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Abstract

ENCODE comprises thousands of functional genomics datasets, and the encyclopedia covers
hundreds of cell types, providing a universal annotation for genome interpretation. However, for
particular applications, it may be advantageous to use a customized annotation. Here, we develop
such a custom annotation by leveraging advanced assays, such as eCLIP, Hi-C, and whole-genome
STARR-seq on a number of data-rich ENCODE cell types. A key aspect of this annotation is
comprehensive and experimentally derived networks of both transcription factors and RNA-
binding proteins (TFs and RBPs). Cancer, a disease of system-wide dysregulation, is an ideal
application for such a network-based annotation. Specifically, for cancer-associated cell types, we
put regulators into hierarchies and measure their network change (rewiring) during oncogenesis.
We also extensively survey TF-RBP crosstalk, highlighting how SUBI1, a previously
uncharacterized RBP, drives aberrant tumor expression and amplifies the effect of MYC, a well-
known oncogenic TF. Furthermore, we show how our annotation allows us to place oncogenic
transformations in the context of a broad cell space; here, many normal-to-tumor transitions move
towards a stem-like state, while oncogene knockdowns show an opposing trend. Finally, we
organize the resource into a coherent workflow to prioritize key elements and variants, in addition
to regulators. We showcase the application of this prioritization to somatic burdening, cancer
differential expression and GWAS. Targeted validations of the prioritized regulators, elements and
variants using siRNA knockdowns, CRISPR-based editing, and luciferase assays demonstrate the
value of the ENCODE resource.
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Introduction

The 2012 ENCODE release provided comprehensive functional genomics data, such as RNA-seq,
histone modification and transcription factor (TF) ChIP-seq, and DNase-seq, to annotate the
noncoding regions in the human genome!. After the release, the cancer genomics community
embraced the ENCODE data, together with other functional genomic data, to study the mutational
landscape and regulatory networks in cancer®.

The current release broadens the number of cell lines and considerably expands the available tissue
data. It also greatly increases the depth by adding advanced assays, such as eCLIP, RAMPAGE,
ChIA-PET, Hi-C, and whole-genome STARR-seq. The ENCODE encyclopedia takes advantage
of the breadth of ENCODE data to provide a "universal" annotation across hundreds of cell types.
It uniformly constructs regulatory elements using assays common to all the cell types to provide
an easy-to-use annotation for a wide variety of circumstances. However, a number of particular
applications may require specialized annotations tailored to specific data contexts and questions
(e.g., investigation of nuclear architecture or systems biology). The current ENCODE release, in
fact, provides a data-rich context for a subset of cell types. Deep integration over many advanced
assays allows us to connect many regulators and non-coding elements into multi-modal networks,
including proximal and distal ones, such as TF and RNA-binding proteins (RBP) to gene,
enhancers to gene, and TF-to-enhancer-to-gene. Here, focusing on these data-rich cell types, we
developed an integrative and network-associated annotation, which may serve as a valuable
resource for cancer genomics.

Cancer genomics is, in fact, one of the best applications to illustrate many key aspects of
ENCODE. Unlike many other diseases, cancer is very much a disease of whole-genome alteration
and dysregulation®!2. Moreover, cancer cells usually display aberrant behavior of key regulators,
extensive epigenetic remodeling, and apparent transitions between cell states!>!’. Finally, the
systems aspect of cancer has been extensively studied, providing a need to connect linear genome
annotation with pathways and networks!®-24,

In the following sections, we first introduce the resource. We then demonstrate its utility through
several applications such as evaluation of regulator activity, regulatory network rewiring,
investigation of tumor-to-normal cell-state trajectories, and interpretation of expression and
mutation profiles using extended genes. Synthesizing these, we propose a framework to prioritize
regulators, elements, and nucleotides and then perform targeted experimental validations using
different techniques.

The ENCODEC resource

ENCODEC is a specialized ENCODE companion resource for Cancer genomics. First, using the
ENCODE data, for each cancer, we try to find the best tumor-normal pairing available. To achieve
this, we often constructed a "composite normal" by reconciling multiple related cell types (see
suppl. sect. 1.4). Although the pairings are only approximate, many of them have been widely used
in prior studies (see suppl. sect. 1.3). Then we build a derived resource. Overall, this consists of
(1) comprehensive networks that allow us to see global alterations in network rewiring and
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regulatory hierarchy; (2) an annotated catalogue of cell types that allows us to place oncogenic
changes relative to normal and stem cells; and (3) compact noncoding annotations and extended
gene definitions that can potentially increase statistical power to interpret genome variation (both
germline and somatic) and gene expression changes. Practically, the resource consists of a set of
annotation files and computer codes available online (ENCODEC.encodeproject.org).

Figure 1 illustrates two key dimensions of the resource and the ENCODE data: breadth across cell
types and depth across assays. From the depth of the ENCODE experiments in data-rich cell types,
we constructed a deep, integrated annotation with two key characteristics: 1) noncoding elements
are compactly defined to more precisely locate functional sites, and 2) these discontinuous
regulatory regions are linked to genes to form extended-gene definitions. Extended genes are
highly dynamic and may change considerably across cell types (similar in fashion to cell-type
specific isoforms for conventional gene structures).

In particular, to define distal regulatory elements (e.g. putative enhancers), we integrated up to ten
histone modification ChIP-seq experiments per cell type using a support vector machine
approach®. This procedure uses a shape-matching filter to predict enhancers based on element-
associated meta-profiles of epigenetic features®®. It has been extensively validated, giving an
overall error rate of ~20% at 80% sensitivity (see suppl. sect. 2.1.2.1). Next, where possible, we
intersected these regions with positives called from STARR-seq experiments (see suppl. sect.
2.1.2.2). This resulted in a substantially shorter list of distal elements than one gets with
conventional approaches. Further, we restricted individual annotated elements down to a core
definition enriched for functional sites by pruning based on binding motifs and using novel
advanced assays such as eCLIP?’. As a result, our annotations are short in length but have a high
degree of conservation (see suppl. sect. 2.4.1).

Thus, overall, our annotation is compact in two respects: it contains fewer total elements (because
the deep integration across many assays removes many potential false positives) and each
individual element tends to be shorter in length yet is more enriched in functionally relevant
nucleotides. In principle, both these facts benefit statistical power through decreasing multiple
testing burden or more sharply defining core regions by removing nonfunctional nucleotides in
each element.

We also linked together the above compact annotation elements to define extended gene structures,
which may also increase power in many circumstances (see suppl. sect. 2.6). Diagramed in Fig. 1,
the extended gene links the non-coding promoters and enhancers to genes. To define enhancer-
gene linkages, we first used physically based linkages from Hi-C. These are accurate but often
with fairly low-resolution, potentially spuriously connecting genes within the same topologically
associating domain (TAD). Therefore, we pruned this with activity correlations: we correlated the
chromatin marks on enhancers and gene expression on potential targets (both within the same
TAD) using a machine learning approach?8, to generate a high-confidence subset (see suppl. sect.
2.2). The extended gene annotation potentially enriches the number of functional sites being tested,
thus increasing power. Second, it helps with the interpretation of noncoding elements by linking
them to genes. Third, it allows us to subset non-coding annotations by the many well-known gene
categories, for instance, cancer-associated and metabolic genes.
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Building on the extended gene annotation, we constructed detailed networks linking regulators to
genomic elements to target genes. Specifically, we built both distal and proximal networks linking
TFs to genes. This was accomplished by directly inferring from ChIP-seq experiments either by
TF-promoter binding or indirectly via TF-enhancer-gene interactions in each cell type (see details
in suppl. sect. 2.2). We then pruned the full networks to just the strongest interactions using a
signal shape algorithm that keeps the most-relevant peaks by weighting their location by the
expected binding profile of each TF 2° (details in suppl. sect. 2.3.3). Similarly, we also defined an
RBP network from eCLIP experiments. For the data-rich cell types with numerous TF ChIP-seq
experiments, we further built cell-type specific regulatory networks and then compared these
between matched tumor and normal cell types, enabling measurement of the change in connections
during oncogenesis (i.e., network rewiring). Compared to other network definitions (e.g. via
imputation based on motifs*’), our ENCODE TF and RBP networks are based on direct
experimental evidence and can capture more literature-supported regulations and correlate better
with knockdown experiments (see suppl. sect. 2.4.4).

Leveraging ENCODE networks to prioritize regulators

After constructing the multi-modal TF-RBP network, we systematically arranged it into a
hierarchy (Fig. 2A-B). Here, regulators are placed at different levels such that those in the middle
tend to regulate those below them and, in turn, are more regulated by regulators above them (see
suppl. sect. 3.1). In the hierarchy, we find that top-layer TFs and RBPs more significantly drive
differential expression (p-value<2.2e-16, one-sided Wilcoxon Test). The joint TF-RBP networks
also enable investigation of cross-regulation between TFs and RBPs. Interestingly, we find that
there are fewer TF-RBP interactions on the bottom level, as compared to top and middle-level ones
(p-value=3.4e-16 and 1.2e-09, one-sided Wilcoxon Test, see suppl. sect. 3.7). Furthermore, we
notice a well-known oncogene MYC is one of the master TFs that sits on the top-level of the
hierarchy. Interestingly, MYC not only directly regulates the expression of other TFs but also
targets many RBPs.

Our networks also enable gene-expression analyses in tumor samples. We used a regression-based
approach to systematically search for the TFs and RBPs most strongly driving tumor-normal
differential expression across different cancers (see suppl. sect. 3.4). For each patient, we tested
the degree to which a regulator’s activity correlates with its target’s tumor-to-normal expression
changes. We then calculated the percentage of patients with these relationships in each cancer type
and presented the overall trends for TFs and RBPs in Fig. 2C. As expected, we find that the target
genes of MYC are significantly up-regulated in numerous cancer types -- in fact, it has the most
up-regulated targets of any TF -- consistent with its well-known role as a key oncogenic TF3!-32,
We further validated MYC's regulatory effects using knockdowns (Fig. 2D). Consistent with our
predictions, the expression of MYC targets is significantly reduced after MYC knockdown in
MCF-7 (Fig. 2D).

We analyzed the RBP network in a manner similar to the TF network, finding regulators associated
with each cancer. For example, the ENCODE eCLIP profile for the RBP SUB1 has binding peaks
enriched on the 3'UTR regions of genes, and the predicted targets of SUB1 were significantly up-
regulated in many cancer types (Fig. 3F, left). As an RBP, SUBI1 has not been associated with
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cancer previously, so we sought to investigate its role. Knocking down SUBI1 in HepG2 cells
significantly down-regulated its targets, and the decay rate of SUBI targets is lower than those of
non-targets (Fig. 3F, right). Moreover, we find that up-regulation of SUB1 targets may lead to
decreased patient survival in some cancer types.

We then used the regulatory network to investigate how prioritized regulators interact with each
other and other genes. For TFs, we first looked at how MYC's target genes are co-regulated by a
second TF. An accounting of all the possible three-way co-regulatory relationships is shown in
Fig. 2E. We find that the most common pattern is the well-characterized feed-forward loop (FFL).
In this case, MYC regulates both another TF and a common target of both MY C and that TF. Many
of the FFLs involve well-known MYC partners such as MAX and MXL1. However, we also
discovered many involving NRF1. Upon further examination, we find that that the MYC-NRF1
FFL relationships were mostly coherent, i.e., "amplifying" in nature (see suppl. sect. 3.7). We
further studied the FFLs by organizing them into logic gates, in which two TFs act as inputs and
the target gene expression represents the output®®. We find that most of these gates follow either
an OR or MYC-always-dominant logic, very much in consonance with MYC’s role in driving
oncogenesis.

Similarly, with respect to RBPs, we find that the top co-regulatory partner of SUBI is, in fact,
MYC. SUBI is a direct target of MYC in many cell types (see suppl. sect. 3.7) and also forms
many FFLs with MYC in the regulatory network. We hypothesized that MYC binds to the
promoter regions of key oncogenes to initiate their transcription, whereas SUB1 binds to their 3’
UTREs to stabilize their RNA transcripts. Such collaboration between MYC and SUB1 potentially
could result in the overexpression of several key oncogenes (see suppl. sect. 3.7). To validate this
hypothesis, we knocked down MYC and SUBI in HepG2 and used qPCR to quantify changes in
gene expression. As expected, the expression of oncogenes (such as MCM2, MCM7, BIRCS, and
PLK1) is significantly reduced (Fig. 2F and see suppl. sect. 3.5).

Measuring network rewiring

In addition to the TF regulatory activity change through expression analysis above, we also directly
measured the fractional number of regulatory edge changes for "tumor-normal pairs”, to study how
TF targets change in oncogenesis. We call this the "rewiring index" and ranked TFs according to
it (Fig. 3C). In leukemia, well-known oncogenes (such as MYC and NRF1) were among the top
edge gainers, while the well-known tumor suppressor IKZF1 is the most significant edge loser
(Fig. 3C). Mutations in IKZF1, in fact, serve as a hallmark of various forms of high-risk
leukemia®*3>. We observed a similar rewiring trend using distal, proximal, and combined networks
(Fig. 3C). This trend was also consistent across a number of cancers: in particular, highly rewired
TFs such as BHLHE40, JUND, and MY C behaved similarly in lung, liver, and breast cancers (Fig.
30).

In addition to direct TF-to-gene connections, we also measured rewiring using a gene-community
model. Here, the targets within the regulatory network were characterized in terms of self-
consistent modules of related genes (so-called "gene communities"). Instead of directly measuring
the changes in a TF's targets between tumor and normal cells, we determined the changes in
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regulated gene communities (via a mixed-membership model, see suppl. sect. 4.3.3). Similar
patterns to direct rewiring were observed (Fig. 3C).

Overall, we find that the majority of rewiring events were associated with notable gene-expression
and chromatin-status changes, but not necessarily with direct variant-induced motif loss or gain
events (Fig. 3B). For example, JUND is a top edge gainer in K562. Most of its gained targets in
tumor cells demonstrate higher levels of gene expression, stronger active and weaker repressive
histone-modification signals, yet few of its binding sites are mutated, either by SNVs or SVs. This
is consistent with previous work?®¢, and with a few notable exceptions, we find a similar trend for
the rewiring events associated with JUND in liver cancer and, largely, for other factors in a variety
of cancers (see suppl. sect. 4.4).

We also organized the cell-type specific networks into hierarchies, as shown in Fig. 3A (similar to
the “universal,” cross-cell-type hierarchies described earlier in Fig. 2A-B). We find that the
strongest edge gainers and losers, driving the rewiring of the regulatory network, sit at the top level
of these hierarchies in blood cancer. In addition, we find the TFs more associated with driving
cancer gene expression changes also tend to be at the top. MYC is a most prominent example of
both a highly-rewired TF and one driving expression. In contrast, the more mutationally affected
TFs sit at the bottom of the hierarchy. To some degree, this is consistent with our results in Fig.
3B showing that binding site mutations do not drive the regulatory change.

Placing cancer cells in the context of many ENCODE
cell types

ENCODE data provides an additional way of studying the oncogenic transformation beyond
network rewiring: via placing various cancer cells in a context of many cell types (in "cell space").
This is possible because of the wide variety of cell types profiled in the new ENCODE release,
which includes many stem cells, especially the data-rich H1 cell line. We are particularly interested
in comparisons to stem cells since a decades-old paradigm has held that at least a subpopulation
of tumor cells can self-renew, differentiate, and regenerate in a manner similar to stem cells®”42,
For such comparison, we first projected the RNA-seq data from 299 ENCODE cell types into a
low-dimensional space (using the procedure described in Li et al*?, see suppl. sect. 5.1). We find
that various types of stem cells form a tight cluster (Fig. 4). Moreover, there is a trend where the
trajectory from normal to tumor cells involves moving toward stem cells, along a single “stem-
like component.” This is true for a variety of different cancers. This observation is consistent with
previous efforts using expression and methylation analysis**. Notably, we observed a consistent
(or even stronger) pattern from proximal and distal chromatin data, which can be viewed as the
underlying cause of the observed gene expression changes.

It is well-known that dysregulation of oncogene TFs is a hallmark of tumor progression'!#>-48, Key

genes, such as MYC, initiate overexpression of other oncogenes in tumor cells*>#°. We can use the
cell-space diagram to see the degree to which these TFs contribute to the state of cell
differentiation: in particular, we measured the perturbations induced by oncogenic TFs through
expression comparisons before and after TF knockdowns. Interestingly, the expression profiles
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usually reverted slightly back towards normal state upon oncogene knockdown, along the stem-
like component. One can see this difference more precisely and test it statistically if one restricts
just to the single transition between GM 12878 and K562 (Fig. 4).

The extended gene representation

After identifying key regulators, we next aimed to prioritize their associated genomic elements.
To do this, we combined the extended gene annotation with expression and mutation data from
patients. We show three examples where this is useful.

First, our extended gene definitions can be used for associating differential expression with
mutational status. For example, we combined the mutation and expression profiles from large
cohorts, such as those in TCGA, and found that mutation status in extended genes can better
explain the tumor expression than other annotations, such as just canonical coding sequences
(CDS). That is, one can much better predict tumor-normal differential expression from mutations
in the extended gene as compared to just in CDS or in individual promoters or enhancers (see
suppl. sect. 6.1). One example of the explanatory potential of the extended gene is seen for the
splicing factor SRSF2, which has been shown to affect liver cancer progression and for which
differential expression in HepG2 can be well predicted using mutations in the extended gene (Fig.
5A, p-value=0.002, one-sided Wilcoxon test).

The second example is cancer genome-wide association study (GWAS) variant enrichment. That
is, the enrichment of cancer-associated GWAS germline SNPs in particular genome regions. The
enrichment significantly increases in going from CDS to extended genes for both breast cancer
and leukemia (Fig. 5C). This trend is much more pronounced when the newly added non-coding
annotations are from matched cell types. One may further subset the genes according to different
subcategories associated with cancer and identify enrichment. For instance, we observed a
significant enrichment in genes from the Cancer Gene Consensus (CGC) in breast cancer based on
the extended gene annotation. This sub-setting by well-known gene categories is not possible using
conventional non-coding annotations.

One can get a physical sense of the importance of the extended gene by looking at a situation where
a genomic variant rearranges the extended gene structure without affecting the coding regions. We
find such an example in the breast cancer cell line T47D, where a 130kbp heterozygous deletion
links a distal enhancer to the ERBB4 promoter and results in the activation of this well-known
oncogene®*% (Fig. 5B). The enhancer is not connected to ERBB4 in normal breast tissue; however,
in T47D, the deletion, located around 45kbp downstream from the ERBB4 promoter, merges two
Hi-C TADs in an allele-specific way. We tested this through CRISPR editing, by excising an 86bp
sequence within the wild-type allele of the heterozygous deletion containing the CTCF binding
sites at the boundary of the two TADs. This CRISPR excision confirmed the elevated ERBB4
expression (see suppl. sect. 6.4).

Another perspective on the effect of SVs changing chromatin structure is provided from broadly
surveying SVs in a number of the data-rich ENCODE cells types. (Note, ENCODE provides SV
call sets based on integration of assays including Hi-C for a number of these cell lines, see suppl.
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sect. 6.5.3). In particular, in Fig. 5D, we surveyed regions around somatic SV breakpoints in K562.
We find that the activating histone mark H4K20mel occurs preferentially around these
breakpoints. This enrichment was not observed using GM 12878 histone mark data at these exact
same locations. We further examined the GM12878 H4K20mel levels proximal to germline
breakpoints (for common variants as determined from the 1000 Genomes Project®) and also find
no enrichment (see suppl. sect. 6.5). One potential implication is that the somatic SVs in tumor
cells may be associated with creating active regions of chromatin.

Step-wise prioritization framework

Collectively, as described in Fig. 6, ENCODEC enables a step-wise prioritization that allows us to
pinpoint key regulators, noncoding elements, and variants associated with oncogenesis.
Specifically, we first highlighted regulators that are either greatly rewired, located in hubs, sit at
the top of the hierarchy, or significantly drive expression changes in cancer. We then prioritize
functional elements associated with these regulators that are either highly burdened by mutations,
undergo large chromatin changes, or change in extended gene linkages. Finally, on a nucleotide
level, we prioritize SNVs by estimating their ability to disrupt or introduce specific binding sites
and assessing to what degree they lie in a prioritized element.

We instantiated our prioritization workflow in a few select cancers and experimentally validated
the results. In particular, as described above, we subjected some key regulators, such as MYC and
SUBI, to knockdown experiments (Fig. 2D and Fig. 2F) and we measured the effect of SVs on
element linkages via CRISPR engineered deletions (Fig. 5B). Finally, we selected key SN'Vs based
on their disruption of enhancers with a strong influence on gene expression. These SNVs were
prioritized based on element-level mutation recurrence in breast-cancer cohorts, as well as motif
disruption scores. Of the eight motif-disrupting SNVs that we tested, six exhibited consistent up-
or down-regulation relative to the wild-type in multiple biological replicates (see suppl. sect. 7.2
and 7.3).

One particularly interesting example occurs in an intronic region of CDH26 in chromosome 20
(Fig. 6C). The signal shapes for both histone modification and chromatin accessibility (DNase-
seq) data indicate its active regulatory role as an enhancer in MCF-7. This was further confirmed
by STARR-seq (Fig. 6C). Hi-C and ChIA-PET linkages indicated that the region is within a TAD
and validated a regulatory connection to the cancer-associated gene SYCP2%7. We further observed
strong binding of many TFs in this region in MCF-7. Motif analysis predicts that a common
mutation in breast cancer affects this region, and significantly disrupts the local binding affinity of
several TFs, such as FOSL2 (Fig. 6C). Luciferase assays demonstrated that this mutation
introduces a 3.6-fold reduction in expression relative to the wild-type, indicating a strong
repressive effect on enhancer functionality.

Discussion

In this paper, we describe a customized ENCODE annotation: a companion resource providing an
integrative network annotation including extended gene. Cancer genomics is an ideal application

8


https://doi.org/10.1101/706424
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/706424; this version posted July 18, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

to highlight the value of the resource, and we show how it can help describe oncogenic
transformations in terms of cell-space trajectories and network rewiring. We also use the
specialized annotation to prioritize key regulators, element, and variants.

There remain several caveats associated with our resource. First and most obviously, proper
somatic variant annotation and, especially driver discovery, is a multiple-step process that requires
coordinated, large-scale effort. Extensive follow-up validations are required, in addition to the
careful calibration required for statistical identification of mutation recurrence and the many biases
in sequencing (e.g. taking into account the elevated mutation rate associated with TF binding
sites>S, sequence coverage and mutational signatures®®>7). While we hope that ENCODE data and
annotation can be useful in this context, they are not sufficient. Second, our resource associates
cancer types with ENCODE cell lines and then secondarily pairs them with a composite normal.
Both types of pairings are, by nature, approximate. Tumor cells from a given patient show distinct
molecular, morphological, and genetic profiles®®-’!. Moreover, linking cancer to one specific cell-
type may not even fully capture the heterogeneity seen in actual tumors’®. In the future,
technological advances, such as single-cell sequencing, may allow cell-type or tissue-type
comparisons at a higher resolution’>””. Nevertheless, we feel that our annotation and networks
currently provide the best available view of the regulatory changes in oncogenesis.

Finally, we argue here that, somewhat counter-intuitively, a comprehensive non-coding annotation
that, in the extreme, attempts to assign functional impact to every base in the genome may not
always be best suited to specific disease-oriented studies. Rather, the most useful annotation often
has several characteristics. First, it is useful to be as compact as possible, both in terms of the
extent of individual annotation blocks and in the number of elements. Second, since the currently
discovered high impact variants tend to be tightly associated with genes, an optimum non-coding
annotation is best “invisible,” folding itself into gene annotation for better variant interpretation.
Third, the network aspect is often needed to allow larger-scale systems perspective. This is
particularly valuable for appreciating the overall cellular dysregulation in cancer. With the depth
and breadth of the ENCODE assays across thousands of cell types, we endeavored here to provide
such a customized annotation resource for cancer and demonstrated its value through several
showcase applications. We anticipate that the rapid accumulation of functional genomic data will
make possible further, potentially even more specialized, annotation resources for future disease
studies.
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Figure Legend

Figure 1

Overview of the ENCODEC resource. Table columns list cell types and rows list assays. Blue
table boundary: Cell types with assays in the ENCODE Encyclopedia highlight the breadth of
the resource. The large number of cell types allows for comparative analyses between cell-types,
as well as cell-type specific analyses. Green table boundary: Cell-type specific analyses based
on deep annotations of cell lines. The integration of assays allows for high-resolution investigation
of genomic biology. Inset: We use annotations from cell-type specific ENCODE assays to build
extended gene definitions - coding and non-coding elements that are linked according to their
interaction and associated function (top). We relate transcription factors (TFs) and RNA binding
proteins (RBPs) in a joint network hierarchy that describes their regulatory potential (middle). By
comparing regulatory networks in tumor and normal ENCODE samples, we develop rewiring
networks that may relate to regulatory changes that occur in the context of normal-to-tumor
transition (bottom).

Figure 2

Regulatory network hierarchies. (A) TFs and (B) RBPs are systematically organized into a
hierarchy, forming a joint TF-RBP regulatory network. Higher layer elements tend to regulate
lower layer elements. (C) The regulatory potentials of TFs/RBPs to drive tumor-to-normal
expression changes are shown as a heatmap; red and blue indicate up- and down- regulation
respectively. (D) Elevated MYC regulatory activity is associated with reduced disease-specific
survival (DSS) in breast cancer (i); MYC knockdown in MCF-7 leads to significantly larger
expression reduction in MYC target genes (ii). (E) MYC expression is more positively correlated
with its target genes as compared to other TFs (top); MYC frequently forms FFLs with NRF1.
These are mostly coherent FFLs and OR-gate logic predominates (bottom). (F) Elevated SUBI
regulation activity is associated with reduced overall survival (OS) in lung cancer (i); SUBI
knockdown in HepG2 leads to reduced target gene expression (ii); Targets of SUB1 show slower
mRNA decay rate (iii); for cancer-associated target genes of MYC and SUB1, gene expression is
decreased with both MYC and SUB1 knockdown (KD), compared with knockdown of either MYC
or SUBI individually, and compared to control (iv).

Figure 3

TF-Gene network rewiring. Green and red arrows designate edge gain and loss, respectively. (A)
Cell-type specific network using K562 and GM12878: top layer TFs significantly drive tumor-
normal differential expression; bottom layer TFs are more often associated with burdened binding
sites. (B) JUND is a top edge-gainer in CML, and its targets demonstrate increased gene
expression. However, few of its binding sites are affected by SVs or SNVs. (C) Rewiring index in
CML by direct edge counts using both proximal and distal networks (top) and by gene community
analysis (bottom). Comparisons to TF-gene rewiring networks in other cancers are also shown.
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Figure 4

Oncogenic transformation and cell state. We project the expression profiles (left, poly-A long
RNA-seq), proximal network (second from right, CTCF ChIP-seq), and distal network (right,
candidate cis-regulatory elements) of the ENCODE cell types to a lower dimension space. Stem-
like cell types formed a cluster, suggesting stem-like cell types have a distinct profile from normal
and cancerous cell types. Further, we find that cancerous cell types tend to locate closer to stem-
like clusters. Oncogene knockdown in K562 led to more transcriptomic similarity to a normal cell-
type, and tumor suppressor gene (TSG) knockdown led to greater similarity to a tumor cell-type
(second from left, top, in comparison to GM12878). In general, we find that oncogene knockdown
leads to a slight reversion towards normal state along the stem-like component (second from left,
bottom).

Figure 5

Extended genes and mutation burden analysis. (A) Mutation status in extended genes can
explain expression differences for a larger number of genes than other annotations, such as
annotations of coding sequences (CDS). (B) A 130kbp deletion in the breast cancer cell line T47D
potentially links a distal enhancer to the promoter of ERBB4, leading to its activation. This change
does not affect coding sequences, highlighting the value of an extended gene annotation. (C)
Cancer-associated GWAS SNVs display greater enrichment with the inclusion of proximal and
distal annotations in extended gene definitions. (D) Somatic structural variant breakpoints in K562
tend to be associated with the activating histone mark H4K20mel, but not in GM12878.

Figure 6

Variant prioritization and validation. (A) A stepwise prioritization scheme for genomic
regulators, elements, and variants, using the ENCODEC resources. At each step of prioritization,
we indicate criteria for prioritization, as well as the applicable validation assay. (B) Small-scale
validation of prioritized variants using a luciferase reporter assay. Candidate region 5 showed the
most significant degree of differential expression and was selected for follow-up analysis. (C)
Multiscale integrative analysis of candidate region 5 with assorted functional genomics data. The
affected region is observed in the context of large-scale Hi-C linkages (top), as well as element-
level signal tracks of histone modification marks and DNase hypersensitivity together with various
TF binding events (middle), and nucleotide level disruption of the FOSL2 motif (bottom).
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