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Abstract

Recent work has shown that nasal respiration entrains local field potential (LFP) and neuronal
activity in widespread regions of the brain. This includes non-olfactory regions where
respiration-coupled oscillations have been described in different mammals, such as rodents,
cats and humans. They may, thus, constitute a global signal aiding interregional
communication. Nevertheless, the brain produces other widespread slow rhythms, such as
theta oscillations, which also mediate long-range synchronization of neuronal activity. It is
completely unknown how these different signals interact to control neuronal network activity.
In this work, we characterized respiration- and theta-coupled activity in the posterior parietal
cortex of mice. Our results show that respiration-coupled and theta oscillations have different
laminar profiles, in which respiration preferentially entrains LFPs and units in more superficial
layers, whereas theta modulation does not differ across the parietal cortex. Interestingly, we
find that the percentage of theta-modulated units increases in the absence of respiration-
coupled oscillations, suggesting that both rhythms compete for modulating parietal cortex
neurons. We further show through intracellular recordings that synaptic inhibition is likely to
play a role in generating respiration-coupled oscillations at the membrane potential level.
Finally, we provide anatomical and electrophysiological evidence of reciprocal monosynaptic
connections between the anterior cingulate and posterior parietal cortices, suggesting a

possible source of respiration-coupled activity in the parietal cortex.
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Introduction

The brain often produces rhythmic patterns of activity that can be detected at different spatial
scales, from intracellular recordings, through local field potential (LFP) and multi-unit activity,
up to more macroscopic (EEG, fMRI) measurements [1]. Brain oscillations may thus help to fill
the gap between the cellular and network levels and have been suggested to play important
roles in brain computations, such as assisting the binding of distributed cell assemblies and the

control of information flow [2-5].

In addition to the central nervous system, it is well known that many other physiological
systems also exhibit rhythmicity at the ultradian timescale, such as the digestive,
cardiovascular and respiratory systems [6—9]. Interestingly, recent studies are starting to unveil
relationships between oscillatory activity produced by different organ systems. For instance,
Tallon-Baudry and collaborators have shown that ascending signals from the heart and
gastrointestinal tract modulate brain dynamics and affect perception, emotion and cognition
[10-13]. In particular, the EEG alpha rhythm was shown to be modulated by the phase of the
gastric cycle [7]. In a parallel line of work, we and others have recently described that nasal

breathing rhythmically modulates neuronal activity in several brain regions [14-26].

Although the first reports of neuronal oscillations coupled to respiration date back to the
seminal papers by Adrian [27,28], they were generally believed to occur in olfactory regions
[but see 29]. However, a boom of papers published in the last 5 years convincingly
demonstrated that rhythmic breathing also entrains non-olfactory networks [e.g., 14-25].
Though respiration-coupled oscillations tend to be most prominent in frontal regions, they can
also be detected at smaller magnitudes in more posterior neocortical regions, even in the
visual cortex [25]. Such a widespread influence could potentially relate to the effects of
respiration over emotional states and cognitive functions [30—34]. Noteworthy, it has been
increasingly recognized that nasal respiration modulates performance in cognitive tasks [35—

37], including non-olfactory ones [38].

Despite the recent enthusiasm on brain activity coupled to respiration, many questions remain
open, constituting an active field of research [26]. To gain further insight into the apparent
global influence of nasal breathing, in this work we aimed at studying a distant brain region
from the olfactory bulb not primarily related to olfaction. We have thus investigated the
posterior parietal cortex, which has been recently shown to exhibit respiration-coupled

oscillations at low amplitude [25,39]. In this region prominent theta oscillations can also be


https://doi.org/10.1101/707331
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/707331; this version posted July 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

detected, thus we paid particular care in differentiating the network effects of theta from
respiration. Our results show that both slow rhythms have differential signatures and,
interestingly, seem to compete with each other for neuronal entrainment. We also provide
evidence that the frontal cortex, which is the neocortical region with largest respiration-
coupled oscillations in the rodent [25], could be responsible for mediating respiration-

entrained signals into the posterior parietal cortex.

Results

In order to characterize respiration-coupled brain activity in non-olfactory regions, we chose to
investigate the posterior parietal cortex, also known as parietal association cortex (PAC). This
region has been shown to exhibit both hippocampal-coherent theta oscillations and local field
potential (LFP) rhythms entrained by nasal respiration [25,39], the latter also referred to as the
“respiration-rhythm” (RR). The relative magnitude of theta and RR in PAC is highly dynamic
and depends on behavior. For instance, RR dominates during immobility while theta
oscillations are much more prominent during exploration and REM sleep [25,39]. Here we
performed retrograde tracing and electrophysiological recordings in PAC of freely moving and
urethane-anesthetized mice. Retrograde tracing aimed at identifying direct afferent
projections from the anterior cingulate cortex (ACC), a frontal region that displays prominent
RR activity [25]. Field and unit responses to electrical stimulation of the ACC complemented
the tracing results. LFPs and neuronal activity were recorded simultaneously with independent

measures of respiration (see Materials and Methods).

Respiration-entrained rhythm in the parietal cortex

LFP recordings confirmed our previous finding that respiration can entrain LFP oscillations in
PAC [25,39]. Figure 1A shows example LFPs in the olfactory bulb (OB) and PAC along with the
respiration signal (Resp) simultaneously recorded from an awake immobile mouse using
whole-body plethysmography. Notice the presence of respiration-coupled LFP oscillations not
only in OB, as classically described [27,40,41], but also in PAC (better inferred from the
inspection of the filtered traces [light gray lines]). Figure 1B shows power spectra of Resp and
LFPs from PAC and OB as well as coherence between PAC and Resp and between PAC and OB.
Although RR is much more prominent in the OB (notice the ten-fold difference in power scale
between OB and PAC), both the PAC power spectrum and the coherence spectra between PAC

and Resp or between PAC and OB exhibit a clear peak at the same frequency as the breathing
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rate, therefore marking the presence of RR. Of note, RR has been operationally defined as a

power peak at the same frequency as and coherent with respiration [26].

LFP coherence to respiration decreases with cortical depth

Next, we investigated RR in PAC as a function of recording depth, in the absence of theta
oscillations. For this purpose, we implanted 16-channel linear probes with 100 um electrode
distances into the PAC and recorded mice during periods of immobility. The highest channel
(channel 1) was placed 100 um above the cortical surface, and the deepest (channel 16)
reached the hippocampal CA1 region below the pyramidal cell layer. Figure 2A shows a typical
histological section of an implanted animal. Figure 2B shows an example of simultaneously
recorded Resp and LFPs from channel four (200 um below cortical surface) and channel
fourteen (depth 1200 um, just above hippocampal pyramidal cell layer). The corresponding
power and coherence spectra are shown in Figure 2C. Note that the LFP in channel four is
much more coherent with respiration than the LFP in channel fourteen. The average heat map
of RR activity (Figure 2D; n = 10 mice; two cycles shown) reveals the absence of phase shifts
across cortical depths. Next, for each mouse we divided RR amplitude values at each depth by
the maximal amplitude across depths (so that the maximal amplitude became 1); Figure 2E
depicts the average and individual laminar profiles of normalized RR amplitude. Notice that, on
average, RR did not exhibit major amplitude changes across depths. Interestingly, however, we
found that the average LFP coherence to respiration decreased with cortical depth and was

lowest in CA1 (Figure 2F; n = 10 mice).

Theta and respiration-coupled oscillations have different laminar profiles

During REM sleep both theta oscillations and RR are simultaneously present in PAC and often
separated by frequency (that is, breathing rate is often lower than theta frequency during
sleep). Figure 3 compares the laminar profiles of theta and RR during REM sleep in mice
implanted with linear multi-contact probes. Figure 3A (upper panel) shows LFPs from channel
two (cortical surface) and channel twelve (depth 1000 um) simultaneously recorded with
respiration using whole-body plethysmography. The corresponding power spectra, as well as
the coherence spectra between LFPs and Resp, are shown in the lower panel of Figure 3A.
Note that theta power (peak between 6 and 10 Hz) is larger at 1000 um compared to the
cortical surface. Notice further that RR power (peak between 3 and 5 Hz, i.e., at the same
frequency as the Resp power peak) is much smaller compared to theta power in both

locations. Nevertheless, only RR, but not theta, exhibits high coherence to respiration, and
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moreover, RR-Resp coherence is larger at the surface compared to 1000 um. Figure 3B depicts
the laminar profile of RR and theta, both averaged across ten animals. While the normalized
theta amplitude increases with depth, the variations of RR amplitude across depths do not
show a clear trend (Figure 3C). Finally, we next calculated the coherence of RR and theta
throughout their depth profiles. The first channel in the probe served as reference (note that,
unlike in Figure 2F, respiration cannot serve as a reference for this comparison as theta is not
coherent to respiration). Interestingly, RR coherence strongly decreases with cortical depth,
whereas theta coherence to channel one is stable throughout the cortex (Figure 3D). Thus, we
conclude that the laminar profiles of RR and theta activity differ, indicating distinct origins of

the two slow rhythms.

Respiration competes with theta for modulating parietal cortex neurons

Network oscillations are able, and may actually serve to entrain discharges of individual
neurons. We therefore collected juxta- or intracellular recordings of PAC neurons in urethane-
anesthetized mice. Typical sleep-like up-and-down activity was suppressed by arousing the
animal with light air puffs or tail pinches, evoking simultaneous RR and theta oscillations
[15,17]. For the following analysis we only used episodes in which RR and theta could be
clearly separated by frequency. Figure 4A shows an example of a PAC neuron recorded
juxtacellularly along with Resp and PAC LFP recordings; also shown are the corresponding
power spectra and spike-phase distributions. Notice that the LFP power spectrum has a
prominent peak between 2 and 4 Hz, matching the Resp power peak and thus corresponding
to RR (coherence to Resp is also high [not shown, but see Figure 5B]). The LFP — but not Resp —
also exhibits a second, smaller power peak between 4 and 6 Hz, which corresponds to the
arousal-induced theta rhythm under urethane anesthesia [15]. Inspection of the spiking
probability per respiration phase and per theta phase reveals that this example PAC neuron
was modulated by respiration but not theta. Figure 4B shows similar data from a juxtacellularly
recorded unit which was modulated by theta but not respiration. A total of 165 PAC units with
background LFP activity as defined above were recorded. Sixty-one units were collected in
upper layers (above 400 um) and one hundred and four in lower layers (below 400 um). Figure
4C (left) shows, separately for the upper and lower layers, the proportion of neurons
modulated only by theta, only by respiration, by both rhythms or by neither rhythm. We found
that a greater proportion of neurons are modulated by respiration at upper layers compared
to lower layers (X, p<0.05). In contrast, the proportion of theta-modulated units does not

differ between the upper and lower layers. Next, we recorded neurons after bypassing nasal
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respiration through tracheotomy, a procedure previously shown to eliminate RR while
maintaining theta activity [15,17]. A total of sixty-six neurons were recorded in urethane-
anesthetized animals after tracheotomy, twenty-five above 400 um and forty-one below 400
pum. Under this protocol, the proportion of neurons modulated by theta significantly increased
in relation to nasal breathing at both recording locations (Figure 4C right). Finally, Figure 4D
shows the coupling strength of spikes to the phase of either Resp or theta (before and after
tracheotomy), plotted as a function of the mean spiking phase. Interestingly, the distribution
of the mean spiking phase within theta cycles differs between nasal and tracheal breathing
(Kuiper test, p<0.05). Together, these results show that respiration differentially modulates
units at upper and lower cortical layers, and that, in the absence of RR (induced by
tracheotomy), theta modulates more units than during nasal breathing. The latter finding

indicates that both slow rhythms compete for controlling neuronal activity.

Respiration-coupled oscillations can be detected intracellularly and likely depend on GABAergic

synapses

In order to gain insight into the subthreshold signals mediating entrainment by RR or theta, we
next performed intracellular recordings from PAC neurons in urethane-anesthetized mice. We
subjected these animals to arousal stimuli (tail pinch or air puffs), so as to elicit theta
oscillations [15]. Noteworthy, from a total of twenty-nine cells that could be successfully
recorded, six PAC neurons exhibited clear membrane potential (MP) oscillations coupled to
respiration (4 cells above 400 um, 2 cells below). Figure 5A shows the MP of one such PAC
neuron along with the simultaneously recorded respiration signal. The low-pass filtered MP,
which exhibits no action potentials, is shown superimposed. Notice prominent MP oscillations
phase-locked to breathing cycles. The power spectra of MP and Resp, as well as the power
spectrum of the PAC LFP and the coherence spectra between all pairwise combinations of
these signals, are shown in Figure 5B. Interestingly, the MP exhibits only one power peak,
which corresponds to RR, whereas the LFP also exhibits a second peak corresponding to theta
(notice further that theta has larger power than RR in the LFP). Both the MP and the PAC LFP
exhibited coherence peaks with Resp at the same frequency as breathing and at its harmonics
(as in non-anesthetized mice [Figure 3], the LFP was not coherent with Resp at theta
frequency). Next, we investigated whether the amplitude of respiration-coupled oscillations
recorded intracellularly depended on the level of subthreshold
depolarization/hyperpolarization of the MP (see Material and Methods). For this same

example cell, we found a significant positive linear correlation (r = 0.57, p < 10%) between the
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amplitude of RR recorded intracellularly and the MP level (Figure 5C). Indeed, for each of the
four cells with clear subthreshold RR activity, we found that the amplitude of respiration-
entrained MP oscillations increased upon depolarization. This linear correlation could be
observed for the pooled scatter plot of RR amplitudes versus MP using data from the four
neurons when the variables are expressed as z-score units (r = 0.48, p < 10°%*; Figure 5D; the z-
score normalization was necessary because of differences in MP levels across neurons). The
increase of RR amplitude with depolarizing MP above -80 mV suggests involvement of chloride
channels; therefore, the respiratory signal is likely to modulate the PAC neurons via GABA-A
receptor-mediated inhibition. Interestingly, from 22 cells that were intracellularly recorded
while the PAC LFP exhibited theta oscillations during normal breathing, only one cell had theta
at the MP level (this cell also had intracellular RR), while none of 7 cells recorded during

tracheal breathing in the presence of LFP theta exhibited theta intracellularly.

Anterior cingulate cortex may be a source of respiration-coupled activity in the parietal cortex

Next, we wondered what could be the upstream source for the respiration-coupled activity in
PAC. A possible candidate region is the anterior cingulate cortex (ACC), a frontal area in which
we recently found prominent RR [25] and, moreover, which has been previously reported to
connect with the posterior parietal cortex [42—45]. We first sought to corroborate the
existence of direct projections from ACC to PAC in mice. To that end, we injected rabies virus
or retrobeads into the PAC of six mice to identify monosynaptic afferents by retrograde
tracing. Figure 6A depicts the injection site in PAC (left panel) along with neurons in the frontal
cortex (AP +0.14 mm) retrogradely labeled by rabies virus (red dots in the middle panel) and by
retrobeads (green dots in the right panel). Both labeling methods demonstrate monosynaptic
afferents from frontal regions including the ACC (labeled “Cgl” in the middle and right panels).
In a second approach, we used multi-contact linear probes to record laminar profiles of
responses evoked by electrical stimulation of ACC. Figure 6B shows averaged evoked
responses across PAC following electrical stimulation of the ACC in awake immobile animals (n
= 6 mice). ACC stimulation led to an earlier transient response at more superficial recording

sites in PAC followed by a slower component in deeper sites.

The anterior cingulate cortex modulates spiking activity in the parietal cortex

In addition to the laminar profiles of awake mice (Figure 6), we also recorded spiking activity in
response to electrical stimulation of the ACC in urethane-anesthetized mice. Figure 7A shows a

typical peristimulus time histogram from a single PAC neuron to 27 ACC stimulations as well as
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the MP response of this cell to a single stimulation. Both reveal a short-latency excitation with
the emission of single spikes followed by a ~200 ms inhibition of spiking activity. Interestingly,
in addition to orthodromic responses, we also found antidromic spikes followed by EPSPs and
IPSPs (Figure 7B) exclusively in deep cortical laminae (red dots in Figure 7B, right panel). This
observation points to a reciprocal monosynaptic connection between PAC and ACC. In contrast
to the predominantly deep location of neurons with antidromic responses, orthodromic spike
latencies to ACC stimulation were found more evenly distributed in PAC (black dots in Figure
7B, right panel). In addition to orthodromic or antidromic single spikes followed by inhibition,
we also found cases of bursts of spikes without inhibition and of IPSPs without previous spikes

(Figure 7C). Notice that the latter could be a possible source of intracellular RR (Figure 5).

Discussion

Brain oscillations are far from being the only temporal rhythmic patterns produced by the
body; in fact, many physiological systems work rhythmically. Among them, the digestive,
cardiovascular and respiratory systems are well known to exhibit rhythmicity at the ultradian
timescale [6-9]. Recent research has started to unveil links between the brain and other body
rhythms [12,26]. In particular, the coupling between neuronal activity and the cycles of nasal
breathing has been increasingly recognized [14,15,19]. Although such effect has been long
described for olfactory regions [27,28], the novelty resides in the discovery that respiration
also modulates many other brain areas which are typically not associated with odor processing

[16,21,24,25].

In this work, we confirm that rhythmic breathing modulates the activity of an associative
cortical area not primarily involved with olfaction. Noteworthy, we found respiration-coupled
activity at multiple spatial scales in the posterior parietal cortex: from the mesoscopic,
network level (as inferred by LFP analysis), passing through the level of action potentials (as
inferred by spike-phase coupling), and down to the subthreshold membrane potential level (as
inferred by intracellular recordings). It should be noted, however, that even though our results
show that respiration does impact parietal cortex activity, the amplitude of RR is rather low in
this region. Indeed, we have recently shown that respiration-coupled activity has an
anteroposterior gradient in mice, in which it tends to be larger in the frontal regions [25].
Nevertheless, by concomitantly recording respiration and employing careful signal analysis, RR
can be clearly detected in more posterior regions [25,39]. Due to its small amplitude, however,
RR is easily missed when it occurs along with the dominant theta rhythm in awake animals

(e.g., Figure 2). Therefore, in the absence of concurrent tracking of respiration, RR is likely to
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remain unnoticed in this region. However, the Resp-LFP phase coherence spectrum, which can
only be performed when tracking respiration, clearly reveals that a component of the LFP
spectrum is phase-locked to breathing cycles and hence RR entrains network activity in the
parietal cortex. Moreover, the tracking of respiration further allows inferring the existence of

PAC neurons modulated by breathing cycles, despite the low amplitude of RR in PAC.

A common issue in LFP analysis is to infer whether the detected oscillations represent local
activity (presumably synaptic) or else passive/return currents due to volume conduction from
current dipoles located elsewhere [1,46,47]. Although RR has low amplitude in the parietal
cortex, our results support the notion that it does directly and specifically impact the local
network, which in turn is likely to contribute to RR appearance at the LFP level. In particular,
we found that RR modulates spike timing, which is considered an unlikely effect of volume
conduction [but see 48,49]. Moreover, we found that RR modulation of neurons depends on
recording depth: more units couple to respiration in the superficial than deep layers, an effect
that we again deem unlikely to be due to volume conduction but instead point towards
specific connectivity patterns. Most convincing evidence comes from intracellular recordings
which revealed clear cases of subthreshold membrane potential oscillations phase-locked to
breathing cycles (Figure 5). Interestingly, in all these cases the amplitude of intracellular RR
decreased with more hyperpolarized membrane potentials, indicating involvement of
GABAergic transmission. This fits well with our results from responses to stimulation of the
anterior cingulate cortex which induced inhibitory periods of about 200 ms duration (Figure
7A). This time window corresponds to a frequency of 5 Hz, i.e. close to the frequency defined

by respiration.

Respiration and theta frequency may often overlap, making it challenging to disentangle both
rhythms through standard signal analysis techniques [25,26]. Therefore, we have here focused
on periods in which breathing rate was slower than theta frequency, so that, by band-pass
filtering, we could separately investigate these rhythms. Under this approach, we found that
respiration entrainment and theta have different laminar profiles across the parietal cortex-
hippocampus axis. Namely, at theta frequency, LFP coherence to the most superficial
electrode was stable across recording depths (Figure 3), whereas, at the breathing frequency,
LFP coherence to the first electrode in the probe, as well as to the respiration signal itself,
decreased for deeper locations (Figures 2 and 3). Regarding amplitude, theta oscillations
became larger with depth, especially closer to the hippocampus, while RR amplitude did not

exhibit a consistent trend across animals. Most strikingly, in addition to the LFPs, we found
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that respiration preferentially entrained units in more superficial layers (Figure 4). In fact,
respiration modulated a greater percentage of units (16.4%) than theta (11.5%) in the
superficial layers, even though RR has lower amplitude than theta at the LFP level.
Interestingly, we further note that the percentage of neurons modulated by respiration in
deep layers (6.7%) was not much greater than the false positive rate determined by the
significance threshold (i.e., a = 5%). In contrast to respiration, theta modulation of neurons did
not differ across the parietal cortex (11.5% of neurons in both superficial and deep layers). In
all, these observations corroborate that theta and RR have independent mechanisms of

generation.

It has been previously shown that RR depends on nasal airflow, and, as such, it is abolished
when animals breath straight through the trachea [15,17]. Interestingly, in addition to RR
absence, the proportion of parietal cortex neurons modulated by theta roughly tripled when
animals breathed through a tracheostomy (11.5% vs 33.3%, p<0.05, x2). This suggests that
theta and respiration compete with one another for controlling neuronal activity. The lower
proportion of neurons modulated by theta in the presence of respiration-coupled oscillations
could be due to some neurons having weaker inputs associated with theta than respiration. In
this scenario, respiration-coupled postsynaptic potentials would have a larger amplitude than
theta-paced inputs, and thus theta modulation would only become noticeable in the absence
of respiration-coupled synaptic inputs. Another possibility is a competitive effect at the
network level, in which the absence of RR would lead to disinhibition of neurons mediating

theta effects.

We note, however, that, except for one cell, we did not detect MP theta activity at the
subthreshold level in all other posterior parietal cortex neurons that were intracellularly
recorded in the presence of LFP theta oscillations (n = 21 cells), even during tracheal breathing
(additional 7 cells) when RR was not present. In particular, notice in Figure 5 that despite the
LFP exhibiting prominent theta oscillations at a larger amplitude than RR, there is no theta
activity inside the neuron. The posterior parietal cortex does not receive direct connections
from the hippocampus [45]. Therefore, if this region receives theta-paced inputs, they are
likely to be transmitted through the retrosplenial cortex [see 50], which heavily connects to it
[45,51]. Whether theta exerts any far field effect in this region is yet to be determined. In any
case, it remains puzzling that we could observe extracellularly recorded parietal cortex
neurons modulated by the LFP theta but not much evidence of theta activity at the

intracellular level. Consistent with this, no intracellularly recorded neuron exhibited spikes
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coupled to theta. In contrast, spikes emitted by neurons exhibiting intracellular RR were
modulated by respiration (see Figure 5A for an example). One possible, technical explanation is
that intracellular recordings are mainly successful in a subpopulation of larger cells that would
differ from the cell types modulated by theta. Noteworthy, our findings showing that theta
modulates extracellularly recorded posterior parietal cortex neurons match those of Sirota et
al. [52]. These authors have also reported intracellular oscillations in S1 neurons during
urethane anesthesia (they did not record posterior parietal neurons intracellularly), which they
ascribed to theta oscillations [52]. Based on our observations, however, it is feasible that the
reported intracellular oscillations in S1 could potentially correspond to RR, but this cannot be

inferred without concomitant recording of respiration.

Finally, we set out to investigate the anterior cingulate cortex as a possible contributor to RR
activity in the posterior parietal cortex. We studied this region because it displays prominent
RR [25] and sends projections to a myriad of cortical and subcortical structures [44,53]. Here,
we could corroborate that the ACC directly projects to PAC [42—-45,51]. Moreover,
electrophysiological data showed antidromic spikes in PAC after ACC stimulation (Figure 7),
indicating that ACC receives monosynaptic connections from PAC. The latter result is
consistent with recent interconnectivity studies in mice showing that ACC and PAC mutually
connect [44,51,53]. Of note, one such connectome study proposed that ACC and PAC form
part of a same medial subnetwork, which would be responsible for mediating information
from sensory and higher-order areas [44]. Accordingly, the posterior parietal cortex is
considered an association region since it receives inputs from visual, somatosensory and
auditory areas [43,45]. Our results suggest that the integration of the multimodal information
arriving in this region may be influenced by respiration-coupled inputs mediated by the ACC. In
turn, respiration inputs are likely to arrive in frontal cortical regions via connections from the

piriform and insular cortices [44,54].

In summary, we report that LFPs and single neurons in the PAC are modulated by respiration,
that theta and RR are generated by different mechanisms, including a role for GABAergic
inhibition in RR, and that both rhythms compete for modulating PAC. We also demonstrate
that reciprocal monosynaptic connections between ACC and PAC are a possible source of
respiratory influence over PAC. Our findings indicate a strong influence of oscillating body
signals on brain function, far beyond specific sensory or motor activity. Specifically, they show
that neuronal activity in a cortical association area is modulated by both, respiration as well as

theta, which entrain network function in a differential and competitive way.
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Material and Methods

Electrophysiological recordings were performed in 46 adult mice of either sex. In ten freely
moving mice, we recorded local field potentials (LFPs) in the posterior parietal cortex (PAC)
using chronically implanted NeuroNexus silicon probes (16 contacts separated by 100 um)
during two spontaneous network oscillations: theta (8) and the respiration-entrained rhythm
[RR; 15,18]. In six of these animals, we also recorded PAC LFPs during electrical stimulations of
the anterior cingulate cortex (ACC). In a further set of experiments, we recorded from PAC
neurons in 36 urethane-anesthetized mice to investigate unit modulation by theta and RR. Six
of the urethane-anesthetized mice were tracheotomized before the recording session to
abolish RR [15,17]. In eleven of the anesthetized mice, we recorded responses of PAC neurons
to electrical stimulation of the ACC. In addition, six mice were injected with rabies virus or
retrobeads into the PAC to identify monosynaptic afferents from the ACC by retrograde

tracing. Below we describe the experiments in detail.

Ethics statement

Experiments in this study were performed in accordance with guidelines of the European
Science Foundation (2001) and the U.S. National Institutes of Health Guide for the Care and
Use of Laboratory Animals and have been approved by the Governmental Supervisory Panel on
Animal Experiments of Baden Wirttemberg at Karlsruhe (35-9185.81/G-84/13 for
electrophysiology and 35-9185.81/G-194/17 for tracing). All efforts were made to minimize
animal suffering and to reduce the number of animals used. Because of the system level

approach of our study, alternatives to in vivo techniques were not available.

Animal care and housing conditions

Mice (C57BL/6N) were purchased at 42 or 84 days of age from Charles River. Animals were
housed in groups of four inside a ventilated Scantainer (Scanbur BK, Denmark) on an inverted
12/12 h light/dark cycle (light on 8:00 P.M.) for a minimum of 2 weeks (except for the tracing
experiments). Animals had free access to water and food. After chronic electrode implantation
or tracer injection, mice were housed individually throughout the experiment. Chronic animals
were killed with an overdose of ketamine-xylazine during brain perfusion and animals used in

acute experiments with an overdose of ketamine-xylazine after the recording.

Animal preparation and experimental procedures
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Retrograde tracing. Four male and two female mice (42-70 days old, weight: 20-22 g) were
used for retrograde tracing of monosynaptic afferents to PAC. The animals were anesthetized
(see below for surgery details), and two different retrograde tracers were used in two different
groups of animals. In both groups, tracers were injected into the right PAC (2.06 mm posterior
to Bregma, 1.5 mm lateral to the midline, 0.5 mm ventral from the brain surface) with an
estimated rate of 50 nl/min using glass micropipettes (Blaubrand intra MARK, Brand GmbH,
Germany). The capillary was held in place for 5 min prior and 10 min after the injection before
being slowly retracted from the brain. In the first group of three male mice, we injected 300 nl
of green fluorophore-coated latex microspheres (RetroBeads™; Lumafluor Inc., Durham, NC,
USA) diluted 1:1 in phosphate buffered saline (Katz and larovici, 1990). These animals were
killed 10-14 days after the injection for further histological processing (see below for details).
In a second group of one male and two female animals, we used a rabies virus-based approach
of retrograde tracing consisting of two injections separated by 3 weeks [55]. The first injection
(300 nl) was composed of AAV1/2-Syn-iCre (kindly provided by Dr. Thomas Kuner, Heidelberg,
Germany) and (1:1) AAV1-EF1a-FLEX-GTB (1.08*10% GC/ml; Salk Institute, La Jolla, CA, USA).
The second injection contained 800 nl of the rabies virus Rb-EnvA-AG-mCherry (3*10% IFU/ml;
kindly provided by Dr. Karl-Klaus Conzelmann, Munich, Germany). These animals were killed 7
days after the rabies virus injection. After removing the brain (see below for details) coronal
sections of 50 um were cut, counterstained with 4,6-Diamidin-2-phenylindol (DAPI; Carl-Roth
GmbH and Co. KG, Karlsruhe, Germany) and imaged with a fluorescent microscope and an F-

View Il camera (Olympus K.K., Tokyo, Japan).

Chronic electrode implantation. A total of ten male C57BL/6N mice weighing 24-30 g (84-126
days old) were anesthetized with isoflurane in medical oxygen (4% isoflurane for induction,
1.5%- 2.5% for maintenance, flow rate: 1 | per minute). For analgesia, 0.1 mg/kg of
buprenorphine was injected subcutaneously before and four and eight hours after surgery.
Anesthetized animals were mounted on a stereotaxic apparatus (Kopf Instruments) with a
custom-made inhalation tube. Body temperature was maintained at 38°C by a heating pad
(ATC-2000, World Precision Instruments). After exposure of the skull, holes of 0.5—-1.0 mm in
diameter were drilled above the right and left PAC, right and left OB and the cerebellum
according to stereotaxic coordinates [based on 56]. Two stainless steel watch screws (1 mm
diameter, 3 mm length) over the cerebellum served as ground and reference electrode. A third
screw was placed at the surface of left PAC (2.06 posterior to bregma, 1.5 mm lateral). Pairs of
varnish-insulated tungsten wires (50 um, glued together) were implanted into the granular

layer of left and right olfactory bulb (OB, 4.55 anterior to bregma, 0.8 mm lateral, 1.45 mm
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ventral). In six animals an additional pair of varnish-insulated nickel chrome wires cut at an
angle of 45° was implanted into the right ACC (0.14 mm anterior to bregma, 0.35 mm lateral,
1.25 mm ventral) for electrical stimulation (0.1 ms duration, 150 to 225 pA intensity). Silicon
probes (A1x16—3 mm-100-703-CM16LP, NeuroNexus Technologies) were chronically
implanted into the right PAC (2.06 posterior to bregma, 1.5 mm lateral, the uppermost
electrode was located 100 um above the cortical surface and the deepest below the CA1

pyramidal cell layer).

Electrophysiology in freely moving mice. One week after surgery, recordings began witha 1 h
session in the animal’s home cage. For reliable recording of respiration we used whole-body
plethysmography [EMKA Technologies, S.A.S., France, for details see 57]. In both the home
cage and plethysmograph, movements were detected with 3-D accelerometry. We aimed at
collecting periods with RR in the absence of theta, as present during immobility, and with the
simultaneous presence of RR and theta, as present during REM sleep [25,39]. For the latter, we
looked for periods with non-overlapping frequencies. Therefore, several recording sessions of
up to 4 h were performed in the whole-body plethysmograph on consecutive days.
Extracellular signals were filtered (1-500 Hz), amplified (RHD2132, Intan Technologies),
digitized (2.5 kHz), and stored for offline analyses with custom-written MATLAB routines (The

Mathworks, Inc.).

Behavioral staging. After visual inspection, artifact-free periods were behaviorally staged.
Classification of vigilance states was based on (i) the level of accelerometer activity (active
waking > awake immobility, NREM, REM), (ii) the amount of high-amplitude slow-wave activity
in the neocortex (NREM > waking, REM), and (iii) the amount of regular theta oscillations in
PAC overlaying the dorsal hippocampus (active waking, REM > awake immobility, none in
NREM). Awake immobility was defined as the absence of any prominent accelerometer signal
and any slow-wave (delta) activity indicating sleep. A detailed description of behavioral staging

is provided elsewhere [39,57,58].

Urethane experiments. Twenty-five male and eleven female C57BL/6N mice weighing 19-33 g
(77-180 days old) were anesthetized with a mixture of urethane (1.2 g/kg) and ketamine-
xylazine (10 mg/kg, 1 mg/kg, i.p.). Urethane and ketamine-xylazine were freshly dissolved in
isotonic (0.9%) NaCl solution. All solutions were heated to 38°C before application. The level of
anesthesia was maintained so that hind limb pinching produced no reflex movement.
Supplemental doses of urethane (0.2 g/kg) were delivered as needed (approximately every 1.5

h). The animals were mounted on a stereotaxic frame (Kopf Instruments) and body
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temperature was maintained at 38°C. After exposure of the skull, holes of 0.5-1.0 mm in
diameter were drilled above the right and left PAC according to stereotaxic coordinates [56].
The dura mater was carefully removed and a 125 um tungsten electrode (MicroProbes) was
implanted into the left PAC (2.0 mm posterior to bregma, 1.5 mm lateral, 0.7 mm ventral) to
record LFPs. In some animals, PAC LFPs were recorded ipsilaterally at the right PAC (1.96 mm
posterior to bregma, 0.5 mm lateral, 0.75 mm ventral) under an angle of 30° to prevent
interference with microelectrodes (see below). A pair of 125 um tungsten electrodes
(MicroProbes) glued together cut at an angle of 45° was positioned into the right ACC (0.14
anterior to bregma, 0.35 lateral, 1.25 mm ventral for the deepest electrode) to stimulate
ipsilateral afferents to PAC. Respiration was monitored by recording the chest wall movements
using a piezoelectric device (EPZ-20MS64, EKULIT) located beneath the animal’s body [15].
Tracheotomy was performed under additional local lidocaine anesthesia previous to recording
in six male mice. Extracellular signals from left PAC were filtered (1-500 Hz), amplified (EXT-
16DX or EXT 10-2F, npi, Tamm), digitized (20 kHz) using the CED 1401 board, and stored for
offline analyses. Intracellular recordings of right PAC neurons were obtained with high-
impedance quartz-glass micropipettes (0.d.1.0/i.d.0.5 mm; impedance: 60—120 MQ) pulled
with the P-2000 puller (Sutter Instruments) penetrating the brain under an angle of 15° (2.0
posterior to bregma, 1.5 mm lateral). Recording electrodes were filled with 1 M potassium
acetate and slowly lowered in 5 um steps using the Micropositioner 2660 (Kopf Instruments).
Axoclamp 900A (Molecular Devices) in current-clamp mode with a bridge circuit was used to
amplify intracellular signals. For unit recordings, signals were filtered (0-10 kHz) and digitized
at 20 kHz. Juxta-cellular recordings were performed by using quartz-glass micropipettes with
impedance lowered to 10-20 MQ. Extracellularly recorded multiunit activity (MUA) from low
impedance pipettes was obtained by high-pass filtering (>500 Hz). Due to the typically
prevailing slow wave-like sleep activity during urethane anesthesia, tail pinches or air puffs
were used to suppress electrophysiological sleep activity and induce theta rhythm and RR. This
effect had to be carefully controlled since too strong arousal increased the respiration rate and
caused a frequency overlap of RR and theta, whereas weak arousal would induce only RR but
not theta. Intra- and juxtacellular responses to ACC stimulation (0.1 ms duration, 250 to 400
PA intensity) were recorded during both sleep-like activity and in presence of theta and RR

after arousal.

Data analysis

Data were analyzed in MATLAB (The MathWorks) using built-in and custom-written routines.
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Spectral analysis and coherence analysis. Power spectral density was calculated by means of
the Welch periodogram method using the pwelch.m function from the Signal Processing
Toolbox (50% overlapping, 4 s Hamming windows). Phase coherence was obtained by means
of the mscohere.m function from the Signal Processing Toolbox, using 2 s windows with 50%
overlap. In Figures 2F and 3D (top panel), for each recording channel we obtained the
coherence value at the same frequency as respiration, assessed by the power spectrum of the
respiration signal. In Figure 3D (bottom panel), we obtained the coherence value at the same

frequency as the theta peak in the LFP power spectrum.

Spike-field coupling. Unit activity was obtained by high-pass filtering (>500 Hz). Spike times
were defined by setting a threshold above background noise upon visual inspection of
individual action potentials. To assess spike-phase coupling, we first filtered the LFP signal
within the frequency range of interest based on inspection of power spectral peaks
corresponding to RR and theta. Filtering was obtained through a linear finite impulse response
filter by means of the eegfilt.m function from the EEGLAB toolbox [59;
http://sccn.ucsd.edu/eeglab/]. This function applies the filter in the forward direction and
subsequently backward to ensure that phase delays are nullified. The phase time series was
obtained from the analytical representation of the filtered signal based on the Hilbert
transform (hilbert.m function). Spike-phase distributions were obtained by associating the

spike times with the corresponding instantaneous phases of the filtered signal.

Depth profiles of theta and RR. We selected stable periods of theta and RR in which their peak
frequencies were separated by >1.0 Hz [25,39]. The LFP signal was then band-pass filtered for
isolation of theta and respiration-driven cycles. The precise cutoff frequencies depended on
the respiration rate and theta peak frequency, which were determined by inspecting power
spectral densities. Recordings from the surface of PAC overlaying the dorsal hippocampus
served as the reference for theta [60,61]. Peaks of identified cycles of theta or respiration
(assessed from plethysmography, see above) served as triggers for averaging the filtered
signals across the 16 electrode positions of the silicon probes (n > 30 waves). To obtain the
normalized amplitude shown in Figures 2E and 3C, for each channel we first computed the
difference between the peak and trough of its theta- or respiration-triggered average signal,
and then divided by the maximal peak — trough difference over channels, so that, for each

animal, the maximal amplitude is 1.

Intracellular RR amplitude. To estimate the amplitude of intracellular RR cycles (Figure 5C), we

first band-passed the membrane potential around the respiration frequency (3 Hz bandwidth)
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and then collected all voltage values at the peak of individual cycles (notice that the RR-filtered
signal oscillates around zero and has no spikes). We also collected the subthreshold membrane
potential values at the same timestamps corresponding to the RR peaks. For the latter, spikes
were removed by low-pass filtering <10 Hz and any introduced offset from the original signal

was manually corrected.

Evoked responses. For computing evoked responses to ACC stimulation (Figure 6B), for each
LFP channel in the PAC probe we averaged 80-ms time windows triggered by the timestamps
of the electrical stimulations (-10 ms to 70 ms; n = 16 to 27 stimulations). Current-source
density (CSD) of evoked responses were obtained as previously described [62]. Evoked
responses and CSDs were computed individually for each animal and then averaged across

animals (n=6 mice).

Histology

After conclusion of the experiments, the animals were deeply anesthetized with ketamine-
xylazine and perfused transcardially with PBS and subsequently with 4% paraformaldehyde
(PFA). Brains were carefully dissected, stored in PFA overnight, and coronal sections were cut
(50 um), mounted, and stained with 4,6-Diamidin-2-phenylindol (DAPI) for tracing experiments
and electrode localizations. The position of single electrodes and multichannel probes was
then verified by fluorescence or light microscopy. Prior to the perfusion, the animals were
hyperstimulated using a A365 Stimulus Isolator (World Precision Instruments, Sarasota, FL,
USA); applied currents were: 20 pA for 30 s for depth electrodes, 20 YA for 20 s for stimulation

electrodes, and 1 mA for 1 s for 16-channel silicon probes.

Statistics

Data are expressed as mean + SEM. For comparisons of the proportion of units modulated by
theta, RR or both (Figure 4C), we used the Chi-squared test. The statistical significance of spike-
phase modulation was assessed through the Rayleigh test for uniformity of phase distribution.
We used the Kuiper test to assess the difference between two distributions of the mean theta

phase of spiking (Figure 4D). P < 0.05 was considered statistically significant.
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Figure 1. Respiration-coupled LFP oscillations in the posterior parietal cortex (PAC). (A) The
top trace shows the respiration signal (Resp) recorded from a mouse through whole-body
plethysmography. The bottom traces show OB and PAC LFPs recorded simultaneously (black)
along with their band-pass (3-5 Hz) filtered components (gray). (B) Top panels show the power
spectra for Resp and LFP signals, as labeled. The bottom panel shows the phase coherence
spectrum computed between the PAC and OB LFPs, as well as between PAC LFP and Resp.
Notice prominent power and coherence peaks at the same frequency as respiration, which
hallmark respiration-coupled oscillations [26]. Data in A-B from the same representative,
awake mouse during immobility (epoch length: 20 seconds). Ex: expiration; In: inspiration.
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Figure 2. Laminar profile of respiration-coupled LFP oscillations. (A) Histological section
showing a linear probe track. (B) Respiration signal (Resp, top) and LFPs (bottom) from two
recording locations in an immobile animal. (C) Corresponding power spectra (top) and LFP-
Resp coherence (bottom) for each recording location. Notice lower coherence at the deepest
location from the brain surface. (D) Amplitude-depth profile of respiration-coupled oscillations
(see Methods). (E, F) Normalized RR amplitude (E) and coherence to respiration (F) across
recording depths. D-F depict average over 10 mice; errorbars denote SEM; gray lines show
data from individual animals. Ex: expiration; In: inspiration; Ch: channel; RR: respiration-
entrained LFP rhythm.
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Figure 3. Theta and respiration-coupled oscillations have different laminar profiles. (A) Top
traces show respiration and simultaneously recorded LFPs from two cortical depths during
REM sleep. The middle panel shows the corresponding power spectra. Notice larger theta
power in the deepest channel and similar LFP power levels at the respiration frequency. The
bottom panel depicts LFP-Resp coherence for the same channels. Notice that coherence to
respiration is lower in the deepest channel. (B) Amplitude-depth profile of RR (top) and theta
(bottom). (C) Normalized amplitude of RR (top) and theta (bottom) across recording depths.
(D) Coherence to the most superficial channel at respiration (top) and theta (bottom)
frequency. B-D depict average over 10 mice; errorbars denote SEM; gray lines show data from
individual animals. Ex: expiration; In: inspiration; Ch: channel; RR: respiration-entrained LFP
rhythm.
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Figure 4. Respiration competes with theta for modulating parietal cortex neurons. (A) Left:
traces show a juxtacellular recording of a PAC neuron (top), along with the respiration (Resp,
middle) and LFP (bottom) signals recorded simultaneously in a urethane-anesthetized mouse.
Right: the top panel shows power spectra for Resp and PAC LFP. Notice in the LFP spectrum a
power peak at the same frequency as respiration and a second power peak corresponding to
urethane-induced theta (0) activity. The middle panel shows spiking probability per respiration
phase and the bottom panel per theta phase. Notice that this example neuron was modulated
by respiration but not theta. (B) Same as in A, but for a juxtacellularly recorded unit modulated
by theta only. (C) Left: proportion of neurons modulated only by theta, only by respiration, by
both rhythms or by neither rhythm, shown separately for recording locations above and below
400 um from cortical surface. Respiration modulates a greater proportion of neurons at more
superficial recording sites (x?, p<0.05), while the proportion of units modulated by theta is not
significantly different. Right: same as before, but for neurons recorded after tracheotomy. The
proportion of units modulated by theta significantly increases at both superficial and deep
locations. (D) Spike-phase coupling strength (R) vs the mean spiking phase for Resp (top), and
theta before (middle) and after (bottom) tracheotomy. Ex: expiration; In: inspiration.
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Figure 5. Respiration-coupled oscillations can be detected intracellularly and are likely to
depend on GABAergic synapses. (A) Membrane potential (MP) of a PAC neuron
simultaneously recorded with respiration in a urethane-anesthetized mouse (recording depth:
269 um). Superimposed gray trace shows the low-pass (<10 Hz) filtered MP. Notice MP
oscillations coupled to breathing cycles. (B) Left panels show power spectra for MP, PAC LFP
and Resp. Notice that the MP exhibits only one power peak, which corresponds to RR, while
the LFP also exhibits a second power peak which corresponds to theta. The right panels show
phase coherence spectra for all pairwise combinations. Notice in all cases power and
coherence peaks at the same frequency as respiration. (C) Scatter plot of intracellular RR
amplitude vs MP for the same example cell. Notice reduction of RR amplitude at more
hyperpolarized potentials. (D) Pooled scatter plot of RR amplitude vs MP, expressed as z-score
units (data from 6 PAC neurons exhibiting intracellular RR). Ex: expiration; In: inspiration; RR:
respiration-entrained MP rhythm.
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Figure 6. Anterior cingulate cortex may be a source of respiration-coupled activity in the
parietal cortex. (A) Left: schematic depicting the injection of rabies virus or retrobeads into the
posterior parietal cortex. The middle and right panels show retrogradely labeled neurons in
frontal cortex (AP: +0.14 mm) through either method (middle: rabies virus; right: retrobeads).
Notice labeled neurons in the cingulate cortex (Cg1), which has been previously shown to
exhibit prominent respiration-coupled oscillations [25]. (B) Left traces show average evoked
response potentials (ERP) across the parietal cortex following electrical stimulation of the
anterior cingulate cortex (ACC) in awake immobile mice. The middle and right panels show the
average ERP and associated average current source density (CSD) in pseudocolor scale (n=6
mice). Notice an earlier fast component at more superficial sites followed by a slower response
in deeper sites. AP: anteroposterior; ML: mediolateral; DV: dorsoventral.
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Figure 7. The anterior cingulate cortex modulates spiking activity in the parietal cortex. (A)
Top: Peristimulus time histogram for a single neuron in the parietal cortex (PAC) relative to
electrical stimulation (down arrow) of the anterior cingulate cortex (ACC). Notice that ACC
stimulation leads to a sharp increase in neuronal activity followed by suppression. The bottom
trace shows the intracellular recording of this example PAC neuron during one stimulation
trial. (B) The left traces show examples of an antidromic (top) and an orthodromic (bottom)
spike in PAC following ACC stimulation (down arrow). The right panel depicts the latency to the
first spike following ACC stimulation according to the recording depth. Putative antidromic
spikes (latency < 2 ms, shown in red) were only found in deep PAC layers. (C) Example of a PAC
neuron highly excited (top) and a PAC neuron highly inhibited (bottom) following ACC
stimulation (down arrow).
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