

1 **Greater capacity to exploit warming temperatures in northern**
2 **populations of European beech is partly driven by delayed leaf**
3 **senescence**

4 Homero Gárate-Escamilla¹, Craig C. Brelsford², Arndt Hampe¹, T. Matthew Robson² & Marta
5 Benito Garzón^{1*}.

6 ¹BIOGECO INRA UMR 1202 University of Bordeaux, Pessac, 33400, France

7 ²Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of
8 Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, Finland 00014.

9 *Corresponding author:

10 marta.benito-garzon@inra.fr

11 BIOGECO UMR 1202, INRA - Université de Bordeaux, Bat B2

12 Allée Geoffroy-St-Hilaire, CS50023

13 33615 Pessac Cedex

14

15

16

17

18

19

20

21

22 **Abstract**

23 One of the most widespread consequences of climate change is the disruption of trees' phenological cycles. The extent to which tree phenology varies with local climate is largely genetically determined, and while a combination of temperature and photoperiodic cues are typically found to trigger bud burst (BB) in spring, it has proven harder to identify the main cues driving leaf senescence (LS) in autumn. We used 925 individual field-observations of BB and LS from six *Fagus sylvatica* provenances, covering the range of environmental conditions found across the species distribution, to: (i) estimate the dates of BB and LS of these provenances; (ii) assess the main drivers of LS; and (iii) predict the likely variation in the growing season length (GSL; defined by BB and LS timing) across populations under current and future climate scenarios. To this end, we first calibrated linear mixed-effects models for LS as a function of temperature, insolation and BB date. Secondly, we calculated the GSL for each provenance as the number of days between BB and LS. We found that: i) there were larger differences among provenances in the date of LS than in the date of BB; ii) the temperature through September, October and November was the main determinant of LS in beech, although covariation of temperature with daily insolation and precipitation-related variables suggests that all three variables may affect LS timing; and iii) GSL was predicted to increase in northern beech provenances and to shrink in populations from the core and the southern range under climate change. Consequently, the large differences in GSL across beech range in the present climate are likely to decrease under future climates where rising temperatures will alter the relationship between BB and LS, with northern populations increasing productivity by extending their growing season to take advantage of warmer conditions.

44 Key words (4-6): *Fagus sylvatica*, spring phenology, autumn phenology, environmental factors,
45 provenance effect, climate change

46

47 **1 Introduction**

48 Plants are changing their phenological cycles in response to current climate change (Chmura et
49 al. 2018). Generally, these changes involve a combination of advances in spring leaf phenology
50 and delays in autumn leaf phenology (Gallinat et al. 2015; Piao et al. 2015; Yang et al. 2017),
51 resulting in a longer growing season (Walther et al. 2002; Estiarte and Peñuelas 2015) and
52 potentially increasing forest net ecosystem productivity (NEP) (Way and Montgomery 2015).
53 Phenological responses to environmental cues are to a large extent genetically determined in
54 trees (Liang 2019). Numerous studies along elevational gradients and experiments in common-
55 garden have found bud burst (BB) in populations of different origin to occur at different dates in
56 many tree species (Vitasse et al. 2013; Dantec et al. 2015; Sampaio et al. 2016; Kramer et al.
57 2017; Cooper et al. 2018). Leaf senescence (LS) has been less widely studied in such settings,
58 but it also differs inherently among populations of *Betula pubescens* (Pudas et al. 2008),
59 *Fraxinus americana* (Liang 2015), *Populus balsamifera* (Soolanayakanahally et al. 2013),
60 *Populus deltoides* (Friedman et al. 2011), *Populus tremula* (Michelson et al. 2018; Wang et al.
61 2018) and *Populus trichocarpa* (Porth et al. 2015). However, it is not yet clear to what extent the
62 genetic determinism and the environmental cues of BB match those in LS, and how the interplay
63 of BB and LS drives among-population variation in growing-season length (GSL) (Signarbieux
64 et al. 2017).

65 Extensive research has identified cold winter temperatures (i.e., chilling requirements)
66 and accumulated spring temperatures (i.e., forcing requirements) as the main drivers of BB;

67 sometimes coupled with photoperiod (Basler and Körner 2014; Fu et al. 2015) (Fig. 1). The
68 major drivers of LS have been more difficult to identify (Gallinat et al. 2015; Brelsford et al.
69 2019). A recent meta-analysis showed that summer and autumn temperatures, precipitation and
70 photoperiod can all affect LS (Gill et al. 2015). Generally, temperature tends to be predominant
71 at lower latitudes (Pudas et al. 2008; Lang et al. 2019), whereas photoperiod is more important at
72 higher latitudes (Soolanayakanahally et al. 2013; Lang et al. 2019) (Fig. 1). Yet temperature
73 effects on LS are not straightforward: increasing summer and autumn temperatures and even
74 moderate drought can delay LS (Xie et al. 2015), whereas severe drought tends to promote
75 earlier LS (Chen et al. 2015; Estiarte and Peñuelas 2015), (Fig. 1). Finally, high insolation may
76 also delay LS (Liu et al. 2016a) (Fig. 1). The complex nature of the environmental triggers of LS
77 has to-date hampered attempts to understand the causes of its variation across large geographical
78 scales (Chmura et al. 2018). This uncertainty makes it very difficult to estimate GSL across
79 species ranges. Recent studies based on *in-situ* records and satellite data have shown positive
80 correlations between the timing of BB and LS that tend to stabilize GSL across populations
81 (Keenan and Richardson 2015; Liu et al. 2016b). But this is not a universal finding and the
82 extent to which GSL can change depends on the combination of many factors, as explained in
83 Fig. 1.

		GSL			
Reference	EV	BB _R	LS _R	EV	Reference
(Gárate-Escamilla <i>et al.</i> , 2019; Ibáñez <i>et al.</i> , 2010; Signarbieux <i>et al.</i> , 2017; Yang <i>et al.</i> , 2017)	↑ Twin/spr			↑ Tsum/aut	(Ibáñez <i>et al.</i> , 2010; Yang <i>et al.</i> , 2017; Fu <i>et al.</i> , 2018)
	↓ Twin/spr			↓ Tsum/aut	
(Basler & Körner, 2012; Gauzere <i>et al.</i> , 2017; Malyshev <i>et al.</i> , 2018)	↑ Phot			↑ Phot/In	(Liu <i>et al.</i> , 2016a)
	↓ Phot			↓ Phot/In	(Cooke <i>et al.</i> , 2012)
(Basler & Körner, 2014; Vitasse <i>et al.</i> , 2017; Malyshev <i>et al.</i> , 2018)	↑ Chill			↑ Psum	(Zu <i>et al.</i> , 2018)
	↓ Chill			↑ Drou	(Wu <i>et al.</i> , 2018)

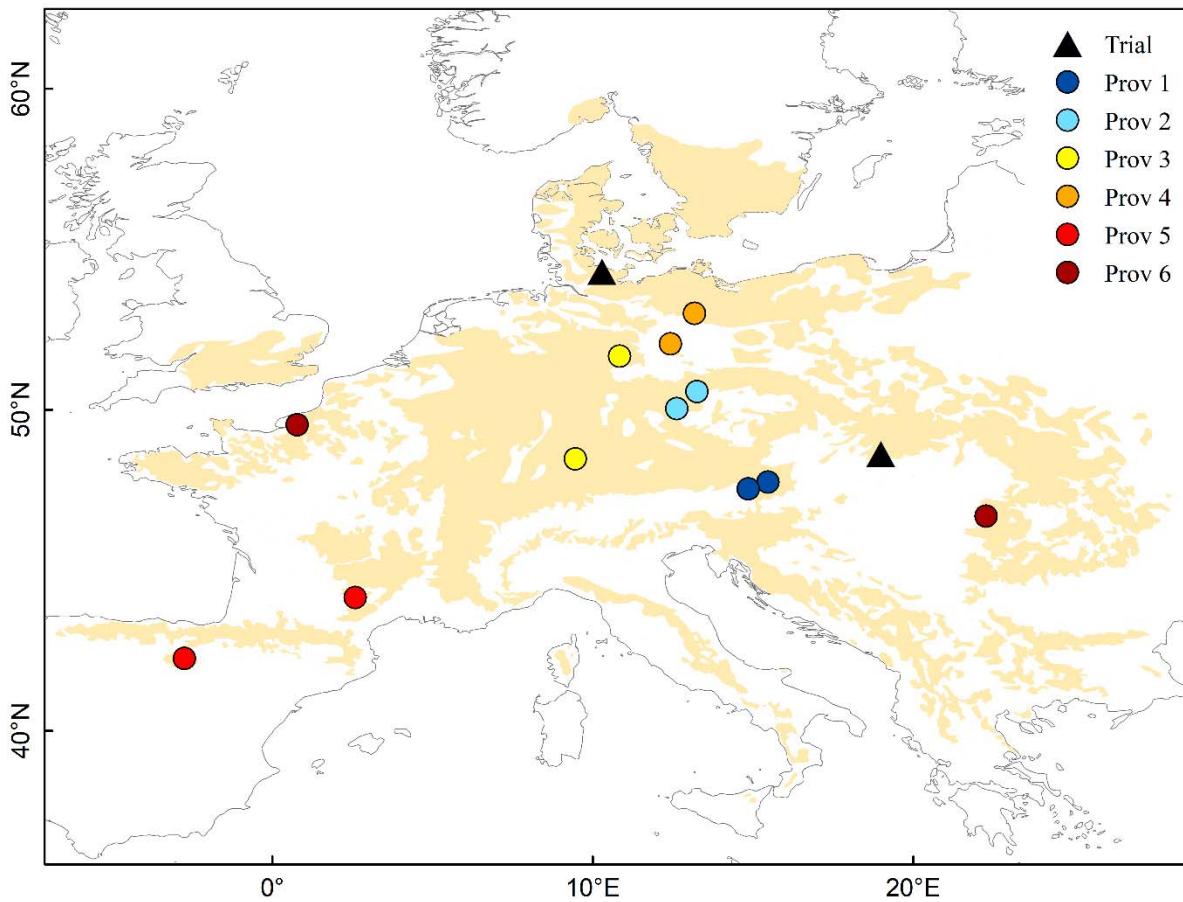
84

85 **Figure 1.** Environmental drivers of growing season length through their effects on bud burst and
 86 leaf senescence. GSL: growing season length; EV: environmental variables; BB_R: bud burst
 87 response; LS_R: leaf senescence response; Twin/spr: winter and spring temperatures; Tsum/aut:
 88 summer and autumn temperatures; Phot: photoperiod; In: insolation; Chill: chilling requirements;
 89 Psum: summer precipitation; Drou: drought; Columns EV: up arrow: increase in the
 90 environmental variable; down arrow: decrease in the environmental variable; Columns BBR and
 91 LSR: left arrow: early bud burst/leaf senescence; right arrow: delayed bud burst/leaf senescence;
 92 Green color and green leaf: Ref, EV related to bud burst and BBR; Orange color and orange leaf:
 93 Reference, EV related to leaf senescence and LSR. All the combinations of bud burst and leaf
 94 senescence responses defining the growing season length are possible.

95

96 *Fagus sylvatica* L. (European beech, henceforth “beech”) is one of the most dominant
 97 and widespread broadleaf forest trees in Europe (Preston and Hill 1997) of high ecological and

98 economic importance (Packham et al. 2012). In beech, BB responds to a combination of chilling
99 and forcing temperature requirements (Heide 1993; Falusi and Calamassi 2012; Kramer et al.
100 2017), and to photoperiod (Heide 1993; Caffarra and Donnelly 2011; Basler and Körner 2012),
101 with the strength of these drivers changing along environmental gradients. For instance, BB is
102 more affected by photoperiod in colder populations, and by chilling requirements in warmer
103 populations (Gárate-Escamilla et al. 2019). Studies of LS in beech suggest that: (i) temperature
104 may be a more important cue than photoperiod when nutrients and water are not limiting (Fu et
105 al. 2018); (ii) non-senescent green leaves are prematurely lost as a result of severe drought
106 conditions (Bréda et al. 2006); (iv) early BB correlates with early LS (Fu et al. 2014; Chen et al.
107 2018; Zohner et al. 2018); (v) leaves first start to change color in autumn from the upper part of
108 the canopy, suggesting that hydraulic conductance or the amount of solar radiation received over
109 the growing season may play a role in triggering LS (Gressler et al. 2015; Lukasová et al. 2019),
110 although this could also be related to an hormonal effect (Zhang et al. 2011).


111 Here, we investigate BB and LS in six different beech populations (925 trees) planted in
112 two common gardens in central Europe (Robson et al. 2018), and use this information to infer
113 how range-wide patterns of beech GSL might evolve under future climate warming. Specifically,
114 we attempt to: (i) estimate the dates of BB and LS, and how they differ among populations; (ii)
115 assess the main drivers of LS; and (iii) predict GSL and how it would vary across populations
116 under current and future climate.

117

118 **2 Materials and Methods**

119 **2.1 Field trials and provenances**

120 Spring and autumn phenological observations came from two common-garden field-trials
121 (hereafter “trials”), located in Schädtbek (54.30°N, 10.28°E), Germany and Tále, Mláčik,
122 Slovakia (48.62°N, 18.98°E) (henceforth termed “Germany” and “Slovakia” trials, respectively).
123 These trials were planted with seeds collected from 38 populations (hereafter referred to as
124 “provenances”) that roughly cover the entire range of beech (Fig. 2). Seeds were germinated in
125 greenhouses and planted in the trials when two years old, in 1995 (Germany) and 1998
126 (Slovakia) (details given in Robson et al. 2018). To maintain a balanced design, we used only six
127 provenances from each of the two trials (Supplementary Table S1, Fig. 2), chosen in pairs based
128 on their similar climatic origin (Pearson correlation $r \geq 0.98$). The provenances were ranked from
129 colder (1) to warmer (6) origins (Fig. 2). Trees growing in Germany were measured at an age of
130 12 and 13 years old, those in Slovakia at 11 and 12 years old (Table S1).

131

132 **Figure 2.** Geographical distribution of beech provenances (colored circles) and trials (triangles)
133 underlying this study. Beige shading indicates the distribution range of beech. The different
134 colors of the provenance circles indicate the pairs of similar provenances selected from each trial
135 (blue colors indicate cold and red colors warm provenances as defined in Table S1).

136

137 **2.2 Estimation of bud burst, leaf senescence and growing season length**

138 We transformed the observational stages (phenophases), and score data (qualitative
139 measurements) for BB and LS to Julian days by fitting the phenophases (Fig. 3; Table S2 and
140 S3) for each tree in every trial using the Weibull function (Robson et al. 2011; Gárate-Escamilla

141 et al. 2019). These data were used to obtain the day of the year (DOY) when BB was attained in
142 spring (stage 2.5; Fig. 2; Robson et al. 2013) and at the stage at which 50% of the trees' leaves
143 had changed color from green to yellow (stage 3; Fig. 2; (Lang et al. 2019)). We calculated the
144 GSL for each tree as the number of days between the estimated dates of BB and LS (Estiarte and
145 Peñuelas 2015).

146

147 **2.3 Environmental data**

148 To separate the effects of the provenance (genetic effects) to those of the trial (environmental
149 effects), we used the average climate from 1901 to 1990 for each provenance and the average
150 climate of the period between the planting year and the year of measurement for the trial (Leites
151 et al. 2012) in our models. We used the following precipitation- and temperature-related
152 variables from EuMedClim (Fréjaville and Benito Garzón 2018): precipitation of driest month,
153 (BIO14, mm), precipitation (P, mm) of June, July and August (JJA), minimal (Min) monthly
154 water balance (PPET, mm), and mean temperature (Tm, °C) of June, July and August (JJA) and
155 September, October and November (SON). In addition, we used daily insolation, a function of
156 day length and solar irradiance (Yeang 2007). We downloaded daily insolation data from the
157 NASA Atmospheric Science Data Center (<https://power.larc.nasa.gov/data-access-viewer/>), and
158 we calculated solar radiation (direct and diffuse) between 400-2700 nm incoming on a horizontal
159 surface for a given location. We calculated the mean daily insolation (DIM, kWh m⁻² d⁻¹)
160 between the months of June, July and August (JJA) and September, October and November
161 (SON). As with the climatic variables, we characterized the DIM of the trial as the average
162 between the planting year and the year of measurement. Because the insolation data series from
163 the NASA Atmospheric Science Data Center begins in July 1983, we characterized the DIM of

164 the provenance as the average between 1984 and 1990 for JJA, and between 1983 and 1990 for
165 SON.

166 We used the 2070 Representative Concentration Pathway (RCP) 8.5 GISS-E2-R
167 (http://www.worldclim.org/cmip5_30s) scenario for GSL predictions under future climate. We
168 deliberately chose only this pessimistic scenario because, for long-lived organisms such as forest
169 trees, it makes little difference whether the projected situation will be reached in 2070 or some
170 decades later.

171

172 **2.4 Statistical analysis**

173 We used a model of BB already calibrated for the same set of trials and provenances (Gárate
174 Escamilla et al. 2019). We then performed a linear mixed-effects model for LS as a function of
175 the combination of environmental variables with BB date as a co-variate. Environmental
176 variables were selected individually to account for separate trial and provenance effects. Our
177 model allowed us to: (i) estimate the date of LS for each of the six pairs of provenances; (ii)
178 compare the date of LS with the date of BB that was already modelled following a similar
179 methodology (Garate Escamilla et al. 2019); (iii) calculate GSL for each provenance; and (iv)
180 perform spatial predictions of BB, LS and GSL under current and future climate scenarios.

181

182 **2.4.1 Environmental variable selection**

183 To avoid co-linearity and reduce the number of variables to test in our models, we only retained
184 weakly correlated variables ($-0.5 < r < 0.5$) for modeling purposes. The full correlation matrix
185 between all variables is provided in Fig. S2.

186

187 2.4.2 Linear mixed-effects model of leaf senescence

188 We performed a series of linear mixed-effects models of LS as a function of environmental
189 variables from the trial and the provenances, with BB as a co-variable (Equation 1). Each model
190 included one environmental variable from the provenance, one environmental variable from the
191 trial site and BB as fixed effects. The trial, blocks nested within the trial, individual trees and
192 provenances were included as random effects; to control for differences among sites and for
193 repeated measurements of the same tree. The general form of the LS model was:

$$\log(LS_{ijk}) = \alpha_0 + \alpha_1(EP_{ij}) + \alpha_2(ET_{ik}) + \alpha_3(BB_{ik}) + \alpha_4(EP_{ij} \times ET_{ik}) + \alpha_5(EP_{ij} \times BB_{ik}) \\ + \alpha_6(ET_{ik} \times BB_{ik}) + \beta + \varepsilon$$

194 (Equation 1)

195 Where LS = leaf senescence of the i^{th} individual of the j^{th} provenance in the k^{th} trial; EP =
196 environmental variable that characterized the provenance site of the i^{th} individual of the j^{th}
197 provenance; ET = environmental variable that characterized the trial site of the i^{th} individual in
198 the k^{th} trial; BB = bud burst of the i^{th} individual in the k^{th} trial; β = random effects and ε =
199 residuals. In addition, the model included the following interaction terms: EP \times ET, EP \times BB,
200 and ET \times BB. EP \times ET, interactions represent differences in LS values that can be attributed to
201 the interactions between genetic (provenance) and environmental (site) effects. EP \times BB and ET

202 \times BB interactions represent the effects of the provenance on LS related to BB and the effects of
203 the site related to BB.

204 LS models were fitted with the ‘lmer’ function of the package ‘lme4’(Bates et al. 2018),
205 within R statistical framework version 3.2.0 (R Development Core Team 2015). To choose the
206 best supported model, we followed a stepwise-model procedure: (i) we selected the most
207 important variable related to the trial by comparing a series of models that included one
208 environmental variable for the trial and BB, and then selected the best model using the Akaike
209 information criterion (AIC) with criteria delta < 2 (Mazerolle 2006), and the variance explained
210 by the fixed effects, marginal R^2 (Supplementary Table S4); (ii) we chose the optimal random
211 component of the model by comparing the battery of models that included different
212 combinations of random effects, the previously selected environmental variable from the trial
213 and BB using restricted maximum likelihood (REML), and selected using the AIC criterion; (iii)
214 we retained the best environmental variable related to the provenance comparing the models that
215 included one environmental variable from the provenance, the selected variable from the trial,
216 the BB, the interaction between the three variables and the random terms using maximum
217 likelihood (ML) using the AIC criterion (Supplementary Table S4); (iv) we combined the best
218 optimal random and fixed components (previously selected) and adjusted them using REML to
219 obtain the best performing model.

220 The goodness of fit of the final models was assessed using two approaches. First, we
221 quantified the percentage variance explained by the model attributed to the fixed effects
222 (marginal R^2) and attributed to the fixed and random effects (conditional R^2). Second, we
223 measured the generalization capacity of the model using cross-validation with independent data.

224 To this end, we calibrated the model with 66% of the data and performed an independent
225 validation (using Pearson correlations) with the remaining 34% of the data.

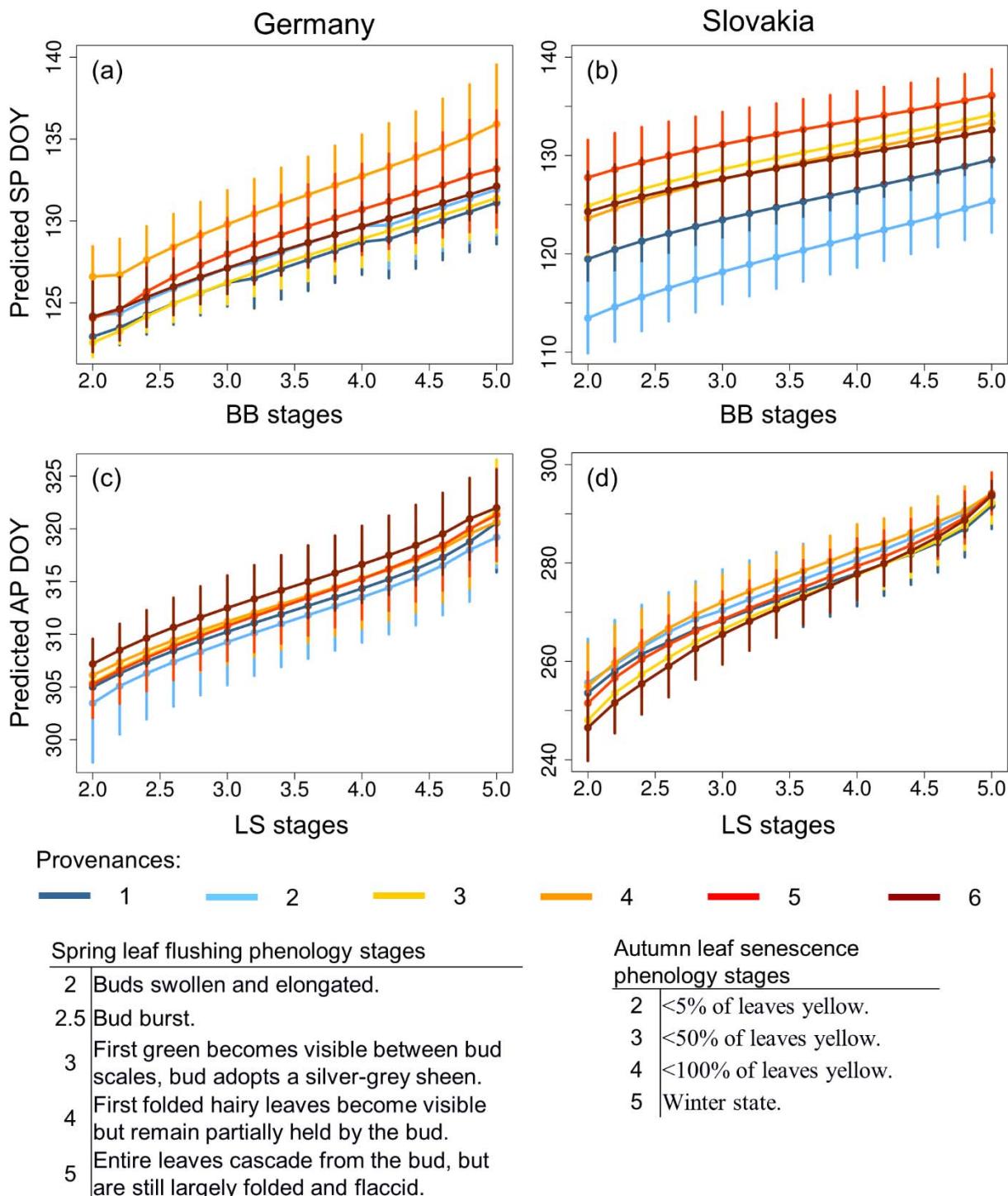
226

227 2.4.3 Interactions of leaf senescence with bud burst, and environmental variables

228 For the best LS supported model, we analyzed the significant interactions (EP \times ET, EP \times BB,
229 ET \times BB in Equation 1) between LS and the environment (ET; represented by one environmental
230 variable of the trial) and according to provenances showing early, mean and late BB. We also
231 inspected gradients of GSL for the six populations by plotting GSL against the environmental
232 variable of the trial selected in the model (ET) and population under current conditions. We
233 predicted the date of LS for the future climate scenario RCP 8.5 using our LS model and the date
234 of BB for the same provenances, achieved using our BB model (Gárate-Escamilla et al. 2019),
235 and plotted the predicted future GSL against ET, for each of the populations.

236

237 2.4.4 Spatial predictions


238 Spatial projections of LS were calculated using our LS model, and predictions of GSL were
239 calculated by subtracting the predicted BB from LS for both current and future climatic
240 conditions across the species range. All spatial predictions were delimited within the distribution
241 range of the species (EUFORGEN 2009). Spatial analyses were performed with the ‘raster’
242 package in R (Hijmans et al. 2017).

243

244 **3 Results**

245 **3.1 Estimation of bud burst and autumn leaf senescence dates from field observations**

246 In both trials, differences among provenances were larger for spring leaf flush stages (including
247 bud burst; Fig. 3a & b) than for autumn leaf senescence stages (including 50% yellow leaves;
248 Fig. 3c & d). Although these differences were always statistically significant, they were bigger in
249 the Slovakian trial than in the German one (Fig. 3, Table S2 and S3). Differences in the predicted
250 DOY of spring leaf flush and autumn leaf senescence stages were found for the two different
251 years of measurement in the Slovakian trial (Figs. 3b & d; S1a &b). We used the fitted data to
252 extract the DOY for the flushing stage 2.5 (bud burst, BB) and the senescence stage 3 (= 50% of
253 leaves yellow, LS) for each provenance (Tables S2 and S3).

254

255 **Figure 3.** Predicted spring bud burst and autumn leaf senescence phenology days of the year
 256 (DOY) against the observational stages recorded in the field for the two trials. SP: spring bud
 257 burst phenology; AP: autumn leaf senescence phenology. Provenance colors range from dark

258 blue (cold origin) to dark red (warm origin) for the provenances in the two trials (Figure 1 &
259 Table S1). The spring leaf flushing and autumn leaf senescence stages are described in the lower
260 part of the figure. The phenology stages were recorded in the year 2006 in Germany and 2008 in
261 Slovakia.

262

263 **3.2 Variable selection and best model selection**

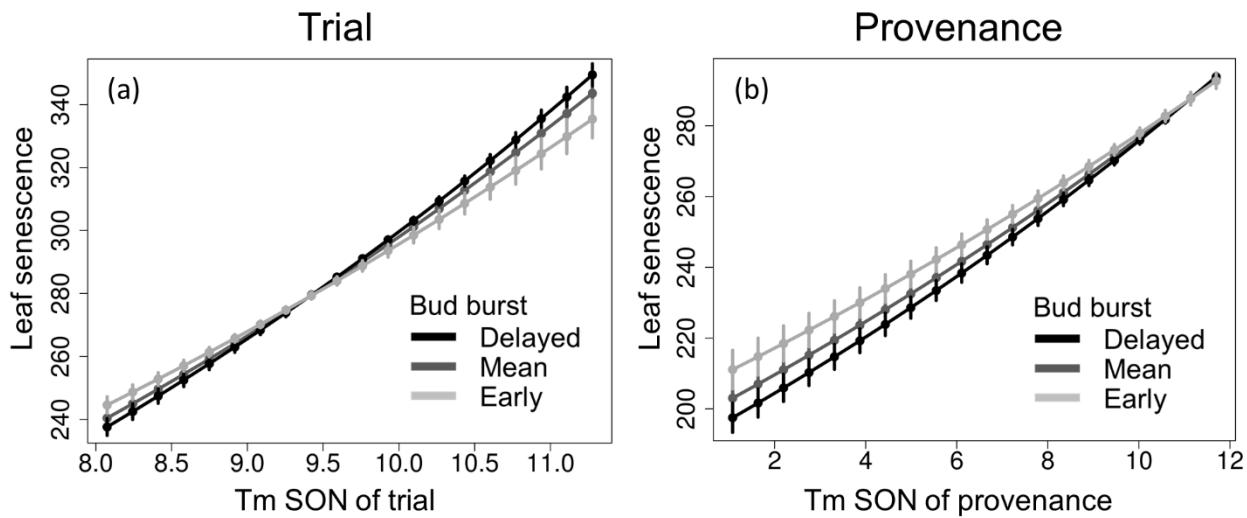
264 Our inspection of climate variables revealed that: (i) provenance and trial variables were not
265 correlated with each other; (ii) temperature (TmJJA and TmSON)- and precipitation (BIO14,
266 PpetMin and PrecJJA)-related variables for the provenances were correlated, whilst daily
267 insolation (DIMJJA and DIMSON) variables for the provenances were only correlated with the
268 latitude (Lat) of the provenances; (iii) all the trial variables were correlated among themselves;
269 and (iv) the BB co-variable was not correlated with the rest of variables (Fig. S2).

270 In view of these results, we retained daily insolation (DIMJJA and DIMSON) and
271 temperature-(TmJJA and TmSON)-related variables for the provenances, all climate variables
272 from the trials, and BB as predictors for our models of LS. The best model according to AIC
273 criteria (Tables S4 and S5) used the mean temperature in September, October and November
274 (Tm SON) of the trial and of the provenance, and BB as a co-variable (Table 1 and Table S4).

275

Model	Leaf senescence		
	Linear Mixed Effect		
	Random Effects		
	Obs	Variance	SD
Provenance	12	3.33E-05	5.77E-03
Trial	2	2.39E-02	1.55E-01

Trial:Block	6	9.73E-06	3.10E-03
Tree	925	1.88E-04	1.37E-02
Residuals		2.34E-04	1.53E-02
Fixed Effects			
	Estimate	SE	<i>t</i>
Intercept	5.62E+00	1.10E-01	51.16
BB	-8.18E-04	9.91E-05	-8.25
Tm SON_T	2.88E-02	1.43E-02	2.02
Tm SON_P	2.61E-02	8.10E-03	3.23
BB x Tm SON_T	5.97E-04	9.61E-05	6.21
BB x Tm SON_P	-1.96E-04	6.60E-05	-2.97
	<i>r</i>	R^2 M	R^2 C
	0.92	0.52	0.99

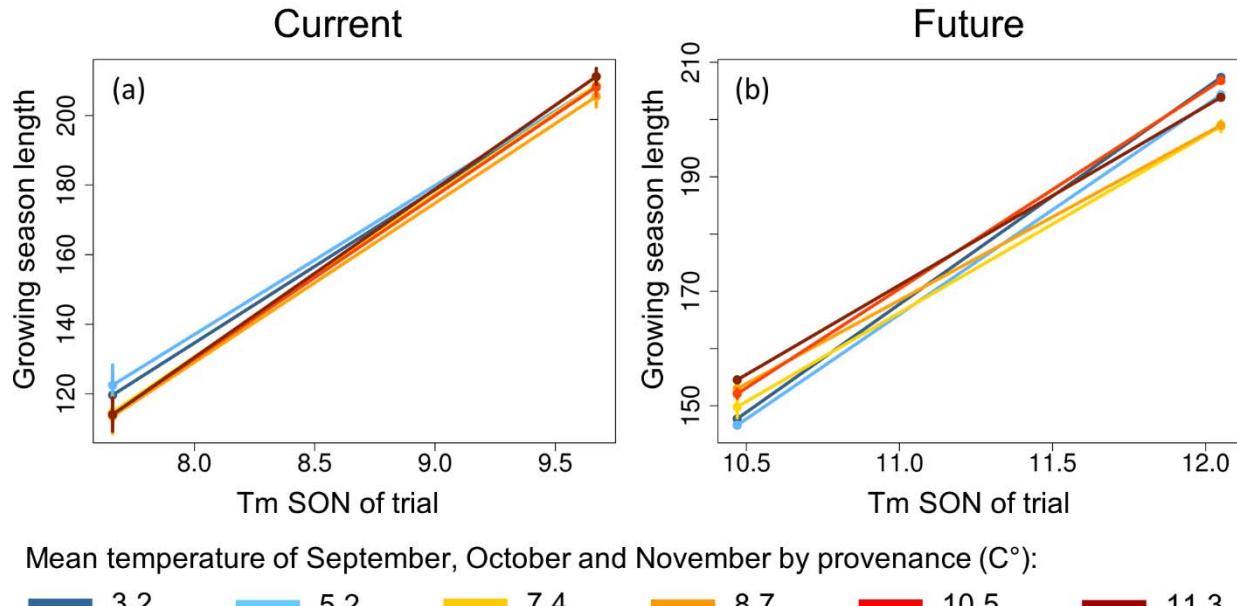

276

277 **Table 1.** Statistics from linear mixed-effects models of leaf senescence. Obs: number of trait
278 measurements; Variance: variance explained by the random effects; SD: standard deviation of
279 each level of random effects; Estimate: coefficient of the regression, shown on a logarithmic
280 scale; SE: standard error of each fixed variable; *t*: Wald statistical test that measures the point
281 estimate divided by the estimate of its SE, assuming a Gaussian distribution of observations
282 conditional on fixed and random effects. Fixed effects: Coefficients of the fixed effects of the
283 model; BB: bud burst; Tm SON_T: mean temperature of September, October and November of
284 the trial; Tm SON_P: mean temperature of September, October and November of the
285 provenance. Coefficients of the interactions: BB x Tm SON_T and BB x Tm SON_P. *r*: Pearson
286 correlation; R^2 M: percentage of the variance explained by the fixed effects (Marginal variance);
287 R^2 C: percentage of the variance explained by the random and fixed effects (Conditional
288 variance).

289

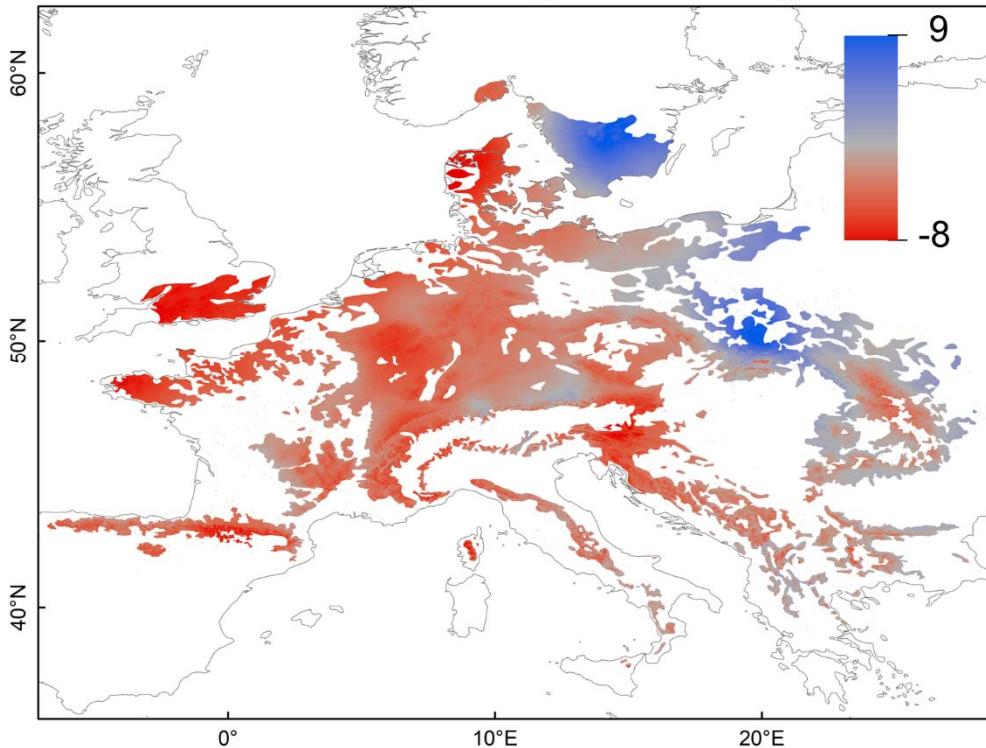
290 **3.3 Leaf senescence model**

291 LS differed among the provenances and between the two trials. These differences were explained
292 by the Tm SON of the trial and provenance, as well as BB (Table 1). Interactions between BB
293 and Tm SON of the trial and provenance were also significant (Table 1). Late BB timing was
294 related to higher Tm SON of the trial and provenances (Fig. 4). Late LS was related to late BB at
295 high Tm SON of the trial, whilst at low trial TM SON the opposite effect occurred (Fig. 4a). Late
296 LS was related to early BB irrespective of Tm SON of the provenance (Fig. 4b). The marginal R^2
297 was 52%, while the conditional R^2 was 99% (Table 1). The capacity for generalization from the
298 model was $r = 0.92$ (Table 1).



300 **Figure 4.** Interaction between leaf senescence and the mean temperature in September, October
301 and November (Tm SON) in the (a) trial and for the (b) provenance. Leaf senescence is given in
302 Julian days, and Tm SON in °C. The black line represents delayed bud burst, the dark gray mean
303 bud burst dates and the light gray early bud burst. The error bars represent the 95% confidence
304 intervals.

306 **3.4 Determinants of growing season length under current and future climates**


307 GSL greatly increased with higher temperatures in September, October and November in the
308 trials, although the strength of this effect depended on the origin of the provenances (Fig. 5).
309 Specifically, this increase in GSL was greatest for cold provenances (3.2-5.2 C°), which have
310 their longest GSL under cold conditions (7.5-8.5 C°) at the trials in the current climate (Fig. 5a).
311 In this two specific trials, GSL differed more among provenances under future than under current
312 autumn temperatures (Fig. 5b). The longest GSL under future conditions was predicted at high
313 trial temperatures (11.5-12 C°) for the warm (10.5-11.3 C°) and cold (3.2-5.2 C°) provenances,
314 whilst at low trial temperatures (10.5-11 C°), the longest GSL was predicted for warmer (10.5-
315 11.3 C°) provenances (Fig. 5b).

316 When we extrapolate our models for the examined 2070 climate scenario, GSL is predicted to
317 increase up to 9 days in the northern-east of the range (Fig. 6). Decreases of GSL up to 8 days
318 are predicted for much of the range including the central, southern, western and eastern areas;
319 little or no change in GSL is predicted for the south-eastern-most range (Fig. 6).

320
321 **Figure 5.** Interaction between growing season length and the mean temperature of September,
322 October and November (Tm SON) of the trial, for (a) current climatic conditions (year of
323 measurement minus year of plantation) and (b) the future climate scenario (RCP 8.5 for 2070).
324 The color gradient depicts the clinal variation from cold (blue) to warm (red) provenances (Tm
325 SON). Growing season length is represented in days. The error bars represent the 95%
326 confidence intervals.
327

Differences in growing season length

328

329 **Figure 6.** Spatial projections for growing season length: differences between current and future
330 climate conditions. Growing season length is the difference between leaf flushing and leaf
331 senescence spatial predictions (Figure S4). The color gradient depicts the number of days
332 difference in growing season length between current (average climate calculated from 2000-
333 2014) and future conditions (2070, RCP 8.5) from strong decrease (red) to strong increase (blue).

334

335 **4 Discussion**

336 4.1 Provenance differences in bud burst and autumn leaf senescence

337 The origin of beech populations is a major determinant of the timing of their leaf spring and leaf
338 autumn phenology (Table 1), which confirms their genetic differentiation in the control of

339 phenology (Chmura and Rozkowski 2002; Petkova et al. 2017, Alberto et al. 2013). This
340 differentiation is often stronger for spring phenology than for autumn phenology (Vitasse et al.
341 2009; Weih 2009; Firmat et al. 2017; Petkova et al. 2017), which is in agreement with what we
342 found in our beech provenances (Fig. 3a & b). The duration of autumn leaf senescence is longer
343 than that of leaf flushing in beech (Fig. 3, Table S2, S3) (Gömöry and Paule 2011; Petkova et al.
344 2017), whereas other temperate broadleaf species such as *Salix spp.* and *Quercus petraea* have a
345 relatively long period of leaf-out and relatively abrupt autumn leaf senescence (Weih 2009;
346 Firmat et al. 2017). Although the dates of spring and autumn leaf phenological stages varied
347 between the two years of our study, the same response-patterns persisted in both years (Figs. 3
348 and S1), suggesting a consistent effect of environmental conditions on the trials (Weih 2009;
349 Friedman et al. 2011; Petkova et al. 2017). Our results also revealed larger differences among
350 populations for both BB and LS in the Slovakian trial than in the German one (Fig. 3),
351 confirming that, in addition to genetic effects, the environment plays an important role in the
352 phenological response of beech (Vitasse et al. 2013; Gárate-Escamilla et al. 2019).

353

354 4.2 Environmental variables defining leaf senescence

355 Overall, our results support the assertions that (1) high autumn temperatures, of the provenance
356 and at the planting site, delay LS in beech, and (2) early BB tends to be followed by early LS
357 (Table 1). The delayed LS promoted by warmer temperatures, that we obtained by manipulating
358 both genetic and site factors using common-garden trials (Fig. 4), is consistent with previous
359 studies based on *in-situ* LS records (Delpierre et al. 2009; Vitasse et al. 2011), satellite data
360 (Yang et al. 2015; Liu et al. 2016a) and climate-controlled chambers (Gunderson et al. 2012; Fu
361 et al. 2018). While the convergence of these studies is reassuring, the extent to which warmer

362 temperatures promote delayed LS still remains elusive (Estiarte and Peñuelas 2015): warmer
363 temperatures accompanied by moderate drought appear to delay LS until a certain threshold (Xie
364 et al. 2015); but beyond this drought threshold LS is accelerated (Chen et al. 2015; Estiarte and
365 Peñuelas 2015). The roles of temperature and drought in LS have several broader implications
366 because the delay in LS induced by warm temperatures is associated with delayed degradation of
367 chlorophyll (Fracheboud et al. 2009), maintenance of photosynthetic enzyme activity (Shi et al.
368 2014), prolonged leaf life span (Liu et al. 2018a), reduced potential for autumn frost damage
369 (Hartman et al. 2013) and a possible increase of photosynthetic carbon assimilation related to a
370 longer growing season (Liu et al. 2016b).

371 The finding of our study does not necessarily imply that LS timing in beech only depends
372 on temperature, because this parameter covaried with daily insolation and precipitation (Fig. S2).
373 Both explained a lower proportion of the overall variance (higher insolation promoting delayed
374 LS and higher precipitation promoting earlier LS; see Table S4), yet we cannot exclude the
375 possibility that they may have affected LS timing to some extent (e.g. in parts of the species
376 range not well captured by our model). For instance, insolation can have a strong effect on LS at
377 high latitudes (Liu et al. 2016b) where increasing photosynthetically active radiation with
378 insolation supports increased photosynthesis (Bonan 2002), allowing a delay in LS as a result of
379 persistent chlorophyll retention under sustained high irradiances (Kim et al. 2008).

380

381 4.3 The effect of bud burst on leaf senescence

382 The significant carry-over effect of BB on LS timing that we found is consistent with other
383 recent studies on beech (Fu et al. 2014; Signarbieux et al. 2017; Chen et al. 2018; Zohner and

384 Renner 2019), and other deciduous trees across the northern hemisphere (Keenan and
385 Richardson 2015; Liu et al. 2016b). However, it can be difficult to disentangle the effects of
386 temperature on both BB and LS, from their interdependency. In this respect, the significant
387 interaction-effect of BB and the autumn temperature of the provenances on LS is notable (Table
388 1; Fig. 4), as it suggests that the relationship between BB and LS is moderated by the
389 temperature at provenance origin in a provenance-specific manner. The relationship between BB
390 and LS is complex and various different mechanisms that have been proposed to explain carry-
391 over effects of BB on LS, according to the particular conditions in each study: (i) leaf structural
392 and morphological traits constrain leaf life span (Reich et al. 1992) and programmed cell death
393 (Lam 2004; Lim et al. 2007); (ii) once a plant's carbohydrate storage capacities are saturated,
394 growth is inhibited ("sink limitation") and LS is promoted (Fatichi et al. 2013; Keenan and
395 Richardson 2015; Körner 2015; Signarbieux et al. 2017); (iii) LS is itself affected by the
396 preceding winter/spring temperature (Fu et al. 2014; Signarbieux et al. 2017; Zohner and Renner
397 2019); (iv) early BB could lead to soil water depletion through increased transpiration and
398 resulting in drought stress, producing earlier LS (Buermann et al. 2013); (v) earlier BB might
399 increase pest attack (Jepsen et al. 2011) and increase the probability of spring frost damage
400 (Hufkens et al. 2012), leading to an earlier LS. Our use of multiple provenances of different
401 climatic origin enabled us to isolate the genetic component of these carry-over effects of BB on
402 LS from the temperature response. We only found this pattern among cold provenances (3.2-5.2
403 °C) (Fig. S3) and in regions with high autumn temperature (11.5-12 °C) (Fig. 4a). Consequently,
404 of the potential causes of this effect, we can discard effects of the preceding winter/spring
405 temperature and of frost damage, neither of which affected the timing of LS in our analysis
406 (results not shown). Yet, we can not rule out the other mechanisms listed above, and more

407 experimental testing is needed to tease apart the relationship between BB and LF across large
408 environmental gradients.

409

410 4.4 Variation in growing season length based on bud burst, leaf senescence and the environment
411 under present and future climates

412 Our results, based on two trials located in the core of the distribution range, predict that almost
413 all the provenances monitored (except number 3 – with an average autumn temperature of 7.4°C)
414 would extend their GSL by up to 10 days under future climatic conditions with increased autumn
415 temperatures (11.5-12 C°) (Fig. 5b). However, when we extrapolate our models to the entire
416 distribution range of the species, only trees in northern and north-eastern regions of the species
417 range are predicted to increase their GSL by up-to 9 days, while the GSL of trees in the rest of the
418 range would decrease by up to 8 days (Fig. 6). While several recent studies based on field or
419 satellite data also predict an increase in GSL (Barnard et al. 2018; Liu et al. 2018b; Gaertner et
420 al. 2019) at the high latitudes coincident with cold beech provenances, there have been no
421 recorded increases in the GSL for southern populations of four temperate European species
422 (*Quercus robur*, *Fagus sylvatica*, *Betula pendula* and *Aesculus hippocastanum*) over the last two
423 decades (Chen et al. 2018). These two trends are both reflected in our spatial projection of GSL
424 (Fig. 6). The predicted larger differences in GSL in the central and southern range are mostly due
425 to a later leaf senescence predicted for these regions (Fig. S4), which is likely due to an expected
426 increase in autumn temperatures in these regions. We should however note that our spatial
427 modelling results, despite covering a wide climatic range, should be interpreted with caution
428 since they are based on empirical data from only two trials, which can limit their scope.

429

430 **5 Conclusions**

431 European beech is characterised by extensive plasticity in many of its life history traits (Gárate-
432 Escamilla et al. 2019) compared to other tree species (Benito Garzón et al. 2019). Yet strong
433 genetic control over beech phenology, particularly in spring (Kramer et al. 2017), can constrain
434 the acclimative response of populations to climatic changes and hence potentially compromise
435 their future performance. Our analyses provide important insights into the complex relationships
436 driving spring and autumn phenology across the species range. We found large differences in
437 GSL (as inferred from BB and LS) under present climate conditions that are however likely to
438 decrease in the future, because GSLs of southern and core populations (i.e. those with a
439 relatively long current GSL) are predicted to decrease, whilst those of northern and north-eastern
440 populations (i.e. those with a relatively short current GSL) are predicted to increase. These trends
441 are largely driven by an increase in temperatures that would modify phenology. Taken
442 altogether, our results suggest that northern populations would increase productivity in the
443 coming years, extending their growing season to take advantage of warmer conditions in the
444 northern part of the range.

445 **Founding**

446 This study was funded by the Investments for the Future programme (IdEx) Bordeaux
447 (ANR-10-IDEX-03-02). HGE was funded by the Consejo Nacional de Ciencia y Tecnología
448 (CONACYT Mexico; grant number: 636246) and by the Institute of Innovation and
449 Technology Transfer of Nuevo Leon, Mexico. CCB and TMR were funded by the Academy of
450 Finland (decision 304519).
451 Declaration of Interest: none.

452

453 **References**

454 Alberto FJ, Aitken SN, Alía R, et al (2013) Potential for evolutionary responses to climate
455 change - evidence from tree populations. *Global Change Biology* 19:1645–1661. doi:
456 10.1111/gcb.12181

457 Barnard DM, Knowles JF, Barnard HR, et al (2018) Reevaluating growing season length
458 controls on net ecosystem production in evergreen conifer forests. *Scientific Reports* 8:1–
459 10. doi: 10.1038/s41598-018-36065-0

460 Basler D, Körner C (2014) Photoperiod and temperature responses of bud swelling and bud burst
461 in four temperate forest tree species. *Tree Physiology* 34:377–388. doi:
462 10.1093/treephys/tpu021

463 Basler D, Körner C (2012) Photoperiod sensitivity of bud burst in 14 temperate forest tree
464 species. *Agricultural and Forest Meteorology* 165:73–81. doi:
465 10.1016/j.agrformet.2012.06.001

466 Bates D, Maechler M, Bolker B, et al (2018) lme4: Linear mixed-effects models using Eigen and
467 S4. R package version 1.1-18-1. Available at: <http://CRAN.R-project.org/package=lme4>.
468 In: Available at: <http://CRAN.R-project.org/package=lme4>

469 Benito Garzón M, Robson TM, Hampe A (2019) Δ TraitSDM: Species distribution models that
470 account for local adaptation and phenotypic plasticity. *New Phytologist* accepted:

471 Bonan GB (2002) Ecological Climatology: Concepts and Applications

472 Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe
473 drought: a review of ecophysiological responses, adaptation processes and long-term
474 consequences. *Annals of Forest Science* 63:625–644. doi: 10.1051/forest

475 Brelsford CC, Nybakken L, Koutilainen TK, Robson TM (2019) The influence of spectral
476 composition on spring and autumn phenology in trees. *Tree Physiology* 1–26. doi:
477 10.1093/treephys/tpz026

478 Buermann W, Bikash PR, Jung M, et al (2013) Earlier springs decrease peak summer
479 productivity in North American boreal forests. *Environmental Research Letters* 8:. doi:
480 10.1088/1748-9326/8/2/024027

481 Caffarra A, Donnelly A (2011) The ecological significance of phenology in four different tree
482 species: Effects of light and temperature on bud burst. *International Journal of
483 Biometeorology* 55:711–721. doi: 10.1007/s00484-010-0386-1

484 Chen D, Wang S, Xiong B, et al (2015) Carbon/nitrogen imbalance associated with drought-
485 induced leaf senescence in sorghum bicolor. *PLoS ONE* 10:1–17. doi:
486 10.1371/journal.pone.0137026

487 Chen L, Huang JG, Ma Q, et al (2018) Long-term changes in the impacts of global warming on
488 leaf phenology of four temperate tree species. *Global Change Biology* 997–1004. doi:
489 10.1111/gcb.14496

490 Chmura DJ, Rozkowski R (2002) Variability of beech provenances in spring and autumn
491 phenology. *Silvae Genetica* 51:123–127

492 Chmura HE, Kharouba HM, Ashander J, et al (2018) The mechanisms of phenology: the patterns
493 and processes of phenological shifts. *Ecological Monographs* 0–2. doi: 10.1002/ecm.1337

494 Cooke JEK, Eriksson ME, Junttila O (2012) The dynamic nature of bud dormancy in trees:
495 Environmental control and molecular mechanisms. *Plant, Cell and Environment* 35:1707–
496 1728. doi: 10.1111/j.1365-3040.2012.02552.x

497 Cooper HF, Grady KC, Cowan JA, et al (2018) Genotypic variation in phenological plasticity:
498 Reciprocal common gardens reveal adaptive responses to warmer springs but not to fall
499 frost. *Global Change Biology* 187–200. doi: 10.1111/gcb.14494

500 Dantec CF, Ducasse H, Capdevielle X, et al (2015) Escape of spring frost and disease through
501 phenological variations in oak populations along elevation gradients. *Journal of Ecology*
502 103:1044–1056. doi: 10.1111/1365-2745.12403

503 Delpierre N, Dufrêne E, Soudani K, et al (2009) Modelling interannual and spatial variability of
504 leaf senescence for three deciduous tree species in France. *Agricultural and Forest
505 Meteorology* 149:938–948. doi: 10.1016/j.agrformet.2008.11.014

506 Estiarte M, Peñuelas J (2015) Alteration of the phenology of leaf senescence and fall in winter
507 deciduous species by climate change: Effects on nutrient proficiency. *Global Change
508 Biology* 21:1005–1017. doi: 10.1111/gcb.12804

509 EUFORGEN (2009) Distribution map of Beech (*Fagus sylvatica*). Available at:
510 www.euforgen.org. In: www.euforgen.org

511 Falusi M, Calamassi R (2012) Bud dormancy in beech (*Fagus sylvatica* L.). Effect of chilling
512 and photoperiod on dormancy release of beech seedlings. *Tree Physiology* 6:429–438. doi:
513 10.1093/treephys/6.4.429

514 Fatichi S, Luezinger S, Körner C, Ecosystem T (2013) Moving beyond photosynthesis: from
515 carbon source to sink-driven vegetation modeling. *New Phytologist*

516 Firmat C, Delzon S, Louvet JM, et al (2017) Evolutionary dynamics of the leaf phenological
517 cycle in an oak metapopulation along an elevation gradient. *Journal of Evolutionary
518 Biology* 30:2116–2131. doi: 10.1111/jeb.13185

519 Fracheboud Y, Luquez V, Bjorken L, et al (2009) The Control of Autumn Senescence in
520 European Aspen. *Plant Physiology* 149:1982–1991. doi: 10.1104/pp.108.133249

521 Fréjaville T, Benito Garzón M (2018) The EuMedClim Database: Yearly Climate Data (1901
522 – 2014) of 1 km Resolution Grids for Europe and the Mediterranean Basin. *Frontiers in
523 Ecology and Evolution* 6:1–5. doi: 10.3389/fevo.2018.00031

524 Friedman JM, Roelle JE, Cade BS (2011) Genetic and environmental influences on leaf
525 phenology and cold hardiness of native and introduced riparian trees. *International Journal
526 of Biometeorology* 55:775–787. doi: 10.1007/s00484-011-0494-6

527 Fu YH, Piao S, Delpierre N, et al (2018) Larger temperature response of autumn leaf senescence

528 than spring leaf-out phenology. *Global Change Biology* 24:2159–2168. doi:
529 10.1111/gcb.14021

530 Fu YH, Piao S, Vitassee Y, et al (2015) Increased heat requirement for leaf flushing in temperate
531 woody species over 1980–2012: Effects of chilling, precipitation and insolation. *Global
532 Change Biology* 21:2687–2697. doi: 10.1111/gcb.12863

533 Fu YSH, Campioli M, Vitassee Y, et al (2014) Variation in leaf flushing date influences autumnal
534 senescence and next year's flushing date in two temperate tree species. *Proceedings of the
535 National Academy of Sciences* 111:7355–7360. doi: 10.1073/pnas.1321727111

536 Gaertner BA, Zegre N, Warner T, et al (2019) Climate, forest growing season, and
537 evapotranspiration changes in the central Appalachian Mountains, USA. *Science of the
538 Total Environment* 650:1371–1381. doi: 10.1016/j.scitotenv.2018.09.129

539 Gallinat AS, Primack RB, Wagner DL (2015a) Autumn, the neglected season in climate change
540 research. *Trends in Ecology and Evolution* 30:169–176. doi: 10.1016/j.tree.2015.01.004

541 Gárate-Escamilla H, Hampe A, Vizcaíno-Palomar N, et al (2019) Range-wide variation in local
542 adaptation and phenotypic plasticity of fitness-related traits in *Fagus sylvatica* and their
543 implications under climate change. *Global Ecology and Biogeography*. doi: 10.1101/513515

544 Gill AL, Gallinat AS, Sanders-DeMott R, et al (2015) Changes in autumn senescence in northern
545 hemisphere deciduous trees: A meta-analysis of autumn phenology studies. *Annals of
546 Botany* 116:875–888. doi: 10.1093/aob/mcv055

547 Gömöry D, Paule L (2011) Trade-off between height growth and spring flushing in common
548 beech (*Fagus sylvatica* L.). *Annals of Forest Science* 68:975–984. doi: 10.1007/s13595-011-
549 0103-1

550 Gressler E, Jochner S, Capdevielle-Vargas RM, et al (2015) Vertical variation in autumn leaf
551 phenology of *Fagus sylvatica* L. in southern Germany. *Agricultural and Forest Meteorology*
552 201:176–186. doi: 10.1016/j.agrformet.2014.10.013

553 Gunderson CA, Edwards NT, Walker A V., et al (2012) Forest phenology and a warmer climate
554 - growing season extension in relation to climatic provenance. *Global Change Biology*
555 18:2008–2025. doi: 10.1111/j.1365-2486.2011.02632.x

556 Hartman DL, Klein Tank AMG, Rusicucci M, et al (2013) Observations: atmosphere and
557 Observations: atmosphere and surface. In: *Climate Change 2013: The Physical Science
558 Basis. Contribution of Working Group I to the Fifth Assessment Report of the
559 Intergovernmental Panel on Climate Change*. In: Cambridge University Press, Cambridge,
560 UK and New York, NY, USA. pp 159–254

561 Heide OM (1993) Dormancy release in beech buds (*Fagus sylvatica*) requires both chilling and
562 long days. *Physiologia Plantarum* 89:187–191. doi: 10.1111/j.1399-3054.1993.tb01804.x

563 Hijmans RJ, Van Etten J, Cheng J, et al (2017) Package ‘raster’: Geographic Data Analysis and
564 Modeling. Available at: <https://cran.r-project.org/web/packages/raster/raster.pdf>.

565 Hufkens K, Friedl MA, Keenan TF, et al (2012) Ecological impacts of a widespread frost event
566 following early spring leaf-out. *Global Change Biology* 18:2365–2377. doi: 10.1111/j.1365-

567 2486.2012.02712.x

568 Ibáñez I, Primack RB, Miller-Rushing AJ, et al (2010) Forecasting phenology under global
569 warming. *Philosophical Transactions of the Royal Society B: Biological Sciences*
570 365:3247–3260. doi: 10.1098/rstb.2010.0120

571 Jepsen JU, Kapari L, Hagen SB, et al (2011) Rapid northwards expansion of a forest insect pest
572 attributed to spring phenology matching with sub-Arctic birch. *Global Change Biology*
573 17:2071–2083. doi: 10.1111/j.1365-2486.2010.02370.x

574 Keenan TF, Richardson AD (2015) The timing of autumn senescence is affected by the timing of
575 spring phenology: Implications for predictive models. *Global Change Biology* 21:2634–
576 2641. doi: 10.1111/gcb.12890

577 Kim J-H, Moon YR, Wi SG, et al (2008) Differential Radiation Sensitivities of *Arabidopsis*
578 Plants at Various Developmental Stages. *Photosynthesis Energy from the Sun* 1491–1495.
579 doi: 10.1007/978-1-4020-6709-9_320

580 Körner C (2015) Paradigm shift in plant growth control. *Current Opinion in Plant Biology*
581 25:107–114. doi: 10.1016/j.pbi.2015.05.003

582 Kramer K, Ducousoo A, Gomory D, et al (2017) Chilling and forcing requirements for foliage
583 bud burst of European beech (*Fagus sylvatica* L.) differ between provenances and are
584 phenotypically plastic. *Agricultural and Forest Meteorology* 234–235:172–181. doi:
585 10.1016/j.agrformet.2016.12.002

586 Lam E (2004) Controlled cell death, plant survival and development. *Nature Reviews Molecular
587 Cell Biology* 5:305–315. doi: 10.1038/nrm1358

588 Lang W, Chen X, Qian S, et al (2019) A new process-based model for predicting autumn
589 phenology: How is leaf senescence controlled by photoperiod and temperature coupling?
590 *Agricultural and Forest Meteorology* 268:124–135. doi: 10.1016/j.agrformet.2019.01.006

591 Leites LP, Robinson AP, Rehfeldt GE, et al (2012) Height-growth response to changes in climate
592 differ among populations of interior Douglas-fir: a novel analysis of provenance-test data.
593 *Ecological Applications* 22:154–165. doi: 10.1890/11-0150.1

594 Liang L (2019) A spatially explicit modeling analysis of adaptive variation in temperate tree
595 phenology. *Agricultural and Forest Meteorology* 266–267:73–86. doi:
596 10.1016/j.agrformet.2018.12.004

597 Liang L (2015) Geographic variations in spring and autumn phenology of white ash in a
598 common garden. *Physical Geography* 36:489–509. doi: 10.1080/02723646.2015.1123538

599 Lim P, Kim H, Gil Nam H (2007) Leaf Senescence. *Annual Review of Plant Physiology* 58:115–
600 136. doi: 10.1016/B978-0-12-394807-6.00081-2

601 Liu G, Chen X, Zhang Q, et al (2018a) Antagonistic effects of growing season and autumn
602 temperatures on the timing of leaf coloration in winter deciduous trees. *Global Change
603 Biology* 24:3537–3545. doi: 10.1111/gcb.14095

604 Liu Q, Fu YH, Zeng Z, et al (2016a) Temperature, precipitation, and insolation effects on

605 autumn vegetation phenology in temperate China. *Global Change Biology* 22:644–655. doi:
606 10.1111/gcb.13081

607 Liu Q, Fu YH, Zhu Z, et al (2016b) Delayed autumn phenology in the Northern Hemisphere is
608 related to change in both climate and spring phenology. *Global Change Biology* 22:3702–
609 3711. doi: 10.1111/gcb.13311

610 Liu Q, Piao S, Janssens IA, et al (2018b) Extension of the growing season increases vegetation
611 exposure to frost. *Nature Communications* 9:. doi: 10.1038/s41467-017-02690-y

612 Lukasová V, Bucha T, Škvareninová J, Škvarenina J (2019) Validation and Application of
613 European Beech Phenological Metrics Derived from MODIS Data along an Altitudinal
614 Gradient. *Forests* 10:60. doi: 10.3390/f10010060

615 Malyshev A V., Henry HAL, Bolte A, et al (2018) Temporal photoperiod sensitivity and forcing
616 requirements for budburst in temperate tree seedlings. *Agricultural and Forest Meteorology*
617 248:82–90. doi: 10.1016/j.agrformet.2017.09.011

618 Mazerolle MJ (2006) Improving data analysis in herpetology: Using Akaike's information
619 criterion (AIC) to assess the strength of biological hypotheses. *Amphibia Reptilia* 27:169–
620 180. doi: 10.1016/j.jclepro.2013.10.062

621 Michelson IH, Eriksson ME, Nilsson O, et al (2018) Autumn senescence in aspen is not triggered
622 by day length. *Physiologia Plantarum* 162:123–134. doi: 10.1111/ppl.12593

623 Petkova K, Molle E, Huber G, et al (2017) Spring and autumn phenology of Bulgarian and
624 German provenances of Common beech (*Fagus sylvatica* L.) under similar climatic
625 conditions. *Silvae Genetica* 66:24–32. doi: 10.1515/sg-2017-0004

626 Piao S, Tan J, Chen A, et al (2015) Leaf onset in the northern hemisphere triggered by daytime
627 temperature. *Nature Communications* 6:. doi: 10.1038/ncomms7911

628 Porth I, Klápková J, McKown AD, et al (2015) Evolutionary quantitative genomics of *Populus*
629 *trichocarpa*. *PLoS ONE* 10:1–25. doi: 10.1371/journal.pone.0142864

630 Pudas E, Leppälä M, Tolvanen A, et al (2008) Trends in phenology of *Betula pubescens* across
631 the boreal zone in Finland. *International Journal of Biometeorology* 52:251–259. doi:
632 10.1007/s00484-007-0126-3

633 R Development Core Team R (2015) R: A Language and Environment for Statistical Computing.
634 R Foundation for Statistical Computing, Vienna, Austria. Available at:
635 <http://www.R-project.org>.

636 Reich PB, Walters MB, Ellsworth DS (1992) Leaf life-span in relation to leaf, plant, and stand
637 characteristics among diverse ecosystems. *Ecological monographs* 62:365–392. doi:
638 10.2307/2937116

639 Robson M, Alia R, Bozic G, et al (2011) The timing of leaf flush in European beech (*Fagus*
640 *sylvatica* L.) saplings. *Genetic Resources of European Beech (*Fagus sylvatica* L) for*
641 *Sustainable Forestry*: Proceedings of the COST E52 Final Meeting SERIE FORESTAL
642 22:61–80

643 Robson M, Benito Garzón M, BeechCOSTe52 database consortium (2018) Data Descriptor□:
644 Phenotypic trait variation measured on European genetic trials of *Fagus sylvatica* L.
645 Scientific Data 5:1–7. doi: 10.1038/sdata.2018.149

646 Robson TM, Rasztovits E, Aphalo PJ, et al (2013) Flushing phenology and fitness of European
647 beech (*Fagus sylvatica* L.) provenances from a trial in La Rioja, Spain, segregate according
648 to their climate of origin. Agricultural and Forest Meteorology 180:76–85. doi:
649 10.1016/j.agrformet.2013.05.008

650 Sampaio T, Branco M, Guichoux E, et al (2016) Does the geography of cork oak origin influence
651 budburst and leaf pest damage? Forest Ecology and Management 373:33–43. doi:
652 10.1016/j.foreco.2016.04.019

653 Shi C, Sun G, Zhang H, et al (2014) Effects of warming on chlorophyll degradation and
654 carbohydrate accumulation of alpine herbaceous species during plant senescence on the
655 tibetan plateau. PLoS ONE 9:. doi: 10.1371/journal.pone.0107874

656 Signarbieux C, Toledano E, Sanginés de Carcer P, et al (2017) Asymmetric effects of cooler and
657 warmer winters on beech phenology last beyond spring. Global Change Biology 23:4569–
658 4580. doi: 10.1111/gcb.13740

659 Soolanayakanahally RY, Guy RD, Silim SN, Song M (2013) Timing of photoperiodic
660 competency causes phenological mismatch in balsam poplar (*Populus balsamifera* L.).
661 Plant, Cell and Environment 36:116–127. doi: 10.1111/j.1365-3040.2012.02560.x

662 Vitasse Y, Delzon S, Bresson CC, et al (2009) Altitudinal differentiation in growth and
663 phenology among populations of temperate-zone tree species growing in a common garden.
664 Canadian Journal of Forest Research 39:1259–1269. doi: 10.1139/X09-054

665 Vitasse Y, François C, Delpierre N, et al (2011) Assessing the effects of climate change on the
666 phenology of European temperate trees. Agricultural and Forest Meteorology 151:969–980.
667 doi: 10.1016/j.agrformet.2011.03.003

668 Vitasse Y, Hoch G, Randin CF, et al (2013) Elevational adaptation and plasticity in seedling
669 phenology of temperate deciduous tree species. Oecologia 171:663–678. doi:
670 10.1007/s00442-012-2580-9

671 Walther GR, Post E, Convey P, et al (2002) Ecological responses to recent climate change.
672 Nature 416:389–395. doi: 10.1038/416389a

673 Wang J, Ding J, Tan B, et al (2018) A major locus controls local adaptation and adaptive life
674 history variation in a perennial plant. Genome Biology 19:1–17. doi: 10.1186/s13059-018-
675 1444-y

676 Way DA, Montgomery RA (2015) Photoperiod constraints on tree phenology, performance and
677 migration in a warming world. Plant, Cell & Environment 38:1725–1736. doi:
678 10.1111/pce.12431

679 Weih M (2009) Genetic and environmental variation in spring and autumn phenology of biomass
680 willows (*Salix* spp.): Effects on shoot growth and nitrogen economy. Tree Physiology
681 29:1479–1490. doi: 10.1093/treephys/tpp081

682 Xie Y, Wang X, Silander JA (2015) Deciduous forest responses to temperature, precipitation,
683 and drought imply complex climate change impacts. *Proceedings of the National Academy*
684 *of Sciences* 112:13585–13590. doi: 10.1073/pnas.1509991112

685 Yang B, He M, Shishov V, et al (2017) New perspective on spring vegetation phenology and
686 global climate change based on Tibetan Plateau tree-ring data. *Proceedings of the National*
687 *Academy of Sciences* 114:6966–6971. doi: 10.1073/pnas.1616608114

688 Yang Y, Guan H, Shen M, et al (2015) Changes in autumn vegetation dormancy onset date and
689 the climate controls across temperate ecosystems in China from 1982 to 2010. *Global*
690 *Change Biology* 21:652–665. doi: 10.1111/gcb.12778

691 Yeang H (2007) Synchronous flowering of the rubber tree (*Hevea brasiliensis*) induced by high
692 solar radiation intensity. *New Phytol* 175:283–9. doi: 10.1111/j.1469-8137.2007.02089.x

693 Zhang S wu, Wang C fa, Yao Y hua (2011) Inverse Leaf Aging Sequence (ILAS) and Its
694 Significance of Wheat. *Agricultural Sciences in China* 10:207–219. doi: 10.1016/S1671-
695 2927(09)60307-2

696 Zohner CM, Renner SS (2019) Ongoing seasonally uneven climate warming leads to earlier
697 autumn growth cessation in deciduous trees. *Oecologia*. doi: 10.1007/s00442-019-04339-7

698 Zohner CM, Rockinger A, Renner SS (2018) Increased autumn productivity permits temperate
699 trees to compensate for spring frost damage. *New Phytologist* 221:789–795. doi:
700 10.1111/nph.15445

701 Zu J, Zhang Y, Huang K, et al (2018) Biological and climate factors co-regulated spatial-
702 temporal dynamics of vegetation autumn phenology on the Tibetan Plateau. *International*
703 *Journal of Applied Earth Observation and Geoinformation* 69:198–205. doi:
704 10.1016/j.jag.2018.03.006

705