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Abstract 
ENCODE comprises thousands of functional genomics datasets, and the encyclopedia covers 
hundreds of cell types, providing a universal annotation for genome interpretation. However, for 
particular applications, it may be advantageous to use a customized annotation. Here, we develop 
such a custom annotation by leveraging advanced assays, such as eCLIP, Hi-C, and whole-genome 
STARR-seq on a number of data-rich ENCODE cell types. A key aspect of this annotation is 
comprehensive and experimentally derived networks of both transcription factors and RNA-
binding proteins (TFs and RBPs). Cancer, a disease of system-wide dysregulation, is an ideal 
application for such a network-based annotation. Specifically, for cancer-associated cell types, we 
put regulators into hierarchies and measure their network change (rewiring) during oncogenesis. 
We also extensively survey TF-RBP crosstalk, highlighting how SUB1, a previously 
uncharacterized RBP, drives aberrant tumor expression and amplifies the effect of MYC, a well-
known oncogenic TF. Furthermore, we show how our annotation allows us to place oncogenic 
transformations in the context of a broad cell space; here, many normal-to-tumor transitions move 
towards a stem-like state, while oncogene knockdowns show an opposing trend. Finally, we 
organize the resource into a coherent workflow to prioritize key elements and variants, in addition 
to regulators. We showcase the application of this prioritization to somatic burdening, cancer 
differential expression and GWAS. Targeted validations of the prioritized regulators, elements and 
variants using siRNA knockdowns, CRISPR-based editing, and luciferase assays demonstrate the 
value of the ENCODE resource. 
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Introduction 
The 2012 ENCODE release provided comprehensive functional genomics data, such as RNA-seq, 
histone modification and transcription factor (TF) ChIP-seq, and DNase-seq, to annotate the 
noncoding regions in the human genome1. After the release, the cancer genomics community 
embraced the ENCODE data, together with other functional genomic data, to study the mutational 
landscape and regulatory networks in cancer2-8. 

The current release broadens the number of cell lines and considerably expands the available tissue 
data. It also greatly increases the depth by adding advanced assays, such as eCLIP, RAMPAGE, 
ChIA-PET, Hi-C, and whole-genome STARR-seq. The ENCODE encyclopedia takes advantage 
of the breadth of ENCODE data to provide a "universal" annotation across hundreds of cell types. 
It uniformly constructs regulatory elements using assays common to all the cell types to provide 
an easy-to-use annotation for a wide variety of circumstances. However, a number of particular 
applications may require specialized annotations tailored to specific data contexts and questions 
(e.g., investigation of nuclear architecture or systems biology). The current ENCODE release, in 
fact, provides a data-rich context for a subset of cell types. Deep integration over many advanced 
assays allows us to connect many regulators and non-coding elements into multi-modal networks, 
including proximal and distal ones, such as TF and RNA-binding proteins (RBP) to gene, 
enhancers to gene, and TF-to-enhancer-to-gene. Here, focusing on these data-rich cell types, we 
developed an integrative and network-associated annotation, which may serve as a valuable 
resource for cancer genomics. 

Cancer genomics is, in fact, one of the best applications to illustrate many key aspects of 
ENCODE. Unlike many other diseases, cancer is very much a disease of whole-genome alteration 
and dysregulation9-12. Moreover, cancer cells usually display aberrant behavior of key regulators, 
extensive epigenetic remodeling, and apparent transitions between cell states13-17. Finally, the 
systems aspect of cancer has been extensively studied, providing a need to connect linear genome 
annotation with pathways and networks18-24. 

In the following sections, we first introduce the resource. We then demonstrate its utility through 
several applications such as evaluation of regulator activity, regulatory network rewiring, 
investigation of tumor-to-normal cell-state trajectories, and interpretation of expression and 
mutation profiles using extended genes. Synthesizing these, we propose a framework to prioritize 
regulators, elements, and nucleotides and then perform targeted experimental validations using 
different techniques. 

The ENCODEC resource 
ENCODEC is a specialized ENCODE companion resource for Cancer genomics. First, using the 
ENCODE data, for each cancer, we try to find the best tumor-normal pairing available. To achieve 
this, we often constructed a "composite normal" by reconciling multiple related cell types (see 
suppl. sect. 1.4). Although the pairings are only approximate, many of them have been widely used 
in prior studies (see suppl. sect. 1.3). Then we build a derived resource. Overall, this consists of 
(1) comprehensive networks that allow us to see global alterations in network rewiring and 
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regulatory hierarchy; (2) an annotated catalogue of cell types that allows us to place oncogenic 
changes relative to normal and stem cells; and (3) compact noncoding annotations and extended 
gene definitions that can potentially increase statistical power to interpret genome variation (both 
germline and somatic) and gene expression changes. Practically, the resource consists of a set of 
annotation files and computer codes available online (ENCODEC.encodeproject.org). 

Figure 1 illustrates two key dimensions of the resource and the ENCODE data: breadth across cell 
types and depth across assays. From the depth of the ENCODE experiments in data-rich cell types, 
we constructed a deep, integrated annotation with two key characteristics: 1) noncoding elements 
are compactly defined to more precisely locate functional sites, and 2) these discontinuous 
regulatory regions are linked to genes to form extended-gene definitions. Extended genes are 
highly dynamic and may change considerably across cell types (similar in fashion to cell-type 
specific isoforms for conventional gene structures).  

In particular, to define distal regulatory elements (e.g. putative enhancers), we integrated up to ten 
histone modification ChIP-seq experiments per cell type using a support vector machine 
approach25. This procedure uses a shape-matching filter to predict enhancers based on element-
associated meta-profiles of epigenetic features26. It has been extensively validated, giving an 
overall error rate of ~20% at 80% sensitivity (see suppl. sect. 2.1.2.1). Next, where possible, we 
intersected these regions with positives called from STARR-seq experiments (see suppl. sect. 
2.1.2.2). This resulted in a substantially shorter list of distal elements than one gets with 
conventional approaches. Further, we restricted individual annotated elements down to a core 
definition enriched for functional sites by pruning based on binding motifs and using novel 
advanced assays such as eCLIP27.  As a result, our annotations are short in length but have a high 
degree of conservation (see suppl. sect. 2.4.1). 

Thus, overall, our annotation is compact in two respects: it contains fewer total elements (because 
the deep integration across many assays removes many potential false positives) and each 
individual element tends to be shorter in length yet is more enriched in functionally relevant 
nucleotides. In principle, both these facts benefit statistical power through decreasing multiple 
testing burden or more sharply defining core regions by removing nonfunctional nucleotides in 
each element.   

We also linked together the above compact annotation elements to define extended gene structures, 
which may also increase power in many circumstances (see suppl. sect. 2.6). Diagramed in Fig. 1, 
the extended gene links the non-coding promoters and enhancers to genes. To define enhancer-
gene linkages, we first used physically based linkages from Hi-C. These are accurate but often 
with fairly low-resolution, potentially spuriously connecting genes within the same topologically 
associating domain (TAD). Therefore, we pruned this with activity correlations: we correlated the 
chromatin marks on enhancers and gene expression on potential targets (both within the same 
TAD) using a machine learning approach28, to generate a high-confidence subset (see suppl. sect. 
2.2). The extended gene annotation potentially enriches the number of functional sites being tested, 
thus increasing power. Second, it helps with the interpretation of noncoding elements by linking 
them to genes. Third, it allows us to subset non-coding annotations by the many well-known gene 
categories, for instance, cancer-associated and metabolic genes. 
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Building on the extended gene annotation, we constructed detailed networks linking regulators to 
genomic elements to target genes. Specifically, we built both distal and proximal networks linking 
TFs to genes. This was accomplished by directly inferring from ChIP-seq experiments either by 
TF-promoter binding or indirectly via TF-enhancer-gene interactions in each cell type (see details 
in suppl. sect. 2.2). We then pruned the full networks to just the strongest interactions using a 
signal shape algorithm that keeps the most-relevant peaks by weighting their location by the 
expected binding profile of each TF 29 (details in suppl. sect. 2.3.3). Similarly, we also defined an 
RBP network from eCLIP experiments. For the data-rich cell types with numerous TF ChIP-seq 
experiments, we further built cell-type specific regulatory networks and then compared these 
between matched tumor and normal cell types, enabling measurement of the change in connections 
during oncogenesis (i.e., network rewiring). Compared to other network definitions (e.g. via 
imputation based on motifs30), our ENCODE TF and RBP networks are based on direct 
experimental evidence and can capture more literature-supported regulations and correlate better 
with knockdown experiments (see suppl. sect. 2.4.4). 

Leveraging ENCODE networks to prioritize regulators 
After constructing the multi-modal TF-RBP network, we systematically arranged it into a 
hierarchy (Fig. 2A-B). Here, regulators are placed at different levels such that those in the middle 
tend to regulate those below them and, in turn, are more regulated by regulators above them (see 
suppl. sect. 3.1). In the hierarchy, we find that top-layer TFs and RBPs more significantly drive 
differential expression (p-value<2.2e-16, one-sided Wilcoxon Test). The joint TF-RBP networks 
also enable investigation of cross-regulation between TFs and RBPs. Interestingly, we find that 
there are fewer TF-RBP interactions on the bottom level, as compared to top and middle-level ones 
(p-value=3.4e-16 and 1.2e-09, one-sided Wilcoxon Test, see suppl. sect. 3.7). Furthermore, we 
notice a well-known oncogene MYC is one of the master TFs that sits on the top-level of the 
hierarchy. Interestingly, MYC not only directly regulates the expression of other TFs but also 
targets many RBPs. 

Our networks also enable gene-expression analyses in tumor samples. We used a regression-based 
approach to systematically search for the TFs and RBPs most strongly driving tumor-normal 
differential expression across different cancers (see suppl. sect. 3.4). For each patient, we tested 
the degree to which a regulator’s activity correlates with its target’s tumor-to-normal expression 
changes. We then calculated the percentage of patients with these relationships in each cancer type 
and presented the overall trends for TFs and RBPs in Fig. 2C. As expected, we find that the target 
genes of MYC are significantly up-regulated in numerous cancer types -- in fact, it has the most 
up-regulated targets of any TF -- consistent with its well-known role as a key oncogenic TF31,32. 
We further validated MYC's regulatory effects using knockdowns (Fig. 2D). Consistent with our 
predictions, the expression of MYC targets is significantly reduced after MYC knockdown in 
MCF-7 (Fig. 2D).  

We analyzed the RBP network in a manner similar to the TF network, finding regulators associated 
with each cancer. For example, the ENCODE eCLIP profile for the RBP SUB1 has binding peaks 
enriched on the 3'UTR regions of genes, and the predicted targets of SUB1 were significantly up-
regulated in many cancer types (Fig. 3F, left). As an RBP, SUB1 has not been associated with 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2019. ; https://doi.org/10.1101/706424doi: bioRxiv preprint 

https://doi.org/10.1101/706424
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

cancer previously, so we sought to investigate its role. Knocking down SUB1 in HepG2 cells 
significantly down-regulated its targets, and the decay rate of SUB1 targets is lower than those of 
non-targets (Fig. 3F, right). Moreover, we find that up-regulation of SUB1 targets may lead to 
decreased patient survival in some cancer types. 

We then used the regulatory network to investigate how prioritized regulators interact with each 
other and other genes. For TFs, we first looked at how MYC's target genes are co-regulated by a 
second TF. An accounting of all the possible three-way co-regulatory relationships is shown in 
Fig. 2E. We find that the most common pattern is the well-characterized feed-forward loop (FFL). 
In this case, MYC regulates both another TF and a common target of both MYC and that TF. Many 
of the FFLs involve well-known MYC partners such as MAX and MXL1. However, we also 
discovered many involving NRF1. Upon further examination, we find that that the MYC-NRF1 
FFL relationships were mostly coherent, i.e., "amplifying" in nature (see suppl. sect. 3.7). We 
further studied the FFLs by organizing them into logic gates, in which two TFs act as inputs and 
the target gene expression represents the output33. We find that most of these gates follow either 
an OR or MYC-always-dominant logic, very much in consonance with MYC’s role in driving 
oncogenesis. 

Similarly, with respect to RBPs, we find that the top co-regulatory partner of SUB1 is, in fact, 
MYC. SUB1 is a direct target of MYC in many cell types (see suppl. sect. 3.7) and also forms 
many FFLs with MYC in the regulatory network. We hypothesized that MYC binds to the 
promoter regions of key oncogenes to initiate their transcription, whereas SUB1 binds to their 3’ 
UTRs to stabilize their RNA transcripts. Such collaboration between MYC and SUB1 potentially 
could result in the overexpression of several key oncogenes (see suppl. sect. 3.7). To validate this 
hypothesis, we knocked down MYC and SUB1 in HepG2 and used qPCR to quantify changes in 
gene expression. As expected, the expression of oncogenes (such as MCM2, MCM7, BIRC5, and 
PLK1) is significantly reduced (Fig. 2F and see suppl. sect. 3.5). 

Measuring network rewiring 
In addition to the TF regulatory activity change through expression analysis above, we also directly 
measured the fractional number of regulatory edge changes for "tumor-normal pairs”, to study how 
TF targets change in oncogenesis. We call this the "rewiring index" and ranked TFs according to 
it (Fig. 3C). In leukemia, well-known oncogenes (such as MYC and NRF1) were among the top 
edge gainers, while the well-known tumor suppressor IKZF1 is the most significant edge loser 
(Fig. 3C). Mutations in IKZF1, in fact, serve as a hallmark of various forms of high-risk 
leukemia34,35. We observed a similar rewiring trend using distal, proximal, and combined networks 
(Fig. 3C). This trend was also consistent across a number of cancers: in particular, highly rewired 
TFs such as BHLHE40, JUND, and MYC behaved similarly in lung, liver, and breast cancers (Fig. 
3C).  

In addition to direct TF-to-gene connections, we also measured rewiring using a gene-community 
model. Here, the targets within the regulatory network were characterized in terms of self-
consistent modules of related genes (so-called "gene communities"). Instead of directly measuring 
the changes in a TF's targets between tumor and normal cells, we determined the changes in 
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regulated gene communities (via a mixed-membership model, see suppl. sect. 4.3.3). Similar 
patterns to direct rewiring were observed (Fig. 3C). 

Overall, we find that the majority of rewiring events were associated with notable gene-expression 
and chromatin-status changes, but not necessarily with direct variant-induced motif loss or gain 
events (Fig. 3B). For example, JUND is a top edge gainer in K562. Most of its gained targets in 
tumor cells demonstrate higher levels of gene expression, stronger active and weaker repressive 
histone-modification signals, yet few of its binding sites are mutated, either by SNVs or SVs. This 
is consistent with previous work36, and with a few notable exceptions, we find a similar trend for 
the rewiring events associated with JUND in liver cancer and, largely, for other factors in a variety 
of cancers (see suppl. sect. 4.4). 

We also organized the cell-type specific networks into hierarchies, as shown in Fig. 3A (similar to 
the “universal,” cross-cell-type hierarchies described earlier in Fig. 2A-B). We find that the 
strongest edge gainers and losers, driving the rewiring of the regulatory network, sit at the top level 
of these hierarchies in blood cancer. In addition, we find the TFs more associated with driving 
cancer gene expression changes also tend to be at the top. MYC is a most prominent example of 
both a highly-rewired TF and one driving expression. In contrast, the more mutationally affected 
TFs sit at the bottom of the hierarchy. To some degree, this is consistent with our results in Fig. 
3B showing that binding site mutations do not drive the regulatory change. 

Placing cancer cells in the context of many ENCODE 
cell types 
ENCODE data provides an additional way of studying the oncogenic transformation beyond 
network rewiring: via placing various cancer cells in a context of many cell types (in "cell space"). 
This is possible because of the wide variety of cell types profiled in the new ENCODE release, 
which includes many stem cells, especially the data-rich H1 cell line. We are particularly interested 
in comparisons to stem cells since a decades-old paradigm has held that at least a subpopulation 
of tumor cells can self-renew, differentiate, and regenerate in a manner similar to stem cells37-42. 
For such comparison, we first projected the RNA-seq data from 299 ENCODE cell types into a 
low-dimensional space (using the procedure described in Li et al43, see suppl. sect. 5.1). We find 
that various types of stem cells form a tight cluster (Fig. 4). Moreover, there is a trend where the 
trajectory from normal to tumor cells involves moving toward stem cells, along a single “stem-
like component.” This is true for a variety of different cancers. This observation is consistent with 
previous efforts using expression and methylation analysis44. Notably, we observed a consistent 
(or even stronger) pattern from proximal and distal chromatin data, which can be viewed as the 
underlying cause of the observed gene expression changes. 

It is well-known that dysregulation of oncogene TFs is a hallmark of tumor progression11,45-48. Key 
genes, such as MYC, initiate overexpression of other oncogenes in tumor cells32,49. We can use the 
cell-space diagram to see the degree to which these TFs contribute to the state of cell 
differentiation: in particular, we measured the perturbations induced by oncogenic TFs through 
expression comparisons before and after TF knockdowns. Interestingly, the expression profiles 
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usually reverted slightly back towards normal state upon oncogene knockdown, along the stem-
like component. One can see this difference more precisely and test it statistically if one restricts 
just to the single transition between GM12878 and K562 (Fig. 4). 

The extended gene representation 
After identifying key regulators, we next aimed to prioritize their associated genomic elements. 
To do this, we combined the extended gene annotation with expression and mutation data from 
patients. We show three examples where this is useful. 

First, our extended gene definitions can be used for associating differential expression with 
mutational status. For example, we combined the mutation and expression profiles from large 
cohorts, such as those in TCGA, and found that mutation status in extended genes can better 
explain the tumor expression than other annotations, such as just canonical coding sequences 
(CDS). That is, one can much better predict tumor-normal differential expression from mutations 
in the extended gene as compared to just in CDS or in individual promoters or enhancers (see 
suppl. sect. 6.1). One example of the explanatory potential of the extended gene is seen for the 
splicing factor SRSF2, which has been shown to affect liver cancer progression and for which 
differential expression in HepG2 can be well predicted using mutations in the extended gene (Fig. 
5A, p-value=0.002, one-sided Wilcoxon test). 

The second example is cancer genome-wide association study (GWAS) variant enrichment. That 
is, the enrichment of cancer-associated GWAS germline SNPs in particular genome regions. The 
enrichment significantly increases in going from CDS to extended genes for both breast cancer 
and leukemia (Fig. 5C). This trend is much more pronounced when the newly added non-coding 
annotations are from matched cell types. One may further subset the genes according to different 
subcategories associated with cancer and identify enrichment. For instance, we observed a 
significant enrichment in genes from the Cancer Gene Consensus (CGC) in breast cancer based on 
the extended gene annotation. This sub-setting by well-known gene categories is not possible using 
conventional non-coding annotations. 

One can get a physical sense of the importance of the extended gene by looking at a situation where 
a genomic variant rearranges the extended gene structure without affecting the coding regions. We 
find such an example in the breast cancer cell line T47D, where a 130kbp heterozygous deletion 
links a distal enhancer to the ERBB4 promoter and results in the activation of this well-known 
oncogene64,65 (Fig. 5B). The enhancer is not connected to ERBB4 in normal breast tissue; however, 
in T47D, the deletion, located around 45kbp downstream from the ERBB4 promoter, merges two 
Hi-C TADs in an allele-specific way. We tested this through CRISPR editing, by excising an 86bp 
sequence within the wild-type allele of the heterozygous deletion containing the CTCF binding 
sites at the boundary of the two TADs. This CRISPR excision confirmed the elevated ERBB4 
expression (see suppl. sect. 6.4). 

Another perspective on the effect of SVs changing chromatin structure is provided from broadly 
surveying SVs in a number of the data-rich ENCODE cells types. (Note, ENCODE provides SV 
call sets based on integration of assays including Hi-C for a number of these cell lines, see suppl. 
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sect. 6.5.3). In particular, in Fig. 5D, we surveyed regions around somatic SV breakpoints in K562. 
We find that the activating histone mark H4K20me1 occurs preferentially around these 
breakpoints. This enrichment was not observed using GM12878 histone mark data at these exact 
same locations. We further examined the GM12878 H4K20me1 levels proximal to germline 
breakpoints (for common variants as determined from the 1000 Genomes Project66) and also find 
no enrichment (see suppl. sect. 6.5). One potential implication is that the somatic SVs in tumor 
cells may be associated with creating active regions of chromatin. 

Step-wise prioritization framework 
Collectively, as described in Fig. 6, ENCODEC enables a step-wise prioritization that allows us to 
pinpoint key regulators, noncoding elements, and variants associated with oncogenesis. 
Specifically, we first highlighted regulators that are either greatly rewired, located in hubs, sit at 
the top of the hierarchy, or significantly drive expression changes in cancer. We then prioritize 
functional elements associated with these regulators that are either highly burdened by mutations, 
undergo large chromatin changes, or change in extended gene linkages. Finally, on a nucleotide 
level, we prioritize SNVs by estimating their ability to disrupt or introduce specific binding sites 
and assessing to what degree they lie in a prioritized element. 

We instantiated our prioritization workflow in a few select cancers and experimentally validated 
the results. In particular, as described above, we subjected some key regulators, such as MYC and 
SUB1, to knockdown experiments (Fig. 2D and Fig. 2F) and we measured the effect of SVs on 
element linkages via CRISPR engineered deletions (Fig. 5B). Finally, we selected key SNVs based 
on their disruption of enhancers with a strong influence on gene expression. These SNVs were 
prioritized based on element-level mutation recurrence in breast-cancer cohorts, as well as motif 
disruption scores. Of the eight motif-disrupting SNVs that we tested, six exhibited consistent up- 
or down-regulation relative to the wild-type in multiple biological replicates (see suppl. sect. 7.2 
and 7.3). 

One particularly interesting example occurs in an intronic region of CDH26 in chromosome 20 
(Fig. 6C). The signal shapes for both histone modification and chromatin accessibility (DNase-
seq) data indicate its active regulatory role as an enhancer in MCF-7. This was further confirmed 
by STARR-seq (Fig. 6C). Hi-C and ChIA-PET linkages indicated that the region is within a TAD 
and validated a regulatory connection to the cancer-associated gene SYCP267. We further observed 
strong binding of many TFs in this region in MCF-7. Motif analysis predicts that a common 
mutation in breast cancer affects this region, and significantly disrupts the local binding affinity of 
several TFs, such as FOSL2 (Fig. 6C). Luciferase assays demonstrated that this mutation 
introduces a 3.6-fold reduction in expression relative to the wild-type, indicating a strong 
repressive effect on enhancer functionality. 

Discussion 
In this paper, we describe a customized ENCODE annotation: a companion resource providing an 
integrative network annotation including extended gene. Cancer genomics is an ideal application 
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to highlight the value of the resource, and we show how it can help describe oncogenic 
transformations in terms of cell-space trajectories and network rewiring. We also use the 
specialized annotation to prioritize key regulators, element, and variants. 

There remain several caveats associated with our resource. First and most obviously, proper 
somatic variant annotation and, especially driver discovery, is a multiple-step process that requires 
coordinated, large-scale effort. Extensive follow-up validations are required, in addition to the 
careful calibration required for statistical identification of mutation recurrence and the many biases 
in sequencing (e.g. taking into account the elevated mutation rate associated with TF binding 
sites2,6, sequence coverage and mutational signatures50,57). While we hope that ENCODE data and 
annotation can be useful in this context, they are not sufficient. Second, our resource associates 
cancer types with ENCODE cell lines and then secondarily pairs them with a composite normal. 
Both types of pairings are, by nature, approximate. Tumor cells from a given patient show distinct 
molecular, morphological, and genetic profiles68-71. Moreover, linking cancer to one specific cell-
type may not even fully capture the heterogeneity seen in actual tumors72. In the future, 
technological advances, such as single-cell sequencing, may allow cell-type or tissue-type 
comparisons at a higher resolution73-77. Nevertheless, we feel that our annotation and networks 
currently provide the best available view of the regulatory changes in oncogenesis. 

Finally, we argue here that, somewhat counter-intuitively, a comprehensive non-coding annotation 
that, in the extreme, attempts to assign functional impact to every base in the genome may not 
always be best suited to specific disease-oriented studies. Rather, the most useful annotation often 
has several characteristics.  First, it is useful to be as compact as possible, both in terms of the 
extent of individual annotation blocks and in the number of elements. Second, since the currently 
discovered high impact variants tend to be tightly associated with genes, an optimum non-coding 
annotation is best “invisible,” folding itself into gene annotation for better variant interpretation. 
Third, the network aspect is often needed to allow larger-scale systems perspective. This is 
particularly valuable for appreciating the overall cellular dysregulation in cancer. With the depth 
and breadth of the ENCODE assays across thousands of cell types, we endeavored here to provide 
such a customized annotation resource for cancer and demonstrated its value through several 
showcase applications. We anticipate that the rapid accumulation of functional genomic data will 
make possible further, potentially even more specialized, annotation resources for future disease 
studies. 
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Figure Legend 
Figure 1 

Overview of the ENCODEC resource. Table columns list cell types and rows list assays. Blue 
table boundary: Cell types with assays in the ENCODE Encyclopedia highlight the breadth of 
the resource. The large number of cell types allows for comparative analyses between cell-types, 
as well as cell-type specific analyses. Green table boundary: Cell-type specific analyses based 
on deep annotations of cell lines. The integration of assays allows for high-resolution investigation 
of genomic biology. Inset: We use annotations from cell-type specific ENCODE assays to build 
extended gene definitions - coding and non-coding elements that are linked according to their 
interaction and associated function (top). We relate transcription factors (TFs) and RNA binding 
proteins (RBPs) in a joint network hierarchy that describes their regulatory potential (middle). By 
comparing regulatory networks in tumor and normal ENCODE samples, we develop rewiring 
networks that may relate to regulatory changes that occur in the context of normal-to-tumor 
transition (bottom). 

 

Figure 2 

Regulatory network hierarchies. (A) TFs and (B) RBPs are systematically organized into a 
hierarchy, forming a joint TF-RBP regulatory network. Higher layer elements tend to regulate 
lower layer elements. (C) The regulatory potentials of TFs/RBPs to drive tumor-to-normal 
expression changes are shown as a heatmap; red and blue indicate up- and down- regulation 
respectively. (D) Elevated MYC regulatory activity is associated with reduced disease-specific 
survival (DSS) in breast cancer (i); MYC knockdown in MCF-7 leads to significantly larger 
expression reduction in MYC target genes (ii). (E) MYC expression is more positively correlated 
with its target genes as compared to other TFs (top); MYC frequently forms FFLs with NRF1. 
These are mostly coherent FFLs and OR-gate logic predominates (bottom). (F) Elevated SUB1 
regulation activity is associated with reduced overall survival (OS) in lung cancer (i); SUB1 
knockdown in HepG2 leads to reduced target gene expression (ii); Targets of SUB1 show slower 
mRNA decay rate (iii); for cancer-associated target genes of MYC and SUB1, gene expression is 
decreased with both MYC and SUB1 knockdown (KD), compared with knockdown of either MYC 
or SUB1 individually, and compared to control (iv). 

 

Figure 3 

TF-Gene network rewiring. Green and red arrows designate edge gain and loss, respectively. (A) 
Cell-type specific network using K562 and GM12878: top layer TFs significantly drive tumor-
normal differential expression; bottom layer TFs are more often associated with burdened binding 
sites. (B) JUND is a top edge-gainer in CML, and its targets demonstrate increased gene 
expression. However, few of its binding sites are affected by SVs or SNVs. (C) Rewiring index in 
CML by direct edge counts using both proximal and distal networks (top) and by gene community 
analysis (bottom). Comparisons to TF-gene rewiring networks in other cancers are also shown. 
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Figure 4 

Oncogenic transformation and cell state. We project the expression profiles (left, poly-A long 
RNA-seq), proximal network (second from right, CTCF ChIP-seq), and distal network (right, 
candidate cis-regulatory elements) of the ENCODE cell types to a lower dimension space. Stem-
like cell types formed a cluster, suggesting stem-like cell types have a distinct profile from normal 
and cancerous cell types. Further, we find that cancerous cell types tend to locate closer to stem-
like clusters. Oncogene knockdown in K562 led to more transcriptomic similarity to a normal cell-
type, and tumor suppressor gene (TSG) knockdown led to greater similarity to a tumor cell-type 
(second from left, top, in comparison to GM12878). In general, we find that oncogene knockdown 
leads to a slight reversion towards normal state along the stem-like component (second from left, 
bottom). 

 

Figure 5 

Extended genes and mutation burden analysis. (A) Mutation status in extended genes can 
explain expression differences for a larger number of genes than other annotations, such as 
annotations of coding sequences (CDS). (B) A 130kbp deletion in the breast cancer cell line T47D 
potentially links a distal enhancer to the promoter of ERBB4, leading to its activation. This change 
does not affect coding sequences, highlighting the value of an extended gene annotation. (C) 
Cancer-associated GWAS SNVs display greater enrichment with the inclusion of proximal and 
distal annotations in extended gene definitions. (D) Somatic structural variant breakpoints in K562 
tend to be associated with the activating histone mark H4K20me1, but not in GM12878. 

 

Figure 6 

Variant prioritization and validation. (A) A stepwise prioritization scheme for genomic 
regulators, elements, and variants, using the ENCODEC resources. At each step of prioritization, 
we indicate criteria for prioritization, as well as the applicable validation assay. (B) Small-scale 
validation of prioritized variants using a luciferase reporter assay. Candidate region 5 showed the 
most significant degree of differential expression and was selected for follow-up analysis. (C) 
Multiscale integrative analysis of candidate region 5 with assorted functional genomics data. The 
affected region is observed in the context of large-scale Hi-C linkages (top), as well as element-
level signal tracks of histone modification marks and DNase hypersensitivity together with various 
TF binding events (middle), and nucleotide level disruption of the FOSL2 motif (bottom). 
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