory states, an increase in the fraction
of bursting neurons in GPe, enhanced oscillations. By contrast, small to moderate
fraction of bursting neurons in STN quenched the oscillations whereas when most of the
STN neurons were bursting, network re-exhibited strong oscillations. Taken together,
these results for the first time separate the roles of firing rates and bursting and shows
how spike bursting in the STN and GPe can either enhance or suppress the 8 band
oscillations, depending on the network activity state. Finally, our results revealed that
STN and GPe may play a qualitatively different role in shaping of the dynamics of beta
band oscillations. These insights suggest new means quench the pathological oscillations.
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Materials and methods

Neuron model

In the existing reduced neuron models (e.g. leaky-integrate-fire neuron), to achieve
changes in the firing patterns, the sub-threshold dynamics of the neuron model needs to
be altered. However, when a neuron model is modified to exhibit spike bursting, its
input-output firing rate relationship (f — I curve) is also altered. That is, spike bursting
and neuron firing rate are coupled and prevent the comparison with non-bursting neuron
with the same firing rate. However, to isolate the effect of changes in the firing patterns
on the network dynamics, the f — I curve of the neuron and its firing pattern need to
be independently controlled. To achieve this, we use the State-dependent Stochastic
Bursting Neuron (SSBN) [37]. The subthreshold membrane potential dynamics of the
SSBN model is same as that of the Leaky Integrate and Fire (LIF) neuron:

va;n = *Vm + Isyn
where, 7,, is the membrane time constant,V, is the membrane potential and Iy, is the
total synaptic current to the neuron. The spike generation mechanism of SSBN is
stochastic. On reaching the spiking threshold V4, the SSBN generates a burst of b
spikes with a probability of 1/b every time V,,, > V};,. This allows us to vary the size of
spike burst without affecting the spike rate and the input output neuron transfer
function of the neuron (in Figure Supplement ??). The inter-spike-interval within the
burst is constant (2ms). More details about this neuron model can be found at [37]. All
the neurons in the STN and GPe were modelled as SSBNs. The neuron parameters used
are consistent with the STN-GPe network used in a recent work by (28] and are listed in
Table. |1l We used the same neuron parameters for STN and GPe neurons, however the
two neuron types received different amount of external inputs as we explored network
state space for different external inputs to the GPe and STN.

Table 1. Neuron parameters as used in [28].

Parameter Value Description
C 200pF Membrane capacitance
Tm 20ms Membrane Time Constant
Vin —54mV Firing threshold
Vieset —70mV Reset potential
Tref 5ms Refractory period
B, 2ms Inter-spike interval within a spike burst
B lor4 Number of spikes in a burst
Texe oms Excitatory synaptic time constant
Tinh 10ms Inhibitory synaptic time constant
gr 10nS Leak conductance
Eex omV Reversal potential (excitatory)
Ein —80.0mV Reversal potential (inhibitory)

Synapse model

Synapses were modelled as a transient change in conductance. Each spike elicited an
alpha-function shaped change in the post-synaptic conductance. The reversal potential
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Fig 1. Schematic of the STN-GPe network. The connection probability, synaptic
strength and delay for each connection is shown in red, blue and green, respectively.
The number in parentheses (1000, 2000) represent the number of neurons in STN and
GPe, respectively. The connection with arrowhead are excitatory and those with filled
circle are inhibitory. The F-I curves for the neuron model with different burst lengths is
plotted in Supplement Figure ??7. The inter spike interval within the burst is kept
constant (2ms).

determined the whether the synapse was excitatory or inhibitory. The peak
conductance of each type of synapse is provided in the Figure. [1| and Table [2| and the
excitatory and inhibitory time constants are shown in Table [I| For further details on
dynamics, refer to ”iaf_cond_alpha” neuron model in NEST [38].

STN-GPe network model

The network model consisted of 2000 inhibitory (corresponding to the GPe population)
and 1000 excitatory (corresponding to the STN population) neurons. The neurons were
connected in a random manner with fixed connection probabilities. The connection
strength, connection probability and synaptic delays were identical to the one used in
the model by Mirzaeil1220 and are shown in Fig. [1|and Table

We investigated the oscillation dynamics of the STN-GPe network in two conditions:

Condition A: To characterize the effect of firing rates on S band oscillations we
studied the network when all the neurons were non-bursting type. For
these simulations we set B = 1 for all the neurons.

Condition B: To characterize the effect of spike bursting on § band oscillations we
used networks in which a fraction of STN and/or GPe neurons were
bursting type. The fraction of bursting neurons in the two populations
was varied systematically from 0 to 1. For these simulation we set the
spike burst length B = 4 for the bursting neurons and B = 1 for the
non-bursting (or regular spiking neurons).
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Table 2. Network parameters as used in [28]

Parameter | Value Description
€gpe—gpe 0.02 GPe to GPe connectivity
€gpe—stn 0.035 GPe to STN connectivity
€stn—gpe 0.02 STN to GPe connectivity
Jgpe—gpe —0.7nS | GPe to GPe synaptic strength
Jgpe—stn —0.8nS | GPe to STN synaptic strength
Jstn—gpe 1.2nS | STN to GPe synaptic strength
Tgpe—gpe 3ms GPe to GPe synaptic delay
Tgpe—stn 6ms GPe to STN synaptic delay
Tstn—gpe 6ms STN to GPe synaptic delay

Input

All neurons in the STN and GPe received external excitatory input which was modelled
as uncorrelated Poisson spike trains. This input was tuned to match the range of firing
rates of the STN and GPe observed in in vivo data during healthy and Parkinsonian
conditions [12}[28/36].

To characterize the role of firing rates simulations (condition A) we systematically
varied the rate of Poisson spike trains independently for the STN and GPe neurons. For
each parameter set we performed at least 5 trials with different random seeds.

Data Analysis
Spectrum of the population activity

To estimate the spectrum of the network activity we binned (bin width =5ms) the
spiking activity of all the STN or GPe neurons to obtain the population activity (S). We
subtracted the mean and estimated the spectrum (P) using the fast Fourier transform
(frequency resolution = 5 Hz). To estimate spectral entropy (see below) we measured
the P for the whole duration of simulations (7500 ms). To estimate the time-resolved
spectrum we measured P for sliding windows (window size = 200ms; overlap = 50ms)

Spectral Entropy

To quantify how oscillatory the network activity was, we computed the spectral entropy
Hg, which is a measure of dispersion of spectral energy of a signal [37,[39].

He — _Zk Pklong
g=—=k T 7
logN

where Py is the spectral power at frequency k& and NN is the total number of
frequency bins considered. To estimate spectral entropy we normalized Py such that
> P = 1. The spectral power was calculated in the § frequency range, i.e., 10-35 Hz.

An aperiodic signal (e.g. white noise) for which the spectral power is uniformly
distributed over the whole frequency range, has Hg = 1. By contrast, periodic signals
that exhibit a peak in their spectrum (e.g. in the 8 band) have lower values of Hg. In
an extreme case, for a single frequency sinusoidal signal Hg = 0. Thus, Hg varies
between 0 and 1.
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Duration and amplitude of bursts of beta oscillations (beta bursts)

We defined the length of a burst of beta band oscillations (beta-burst) as the duration
for which instantaneous power in the beta band (15-20Hz) remained above a threshold
(Ben)- Pin was the average beta band for an uncorrelated ensemble of Poisson spikes
trains with same average firing rate as the neurons in the network. Because neurons in
our model had different average firing rate (averaged over 5 trials) depending on the
external input and network activity states, f;, for each network activity state was
different. The beta burst amplitude was estimated as the peak power in the beta band.
To estimate the beta burst amplitude we smoothened the power spectrum using a cubic
kernel. We also estimated the intra-burst frequency which is the peak frequency in g
band at the instant when the instantaneous power was above the threshold.

Estimation of excitation-inhibition balance

The E-I balance a GPe neuron was calculated as the ratio of effective excitatory input it
received from the STN neurons (Jgrefr) and effective inhibitory input it received from
other GPe neurons (Jirer). The effective synaptic weights Jgiesr, Jiretr were estimated
as:

JEI-eff = Rstn X Jstnfgpe X €stn—gpe X Nstn X Texc

where Ry, is the average firing rate of the STN neurons, Jsty—gpe is the synaptic
strength of STN—GPe connection, €g¢,,—gpe is the probability connection from STN to
GPe, Ny, is the number of STN neuron and 7., is the time constant of the excitatory
synapses (Table [1)). Similarly, the Jiefr was estimated as:

Jeff = Rgpe X Jgpe—gpe X €gpe—gpe X nge X Tinh

where Ry, is the average firing rate of the GPe neurons, Jype—gpe is the synaptic
strength of GPE—GPe connection, €4pe—gpe is the probability connection from GPe to
GPe, Ngip is the number of GPe neuron and 7, is the time constant of the inhibitory
synapse (Table [1)).

Simulation and Data Analysis Tools

The dynamics of STN-GPe network was simulated using NEST (version 2.12.0) [38]
with a simulation resolution of 0.1 ms. The SSB neuron model was added to NEST and
the code as well as instructions on recompilation will be provided on github. Spiking
activity of the network was analyzed using custom code written using SciPy and
NumPy libraries. Visualizations were done using Matplotlib [40].

Results

Beta band (15-30 Hz) oscillations in the LFP are a characteristic feature of the neuronal
activity in PD patients. Animal models have shown that the emergence of 8 band
oscillations is also accompanied by a change in the firing rate and spike bursting in both
STN and GPe neurons. To understand the role of firing rate changes and spike bursting
in STN and GPe neurons on the power and duration of 8 band oscillations we studied
the dynamics of the STN-GPe networks by systematically and independently varying
the input firing rate and spike bursting of STN and GPe neurons.
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STN firing rate determines the strength of 5 band oscillations

First, we studied the effect of STN and GPe firing rates on the emergence of oscillations.
To this end, we systematically varied the rate of external input to STN and GPe
neurons and measured the spectral entropy of the population activity to characterize
the oscillations (Figure. . As expected the GPe firing rates monotonically increased as
we increased excitatory input to the STN (Figure. ) However, GPe firing rate varied
in a non-monotonic fashion as we increased excitatory input to the GPe neurons (Figure.
), because of the recurrent inhibition within the GPe. By contrast, STN firing rates
monotonically increased as we increased the excitatory input to STN and monotonically
decreased as we increased excitatory input to GPe (Figure )

Irrespective of the differences in their mean firing rate, both STN and GPe showed
the same oscillation dynamics. More specifically, an increase in the excitatory input to
STN or decrease in the excitation to GPe led to the emergence of 5 band oscillations in
the STN-GPe network (Figure. ,D - lighter color represents an oscillatory regime).
This is consistent with previous studies which showed that increase in excitatory inputs
to STN and inhibition to GPe from upstream brain areas are enough to trigger
oscillations in the sub-thalamo-pallidal circuitry [24}/2§].

These results (Figure —D) also revealed how the 3 band oscillations depend on the
firing rate of the STN and GPe neurons. To better visualize this relationship we
rendered spectral entropy the network activity as a function of STN and GPe firing
rates (Figure. ) We found that GPe firing rates are not predictive of the oscillations
in the network. For instance, even if GPe firing rate is kept constant, an increase in
firing rate of STN neurons was sufficient to induce oscillations. Similarly, a decrease in
STN activity reduced oscillations provided GPe firing rates did not vary. On the other
hand, when STN firing rate was low (below 5Hz), any change in the GPe firing rate was
not able to induce oscillations. This can also be observed in a scatter plot of spectral
entropy against the STN and GPe firing rates (Figure Supplement ?7?).

Experimental data [6L|12] as well as previous computational models [24,/26] have
suggested that emergence of 5 band oscillations is accompanied by a decrease in the
firing rate of GPe neurons and an increase in the firing rate of STN neurons. Our
results suggest that only the STN firing rates are positively correlated with the power of
8 band oscillations. Based on these observations we argue that a decrease in GPe
activity may be necessary but not sufficient condition to induce Parkinsonism. That is,
reduction in the firing rate of GPe neurons or lesions of GPe are not sufficient to induce
beta band oscillations. This suggestion is consistent the experimental findings that GPe
lesions in non-MPTP monkeys do not induce any discernible motor signs of PD [10].

State dependent effect of bursting neurons on § band
oscillations

Effect of bursting in GPe neurons on § band oscillations

Besides changes in average firing rate, dopamine depleted animals also show an increase
in spike bursting, in both STN and GPe [2}[34]. Thus far it is not clear whether and how
spike bursts affect the S band oscillations. In both reduced or biophysical neuron
models introduction of spike bursting necessarily affects the total spike rate of the
neuron. As we have shown in the previous section firing rate itself has an effect on the
oscillations. That is, such neuron models cannot be used to extract the contribution of
spike bursting on oscillations. Therefore, we used the SSBN model which allows us to
introduce spike bursting in a neuron without affecting its average firing rate [37]. Using
this model we systematically altered the fraction of bursting neurons in the STN
(FBsTn) and GPe (FBgpe). Previously, in a model of neocortical networks we showed
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Fig 2. Increased input to STN or decreased input to GPe induces
oscillations. (A) Average firing rate of GPe neurons as a function of different input
rates to the STN and GPe. (B) Same as in A but for STN neurons. (C) Strength of
oscillations in the GPe population (quantified using spectral entropy, see Methods). (B)
Same as in C but for STN neurons. (E) The effect of the STN and GPe firing rates (as
in A and B) on spectral entropy (as in C and D). These results show that g
oscillations in the STN-GPe network depend on the STN firing rate but not on the GPe
firing rates. All the values (firing rate and spectral entropy) were averaged over 5 trials.
A scatter plot for spectral entropy against the STN and GPe firing rates for all the 5
trials is shown in Figure supplement ?7.

July 18, 2019


https://doi.org/10.1101/707471
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/707471; this version posted July 18, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC 4.0 International license.

that the effect of spike bursting depends on the network activity states [37]. Therefore,
we studied the effect of spike bursting on three exemplary network regimes (1) a strong
oscillatory regime, (2) at the bifurcation between oscillatory and non-oscillatory regimes
and (3) a non-oscillatory regime (marked as 1, 2 and 3 in Fig JA).

We found that when network was in a strong oscillatory regime (1), an increase in
the fraction of bursting neurons in GPe (FBgpe) while altered the average firing rates
(Fig - upper panel) had no qualitative effect on the population oscillations (Fig -
lower panel). Similarly, when the network was in a non-oscillatory regime (network
activity regime 3), FBgpchad no effect on the spike rates and spectrum of the
population activity (Figure ) That is, in strong oscillatory and completely
non-oscillatory states, spike bursting has no consequence for the population activity
dynamics.

However, when the network was in a regime close to the border of oscillatory and
non-oscillatory regimes (network activity regime 2), increase in FBgpeincreased
oscillations (Figure - lower panel). This activity regime was characterized by weak
oscillations when all neurons are non-bursty, but an introduction of bursting in > 20%
GPe neurons(Figure - lower panel). In this network state, an increase in the number
of bursting neurons also increased the average population firing rate (Figure - upper
panel) in both STN and GPe. Clearly, this increase in firing rates is a network
phenomenon induced by bursting and not because of a change in the input excitation
(as was shown in Figure [2)) or change in the excitability of individual neurons. Finally,
an increase in FBgpeincreased the network oscillations irrespective of the fraction of
bursting neurons in the STN (Figure - lower panel).

Effect of bursting in STN neurons on 5 band oscillations

In contrast to the bursting in GPe neurons, the effect of spike bursting in STN neurons
was not only dependent on the network state but also on the fraction of spike bursting
neurons in the GPe. Similar to the effect of spike bursting in GPe neurons, in strong
oscillatory and non-oscillatory states a change in the fraction of bursting neurons in the
STN population had no effect on the network activity state (Figure ,D7 Figure
supplements ?? and ?7).

However, at the border of oscillatory and non-oscillatory regimes of network activity
states (network activity regime 2) spike bursts in the STN affect the oscillations in a
non-monotonic fashion. As shown above in this regime an increase in fraction of bursty
neurons in GPe pushes the network state towards oscillations. We found that in this
regime, the impact of STN spike bursting on oscillations depended on FBgpe. For small
FBgpe, the network remained in a non-oscillatory state and a change in FBgryhad no
effect on the spectrum of network activity. Similarly, for high FBgpe, the network
remained in an oscillatory state and a change in FBgryhad no effect on the spectrum
population activity.

At a moderate fraction of spike bursting neurons in GPe (0.2 < FBgpe < 0.6),
when the network showed weak oscillations, a small increase in the FBgrnreduced
oscillations (FBgrn < 0.6 - Figure ; Figure supplement ??) but a large increase in
FBgrn(geq0.6) enhanced oscillations (Figure [B[C). That is, there is a range of
parameters for which oscillations enhanced by FBgpecan be quenched by increasing
FBgsrn. As FBgpeincreases, more FBgrnis required to quench the oscillations and as
our results show, beyond a certain point increasing FBgrnalso leads to persistent
oscillations. That is, bursting in the STN can suppress or enhance oscillations
depending on the fraction of bursting neurons in the GPe.

The non-monotonic effect of STN bursting on STN-GPe network oscillation can be
better observed in a spectrogram (Figure . As a fraction of GPe neurons (FBgp.=40%
in this case) were changed to elicit spike bursts (at 1500 ms) § band oscillations
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Fig 3. State dependent effect of spike bursting on the strength of 3
oscillations. (A) Spectral entropy as a function of input to the STN and GPe neurons.
This panel is same as the Figure 2JC with three regimes of network activity marked, 1:
oscillatory, 2: regime at the border of oscillatory and non-oscillatory, 3: non-oscillatory
regime. (B):Top GPe (left) and STN (right) firing rate as a function of the fraction of
bursting neurons in the STN (x-axis) and GPe (y-axis), in the oscillatory regime 1.
(B):Bottom GPe (left) and STN (right) spectral entropy as a function of the fraction
of bursting neurons in the STN (x-axis) and GPe (y-axis), in the oscillatory regime (i.e.
state 1 in the panel A). Spike bursting has no effect on the network activity dynamics
in this regime. (C) Same as in the panel (B) but when the network was operating in a
regime at the border of oscillatory and non-oscillatory regimes (i.e. state 2 in the panel
A). In this regime, spike bursting affects the network activity state: increase in the
fraction of bursting neurons in GPe induces oscillations whereas an optimal fraction of
bursting neurons in STN can quench oscillations. (D):Top Corresponds to regime 3.
Same as (B):Top. Addition of BS neurons do not affect a strong non-oscillatory regime.
(D):Bottom Same as in the panel (B):Bottom but when the network was operating a
non-oscillatory regime (i.e. state 3 in the panel A). In this regime spike bursting has no
effect on network oscillations.
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Fig 4. Non-monotonic effect of STN bursting on network oscillations when
the network operates close to the border between oscillatory and
non-oscillatory states (i.e. state 2 in Fig. . Here the fraction of bursting
neurons in the GPe was fixed to 40% of GPe neurons and the fraction of bursting
neurons in the STN (FBgrn) was increased systematically (as marked on different
subplots). 40% of GPe neurons were made to elicit spike bursts from time point 1500 ms.
This resulted in emergence of oscillations. A fraction of STN neurons (FBgrymarked on
each subplot) were made to bursty, starting at time 3500ms. For small to moderate
FBgsrn, oscillations disappeared. But when FBgrywas larger oscillations reappeared
albeit at a lower frequency. The spectrograms shown here were averaged over 5 trials of
the network with different random seeds.
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emerged (Figure |4). These oscillations were quenched when STN neurons also started to
spike in bursts from time 3500 ms. When ~ 50% of STN neurons were bursty, the
oscillations were almost completely quenched. Any further increase in FBgry, however,
led to re-emergence of oscillations, albeit at lower frequencies (= 15Hz).

Why does FBgrnhas a non-monotonic effect on the STN-GPe oscillations? The
spectrograms of the network activity (Figure |4) revealed that bursting in GPe and STN
induces oscillations at slightly different frequencies. When FBgp, =40% and FBgrn =0,
the network oscillates at ~ 20 Hz (1st panel of Figure [4)). By contrast, when
FBgpe =40% and FBgrn = 100%, the network oscillates =~ 15 Hz (last panel of Figure
. We hypothesized that the interference of these two oscillations may underlie the
non-monotonic effect of spike bursting in STN on g band oscillations. For small values
of FBgsTn, the two oscillations interfere and generate network activity resembling
‘beats’, which are reflected as short bursts of 5 band oscillations. It was these short
oscillations epochs that resulted in a decrease in overall power in the beta-band (and
higher spectral entropy). However, for higher FBgTN, slower frequency oscillations
(generated by STN bursting) become strong enough to overcome the GPe bursting
induced oscillations. To verify our hypothesis we imposed a lower frequency (15Hz)
oscillation on a fraction of STN neurons instead of making them bursting. As we
increased the fraction of neurons that oscillated at 15 Hz we observed non-monotonic
change in the network oscillation power (Figure Supplement ??). These results are
qualitatively similar to those observed when we varied the fraction of bursting neurons
in the STN (Figure , thus providing support to our hypothesis.

Our results show that when the network is operating close the border of oscillatory
and non-oscillatory states (network activity regime 2), change in the fraction of bursting
neurons can control the emergence of 3 oscillations. It is interesting to note that in this
regime, the firing rate of STN and GPe neurons falls within the range recorded
experimentally (that is, 37—48 spks/s for GPe, 9—16 spks/s for STN) for healthy
conditions. This also suggests that in healthy states, GPe-STN network may be
operating in the regime at the border of oscillatory and non-oscillatory state. In this
regime, spike bursting may provide an additional mechanism to generate short lived 8
band oscillations as has been observed in healthy animals [41], that is, an increase in
spike bursting in the GPe can induce oscillations, which can be quenched provided STN
neurons also elicit spikes in bursts.

Control of the amplitude and duration of 5 band oscillation
bursts by spike bursts

Next, we explored how the proportion of GPe and STN bursting neurons affects the
amplitude and duration of 3 oscillation bursts. In particular we were interested in
identifying the fraction of bursting neurons needed to obtain beta bursts similar to those
recorded in the BG during healthy conditions. The length of a 8 burst was defined as
the duration that the beta band amplitude envelope remained above the threshold
(Figure [5A). The 3 threshold (Figure [5]A,B) was defined as the averaged maximum
(over 5 trials) of the amplitude spectrum of a Poisson process of the same firing rate as
that of our network activity. An increase in the fraction of bursting neuron in the GPe
increased the average beta burst length. However, an increase in the STN bursting ratio
had a non-monotonic effect on the beta burst length as we expected given the effect of
FBgrnon spectral entropy (Figure. ) The beta burst amplitude, however, increased
with an increase in fraction of bursting neuron in both GPe and STN (Figure [5D).

To compare the model output with the experimental data we measured three
features of the network activity for all combinations of FBgryand FBgpe: average burst
length, average intra-burst frequency, and correlation between burst length and burst
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amplitude. The average 8 burst length measured in healthy mice is ~ 0.2s [42]. The
burst length and burst amplitude in humans [13] as well as non-human primates [43]
positively correlated that is, stronger bursts also last longer.

According to these measures, the regime with a small fraction of bursty neurons in
GPe (e.g. 10%) and STN (e.g. 20%) (Figure [5IC,D - cyan marker) resembled most
closely with the experimentally measured values of all the aforementioned features. In
this regime, the intraburst frequency was =~ 20Hz. Moreover, burst amplitude and burst
length (mean value:r~0.24s) were positively correlated (rp,5, = 0.46, p < 0.0002)
(Figure [5E).

For a higher fraction of bursting neurons in GPe (40%) and STN (40% - Figure [fF),
the average burst lengths increases to ~ 0.8s, the intraburst frequency decreases to =
16Hz and the positive correlation between burst amplitude and burst length is high and
significant (41,5, = 0.92, p < 0.0001). For the regime with a lower fraction of bursty
neurons for GPe (10%) and a higher fraction of bursting neurons in STN (80%), the
positive correlation between burst length and burst amplitude was not significant,
however the burst length is slightly higher (= 0.4s) and intraburst frequency is slower
(=~ 15Hz).

We, therefore, predict that short lived beta burst in healthy mice are generated when
~10% of GPe neurons and ~20% of STN neurons elicit spike bursts.

Dependence of the network states on the excitation and
inhibition balance

Finally, to better understand the impact of firing rate changes and bursting neurons on
the 8 band oscillations we analyzed the balance of effective excitation and inhibition
(E-I balance) in the network for different input firing rates and fractions of bursting
neurons. E-I balance is the primary determinant of oscillations in spiking neuronal
networks [32]. To get an estimate of the E-I balance for a GPe neuron we measured
effective excitation it received from a STN neuron (Jgrr) and effective inhibition it
received from other GPe neurons (Jires). We estimated the effective excitation and
inhibition for all combinations of external input as shown in Figure [2| (See Methods).

Consistent with the previous theoretical work on neuronal network dynamics we
found that the non-oscillatory states emerged when effective inhibition received by a
GPe neuron was much higher than the effective excitatory inputs, whereas oscillatory
states appeared when the effective excitation from STN to a GPe neuron increases
(Figure [6).

Next we mapped the effect of GPe and STN spike bursting on the E-I balance in the
three exemplary network states (1: oscillatory, 2: border of oscillatory and
non-oscillatory, 3: non-oscillatory). As expected we found that in the oscillatory state 1,
increase in GPe bursting increased the effective inhibition and excitation whereas STN
bursting has a non-monotonic effect (Figure. |§|— state marked as 1). However, in this
state bursting in either population was not strong enough to change the E-I balance in
order to introduce a qualitative change in the network state. Similarly for the
non-oscillatory state 3, a change in the fraction of bursting neuron in the GPe and STN
bursting was not sufficient to introduce any qualitative change in the state of the
network (Figure @ When the network was in the regime 2, even though increase in
fraction of bursting neuron in the GPe introduced a small change in the effective E-I
balance, it was sufficient to move the network activity into the oscillatory regime from
non-oscillatory regime. Increased in the fraction of bursting neuron in the STN showed
a non-monotonic effect on the E-I balance and while a moderate amount of
FBgrnpushed the network towards the non-oscillatory regime, which was not the case
for a higher FBgrn (Figure @
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Fig 5. Effect of spike bursting on beta-band oscillation bursts. (A) An
example of the amplitude envelope of the beta band (15-20 Hz) oscillations (blue trace).
Beta oscillation burst threshold (red dashed line) was determined by averaging the
maximum of beta band amplitude envelop for a Poisson process (orange trace) with the
same firing rate as the neuron in the STN-GPe network. The averaging was done over
Poissonian firing rates corresponding to all GPe and STN bursting ratios and 5 trials
per STN-GPe bursty ratio combination. (B) Low pass filtered (15-20 Hz band) trace of
population firing rate in the STN population in the beta band (15-20Hz). The orange
trace shows the population firing rate of the Poisson process with same average firing
rate as the STN activity. (C) Beta oscillation burst length as a function of the fraction
of bursting neurons in the GPe and the STN. (D) Beta oscillation burst amplitude as a
function of the fraction of bursting neurons in the GPe and the STN. (E,F,G)
Correlation between ( oscillation burst length and amplitude for three different
combinations of FBgryand FBgpe(marker with cyan, orange and green colors in the
pane C. Cyan marker shows beta oscillation burst length and amplitude for 10% of
bursting neurons in GPe and 20% in STN - this combination of bursting neurons gives
an average burst length of 0.24 s which is comparable to experimentally measured values.
In panels E-F the p-values are listed to 4 places after decimal point.
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Effective excitation to a GPe neuron
Fig 6. Effect of spike bursting on the excitation-inhibition balance in
different network regimes. E-I balance was characterized by estimating the total
effective excitation and inhibition received by a GPe neuron (see Methods). E-I balance
for oscillatory and non-oscillatory network states for 100% non-bursting neurons. Each
filled circle shows E-I balance for different external inputs to STN and GPe neurons
shown in Figures The effect of spike bursting on E-I balance is shown for the three
exemplary network activity regimes: 1-Oscillatory regime, 2-Border of oscillatory and
no-oscillatory regime, 3-Non-oscillatory regime (see Figure [3|for details). Different
colored stars and filled circles show how the E-I balance varied as function of change in
the fraction of bursting neurons in the GPe (warmer colors indicate higher % of
bursting neurons). The trajectory from the star (STN bursting ratio = 0%) to the filled
circle shows change in the E-I balance as the fraction of bursting in STN is varied from
0% to 100%. In all the states spike bursting tends to make the network activity more
oscillatory, however, the amount by which spike bursting is able to push the network
towards oscillatory regime depends on the network activity regime itself.
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Discussion

PD is characterized by change in both firing rate and firing patterns of GPe and STN as
shown in animals models |2,134436]. In this study, we focused on uncoupling the roles of
STN and GPe population firing rate and firing patterns (bursting) in determining the
presence of oscillations. Our results show that an increase in the firing rate of STN
neurons is the primary determinant of oscillations in the STN-GPe network, however
the effect of changes in GPe firing rates is contingent on the firing rate of STN neurons.
Similarly, the effect of increase in spike bursting in STN and GPe neurons is contingent
on the dynamical state of the network.

Effect of firing rate changes on  band oscillations

In our model network, an increase in the firing rate of STN neurons was sufficient to
drive the network into an oscillatory state, irrespective of the firing rate of the GPe
neurons. By contrast, a decrease in the firing rate of GPe neurons was able to generate
B band oscillations only when STN neuron firing rate also increased (Figure. , Figure
Supplement ??). A change in GPe and STN firing rates also alter the effective
excitation-inhibition of the network (Figure @ . The non-oscillatory network states
were observed in the inhibition dominant regime (when effective inhibition to a GPe
neuron was higher than effective excitation). An increase in effective excitation altered
the regime to oscillatory. This result may explain the experimental observation that the
therapeutic effect of DBS is accompanied by a corresponding decrease in STN firing
rates [?] and an associated corresponding increase in GPe/GPi firing rates [44-46].

Our results also show that if the firing rate of STN neurons remains fixed, changes in
the firing rate of GPe neurons are not sufficient to influence the oscillations. Indeed, it
can be argued that because STN and GPe are recurrently connected, their firing rates
cannot independently change. However, these results imply that the S oscillations are
more sensitive to changes in STN firing rates than to GPe firing rates. In our model
there are two possible mechanisms to induce beta-band oscillations: (a) Theindirect
pathway induced oscillations can be initiated by reducing the firing rate of GPe neurons
via transient increase in firing rate of D2- spiny projection neurons. (b) The hyper-direct
pathway induced oscillations can be initiated by a transient increase in the firing rate of
cortical neurons projecting onto the STN neurons. Our results suggest that the indirect
pathway induced oscillations can be quenched by transiently decreasing the activity of
STN neurons but the hyper-direct pathway induced oscillations cannot be countered by
transiently increase the activity of GPe neurons.

At the behavioral level, the sensitivity of 8 band oscillations to STN firing rates
could provide an explanation for the importance of STN in response inhibition in
general and, especially when there is an increase in potential responses (high conflict
task). Experimental data have shown that the STN firing rates increase in proportion
to the degree of conflict in an action-selection task [47]. Interestingly, the increase in
STN firing rates during a high conflict task is also accompanied by an increase in beta
band activity [48] and is reminiscent of increase in STN activity [49] as well as power of
the 8 band oscillations as observed in successful STOP trials [50]. Furthermore, the
latency [50] as well as amount of modulation [51] in STN £ band oscillations are
correlated with the speed of an action. All these observations suggest there may be a
functional rationale to the sensitivity of oscillations to STN firing rates as shown by our
results. That is, an increase in STN firing rates could be a mechanism to delay the
decision making (“hold the horses” [52]) by increasing the 8 band activity, which cannot
be vetoed by the GPe and thereby plays a vital role at response inhibition [53]. This
insight might also substantiate the efficacy of DBS in STN as a target nucleus.
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Effect of changes in spike bursting on beta band oscillations

Our results show that the effect of GPe or STN bursting is dependent on the state of
the network as defined by the firing rates of the STN and GPe neurons. In a regime
with strong oscillations, GPe and STN bursting does not qualitatively change the
network state and the network remains oscillatory. Similarly, in a non-oscillatory regime,
GPe and STN bursting has no qualitative effect on the network state. However, in a
regime at the border of oscillatory and non-oscillatory, an increase in bursting neurons
in the GPe induces oscillations but the effect of increasing STN bursting neurons
depends on the fraction of GPe bursting neurons. In this regime, when bursting neurons
in the GPe induce oscillations (0.1<FBgp.<0.4), a small increase in the fraction of
bursting neurons in the STN disrupts the oscillations. However, a large fraction of
bursting neurons in the STN re-instate the S band oscillation (Figure. This
non-monotonic effect of bursting neurons in the STN is because when neurons spike in
bursts both STN and GPe tend to induce oscillations at slightly different frequencies
(Figure Supplementary Figure ?7). The relative power of these oscillations depends
on the fraction of bursting neurons in the two populations. When FBgp. =FBgTtn= 0.5
the magnitude of the two oscillations is comparable and they produce ‘beats’ resulting
in a reduction in the power of beta band oscillations. However, if FBgpe> 0.5 or
FBgrn> 0.5, the stronger of the two oscillations overcomes the other, resulting in the
higher power in the § band.

Similar to the rate effect, the effect of spike bursting can also be captured by
calculating the balance of effective excitation and inhibition in the network (Figure [6]
. GPe bursting increases both the effective excitation and inhibition to a GPe neuron.
Therefore, when a network is operating close to the border of oscillatory and
non-oscillatory regime, increase in bursting in GPe neurons pushes the network to an
oscillatory regime (Figure . An increase in bursting neurons in the STN, however, has
a non-monotonic effect — a smaller number of bursting neurons counter the effect of
GPe bursting by decreasing both effective excitation and inhibition. However the effect
of larger number of STN neurons bursting collude with the effect of GPe bursting by
increasing both effective excitation and inhibition (Figure @

During PD, both STN and GPe neuron show an increase in bursting
activity [2,34536]. Based on our results, we propose that increase in STN bursting
might play a compensatory role in an attempt to quench the burst induced oscillations.
This might also explain the observation that STN stimulation using deep brain
stimulation is only therapeutic in the range where the STN neurons respond
intermittently to stimulation with bursts (135-180Hz, 90-200 secs stimulation, [54].

Tandem of GPe-STN bursting generates bursts of beta
oscillations

In healthy conditions, short epochs of oscillations ( beta bursts) have been observed in
rodents [42] and non-human primates [43]. They are also observed in Parkinsonian
patients during dopamine ON state [13]. The precise function of beta bursts in healthy
conditions is currently unknown but they tend to occur before movement (e.g after the
cue [41]) and disappear when the movement is initiated [55H58]. Beta bursts become
longer and stronger during Parkinsonian conditions [13], therefore, they are thought to
be correlated with impairment of voluntary movement in PD patients. The average
length of the beta bursts in healthy rodents last for an average of 0.2sec [42]. In our
model, we can generate the oscillatory 3 bursts of average burst length 0.24 s by making
10% of GPe and 20% of STN neurons are of spike bursting type (Figure [5)). We propose
that an interplay of spike bursts in GPe and STN may be the underlying mechanism to
generate short bursts of beta oscillations.
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Fig 7. Summary of the effect of firing rate and spike bursting on network
state. The background image (copied from the Figure @ show the oscillatory and
non-oscillatory regimes of STN-GPe network as a function of effective excitation and
inhibition. The arrows schematically show the change in El-balances as we increase
spike bursting in the STN or GPe. The STN-GPe network oscillations are more
sensitive to the STN firing rate. The balance of STN and GPe firing rates determines
the global state of network activity. Spike bursting in GPe always increases both
effective inhibition and effective excitation. Small increases in spike bursting in STN
results in a decrease in both effective excitation and effective inhibition and thereby,
reduces oscillations. By contrast, a large increase in the fraction of bursting neurons in
the STN increases both effective inhibition and effective excitation and thereby,
enhances oscillations. However, this effect is smaller and therefore, spike bursting is
effective in altering the network oscillations only when the network is operating close to
the border of oscillatory and non-oscillatory states.

Experimental results have shown that an increased bursting in STN is associated
with an increase in hyperpolarization of the neuron‘s membrane potential [59]. That is,
spike bursts in the GPe network (e.g. because of striatal bursts [60]) can induce spike
bursting in the STN neuron by inducing large synchronized inhibition. However, if only
less than 50% of the GPe neurons generate spike bursts, an equivalent proportion of
neurons bursting in STN will quench the oscillations resulting in a short-lived “beta
burst”.

However, in pathological conditions, the network state could be pushed into the
oscillatory regime (either due to a change in firing rates or excessive bursting) where
these oscillations can no longer be quenched. This has been explained in the summary
figure

Our results also suggest that in healthy conditions the network might operate on the
boundary of synchronization and asynchronization regime. Operating at the boundary
enables the network to make incursions into the oscillatory regime (when GPe neurons
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elicit spike bursts) and retreat to the asynchronization regime (when STN neurons elicit
spike bursts) with a proportion of bursting neurons where such self-regulated transitions
are possible. However, in pathological conditions, the network very likely shifts deeper
into the oscillation regime (due to the change in firing rates or excessive bursting),

where no amount of STN bursting can push the network back to asynchronized regime.

Operating on the boundary could have many advantages such as easy creation and
dissolution of transient neuronal assemblies [61] as required by functioning of network
shown in other parts of basal ganglia (especially striatum, [62H66]). Rubchinsky et. al
also suggested that a Parkinsonian network might also operate on the boundary albeit
with a bias towards a state with increased synchrony.

We also suggest a novel functional role for bursting neurons in GPe and STN in
healthy conditions as a mechanism to generate these short-lived beta bursts. However,
the same mechanism leads to runaway oscillations when the network is no longer on the
boundary but is shifted deeper into the oscillatory regime.

These new insights about the role of spike rates, spike bursts and varied roles of
STN and GPe in shaping of the dynamics of beta band oscillations suggest several
means of quenching the pathological oscillations for instance by (1) reducing the firing
rate of the STN neurons, (2) reducing the excitability of STN neurons, and (3) by
balancing the fraction of bursting and non-bursting neurons in the STN and GPe.
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