

1 **Visualisation of ribosomes in *Drosophila* axons using Ribo-BiFC**

2 Anand K Singh¹, Akilu Abdullahi¹, Matthias Soller¹, Alexandre David² and Saverio
3 Brogna^{1*}

4 ¹ School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT,
5 UK

6 ² Institut de Génomique Fonctionnelle 141 rue de la Cardonille 34094 Montpellier cedex
7 5 France

8 **Abstract**

9 Rates of protein synthesis and the number of translating ribosomes vary greatly between
10 different cells in various cell states. The distribution of assembled, and potentially
11 translating, ribosomes within cells can be visualised in *Drosophila* by using Bimolecular
12 Fluorescence Complementation (BiFC) to monitor the interaction between tagged pairs of
13 40S and 60S ribosomal proteins (RPs) that are close neighbours across inter-subunit
14 junctions in the assembled 80S ribosome. Here we describe transgenes that express two
15 novel RP pairs tagged with Venus-based BiFC fragments that considerably increase the
16 sensitivity of this technique that we termed Ribo-BiFC. This improved method should
17 provide a convenient way of monitoring the local distribution of ribosomes in most
18 *Drosophila* cells and we suggest that could be implemented in other organisms. We
19 visualized 80S ribosomes in larval photoreceptors and in other neurons. Assembled
20 ribosomes are most abundant in the various neuronal cell bodies, but they are also present
21 along the lengths of axons and are concentrated in growth cones of larval and pupal
22 photoreceptors. Surprisingly, there is relatively less puromycin incorporation in the distal
23 portion of axons in the optic stalk, suggesting that some of the ribosomes that have
24 started translation may not be engaged in elongation in axons that are still growing.

25 **Running title:** Ribosomes in axon growth cones

26 **Key words:** BiFC, Ribosomes, Neurons, Axons, *Drosophila*.

27 * Corresponding author, s.brogna@bham.ac.uk.

1 **Introduction**

2 Ribosomes are ubiquitous molecular machines that translate gene sequences into the
3 thousands of different proteins that make and operate every organism, so ribosomal
4 components are some of the most abundant and evolutionarily conserved macromolecular
5 constituents of cells. Each ribosome is made up of two complex ribonucleoprotein
6 subunits – 40S and 60S in eukaryotes – and the joining of these into 80S functional
7 ribosomes is tightly regulated. Even when cells are replete with ribosome subunits there
8 are physiological situations (*e.g.* during nutrient deprivation or other cell stresses) when
9 relatively few are assembled into protein-translating ribosomes (Hinnebusch, 2014,
10 2017).

11 The joining of ribosomal subunits is a multi-step process, requiring the coordinated
12 activity of several initiation factors, occurring each time that translation of an mRNA is
13 initiated (Hinnebusch, 2017; Jackson *et al.*, 2010). In eukaryotes, the first step is
14 activation of the 40S subunit, which starts with its loading with methionine initiator
15 tRNA (tRNA^{i_{met}}). The resulting pre-initiation complex then typically attaches to the 5'
16 end of an mRNA and scans its 5'UTR until the initiation codon is recognised by base
17 pairing between the anticodon of tRNA^{i_{met}} and an AUG start codon (Kozak, 1989). Once
18 tRNA^{i_{met}} is base-paired with the AUG and is precisely placed in the peptidyl site on the
19 40S subunit, then the 60S subunit is recruited. The assembled 80S ribosome translocates
20 along the mRNA, catalysing protein synthesis until it reaches a stop codon. It then
21 dissociates and the free subunits become available for new rounds of translation (Dever
22 and Green, 2012).

23 We have used the Bimolecular Fluorescence Complementation (BiFC) technique to make
24 assembled ribosomes visible in *Drosophila* cells. This is a technique that allows direct
25 detection of diverse types of protein-protein interactions in living cells (Hu *et al.*, 2002;
26 Kerppola, 2008). To do this for ribosomes, one selects a pair of RPs on the surfaces of the
27 individual subunits that only come into close and stable contact when the 80S ribosome
28 assembles, and these RPs are tagged with functionally complementary halves of a
29 fluorescent protein. The two non-functional halves of the fluorescent protein only make a

1 stable contact whilst the 80S ribosome is assembled at initiation, so emission of
2 fluorescence reports that translation initiation has occurred (Al-Jubran *et al.*, 2013).

3 When we were initially developing the BiFC-based ribosome visualisation technique we
4 tagged several pairs of RPs with either the N-terminal half (YN) or the C-terminal half
5 (YC) of Yellow Fluorescent Protein (YFP). We co-expressed several pairs in *Drosophila*
6 S2 cells and found that only those pairs that come together when the 80S ribosome
7 assembles give rise to ribosomal fluorescence (Al-Jubran *et al.*, 2013). Moreover, the
8 fluorescence was enhanced by translation elongation inhibitors, which stabilise the 80S,
9 and reduced by initiation inhibitors (Al-Jubran *et al.*, 2013). We then designed transgenic
10 flies encoding one such adjacent pair of RPs under UAS regulation (RpS18-YN and
11 RpL11-YC). When these were expressed in salivary glands, a translationally very active
12 tissue that secretes copious amounts of glue proteins (Andrew *et al.*, 2000; Beckendorf
13 and Kafatos, 1976), the tissue showed an intense 80S ribosomal fluorescence signal (Al-
14 Jubran *et al.*, 2013)

15 We wished to know whether a similar approach could track ribosomes in axons and
16 synapses, and hence serve as a tool for studies of localised translation in the *Drosophila*
17 nervous system (Glock *et al.*, 2017; Holt *et al.*, 2019; Kim and Jung, 2015). Using the
18 available transgenic flies expressing RpS18-YN and RpL11-YC, however, we only
19 detected weak 80S ribosomal fluorescence in the cell bodies of some large neurons, so
20 we sought to improve the sensitivity of this technique we termed Ribo-BiFC. Here we
21 describe an improved version that employs transgenic flies expressing either of two novel
22 RP pairs (RpS18/RpL11 and RpS6/RpL24) that are tagged with BiFC fragments of
23 Venus fluorescent protein (Hudry *et al.*, 2011). These Venus-based reporters greatly
24 improve the sensitivity of the method and reveal clear ribosome signals along the full
25 lengths of axons and at the axon terminals. In larval photoreceptor neurons, which we
26 examined in most detail, intense ribosome signals are also apparent in growth cones. We
27 suggest that these Venus-tagged RP pairs for BiFC, should provide useful research tools
28 with which to monitor the subcellular localisation and trafficking of active ribosomes in
29 most *Drosophila* cells and tissues.

1 **Results**

2 **BiFC-Venus tagged 80S ribosomes can be detected in axons and growth cones of**
3 **photoreceptor neurons**

4 The ribosomal protein pairs RpS18/RpL11 and RpS6/RpL24 span inter-subunit
5 potentially contact points, on the surfaces of the ‘head’ and the ‘foot’ respectively, of the
6 80S ribosome (Figure 1A). We generated UAS-driven *Drosophila* transgenes encoding
7 these proteins that were tagged with complementing fragments of Venus fluorescent
8 protein corresponding to the N-terminal domain (VN, 1-173 aa) and C-terminal domain
9 (VC, 155-238 aa) (Figure 1B). These yield a brighter and more specific BiFC interaction
10 than YFP constructs (Hudry *et al.*, 2011). Moreover, our characterisation in S2 cells
11 indicated that fluorescence from the inter-subunit Venus BiFC complex might be more
12 stable during translation elongation than from the corresponding YFP complex (Al-
13 Jubran *et al.*, 2013).

14 We tested the new transgenes in the *Drosophila* larval visual system, which is an
15 excellent model for microscopic visualisation of the axonal projections of neurons. The
16 eye is made up of about 750 ommatidia, each having eight photoreceptor neurons (the R-
17 cells: R1-R8). R1–R6 axons project to a synaptic layer of the brain optic lobe termed the
18 lamina plexus, and R7 and R8 axons pass through the lamina and end in a deeper brain
19 region termed the medulla (Figure 1C) (Mencarelli and Pichaud, 2015). Expression of
20 either of our BiFC-Venus RP pairs in developing eye by using the GMR-GAL4 driver
21 (Freeman, 1996) results in a strong signal. Within the growing photoreceptors, this is
22 brightest in the cell bodies located in the developing eye, but it is apparent along the
23 entire length of the photoreceptor axons, both in R1-R6 (ending in the lamina) and in R7
24 and R8 (ending in the medulla) (Figure 1D; panel I, RpS18/RpL11; Panel II,
25 RpS6/RpL24). The RpS18/RpL11 pair was used in the experiments described below.

26 The signal from the Venus-based reporters is much stronger than from the previous YFP-
27 based RpS18/RpL11 transgene pair, which was only apparent in the cell bodies and
28 proximal regions of the axons (Figure 1D, panel III). This was despite the fact that
29 substantial amounts of conventional GFP- or RFP-tagged versions of RpS18 and RpL11,

1 which will report the distributions of free ribosomal subunits as well as assembled
2 ribosomes, are abundantly present throughout the axons (Supplementary Figure 1A).

3 The neuronal distribution of the signal is confirmed by immunostaining with mAb24B10,
4 which specifically recognizes chaoptin, a GPI-linked cell surface glycoprotein that is
5 present only on photoreceptor neurons and their axons (Figure 1E) (Reinke *et al.*, 1988;
6 Zipursky *et al.*, 1985). There is also intense 80S ribosome signal in enlarged foci at the
7 tips of the R7 and R8 axons in the medulla region (Figure 1E), which is probably in
8 growth cones (Prokop and Meinertzhagen, 2006). Strong signals in photoreceptor growth
9 cones are also apparent during pupal development (Supplementary Figure 2). By
10 comparing the pattern of the 80S signal with that of chaoptin, which mostly stains the
11 periphery of the growth cones (compare insets in Figure 1E), it is clear that the most
12 intense ribosome signal is inside the growth cones. Comparison of the 80S signal with
13 that of mCD8GFP, another plasma membrane marker (Lee and Luo, 1999), which is
14 evenly distributed along the axon (Supplementary Figure 1B, panel I vs. panel II), also
15 supports the conclusion that the whole interior of the growth cones must be replete with
16 80S ribosomes.

17 We also examined the distribution of 80S ribosomes in other types of neurons by
18 expressing the reporters using different GAL4 drivers (see Material and Methods): D42-
19 GAL4 is expressed in motor neurons (Supplementary Figure 1C, panel I); and DdC-
20 GAL4 and CCAP-GAL4 drive expression in pairs of laterally located neurons that are
21 present in each segment of the brain ventral nerve cord, the axons of which project to the
22 midline (Supplementary Figure 1C, panel II and III, respectively). As in photoreceptor
23 neurons, the fluorescence signals from 80S ribosomes are brighter in the cell bodies, but
24 are apparent along the full lengths of the axons.

25 **Ribosomes in the distal regions of photoreceptor axons incorporate less puromycin**

26 The classic way to assay for translation is to monitor ribosome-catalysed incorporation of
27 puromycin into the C-terminal of nascent peptides, either radiochemically (Nathans,
28 1964), or more recently by immunostaining (David *et al.*, 2012; Schmidt *et al.*, 2009).
29 When we incubated salivary glands with puromycin briefly (to minimize diffusion of

1 puromycylated peptides away from translation sites), we saw a good correlation between
2 the 80S BiFC and puromycin signals (Al-Jubran *et al.*, 2013). Puromycin
3 immunostaining has also been recently used to visualise local translation in growth cones
4 of axons that project from Xenopus retinal ganglion cells (Cioni *et al.*, 2019), and mouse
5 brain synaptosomes (Hafner *et al.*, 2019).

6 We took tissues in which the photoreceptors can be identified by expression either of
7 Venus-based BiFC 80S reporters or of tissue-targetted mCD8-GFP (Lee and Luo, 1999),
8 labelled them and detected puromycylation by immunostaining. Inside the brain the
9 signal was weak and diffuse, and it could not be unambiguously traced to any of the
10 photoreceptor projections or growth cones. However, a clearer pattern was apparent in
11 the eye and optic stalk: it was most intense in the cell bodies in the developing retina and
12 in the proximal regions of their axons (Figure 2A shows distributions in a single
13 longitudinal section of the optic stalk; and Supplementary Figure 3 shows projection
14 images of multiple confocal sections of the same tissue (Panels I-III), and of two other
15 preparations showing similar patterns (Panels IV-IX)). Much of the distribution of the
16 puromycylation signal is similar to that of 80S ribosomes (Figure 2A, panel II and
17 Supplementary Figure 3), but 80S ribosomes are only slightly less abundant in the distal
18 parts of the axons that immunostain weakly for puromycin.

19 We considered whether the apparent proximal-to-distal gradient of the puromycin signal
20 might be an experimental artifact caused by poor penetration of the antibody into the
21 distal portions of the stalk that extends into the brain. To test this, we examined
22 puromycin incorporation in detergent-permeabilised tissue, in which the photoreceptors
23 were labelled by mCD8-GFP. The puromycin signal was again fainter in the distal
24 regions of the permeabilised axons (Figure 2B). Moreover, there was an intense
25 puromycylation signal in the cells, possibly glia, that surround the entire length of the
26 stalk, indicating that the antibody had free access (Figure 2B, indicated by white arrows).
27 The slower incorporation of puromycin in the distal axonal regions seems therefore not to
28 be caused mainly by a local shortage of ribosomes.

1 **Discussion:**

2 Ribosome activation can be directly visualized by the fluorescence emitted as a result of
3 the interaction between pairs of RPs in different subunits that: a) are tagged with
4 complementary parts of a BiFC-compatible fluorescent protein; and b) are brought into
5 close contact across the junction between subunits when a ribosome assembles. This
6 technique, here named Ribo-BiFC, was previously used to visualise translating ribosomes
7 in *Drosophila* S2 cells and salivary glands (Al-Jubran *et al.*, 2013).

8 However, our previously described technique was not sensitive enough to visualise
9 ribosomes in all neurons, and here we describe an improved version of the technique.
10 This employs UAS-regulated transgenes that express pairs of neighbouring RPs
11 (RpS18/RpL11 and RpS6/RpL24) that are tagged with BiFC-compatible complementary
12 fragments of Venus fluorescent protein. These new transgenes allow a straightforward
13 and sensitive visualisation of 80S ribosomes in *Drosophila* neurons and clearly detect
14 assembled ribosomes in the axons and growth cones of photoreceptors. We envisage that
15 the sensitivity of this method could be further increased by genetically combining
16 multiple copies of the transgenes we have generated (several P-element inserts are
17 available; see Materials and Methods). These, together with the previously described
18 UAS transgenes encoding individual GFP or RFP-tagged RPs, should provide useful
19 tools that will distinguish between inactive ribosomal subunits and assembled and
20 actively translating ribosomes in *Drosophila* (Rugjee *et al.*, 2013). We propose that our
21 Ribo-BiFC technique should provide a method to visualize changes in the subcellular
22 distribution of ribosomes during different stages of *Drosophila* development and
23 physiological states that will be technically more straightforward than other recently
24 developed methods (Lee *et al.*, 2016). We detected a correlation between the presence of
25 assembled ribosomes and puromycin incorporation, but some of the ribosomes in distal
26 regions of axons seemed not to incorporate puromycin. These may correspond to
27 ribosomes that are either paused on mRNAs after translation initiation or have
28 significantly lower elongation rates. Ribosome pausing has been proposed to be an
29 evolutionarily conserved mechanism to regulate protein synthesis (Darnell *et al.*, 2018);
30 perhaps a similar regulatory mechanism operates on ribosome-loaded mRNAs present in

1 axons of photoreceptor that are still growing and not yet active in the larval stage
2 (Mencarelli and Pichaud, 2015).

3

1 **Material and Methods**

2 **Fly Stocks:**

3 Generation or the transgenes expressing the YN and YC YFP BiFC fragments or simply
4 GFP tagged ribosomal proteins (RPs) has been previously described (Al-Jubran *et al.*,
5 2013; Rugjee *et al.*, 2013). The constructs expressing the RPs tagged with either the VN
6 (1–173) and VC (155–238) fragments were similarly generated, cloned in the pUAST
7 vector (Brand and Perrimon 1993), and transgenic flies produced by P element-mediated
8 transformation of standard *yw* strain (Bestgene). The Fkh-Gal4 transgene was used to
9 drive expression in salivary glands (Henderson and Andrew 2000), GMR-GAL4
10 expresses in the differentiated cells of the developing eye including photoreceptors
11 (Freeman, 1996), D42-GAL4 expresses in motor neurons (Vonhoff *et al.*, 2013), dDC-
12 GAL4 and CCAP-GAL4 express in different groups of neurons in brain ventral cord
13 (Vomel and Wegener, 2008). The UAS-mCD8 GFP transgene encodes a membrane
14 tethered GFP fusion protein used to visualise cell boundaries (Lee and Luo, 1999).

15 **Puromycylation and Immunostaining**

16 The brain-eye disc tissues of third instar-larvae from mentioned genotypes were dissected
17 in M3 media and incubated with 50 µg/ml puromycin in M3 media for 1 to 10 min.
18 Tissues were briefly washed with M3 media and transferred in 4% formaldehyde for 10
19 min. Following washing with PBST (0.1% Triton X-100 in 1X PBS) 3 times, tissues
20 were incubated in blocking solution for 1 hr at room temperature followed by mouse anti-
21 puromycin antibody (David *et al.*, 2012)(5B12, 1:500) overnight at 4°C. The mouse anti-
22 chaoptin antibody (mAb24B10, 1:200, DSHB) was used as a neuron specific marker
23 (Zipursky *et al.*, 1985). Tissues were washed with PBST 3 times and incubated with anti-
24 mouse-Cy3 secondary antibody (1:200) for 2 hrs at room temperature. Following
25 washing the tissues were counterstained with 1 µg/mL DAPI (4–6-diamidino-2-phenyl
26 indole, Sigma-Aldrich) and mounted with PromoFluor Antifade Reagent (PromoKine).

27

1 **Microscopy**

2 The immunostaining signals in tissues were initially examined under Nikon Eclipse Ti
3 epifluorescence microscope, equipped with ORCA-R2 camera (Hamamatsu Photonics).
4 High resolution images were acquired using a Leica TCS SP2-AOBS confocal
5 microscope. The images were analyzed with either Nikon NIS Elements or Fiji
6 (Schindelin *et al.*, 2012) and figures were prepared using Adobe Illustrator.

7

1 **Acknowledgments**

2 We thank Bob Michell and Yun Fan for critically reading the manuscript and discussions.
3 We thank Stephanie Cartwright and Emanuela Zaharieva for their valuable contribution
4 at the start of the project. Thank you also to Suzana Ulian Benitez, Alicia Hidalgo and
5 Yun Fan for providing fly stocks and experimental advice. Thanks to Alessandro Di Maio
6 and the Birmingham Advanced Light Microscopy (BALM) facility; the fly food facility
7 and Shrikant Jondhale for fly stocks maintenance. This project was funded by a
8 Leverhulme Trust (RPG-2014-291) and BBSRC (BB/M022757/1) project grants, and at
9 its start, Wellcome Trust (9340/Z/09/Z) to SB.

10

1 References

2 Al-Jubran, K., Wen, J., Abdullahi, A., Roy Chaudhury, S., Li, M., Ramanathan, P.,
3 Matina, A., De, S., Piechocki, K., Rugjee, K.N., *et al.* (2013). Visualization of the joining
4 of ribosomal subunits reveals the presence of 80S ribosomes in the nucleus. *Rna* *19*,
5 1669-1683.

6 Andrew, D.J., Henderson, K.D., and Seshaih, P. (2000). Salivary gland development in
7 *Drosophila melanogaster*. *Mech Dev* *92*, 5-17.

8 Anger, A.M., Armache, J.P., Berninghausen, O., Habeck, M., Subklewe, M., Wilson,
9 D.N., and Beckmann, R. (2013). Structures of the human and *Drosophila* 80S ribosome.
10 *Nature* *497*, 80-85.

11 Beckendorf, S.K., and Kafatos, F.C. (1976). Differentiation in the salivary glands of
12 *Drosophila melanogaster*: characterization of the glue proteins and their developmental
13 appearance. *Cell* *9*, 365-373.

14 Cioni, J.M., Lin, J.Q., Holtermann, A.V., Koppers, M., Jakobs, M.A.H., Azizi, A.,
15 Turner-Bridger, B., Shigeoka, T., Franze, K., Harris, W.A., *et al.* (2019). Late
16 Endosomes Act as mRNA Translation Platforms and Sustain Mitochondria in Axons.
17 *Cell* *176*, 56-72 e15.

18 Darnell, A.M., Subramaniam, A.R., and O'Shea, E.K. (2018). Translational Control
19 through Differential Ribosome Pausing during Amino Acid Limitation in Mammalian
20 Cells. *Mol Cell* *71*, 229-243 e211.

21 David, A., Dolan, B.P., Hickman, H.D., Knowlton, J.J., Clavarino, G., Pierre, P.,
22 Bennink, J.R., and Yewdell, J.W. (2012). Nuclear translation visualized by ribosome-
23 bound nascent chain puromycylation. *J Cell Biol* *197*, 45-57.

24 Dever, T.E., and Green, R. (2012). The elongation, termination, and recycling phases of
25 translation in eukaryotes. *Cold Spring Harb Perspect Biol* *4*, a013706.

26 Freeman, M. (1996). Reiterative use of the EGF receptor triggers differentiation of all
27 cell types in the *Drosophila* eye. *Cell* *87*, 651-660.

28 Glock, C., Heumuller, M., and Schuman, E.M. (2017). mRNA transport & local
29 translation in neurons. *Curr Opin Neurobiol* *45*, 169-177.

30 Hafner, A.S., Donlin-Asp, P.G., Leitch, B., Herzog, E., and Schuman, E.M. (2019). Local
31 protein synthesis is a ubiquitous feature of neuronal pre- and postsynaptic compartments.
32 *Science* *364*.

33 Hinnebusch, A.G. (2014). The scanning mechanism of eukaryotic translation initiation.
34 *Annu Rev Biochem* *83*, 779-812.

1 Hinnebusch, A.G. (2017). Structural Insights into the Mechanism of Scanning and Start
2 Codon Recognition in Eukaryotic Translation Initiation. *Trends Biochem Sci* 42, 589-
3 611.

4 Holt, C.E., Martin, K.C., and Schuman, E.M. (2019). Local translation in neurons:
5 visualization and function. *Nat Struct Mol Biol* 26, 557-566.

6 Hu, C.D., Chinenov, Y., and Kerppola, T.K. (2002). Visualization of interactions among
7 bZIP and Rel family proteins in living cells using bimolecular fluorescence
8 complementation. *Molecular cell* 9, 789-798.

9 Hudry, B., Viala, S., Graba, Y., and Merabet, S. (2011). Visualization of protein
10 interactions in living Drosophila embryos by the bimolecular fluorescence
11 complementation assay. *BMC Biol* 9, 5.

12 Jackson, R.J., Hellen, C.U., and Pestova, T.V. (2010). The mechanism of eukaryotic
13 translation initiation and principles of its regulation. *Nature reviews* 11, 113-127.

14 Kerppola, T.K. (2008). Bimolecular fluorescence complementation (BiFC) analysis as a
15 probe of protein interactions in living cells. *Annual review of biophysics* 37, 465-487.

16 Kim, E., and Jung, H. (2015). Local protein synthesis in neuronal axons: why and how
17 we study. *BMB Rep* 48, 139-146.

18 Kozak, M. (1989). The scanning model for translation: an update. *J Cell Biol* 108, 229-
19 241.

20 Lee, B.H., Bae, S.W., Shim, J.J., Park, S.Y., and Park, H.Y. (2016). Imaging Single-
21 mRNA Localization and Translation in Live Neurons. *Mol Cells* 39, 841-846.

22 Lee, T., and Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of
23 gene function in neuronal morphogenesis. *Neuron* 22, 451-461.

24 Mencarelli, C., and Pichaud, F. (2015). Orthodenticle Is Required for the Expression of
25 Principal Recognition Molecules That Control Axon Targeting in the Drosophila Retina.
26 *PLoS Genet* 11, e1005303.

27 Nathans, D. (1964). Puromycin Inhibition of Protein Synthesis: Incorporation of
28 Puromycin into Peptide Chains. *Proc Natl Acad Sci U S A* 51, 585-592.

29 Prokop, A., and Meinertzhagen, I.A. (2006). Development and structure of synaptic
30 contacts in Drosophila. *Semin Cell Dev Biol* 17, 20-30.

31 Reinke, R., Krantz, D.E., Yen, D., and Zipursky, S.L. (1988). Chaoptin, a cell surface
32 glycoprotein required for Drosophila photoreceptor cell morphogenesis, contains a repeat
33 motif found in yeast and human. *Cell* 52, 291-301.

1 Rugjee, K.N., Roy Chaudhury, S., Al-Jubran, K., Ramanathan, P., Matina, T., Wen, J.,
2 and Brogna, S. (2013). Fluorescent protein tagging confirms the presence of ribosomal
3 proteins at Drosophila polytene chromosomes. *PeerJ* 1, e15.

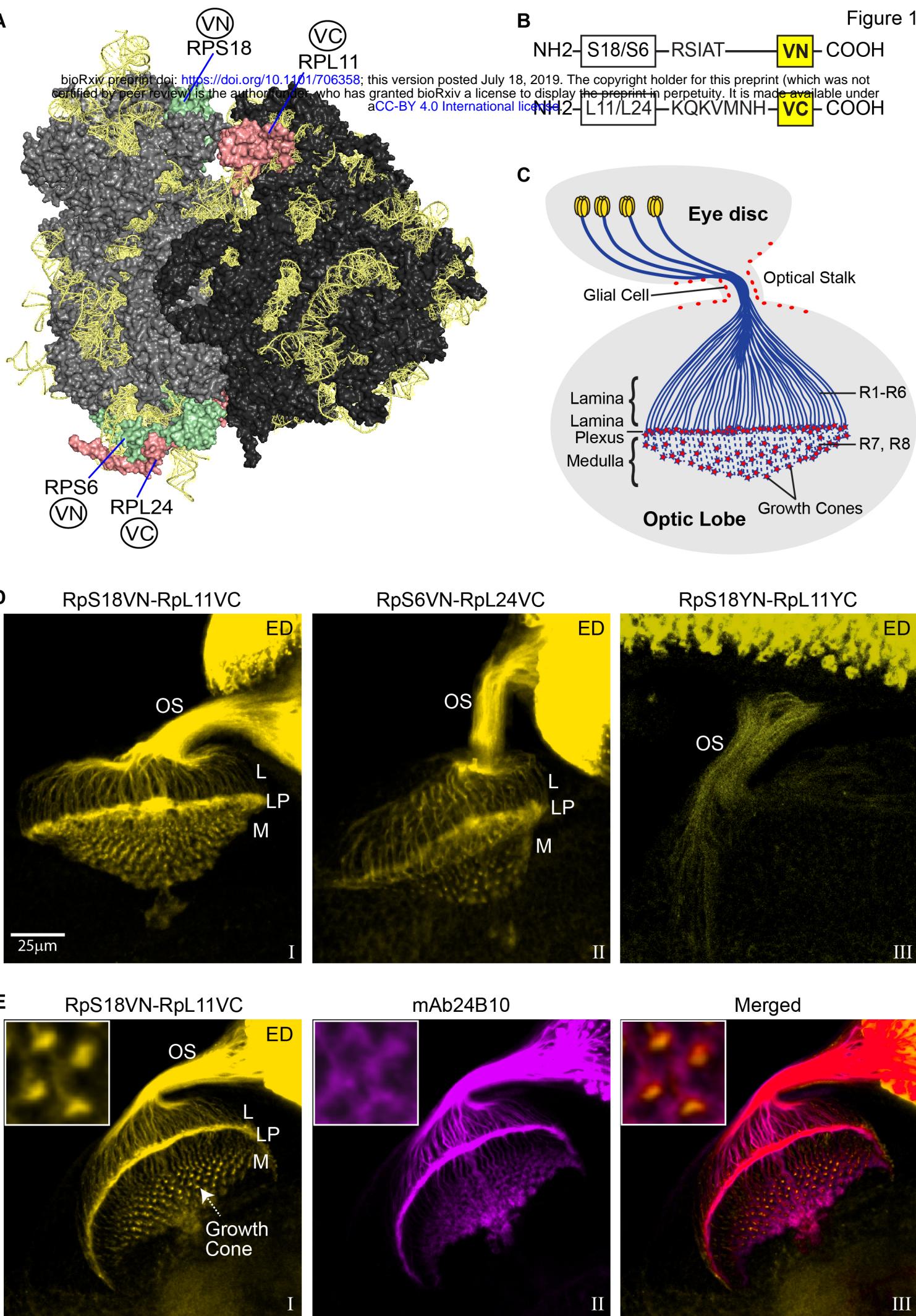
4 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
5 Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., *et al.* (2012). Fiji: an open-source
6 platform for biological-image analysis. *Nature methods* 9, 676-682.

7 Schmidt, E.K., Clavarino, G., Ceppi, M., and Pierre, P. (2009). SUnSET, a
8 nonradioactive method to monitor protein synthesis. *Nature methods* 6, 275-277.

9 Vomel, M., and Wegener, C. (2008). Neuroarchitecture of aminergic systems in the larval
10 ventral ganglion of *Drosophila melanogaster*. *PLoS One* 3, e1848.

11 Vonhoff, F., Kuehn, C., Blumenstock, S., Sanyal, S., and Duch, C. (2013). Temporal
12 coherency between receptor expression, neural activity and AP-1-dependent transcription
13 regulates *Drosophila* motoneuron dendrite development. *Development* 140, 606-616.

14 Zipursky, S.L., Venkatesh, T.R., and Benzer, S. (1985). From monoclonal antibody to
15 gene for a neuron-specific glycoprotein in *Drosophila*. *Proc Natl Acad Sci U S A* 82,
16 1855-1859.

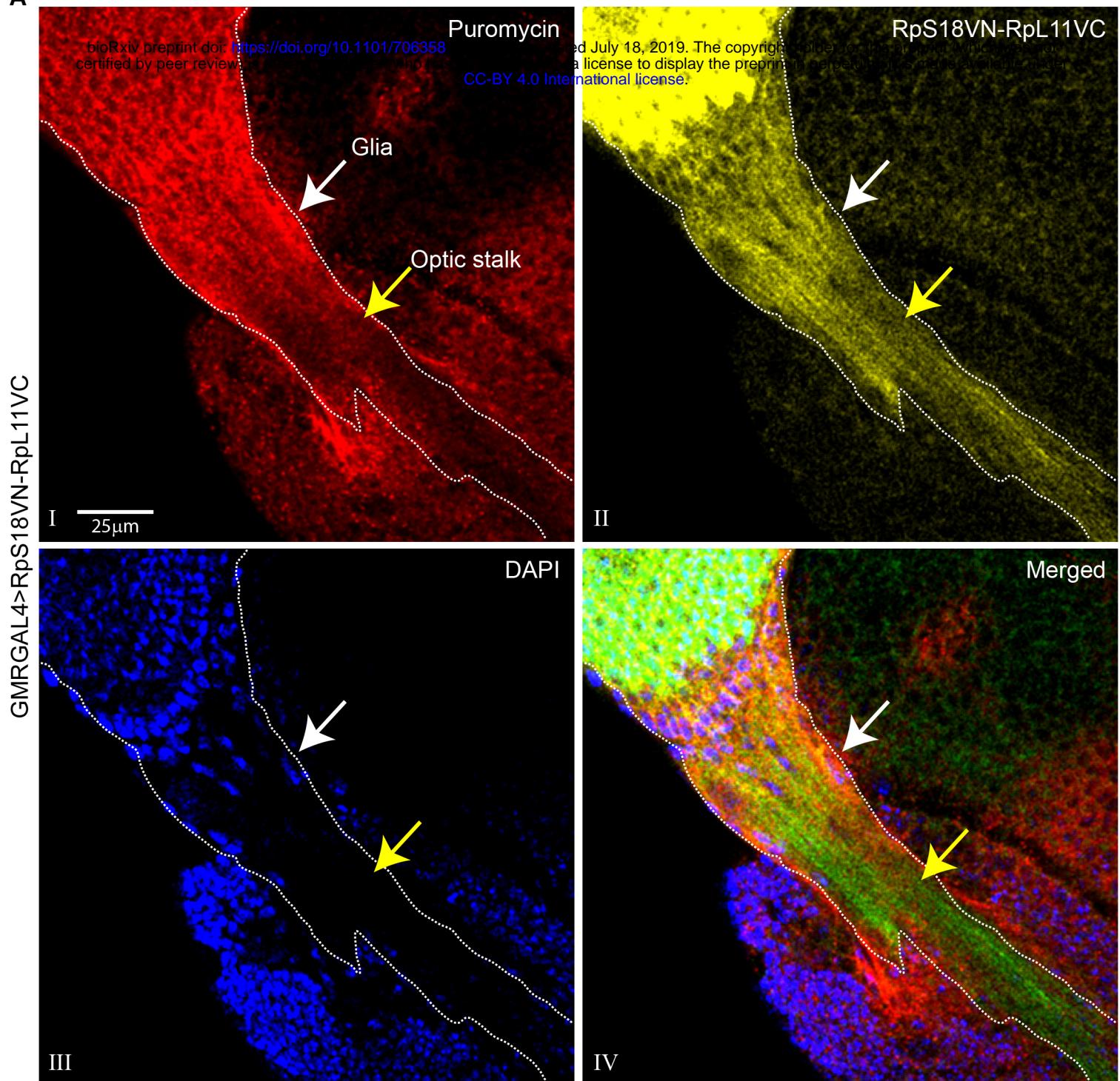

17

18

1 **Figures and legends**

2

Figure 1



1 **Figure 1. BiFC visualisation of 80S ribosomes in photoreceptors.** (A) Model of the
2 *Drosophila* 80S ribosome with the two BiFC tagged RP pairs on the small and large
3 subunit highlighted: RpS18/RpL11 and RpS6/RpL24; the image was generated with
4 PyMol using the published high-resolution *Drosophila* 80S structure, PDB file 4V6W
5 (Anger *et al.*, 2013). RpS18 and RpS6 on the 40S are indicated in pale green, RpL11 and
6 RpL24 on the 60S in pale red. (B) Diagram of the Bimolecular Fluorescence
7 Complementation (BiFC) constructs with spacer sequences indicated, the Venus VN and
8 VC fragments are shown as yellow boxes. (C) Schematic of the eye disc connected by the
9 optic stalk to the brain optic lobe of *Drosophila* larva, showing the photoreceptor cell
10 bodies in the retina (yellow) and their axonal projections into the brain (blue). The
11 photoreceptors R1-R6 project their axons to the lamina region of the brain, while R7 and
12 R8 project their axons further inside to the medulla underneath. The star shapes (red) at
13 the end of axons indicate growth cones. (D) Confocal microscopy imaging showing the
14 BiFC signal produced by different transgene combinations expressed in the
15 photoreceptors using GMR-GAL4: RpS18VN/RpL11VC (panel I), RpS6VN/RpL24VC
16 (panel II) and as comparison the YFP-based RpS18YN/RpL11YC (panel III). Labels
17 refer to: OS, Optic Stalk; L, Lamina; LP, Lamina Plexus; M, Medulla. (E) Visualisation
18 of the RpS18VN-RpL11VC (yellow, panel I) in tissues in which the photoreceptors are
19 immunostained by mAb24B10 (magenta, panel II), their colocalisation is shown in the
20 merged image (panel III).

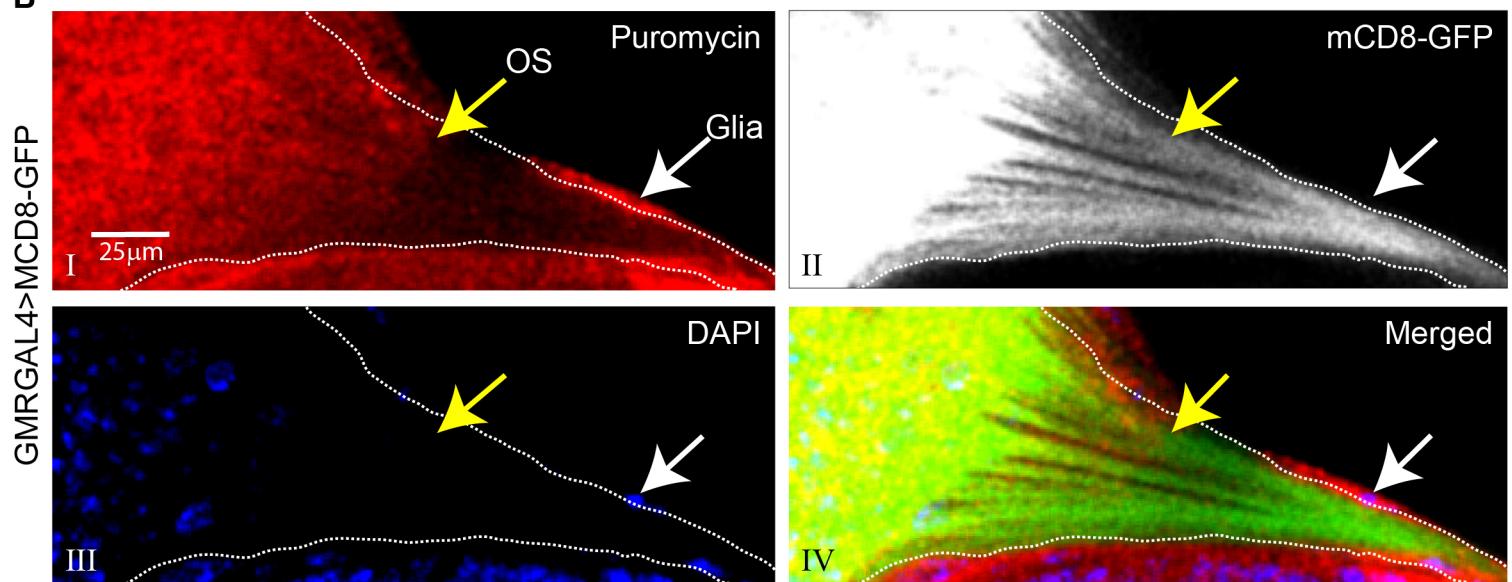
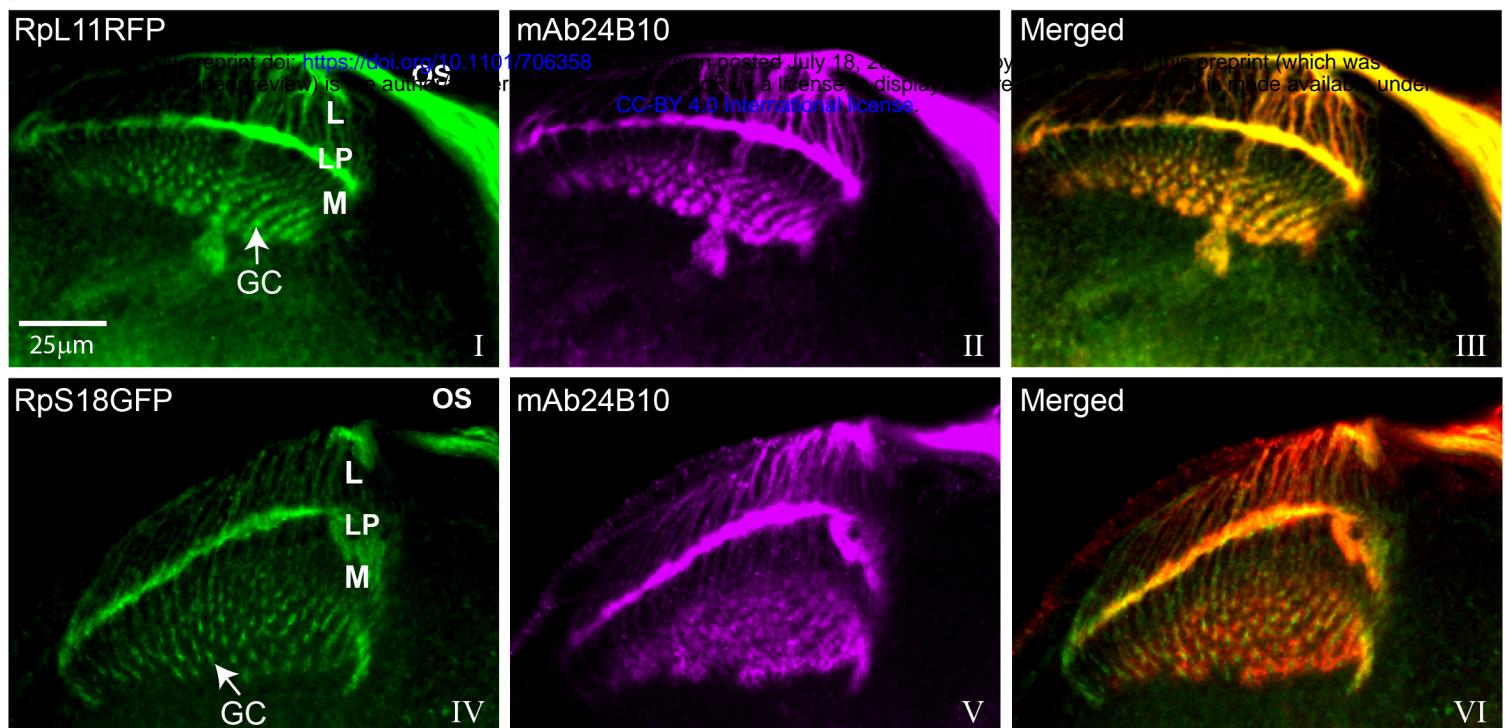
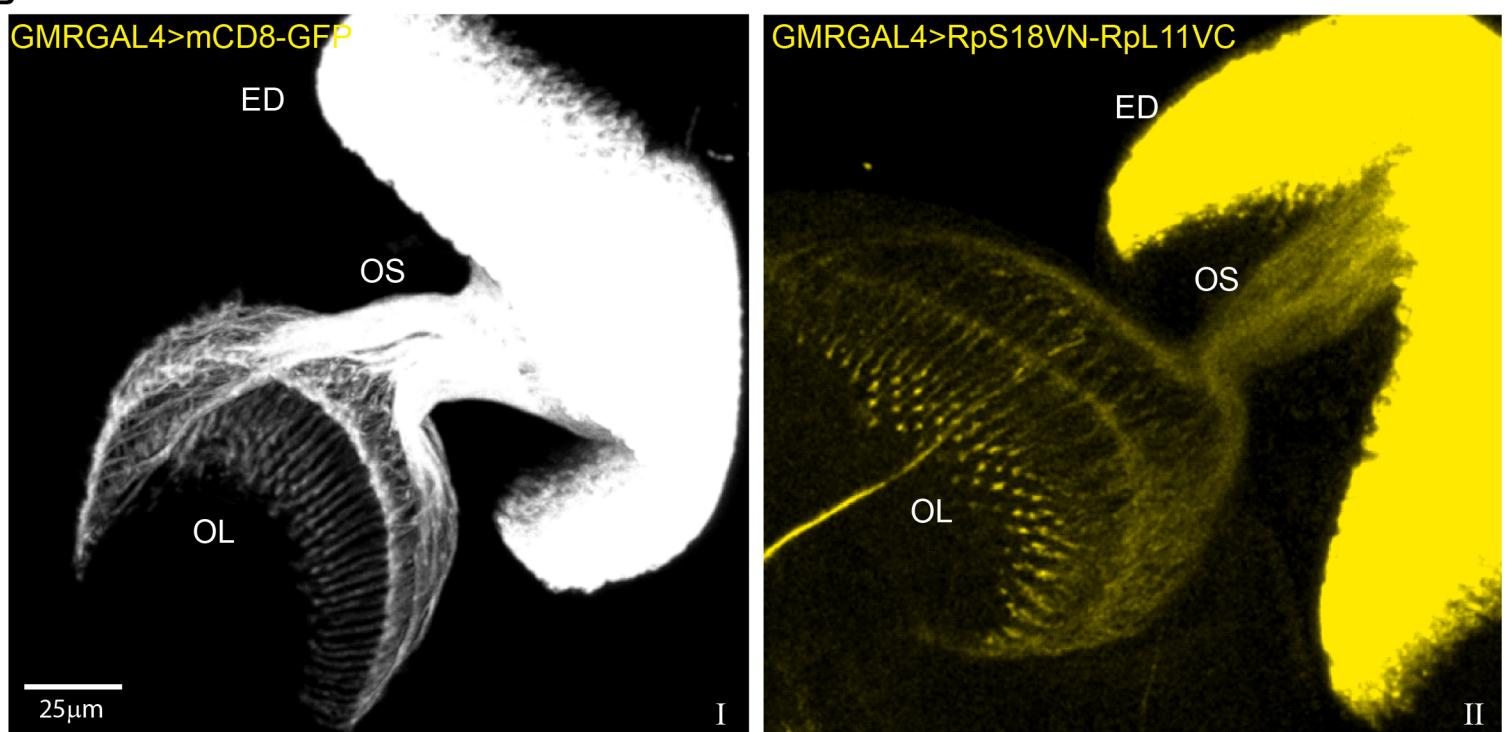

21

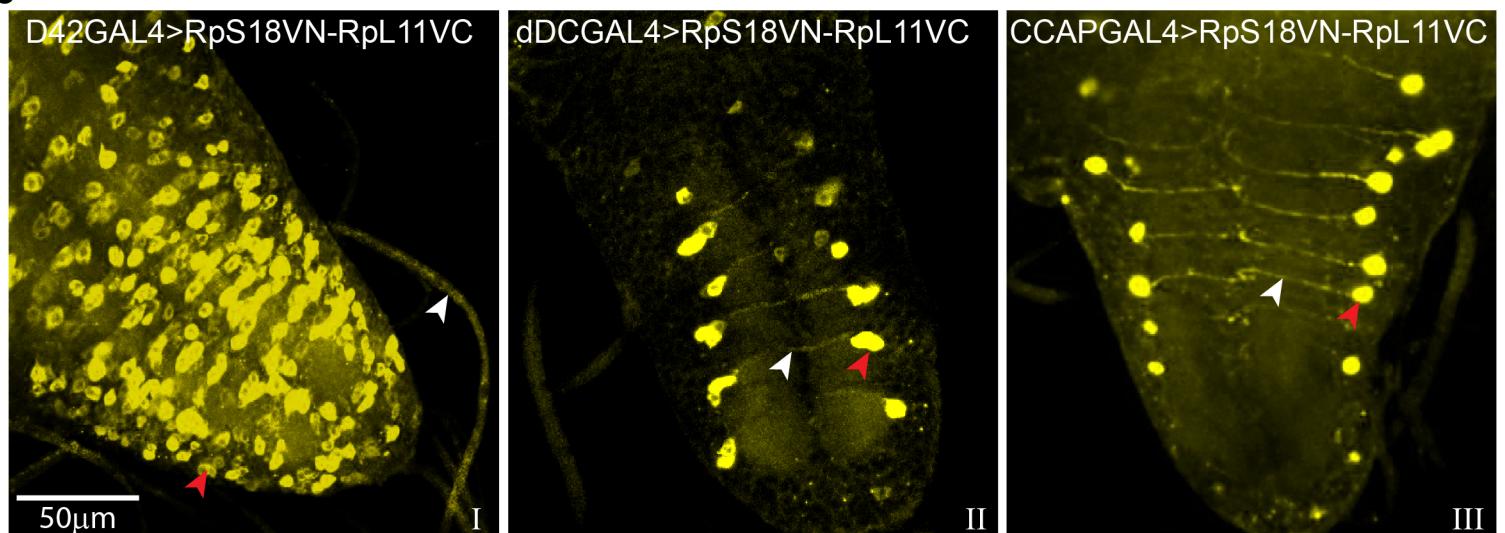
Figure 2

A


B


1 **Figure 2. Photoreceptor axons show reduced puromycin incorporation in distal**
2 **regions.** **(A)** Immunocalization of puromycin incorporation (red signal, panel I) in tissues
3 expressing RpS18VN-RpL11VC in the photoreceptors via GMR-GAL4 (yellow, panel
4 II), DAPI staining (blue, panel III) shows the individual nuclei and highlights a
5 monolayer of cells (white arrows), probably glia, surrounding the optic stalk (OS)
6 (yellow arrow); the merged colour image highlights the overlap between the
7 puromycylation and 80S signals in different regions of the photoreceptors (panel IV); the
8 yellow arrow indicates the position of the optic stalk after which there is a reduced
9 puromycylation signal compared to more proximal regions; the BiFC RpS18VN-
10 RpL11VC signal is shown in green instead of yellow in the merged image for better
11 contrast. **(B)** Immunocalization of puromycin incorporation (red, panel I) in tissues
12 expressing GMR-GAL4 driven mCD8-GFP (gray, panel II), DAPI staining shows cell
13 nuclei (blue, panel III); the merged image (panel IV) highlights the relatively more
14 intense green colour in the distal segments of the optic stalk (mCD8-GFP is shown in
15 green for better contrast).

16


A

B

C

1 **Figure S1. BiFC Visualization of ribosomes in different neurons.** (A) Localisation of
2 RpL11RFP (green, panel I) or RpS18GFP (green, panel IV) in the R1-R8 photoreceptors
3 immunostained with mAb24B10 (magenta, panel II and panel V); the mAb24B10 is
4 shown in red in the corresponding merged image (panel III and panel VI) for better
5 contrast. Labels refer to: OS, Optic Stalk; L, Lamina; LP, Lamina Plexus; M, Medulla.
6 GC, Growth Cones. (B) Localisation of GMR-GAL4 driven mCD8-GFP (gray, panel I)
7 and BiFC signal of RpS18VN/RpL11VC (yellow, panel II) in optic neurons projected
8 from eye disc (ED) via optic stalk (OS) to optic lobe (OL). (C) Localization of BiFC
9 signal of RpS18VN/RpL11VC in specific neurons demarcated by the expression of D42-
10 GAL4 (panel I), dDC-GAL4 (panel II) and CCAP-GAL4 (panel III). White arrowheads
11 indicate axons and red ones cell bodies of individual neurons of the ventral nerve cord.

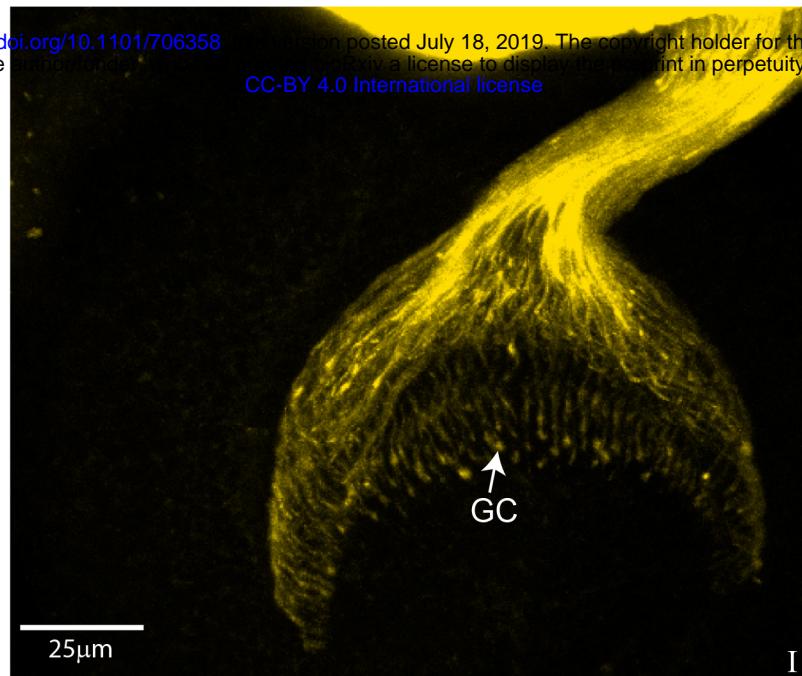
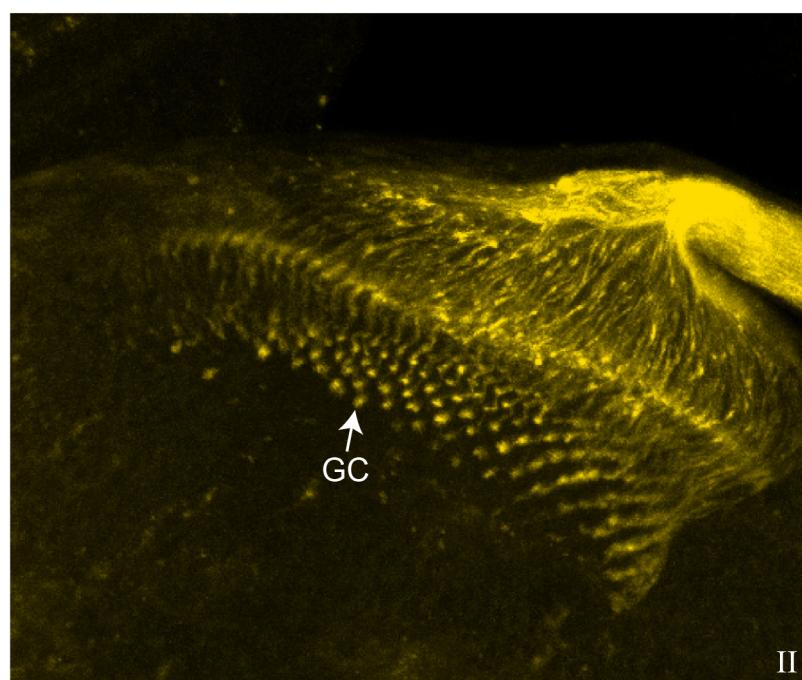
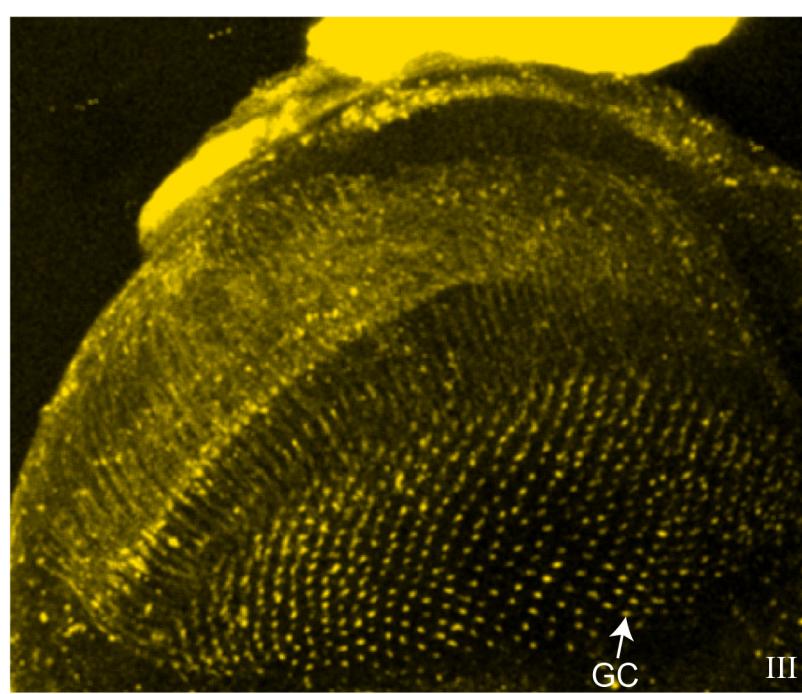

12

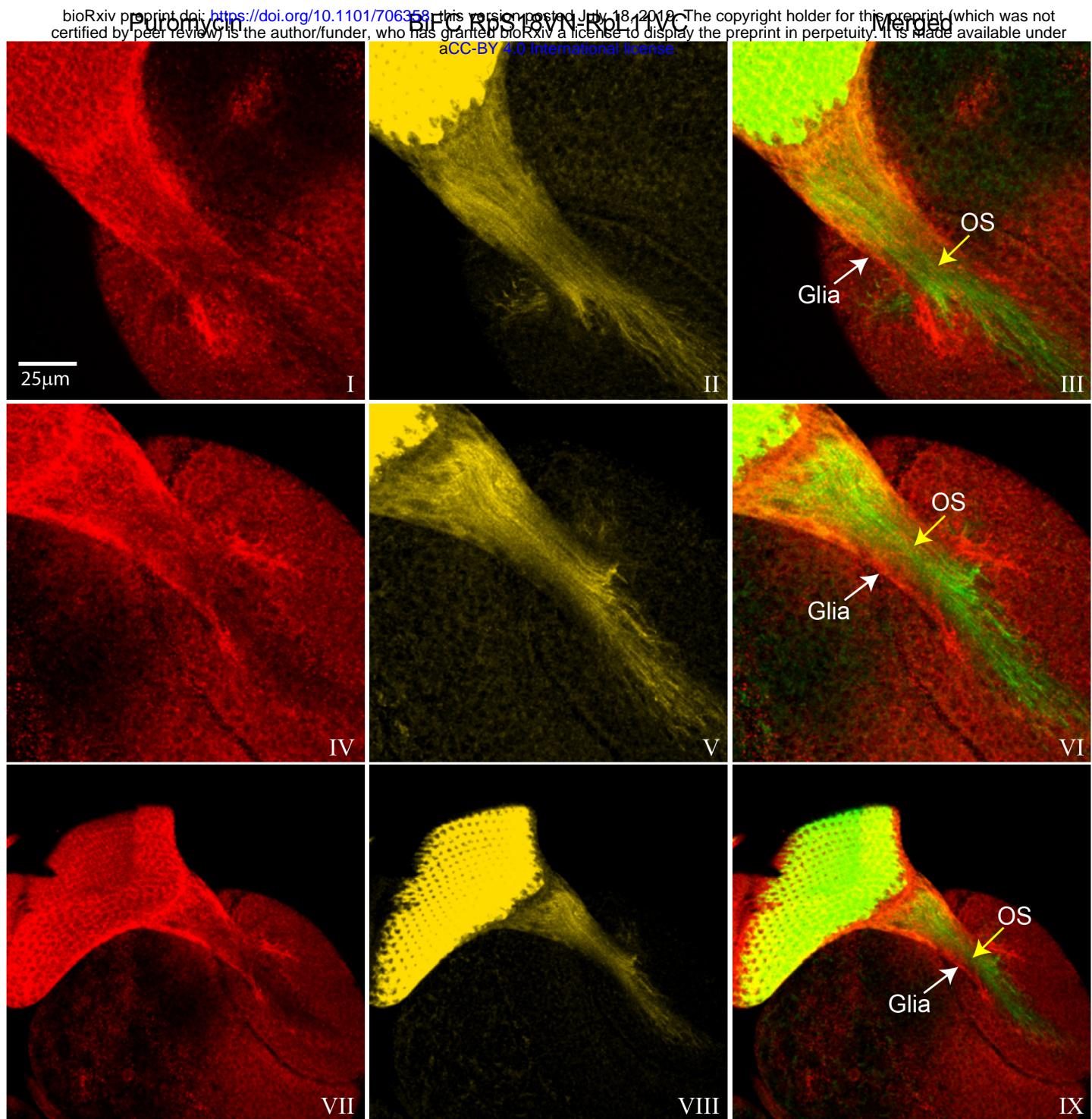
Figure S2


GMRGAL4>RpS18VN-RpL11VC

bioRxiv preprint doi: <https://doi.org/10.1101/706358>; this version posted July 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


24 hrs APF

48 hrs APF


72 hrs APF

1 **Figure S2. Visualisation of ribosomes in pupal photoreceptor neurons.** Localization
2 of BiFC signal of RpS18VN/RpL11VC in photoreceptors at different pupal stages: 24 hrs
3 (panel I), 48 hrs (panel II) and 72 hrs (panel III) after pupa formation (APF). GC refers to
4 Growth Cones.

5

Figure S3

1 **Figure S3. Visualisation of puromycylation sites in the retina and optic stalk.**

2 Projection images of the puromycin immunostaining signals (red, panel I, IV, VII) in
3 tissues expressing GMR-GAL4 driven RpS18VN-RpL11VC in the photoreceptors; the
4 BiFC signal (yellow, panel II, V, VIII); the merged image highlights the more intense
5 green colour in the distal segment of the optic stalk (OS) (panel III, VI, IX); the BiFC
6 signal is shown in green for better contrast in the merged image. White arrows indicate a
7 layer of cells, probably glia, surrounding the optic stalks.