bioRxiv preprint doi: https://doi.org/10.1101/706960; this version posted July 19, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

The microbiome wants what it wants: microbial evolution

overtakes experimental host-mediated indirect selection

Jigyasa Arora', Margaret Mars Brisbin', Alexander S. Mikheyev"?
5 'Okinawa Institute of Science and Technology Graduate University, Japan.

*Evolutionary Genomics Research Group, Australian National University, Australia.


https://doi.org/10.1101/706960
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

15

20

25

30

bioRxiv preprint doi: https://doi.org/10.1101/706960; this version posted July 19, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

Abstract

Microbes ubiquitously inhabit animals and plants, often affecting their host’s phenotype.
As a result, even in a constant genetic background, the host’s phenotype may evolve
through indirect selection on the microbiome. ‘Microbiome engineering’ offers a promising
novel approach for attaining desired host traits but has been attempted only a few times.
Building on the known role of the microbiome on development in fruit flies, we attempted
to evolve earlier eclosing flies by selecting on microbes in the growth media. We carried
out parallel evolution experiments in no- and high-sugar diets by transferring media
associated with fast-developing fly lines over the course of four rounds of selection. In each
round, we used sterile eggs from the same inbred population, and assayed fly mean
eclosion times. Ultimately, flies eclosed seven to twelve hours earlier, depending on the
diet, but selection had no effect. 16S sequencing showed that the microbiome did evolve,
particularly in the no sugar diet, with an increase in alpha diversity over time. Thus, while
microbiome evolution did affect host eclosion times, these effects were incidental. Instead,
any experimentally enforced selection effects were swamped by independent microbial
evolution. These results imply that selection on host phenotypes must be strong enough to
overcome other selection pressures simultaneously operating on the microbiome. The
independent evolutionary trajectories of the host and the microbiome may limit the extent
to which indirect selection on the microbiome can ultimately affect host phenotype.
Random-selection lines accounting for independent microbial evolution are essential for

experimental microbiome engineering studies.
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Introduction

Communities of microbes living on or in multicellular host organisms interact with their
hosts in diverse ways that often influence host phenotype and fitness (Zilber-rosenberg &
Rosenberg 2008). Such host-microbe interactions have traditionally been investigated by
experimentally comparing hosts raised without a microbiome (axenic) to hosts inoculated
with known components of the microbiome (gnotobiotic) or that receive microbiome
transplants composed of complex communities (Turnbaugh et al. 2009). Observations of
atypical phenotypes in axenic organisms indicate hosts are dependent on their microbiome
and cannot function normally without it. The integral role of the microbiome in shaping
host phenotype suggests that desirable host traits can be indirectly selected through
microbiome engineering (Mueller & Sachs 2015; Gopal & Gupta 2016; Oyserman et al.
2018). To achieve this, microbes or microbial communities correlated with desired host
traits are selected, but selection success is evaluated by measuring host traits (Mueller et
al. 2016). This novel approach has numerous practical applications, such as better
probiotic design and improved crop yields, in genetically homogeneous or otherwise

unaltered hosts.

While applying or administering specific bacterial strains or communities (i.e. probiotics)
to achieve a desired host effect is now widespread, true microbiome engineering studies
remain rare. Diverse examples of successful probiotic studies include: increased biomass
and antioxidant capacity in plants inoculated with Agrobacterium (Chihaoui et al. 2015),
reduced white pox disease in corals that received a probiotic cocktail of 13 bacterial strains
isolated from coral mucus (Alagely et al. 2011), and intestinal epithelial cells with
increased ability to keep pathogens from escaping the intestinal tract in mice that were
administered Lactobacillus strains (Mack et al. 2003). While often successful, probiotic
approaches typically rely on relatively simple manipulations of the microbiome by
introducing known and culturable bacterial species. Additionally, probiotic studies usually
take advantage of some prior knowledge of host-microbe interactions involving the host

or microbe(s) of interest. However, microbiomes as communities are more complex than
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what is generally applied experimentally (Qin et al. 2010) and can elicit greater magnitude
and more specific responses (Sheth et al. 2016) than synthetically prepared treatments. In
contrast to probiotics, microbiome engineering leverages complex microbial communities
by engineering and transferring entire microbiomes, including unknown or unculturable
bacterial strains, without prior knowledge of host-microbe interactions by selecting

microbiomes based on host phenotype (Mueller & Sachs 2015).

As complex dynamic interactions among microbes in an in-situ microbial community are
difficult to manipulate, only a few studies have so far tried to engineer native microbiome
communities. Swenson et al. (2000) first engineered the Arabidopsis thaliana rhizosphere
microbiome to increase and decrease shoot biomass by inoculating ten successive
Arabidopsis selection rounds with the microbiome of plants with the highest or lowest
above-ground biomass in the preceding round (Swenson et al. 2000). Panke-Buisse et al.
(2015) expanded this application by selecting on late and early flowering-time under
nutrient stress and demonstrating that the engineered microbiomes could influence
flowering-time in additional Arabidopsis strains, as well as another related plant.
Importantly, Panke-Buisse et al. (2015) evaluated microbiome composition through 16S
amplicon sequencing, clearly illustrating that the microbiome evolved in response to host
selection. However, Mueller and Sachs (2015) proposed the use of random-selection
lines—where the propagated microbiome is randomly chosen from replicates—as the gold
standard for experimental controls in microbiome engineering experiments, even while
admitting that they greatly increase experimental effort. Previous microbiome engineering
studies relied on sterile media transfers as negative controls, although Mueller et al.
(2016) also incorporated a fallow-soil control for the presence of naturally occurring
microbes. Notably, none of these studies used random-selection controls, which account
for independent microbial evolution that may otherwise confound results. Furthermore,
microbiome engineering experiments have, to the best of our knowledge, not yet been

attempted with animal models.
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In this study, we performed a microbiome engineering experiment incorporating random-
selection lines in an animal model for the first time. We chose the fruit fly, Drosophila
melanogaster, as a model for microbiome selection because of its relatively quick
generation times (Trinder et al. 2017) and its simple core gut microbiome community (<

95 30 major species), which are largely commensals acquired from the environment (Erkosar
et al. 2013; Blum et al. 2013). Furthermore, the functions and interactions of core
members in the fly gut microbiome have been analyzed in detail (Broderick & Lemaitre

2012; Engel & Moran 2013); microbial interactions have been implicated in fly
development, immunity, mating, response to external infection, and aging (Charroux &

100 Royet 2012; Gould et al. 2018). Taking advantage of the fact that the microbiome affects
fly development time (Shin et al. 2011; Ridley et al. 2012), we attempted to select for a
microbiome that speeds up fly eclosion in sugar-starved flies and flies fed a high-sugar

diet. Over the course of four selection rounds, we propagated the microbiome from vials

with fast-eclosing flies and saw a significant decrease in fly eclosion times. However, there

105  was no difference between selected treatments and random-selection controls. Our results
emphasize the need for proper controls in microbiome evolution experiments and suggest

that independent selection pressures on the microbiome may sometimes dominate in

microbiome selection experiments.

Materials and Methods

110  Fly maintenance and phenotyping

The Drosophila melanogaster strain, Canton S, was used in this experiment because it has
been kept inbred since its collection in the early 20th century (Stern 1943), which
minimizes potential for host evolution over repeated experimental cycles (Emborski &
115  Mikheyev 2019). Stock flies were reared on standard media with 45 g of cornmeal/100 g
of sugar in an environmentally controlled incubator on a 12 hr:12 hr light/dark schedule.
For the no-sugar diet, sugar and cornmeal were removed, whereas the high-sugar diet was

prepared with 160 g of Glucose and no cornmeal. Sterile eggs were acquired by mating


https://doi.org/10.1101/706960
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/706960; this version posted July 19, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

three-day old stock flies in egg collection cages with grape juice agar and yeast for 24
120  hours. The eggs were sterilized by gently rinsing 2x with a solution of double distilled
water and 50% bleach for 30-120 seconds (Obadia et al. 2018; Newell & Douglas 2014).

As most eclosions take place during the day, the developmental time of the flies were
assessed by recording the number of newly eclosed flies every hour during the 12 hr light
125  period, from 9:00 AM to 9:00 PM. Eclosion times were recorded for three days, starting
from the eclosion of first fly. To maintain fly genotype, flies were discarded after eclosion.

Overall, 10,850 flies were phenotyped in the experiment.

Indirect selection of the microbiome
130
We used the experimental protocol suggested by Mueller and Sachs (2015) for one-sided
artificial selection on microbiomes (Figure 1). Twenty-four hour-old stock flies were
transferred to fresh no-sugar and high-sugar diet vials (step 1 of Figure 1) for 3 days to
make sure that all flies developed into sexually mature adults and that females had mated.
135  The three day-old adult flies were transferred to fresh treatment media for 24 hours to lay
eggs. These eggs, of approximately the same age, established the original microbiome

community in high-sugar and no-sugar treatment diets.

Each treatment (selection/high-sugar, selection/no-sugar, no-selection/high-sugar, no-
140  selection/no-sugar) was initiated with 10 parallel lines, each of which was split into three
sub-replicates at each selection round (30 vials per treatment). For selection treatments,
the microbiome from the sub-replicate with the shortest mean eclosion time was selected
to inoculate each of the three sub-replicates for that line in the next selection round (step
3 of Figure 1). For no-selection treatments, sub-replicates were randomly chosen for
145  microbiome propagation to next round. Microbiome transfer was accomplished by passing
the top layer (~1 mm) of the fly food media through a 70 um-mesh-size cell strainer

(Fisher Scientific, cat no. 08-771-19) to remove any dead flies, unfertilized eggs or larvae
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and then equally distributing the strained media to the three sub-replicates of the
corresponding line in next round. The top 1 mm of media was chosen as it is most likely
150  to consist of native fly microbiome from the parent feces (Wong et al. 2015). Autoclaved
spatulas were used for each food transfer to prevent any cross-contamination between
lines. To ensure that the genetic pool of the flies remained constant and only the
microbiome evolved, a spatula of sterilized eggs from the stock flies was aseptically
transferred to each vial using an autoclaved spatula (step 4 of Figure 1). A spatula of media
155 from vials chosen for propagation to the next round in selection and no-selection
treatments was stored at -80°C for 16S rDNA sequencing. The selection procedure was

repeated for a total of four rounds.

16S rDNA analysis
160

DNA extraction from media was performed using the DNeasy Blood and Tissue kit
(QIAGEN, Hilden, Germany) following manufacturer’s protocols. Library preparation was
done using the “16S Metagenomic Sequencing Library Preparation” protocol (Illumina)
with 5% PhiX control added as an internal control for low diversity libraries. The libraries
165  were sequenced by the Okinawa Institute of Science and Technology (OIST) sequencing
section on the Illumina MiSeq platform with 2x250-bp v2 chemistry. The reverse read
quality was too poor to join paired-end reads, however, and analysis was carried out on
demultiplexed single-end sequences in QIIME 2 (v2017.11, Bolyen et al. 2018). The
Divisive Amplicon Denoising Algorithm (DADA) was utilized through the DADA2 plug-in
170 in QIIME 2 to quality-filter sequences, remove chimeras, and construct the Amplicon
Sequence Variant (ASV) feature table(Benjamin J. Callahan et al. 2016). Taxonomic
assignments were given to ASVs by importing SILVA 16S representative sequences and
consensus taxonomy (release 128, Quast et al. 2013) to QIIME 2 and classifying
representative ASVs using the naive Bayes classifier plug-in (Bokulich et al. 2018). The
175  feature table, taxonomy, and phylogenetic tree were then exported from QIIME 2 to the R
statistical environment (RC Team 2013) and combined into a Phyloseq object (McMurdie

& Holmes 2013). To reduce the effects of uncertainty in ASV taxonomic classification, we
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conducted the analysis at the microbial ‘genus’ level. Prevalence filtering was applied to
remove low-prevalence ASVs with less than 1% prevalence in order to decrease the
180  possibility of data artifacts affecting the analysis (Callahan et al. 2016). Sequence counts
were converted to relative abundance to normalize for varied library size and Weighted
Unifrac (Lozupone et al. 2011) distances were computed between samples. Significance
testing for distances between treatment groups was accomplished with the adonis function
(Permutational Multivariate Analysis of Variance) in the Vegan R package (Oksanen et al.

185  2015), as well as the DESeq 2 pipeline implemented in phyloseq (Love et al. 2014).

Statistical Analysis and Data Accessibility

Data were analyzed using the R statistical software (version 3.4.0; RC Team 2013).
190  Exploratory analysis of the data to examine the fly eclosion time between no- and high
sugar diets in each round were performed using tidyr (Wickham & Henry 2019) and
ggplot2 packages (Wickham 2010). Linear mixed modelling was done to observe the
effects of diet, round and selection on fly eclosion time using nlme package (Pinheiro et
al. 2019) and visualized by Effects package (Fox et al. 2019).
195
All data and code necessary to reproduce the statistical tests, the main figures and tables

are available on github (https://github.com/MikheyevlL.ab/drosophila-microbiome-

selection), including
an interactive online document for the R-based analysis:

200 https://mikheyevlab.github.io/drosophila-microbiome-selection/. Sequence data has
been deposited into NCBI SRA database under the accession number PRINA555001.
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Results

Fly eclosion time is unaffected by artificial selection
205
To examine if diet, selection and round leads to faster fly eclosion time, we used linear
mixed effects models, which allow for testing nested random effects and within-group
variation. We used round, diet and artificial selection as fixed effects, and lines with
sample replicates nested within them as random effects. We observed significant
210 contribution of diet and round on fly eclosion time, but artificial selection did not affect
the fly phenotype either as a main effect or an interaction (Figure 2, Table 1). Flies in high-
sugar diets took longer to eclose than those in the no-sugar diet, but eclosion time

decreased in both diets.

215 168 analysis of microbiome composition

We performed 16S amplicon sequencing of microbiome from both selected and no-
selection control media that was chosen for propagation to the next round in each diet.
We sequenced the V3/V4 hypervariable region of the 16S rRNA gene using the MiSeq v2

220 platform which generated an average of 175,522 reads per sample. These reads were
analyzed using the DADA2 (Callahan et al. 2016) pipeline implemented in QIIME 2
(Bolyen et al. 2018). ASVs with low prevalence (< 0.01) were removed and alpha-
diversity was measured by Shannon-diversity Index that accounts for both species
abundance and evenness (Willis & Martin 2018). The association between bacterial alpha-

225 diversity and artificial selection regime was tested via the adonis function in vegan R
package (Oksanen et al. 2015), with alpha-diversity as dependent variable and diet, round,
selection pressure as explanatory variables. The alpha-diversity varied with both diet and
round. It increased in each successive round for both selected and non-selected vials, but
it was more pronounced in no-sugar vs. high-sugar diet (Figure 3).

230
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In general, the media contained low bacterial diversity, as reported previously (Blum et
al. 2013). The microbial communities were dominated by Acetobacter initially, although
other taxa increased in frequency, with a significant increase in alpha diversity over time
in the no-sugar diet (Table 2, Figures 3 and 4). An adonis analysis of the UniFrac distances
235 between microbial communities found a significant change over round for the no-sugar
diet (F = 6.15, p = 0.0004), but not for the high-sugar diet (F = 0.62, p = 0.73), consistent
with alpha diversity and compositional differences (Figures 3 and 4). We could not detect
specific genera that systematically changed over the course of the experiment in either

media using linear models implemented in DESeq2.

240 Discussion

We attempted to apply microbiome engineering to increase fruit fly development rate by
propagating the microbial community associated with fast development over four rounds
of selection (Figure 1). We observed substantial increases in developmental rates over the
course of the four rounds of selection in two different dietary media with no- or high-sugar
245 content. However, selection for more rapid eclosion had no effect on either the
developmental rate or its change over the course of the experiment (Figure 2). 16S
amplicon sequencing showed that the microbial composition did indeed change over time,
with a general increase in alpha diversity, particularly in the no-sugar diet, but it too was
unaffected by selection (Figures 3 and 4). Thus, independent microbial evolution in the
250 media swamped any signal of experimentally induced selection. However, by chance, the
host phenotype changed in the same direction as our selection pressure. Only by using a
random-selection line could we detect that the entirety of the observed effect was

incidental.

255 To the best of our knowledge, this is the first study to examine host mediated indirect
selection of microbiome in an animal model. The fruit fly is an excellent model for
microbiome manipulations. It is an open symbiotic system, meaning that the internal and

external microbes are similar (Wong et al. 2015; Blum et al. 2013). As a result, the

10
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processes affecting the microbiome can be complex, including a mixture of ecological,
260 evolutionary and social interactions (Kaltenpoth et al. 2014; Mueller et al. 2005). For
instance, behavior of individual flies, such as regurgitation and fecal deposition in the
food, tunneling, and allo-coprophagy (consumption of conspecifics’ feces) lead to an
exchange of symbionts among group members reared in the same media (Wong et al.
2015; Korner et al. 2016; Goodrich et al. 2014; Chandler et al. 2011). This aspect of fly
265 biology motivated the media transfer in our experiment. However, since the inoculating
flies came from a common stock, the indial microbiome diversity may have been low, with
less variation available for subsequent artificial selection. Yet, the microbiome did evolve

over subsequent rounds, with significant phenotypic effects on the flies.

270 It is well-known that the microbiome affects fly nutrition and development, particularly
by interacting with the amount of fat (triglycerides) in the host; axenic individuals have a
longer developmental period (Ridley et al. 2012; Newell & Douglas 2014; Ma et al. 2015;
Shin et al. 2011; Storelli et al. 2011). However, the bacterial species have unique effects
on the host. It is likely that our measures of bacterial relative abundance and community

275  diversity metrics (Figures 3, 4) cannot fully capture the complexity of bacterial interactions
with the host. This is exemplified by the fact that we could not detect any significant
changes in the bacterial community associated with high-sugar media, though the
composition of no-sugar media’s did change significantly according to our measurements.
Yet, both media had comparable decreases in fly eclosion times. It is, therefore, possible

280 that phenotypic changes resulted from effects of lower-frequency strains, or perhaps from
other factors, such as chemical compounds produced by the microbes in response to each
other. In complex systems, such as microbial communities, substantial phenotypic
variation may be due to interactions between its components, which play a role in
facilitating community-level selection (Williams & Lenton 2007).

285
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Efficacy of experimental selection vs. independent evolution by the microbiome

Microbial evolution experiments typically apply discrete rounds of selection (Swenson et
290 al. 2000; Panke-Buisse et al. 2015; Mueller et al. 2016). For example, our experiment had
four distinct rounds, where media from fast-developing vials was transferred to the next
round. However, media microbiome evolved continuously in between rounds of selection
and not necessarily in ways that we wanted or could effectively control. For example, to
be passed to the next round of selection, microbes had to aggressively colonize fresh media
295 and compete amongst themselves for resources, but not in a way that negatively affected
fly larvae. Because there are many microbial generations within selection rounds, these
parallel selection pressures may dominate the evolutionary response with significant

effects on the host phenotype, as appears to have happened in our experiment.

This sort of independent evolution of the microbiome may significantly limit the utility of
300 microbiome engineering. However, the topic has received relatively little theoretical or
empirical attention (though see Williams & Lenton (2007)). One key implication is for the
design of controls during microbiome evolution studies. Randomly selected control lines
allow the microbiome to evolve in the same way, except for the experimentally enforced
selection. However, these controls are extremely time- and labor-consuming. Alternative
305 options, such as constant inoculation from a preserved microbiome source, or null
inoculations, have been proposed as efficient alternatives (Mueller & Sachs 2015). Even
the fallow-soil control used by Mueller et al 2016, which is a substantial methodological
advance over typically used sterile controls, doesn’t take into account possible interactions
between the microbiome and the plant and how they might evolve. Experimental designs
310 with other control strategies do not provide the same level of control over microbial
evolution as does the random-selection control. For example, using constant or null
controls in our experiment would have lead us to erroneously infer that the microbiome

evolved in response to experimental selection.

12
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Along similar lines, we cannot exclude the possibility that the host has changed in the
315  course of the experiment. Strictly controlling the host population (e.g., in a glycerol stock
or seed bank) is not possible with fruit flies. In retrospect, it would have been desirable to
confirm stability of eclosion times in the source population at the beginning and the end
of the experiment. Changes in the host population appear a less likely explanation for the
observed data, given the magnitude of change seen in the experiment — about half a day
320 earlier eclosion in the course of four rounds (Figure 2). First, the fly stocks were inbred
and genetically homogeneous, minimizing the possibility of evolutionary changes
(Emborski & Mikheyev 2019). Second, they were kept in a stable environment with
controlled temperature, humidity, photoperiod and diet. Third, eggs were surface
sterilized to prevent the introduction of additional microbes to the experiment.
325 Nonetheless, even because the most stable-seeming environments, such as glycerol stock
or seed banks may experience change over time (e.g., due to freezer malfunctions or fungal
rot), ideally both host and microbiome changes should be controlled in the course of
microbiome engineering experiments. Therefore, we strongly recommend that studies
introduce this ‘host-stability’ control.
330
In conclusion, the findings show that artificial selection is not significantly correlated with
fly phenotype or microbiome. This was made possible due to the use of random-selection
controls to measure selection pressure. The lack of significant correlation of selection
might be driven by factors independent of host-mediated artificial selection. Any future
335 prospects in artificial engineering of host microbiome to select desirable host phenotype

would require selection regimes that are stronger than microbial evolution.
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Figures

Figure 1. Schematic of experimental design for indirect selection of trait-associated
455 microbiome in fruit flies. Following the experimental design suggested by Mueller and
Sachs (2015), stock flies laid eggs in either high-sugar or no-sugar diets (step 1) and the
microbiome from the fastest eclosing flies was propagated to the next selection round
(steps 2-4). To keep host genotype constant, sterile eggs from stock flies were used in
each selection round (step 4). There were ten parallel lines in each treatment, which were
460 split into three sub-replicates at each round of selection. Random-selection lines were

simultaneously maintained in high- and no-sugar media as experimental controls.
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Figure 2. Phenotypic evolution over the course of the experiment. Box plots of raw
data, and lines with 95% confidence intervals showing the fit of the mixed-effect linear
model for the round by diet by selection interaction term (Table 1). In both diets, fly
470 eclosion times decreased significantly over the course of the experiment. The difference in
mean eclosion times between the first and last round of selection was 7.5+1.2 (S.E.) hours
for the no-sugar diet and 12.1+1.2 (S.E.) hours for the high-sugar diet. However, selection
had no effect and the rate of decrease was not different for control vs. selected flies. Rather
that being driven by experimentally enforced selection, changes in phenotype were caused

475 by independent evolution by the microbiome.
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Figure 3. Alpha-diversity based on Shannon index for the media microbiome in high-
and no-sugar diets over four rounds of artificial selection. Diversity was higher in the

no-sugar diet (see also Figure 4), and increased over time (Table 2).
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Figure 4. Stacked bar plot of bacterial genus-level relative abundance in the media
490 over the course of the experiment. The compositional changes in community structure
over time were only significantly different for the no-sugar diet, compared to the high-
sugar diet (see also alpha diversity plots in Figure 3). The data are aggregated across three
replicates in each condition. This suggests that the microbiome of the two media evolved

differently, despite producing similar phenotypic results (Figure 2).
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Tables

500 Table 1. Summary of mixed-effect model testing the effect of all the experimental
parameters on fly eclosion time. While diet and selection round had strong effects on

eclosion time, selection did not (also see Figure 2).

Predictors Estimates CcI p
Intercept (High-sugar diet, No-selection control) 29296 288.36-297.57 <0.001
Round of selection -2.59 -395--123 <0.001
No-sugar diet -50.00 -56.29--43.70 <0.001
Selection treatment 358 -3.21-10.37 0.302
Round of selection x No-sugar diet 0.81 -1.06 - 2.68 0.397
Round of selection x Selection treatment -0.85 -283-1.14 0.402
No-sugar diet x Selection treatment -1.52 -10.57-17.53 0.742
Round of selection x No-sugar dietx Selection treatment ~ 0.65 -203-333 0.634
N fine 10
N replicate 199
Observations 10850
Marginal R2 / Conditional R2 0.779/0.834

505
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Table 2. Shannon diversity index as a function of diet and selection round. Because

there was no effect of selection (Table 1, also see adonis analysis), selection and no-

selection treatments were combined to increase power. The alpha diversity was lower in

the high-sugar diet (Figures 3 and 4), and increased over time in the no-sugar diet (Figure

510 3).
Predictors Estimates CI p

Intercept (High-sugar diet) 004 -006-0.15 0420
No-sugar diet 0.17 002-032 0.031
Round of selection 002 -002-006 0.353
Round of selection x No-sugar diet 020 0.14-0.26 <0.001
Observations 58
R2 / R2 adjusted 0.833/0.824
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