
 
 

 1 

The microbiome wants what it wants: microbial evolution 

overtakes experimental host-mediated indirect selection 
  

Jigyasa Arora1, Margaret Mars Brisbin1, Alexander S. Mikheyev1,2 

1Okinawa Institute of Science and Technology Graduate University, Japan. 5 
2Evolutionary Genomics Research Group, Australian National University, Australia. 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2019. ; https://doi.org/10.1101/706960doi: bioRxiv preprint 

https://doi.org/10.1101/706960
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 

Microbes ubiquitously inhabit animals and plants, often affecting their host’s phenotype. 10 

As a result, even in a constant genetic background, the host’s phenotype may evolve 

through indirect selection on the microbiome. ‘Microbiome engineering’ offers a promising 

novel approach for attaining desired host traits but has been attempted only a few times. 

Building on the known role of the microbiome on development in fruit flies, we attempted 

to evolve earlier eclosing flies by selecting on microbes in the growth media. We carried 15 

out parallel evolution experiments in no- and high-sugar diets by transferring media 

associated with fast-developing fly lines over the course of four rounds of selection. In each 

round, we used sterile eggs from the same inbred population, and assayed fly mean 

eclosion times. Ultimately, flies eclosed seven to twelve hours earlier, depending on the 

diet, but selection had no effect. 16S sequencing showed that the microbiome did evolve, 20 

particularly in the no sugar diet, with an increase in alpha diversity over time. Thus, while 

microbiome evolution did affect host eclosion times, these effects were incidental. Instead, 

any experimentally enforced selection effects were swamped by independent microbial 

evolution. These results imply that selection on host phenotypes must be strong enough to 

overcome other selection pressures simultaneously operating on the microbiome. The 25 

independent evolutionary trajectories of the host and the microbiome may limit the extent 

to which indirect selection on the microbiome can ultimately affect host phenotype. 

Random-selection lines accounting for independent microbial evolution are essential for 

experimental microbiome engineering studies. 

 30 
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Introduction 

Communities of microbes living on or in multicellular host organisms interact with their 

hosts in diverse ways that often influence host phenotype and fitness (Zilber-rosenberg & 35 

Rosenberg 2008). Such host-microbe interactions have traditionally been investigated by 

experimentally comparing hosts raised without a microbiome (axenic) to hosts inoculated 

with known components of the microbiome (gnotobiotic) or that receive microbiome 

transplants composed of complex communities (Turnbaugh et al. 2009). Observations of 

atypical phenotypes in axenic organisms indicate hosts are dependent on their microbiome 40 

and cannot function normally without it. The integral role of the microbiome in shaping 

host phenotype suggests that desirable host traits can be indirectly selected through 

microbiome engineering (Mueller & Sachs 2015; Gopal & Gupta 2016; Oyserman et al. 

2018). To achieve this, microbes or microbial communities correlated with desired host 

traits are selected, but selection success is evaluated by measuring host traits (Mueller et 45 

al. 2016). This novel approach has numerous practical applications, such as better 

probiotic design and improved crop yields, in genetically homogeneous or otherwise 

unaltered hosts. 

 

While applying or administering specific bacterial strains or communities (i.e. probiotics) 50 

to achieve a desired host effect is now widespread, true microbiome engineering studies 

remain rare. Diverse examples of successful probiotic studies include: increased biomass 

and antioxidant capacity in plants inoculated with Agrobacterium (Chihaoui et al. 2015), 

reduced white pox disease in corals that received a probiotic cocktail of 13 bacterial strains 

isolated from coral mucus (Alagely et al. 2011), and intestinal epithelial cells with 55 

increased ability to keep pathogens from escaping the intestinal tract in mice that were 

administered Lactobacillus strains (Mack et al. 2003). While often successful, probiotic 

approaches typically rely on relatively simple manipulations of the microbiome by 

introducing known and culturable bacterial species. Additionally, probiotic studies usually 

take advantage of some prior knowledge of host-microbe interactions involving the host 60 

or microbe(s) of interest. However, microbiomes as communities are more complex than 
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what is generally applied experimentally (Qin et al. 2010) and can elicit greater magnitude 

and more specific responses (Sheth et al. 2016) than synthetically prepared treatments. In 

contrast to probiotics, microbiome engineering leverages complex microbial communities 

by engineering and transferring entire microbiomes, including unknown or unculturable 65 

bacterial strains, without prior knowledge of host-microbe interactions by selecting 

microbiomes based on host phenotype (Mueller & Sachs 2015).  

 

As complex dynamic interactions among microbes in an in-situ microbial community are 

difficult to manipulate, only a few studies have so far tried to engineer native microbiome 70 

communities.  Swenson et al. (2000) first engineered the Arabidopsis thaliana rhizosphere 

microbiome to increase and decrease shoot biomass by inoculating ten successive 

Arabidopsis selection rounds with the microbiome of plants with the highest or lowest 

above-ground biomass in the preceding round (Swenson et al. 2000). Panke-Buisse et al. 

(2015) expanded this application by selecting on late and early flowering-time under 75 

nutrient stress and demonstrating that the engineered microbiomes could influence 

flowering-time in additional Arabidopsis strains, as well as another related plant. 

Importantly, Panke-Buisse et al. (2015) evaluated microbiome composition through 16S 

amplicon sequencing, clearly illustrating that the microbiome evolved in response to host 

selection. However, Mueller and Sachs (2015) proposed the use of random-selection 80 

lines—where the propagated microbiome is randomly chosen from replicates—as the gold 

standard for experimental controls in microbiome engineering experiments, even while 

admitting that they greatly increase experimental effort. Previous microbiome engineering 

studies relied on sterile media transfers as negative controls, although Mueller et al. 

(2016) also incorporated a fallow-soil control for the presence of naturally occurring 85 

microbes. Notably, none of these studies used random-selection controls, which account 

for independent microbial evolution that may otherwise confound results. Furthermore, 

microbiome engineering experiments have, to the best of our knowledge, not yet been 

attempted with animal models.  

 90 
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In this study, we performed a microbiome engineering experiment incorporating random-

selection lines in an animal model for the first time. We chose the fruit fly, Drosophila 

melanogaster, as a model for microbiome selection because of its relatively quick 

generation times (Trinder et al. 2017) and its simple core gut microbiome community (< 

30 major species), which are largely commensals acquired from the environment (Erkosar 95 

et al. 2013; Blum et al. 2013). Furthermore, the functions and interactions of core 

members in the fly gut microbiome have been analyzed in detail (Broderick & Lemaitre 

2012; Engel & Moran 2013); microbial interactions have been implicated in fly 

development, immunity, mating, response to external infection, and aging (Charroux & 

Royet 2012; Gould et al. 2018). Taking advantage of the fact that the microbiome affects 100 

fly development time (Shin et al. 2011; Ridley et al. 2012), we attempted to select for a 

microbiome that speeds up fly eclosion in sugar-starved flies and flies fed a high-sugar 

diet. Over the course of four selection rounds, we propagated the microbiome from vials 

with fast-eclosing flies and saw a significant decrease in fly eclosion times. However, there 

was no difference between selected treatments and random-selection controls. Our results 105 

emphasize the need for proper controls in microbiome evolution experiments and suggest 

that independent selection pressures on the microbiome may sometimes dominate in 

microbiome selection experiments. 

Materials and Methods 

Fly maintenance and phenotyping 110 

 

The Drosophila melanogaster strain, Canton S, was used in this experiment because it has 

been kept inbred since its collection in the early 20th century (Stern 1943), which 

minimizes potential for host evolution over repeated experimental cycles (Emborski & 

Mikheyev 2019). Stock flies were reared on standard media with 45 g of cornmeal/100 g 115 

of sugar in an environmentally controlled incubator on a 12 hr:12 hr light/dark schedule. 

For the no-sugar diet, sugar and cornmeal were removed, whereas the high-sugar diet was 

prepared with 160 g of Glucose and no cornmeal. Sterile eggs were acquired by mating 
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three-day old stock flies in egg collection cages with grape juice agar and yeast for 24 

hours. The eggs were sterilized by gently rinsing 2x with a solution of double distilled 120 

water and 50% bleach for 30-120 seconds (Obadia et al. 2018; Newell & Douglas 2014). 

  

As most eclosions take place during the day, the developmental time of the flies were 

assessed by recording the number of newly eclosed flies every hour during the 12 hr light 

period, from 9:00 AM to 9:00 PM. Eclosion times were recorded for three days, starting 125 

from the eclosion of first fly. To maintain fly genotype, flies were discarded after eclosion. 

Overall, 10,850 flies were phenotyped in the experiment. 

 

Indirect selection of the microbiome 

 130 

We used the experimental protocol suggested by Mueller and Sachs (2015) for one-sided 

artificial selection on microbiomes (Figure 1). Twenty-four hour-old stock flies were 

transferred to fresh no-sugar and high-sugar diet vials (step 1 of Figure 1) for 3 days to 

make sure that all flies developed into sexually mature adults and that females had mated. 

The three day-old adult flies were transferred to fresh treatment media for 24 hours to lay 135 

eggs. These eggs, of approximately the same age, established the original microbiome 

community in high-sugar and no-sugar treatment diets.  

 

Each treatment (selection/high-sugar, selection/no-sugar, no-selection/high-sugar, no-

selection/no-sugar) was initiated with 10 parallel lines, each of which was split into three 140 

sub-replicates at each selection round (30 vials per treatment). For selection treatments, 

the microbiome from the sub-replicate with the shortest mean eclosion time was selected 

to inoculate each of the three sub-replicates for that line in the next selection round (step 

3 of Figure 1). For no-selection treatments,  sub-replicates were randomly chosen for 

microbiome propagation to next round.  Microbiome transfer was accomplished by passing 145 

the top layer (~1 mm) of the fly food media through a 70 µm-mesh-size cell strainer 

(Fisher Scientific, cat no. 08-771-19) to remove any dead flies, unfertilized eggs or larvae 
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and then equally distributing the strained media to the three sub-replicates of the 

corresponding line in next round. The top 1 mm of media was chosen as it is most likely 

to consist of native fly microbiome from the parent feces (Wong et al. 2015). Autoclaved 150 

spatulas were used for each food transfer to prevent any cross-contamination between 

lines. To ensure that the genetic pool of the flies remained constant and only the 

microbiome evolved, a spatula of sterilized eggs from the stock flies was aseptically 

transferred to each vial using an autoclaved spatula (step 4 of Figure 1). A spatula of media 

from vials chosen for propagation to the next round in selection and no-selection 155 

treatments was stored at -80°C for 16S rDNA sequencing. The selection procedure was 

repeated for a total of four rounds. 

 

16S rDNA analysis 
 160 

DNA extraction from media was performed using the DNeasy Blood and Tissue kit 

(QIAGEN, Hilden, Germany) following manufacturer’s protocols. Library preparation was 

done using the “16S Metagenomic Sequencing Library Preparation” protocol (Illumina) 

with 5% PhiX control added as an internal control for low diversity libraries. The libraries 

were sequenced by the Okinawa Institute of Science and Technology (OIST) sequencing 165 

section on the Illumina MiSeq platform with 2x250-bp v2 chemistry. The reverse read 

quality was too poor to join paired-end reads, however, and analysis was carried out on 

demultiplexed single-end sequences in QIIME 2 (v2017.11, Bolyen et al. 2018). The 

Divisive Amplicon Denoising Algorithm (DADA) was utilized through the DADA2 plug-in 

in QIIME 2 to quality-filter sequences, remove chimeras, and construct the Amplicon 170 

Sequence Variant (ASV) feature table(Benjamin J. Callahan et al. 2016). Taxonomic 

assignments were given to ASVs by importing SILVA 16S representative sequences and 

consensus taxonomy (release 128, Quast et al. 2013) to QIIME 2 and classifying 

representative ASVs using the naive Bayes classifier plug-in (Bokulich et al. 2018). The 

feature table, taxonomy, and phylogenetic tree were then exported from QIIME 2 to the R 175 

statistical environment (RC Team 2013) and combined into a Phyloseq object (McMurdie 

& Holmes 2013). To reduce the effects of uncertainty in ASV taxonomic classification, we 
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conducted the analysis at the microbial ‘genus’ level. Prevalence filtering was applied to 

remove low-prevalence ASVs with less than 1% prevalence in order to decrease the 

possibility of data artifacts affecting the analysis (Callahan et al. 2016). Sequence counts 180 

were converted to relative abundance to normalize for varied library size and Weighted 

Unifrac (Lozupone et al. 2011) distances were computed between samples. Significance 

testing for distances between treatment groups was accomplished with the adonis function 

(Permutational Multivariate Analysis of Variance) in the Vegan R package (Oksanen et al. 

2015), as well as the DESeq 2 pipeline implemented in phyloseq (Love et al. 2014). 185 

  

Statistical Analysis and Data Accessibility 
  

Data were analyzed using the R statistical software (version 3.4.0; RC Team 2013). 

Exploratory analysis of the data to examine the fly eclosion time between no- and high 190 

sugar diets in each round were performed using tidyr (Wickham & Henry 2019) and 

ggplot2 packages (Wickham 2010). Linear mixed modelling was done to observe the 

effects of diet, round and selection on fly eclosion time using nlme package (Pinheiro et 

al. 2019) and visualized by Effects package (Fox et al. 2019).  

 195 

All data and code necessary to reproduce the statistical tests, the main figures and tables 

are available on github (https://github.com/MikheyevLab/drosophila-microbiome-

selection), including  

an interactive online document for the R-based analysis: 

https://mikheyevlab.github.io/drosophila-microbiome-selection/. Sequence data has 200 

been deposited into NCBI SRA database under the accession number PRJNA555001. 
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Results 

Fly eclosion time is unaffected by artificial selection 

 205 

To examine if diet, selection and round leads to faster fly eclosion time, we used linear 

mixed effects models, which allow for testing nested random effects and within-group 

variation. We used round, diet and artificial selection as fixed effects, and lines with 

sample replicates nested within them as random effects. We observed significant 

contribution of diet and round on fly eclosion time, but artificial selection did not affect 210 

the fly phenotype either as a main effect or an interaction (Figure 2, Table 1). Flies in high-

sugar diets took longer to eclose than those in the no-sugar diet, but eclosion time 

decreased in both diets. 

 
16S analysis of microbiome composition 215 
 

We performed 16S amplicon sequencing of microbiome from both selected and no-

selection control media that was chosen for propagation to the next round in each diet. 

We sequenced the V3/V4 hypervariable region of the 16S rRNA gene using the MiSeq v2 

platform which generated an average of 175,522 reads per sample. These reads were 220 

analyzed using the DADA2 (Callahan et al. 2016) pipeline implemented in QIIME 2 

(Bolyen et al. 2018). ASVs with low prevalence (< 0.01) were removed and alpha-

diversity was measured by Shannon-diversity Index that accounts for both species 

abundance and evenness (Willis & Martin 2018). The association between bacterial alpha-

diversity and artificial selection regime was tested via the adonis function in vegan R 225 

package (Oksanen et al. 2015), with alpha-diversity as dependent variable and diet, round, 

selection pressure as explanatory variables. The alpha-diversity varied with both diet and 

round. It increased in each successive round for both selected and non-selected vials, but 

it was more pronounced in no-sugar vs. high-sugar diet (Figure 3). 

  230 
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In general, the media contained low bacterial diversity, as reported previously (Blum et 

al. 2013). The microbial communities were dominated by Acetobacter initially, although 

other taxa increased in frequency, with a significant increase in alpha diversity over time 

in the no-sugar diet (Table 2, Figures 3 and 4). An adonis analysis of the UniFrac distances 

between microbial communities found a significant change over round for the no-sugar 235 

diet (F = 6.15, p = 0.0004), but not for the high-sugar diet (F = 0.62, p = 0.73), consistent 

with alpha diversity and compositional differences (Figures 3 and 4). We could not detect 

specific genera that systematically changed over the course of the experiment in either 

media using linear models implemented in DESeq2. 

Discussion 240 

We attempted to apply microbiome engineering to increase fruit fly development rate by 

propagating the microbial community associated with fast development over four rounds 

of selection (Figure 1). We observed substantial increases in developmental rates over the 

course of the four rounds of selection in two different dietary media with no- or high-sugar 

content. However, selection for more rapid eclosion had no effect on either the 245 

developmental rate or its change over the course of the experiment (Figure 2). 16S 

amplicon sequencing showed that the microbial composition did indeed change over time, 

with a general increase in alpha diversity, particularly in the no-sugar diet, but it too was 

unaffected by selection (Figures 3 and 4). Thus, independent microbial evolution in the 

media swamped any signal of experimentally induced selection. However, by chance, the 250 

host phenotype changed in the same direction as our selection pressure. Only by using a 

random-selection line could we detect that the entirety of the observed effect was 

incidental. 

 

To the best of our knowledge, this is the first study to examine host mediated indirect 255 

selection of microbiome in an animal model. The fruit fly is an excellent model for 

microbiome manipulations. It is an open symbiotic system, meaning that the internal and 

external microbes are similar (Wong et al. 2015; Blum et al. 2013). As a result, the 
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processes affecting the microbiome can be complex, including a mixture of ecological, 

evolutionary and social interactions (Kaltenpoth et al. 2014; Mueller et al. 2005). For 260 

instance, behavior of individual flies, such as regurgitation and fecal deposition in the 

food, tunneling, and allo-coprophagy (consumption of conspecifics’ feces) lead to an 

exchange of symbionts among group members reared in the same media (Wong et al. 

2015; Körner et al. 2016; Goodrich et al. 2014; Chandler et al. 2011). This aspect of fly 

biology motivated the media transfer in our experiment. However, since the inoculating 265 

flies came from a common stock, the indial microbiome diversity may have been low, with 

less variation available for subsequent artificial selection. Yet, the microbiome did evolve 

over subsequent rounds, with significant phenotypic effects on the flies. 

 

It is well-known that the microbiome affects fly nutrition and development, particularly 270 

by interacting with the amount of fat (triglycerides) in the host; axenic individuals have a 

longer developmental period (Ridley et al. 2012; Newell & Douglas 2014; Ma et al. 2015; 

Shin et al. 2011; Storelli et al. 2011). However, the bacterial species have unique effects 

on the host. It is likely that our measures of bacterial relative abundance and community 

diversity metrics (Figures 3, 4) cannot fully capture the complexity of bacterial interactions 275 

with the host. This is exemplified by the fact that we could not detect any significant 

changes in the bacterial community associated with high-sugar media, though the 

composition of no-sugar media’s did change significantly according to our measurements. 

Yet, both media had comparable decreases in fly eclosion times. It is, therefore, possible 

that phenotypic changes resulted from effects of lower-frequency strains, or perhaps from 280 

other factors, such as chemical compounds produced by the microbes in response to each 

other. In complex systems, such as microbial communities, substantial phenotypic 

variation may be due to interactions between its components, which play a role in 

facilitating community-level selection (Williams & Lenton 2007). 

 285 
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Efficacy of experimental selection vs. independent evolution by the microbiome  

 

Microbial evolution experiments typically apply discrete rounds of selection (Swenson et 

al. 2000; Panke-Buisse et al. 2015; Mueller et al. 2016). For example, our experiment had 290 

four distinct rounds, where media from fast-developing vials was transferred to the next 

round. However, media microbiome evolved continuously in between rounds of selection 

and not necessarily in ways that we wanted or could effectively control. For example, to 

be passed to the next round of selection, microbes had to aggressively colonize fresh media 

and compete amongst themselves for resources, but not in a way that negatively affected 295 

fly larvae. Because there are many microbial generations within selection rounds, these 

parallel selection pressures may dominate the evolutionary response with significant 

effects on the host phenotype, as appears to have happened in our experiment.  

This sort of independent evolution of the microbiome may significantly limit the utility of 

microbiome engineering. However, the topic has received relatively little theoretical or 300 

empirical attention (though see Williams & Lenton (2007)). One key implication is for the 

design of controls during microbiome evolution studies. Randomly selected control lines 

allow the microbiome to evolve in the same way, except for the experimentally enforced 

selection. However, these controls are extremely time- and labor-consuming. Alternative 

options, such as constant inoculation from a preserved microbiome source, or null 305 

inoculations, have been proposed as efficient alternatives (Mueller & Sachs 2015). Even 

the fallow-soil control used by Mueller et al 2016, which is a substantial methodological 

advance over typically used sterile controls, doesn’t take into account possible interactions 

between the microbiome and the plant and how they might evolve. Experimental designs 

with other control strategies do not provide the same level of control over microbial 310 

evolution as does the random-selection control. For example, using constant or null 

controls in our experiment would have lead us to erroneously infer that the microbiome 

evolved in response to experimental selection. 
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Along similar lines, we cannot exclude the possibility that the host has changed in the 

course of the experiment. Strictly controlling the host population (e.g., in a glycerol stock 315 

or seed bank) is not possible with fruit flies. In retrospect, it would have been desirable to 

confirm stability of eclosion times in the source population at the beginning and the end 

of the experiment. Changes in the host population appear a less likely explanation for the 

observed data, given the magnitude of change seen in the experiment  –  about half a day 

earlier eclosion in the course of four rounds (Figure 2). First, the fly stocks were inbred 320 

and genetically homogeneous, minimizing the possibility of evolutionary changes 

(Emborski & Mikheyev 2019). Second, they were kept in a stable environment with 

controlled temperature, humidity, photoperiod and diet. Third, eggs were surface 

sterilized to prevent the introduction of additional microbes to the experiment. 

Nonetheless, even because the most stable-seeming environments, such as glycerol stock 325 

or seed banks may experience change over time (e.g., due to freezer malfunctions or fungal 

rot), ideally both host and microbiome changes should be controlled in the course of 

microbiome engineering experiments. Therefore, we strongly recommend that studies 

introduce this ‘host-stability’ control. 

 330 

In conclusion, the findings show that artificial selection is not significantly correlated with 

fly phenotype or microbiome. This was made possible due to the use of random-selection 

controls to measure selection pressure. The lack of significant correlation of selection 

might be driven by factors independent of host-mediated artificial selection. Any future 

prospects in artificial engineering of host microbiome to select desirable host phenotype 335 

would require selection regimes that are stronger than microbial evolution. 
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Figures 
 

Figure 1. Schematic of experimental design for indirect selection of trait-associated 

microbiome in fruit flies. Following the experimental design suggested by Mueller and 455 

Sachs (2015), stock flies laid eggs in either high-sugar or no-sugar diets (step 1) and the 

microbiome from the fastest eclosing flies was propagated to the next selection round 

(steps 2-4).  To keep host genotype constant, sterile eggs from stock flies were used in 

each selection round (step 4). There were ten parallel lines in each treatment, which were 

split into three sub-replicates at each round of selection. Random-selection lines were 460 

simultaneously maintained in high- and no-sugar media as experimental controls.  
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Figure 2. Phenotypic evolution over the course of the experiment. Box plots of raw 

data, and lines with 95% confidence intervals showing the fit of the mixed-effect linear 

model for the round by diet by selection interaction term (Table 1). In both diets, fly 

eclosion times decreased significantly over the course of the experiment. The difference in 470 

mean eclosion times between the first and last round of selection was 7.5±1.2 (S.E.) hours 

for the no-sugar diet and 12.1±1.2 (S.E.) hours for the high-sugar diet. However, selection 

had no effect and the rate of decrease was not different for control vs. selected flies. Rather 

that being driven by experimentally enforced selection, changes in phenotype were caused 

by independent evolution by the microbiome. 475 

 

 
 

 

  480 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2019. ; https://doi.org/10.1101/706960doi: bioRxiv preprint 

https://doi.org/10.1101/706960
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 21 

Figure 3.  Alpha-diversity based on Shannon index for the media microbiome in high- 

and no-sugar diets over four rounds of artificial selection. Diversity was higher in the 

no-sugar diet (see also Figure 4), and increased over time (Table 2).  
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Figure 4. Stacked bar plot of bacterial genus-level relative abundance in the media 

over the course of the experiment. The compositional changes in community structure 490 

over time were only significantly different for the no-sugar diet, compared to the high-

sugar diet (see also alpha diversity plots in Figure 3). The data are aggregated across three 

replicates in each condition. This suggests that the microbiome of the two media evolved 

differently, despite producing similar phenotypic results (Figure 2). 
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Tables 
Table 1. Summary of mixed-effect model testing the effect of all the experimental 500 

parameters on fly eclosion time. While diet and selection round had strong effects on 

eclosion time, selection did not (also see Figure 2). 

 
 

  505 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2019. ; https://doi.org/10.1101/706960doi: bioRxiv preprint 

https://doi.org/10.1101/706960
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

Table 2. Shannon diversity index as a function of diet and selection round. Because 

there was no effect of selection (Table 1, also see adonis analysis), selection and no-

selection treatments were combined to increase power. The alpha diversity was lower in 

the high-sugar diet (Figures 3 and 4), and increased over time in the no-sugar diet (Figure 

3). 510 
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