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Abstract

The transcriptomic and proteomic characterisation of CD4" T cells at the single-cell level has been
performed traditionally by two largely exclusive types of technologies: single cell RNA-
sequencing (scRNA-seq) technologies and antibody-based cytometry. Here we demonstrate that
the simultaneous targeted quantification of mMRNA and protein expression in single-cells provides
a high-resolution map of human primary CD4" T cells, and identified precise trajectories of Thl,
Th17 and regulatory T-cell (Treg) differentiation in blood and tissue. Furthermore, the sensitivity
provided by this massively-parallel multi-omics approach revealed novel insight into the
mechanism of expression of CD80 and CD86 on the surface of activated CD4" Tregs and
demonstrate their potential to identify recently activated T cells in circulation. This transcriptomic
and proteomic hybrid technology provides a cost-effective solution to dissect the heterogeneity of
immune cell populations, including more precise and detailed descriptions of the differentiation
and activation of circulating and tissue-resident cells in response to therapies and in stratification

of patients.
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Background

Our understanding of the human immune system has been greatly influenced by the
technological advances leading to the ability to precisely quantify mRNA and/or protein
expression at the single-cell level. In particular, the implementation of flow cytometry as a routine
and widely-accessible research tool has shaped much of our current knowledge about the
complexity of the immune system. With increased availability of fluorochrome-conjugated
antibodies and more powerful lasers, flow-cytometric assays allow typically 15-20 parameters that
can be assessed in parallel. Developments in single-cell mass cytometry (CyTOF) have similarly
allowed the simultaneous assessment of the expression of up to 50 protein targets using heavy

metal-labeled antibodies [1].

The advent of single-cell RNA-sequencing (scRNA-seq) has provided an unprecedented
opportunity to investigate the global transcriptional profile at the single-cell level. In contrast to
cytometry-based technologies, which are limited to the concurrent detection of up to a few tens of
protein markers, scRNA-seq technologies allow to profile the entire transcriptome. With the
concomitant reduction in sequencing costs, there has been a recent explosion in scRNA-seq
platforms available to immunologists [2,3]. These fundamentally differ in the cell capture methods
and resulting sensitivity, ranging from a few hundreds of cells profiled with high sensitivity, using
plate-based capture methods such as SMART-seq2 [4], tens of thousands of cells with lower
sensitivity using whole-transcriptome scRNA-seq platforms, such as 10X Genomics [5], Seq-Well

[6] or Drop-seq [7].

Despite the growing popularity of whole-transcriptome scRNA-seq, two main issues still
affect the performance of these platforms: cost and sensitivity. Even at high sequencing coverage,
resulting in increased sequencing costs, stochastic dropout is a well-known issue of scRNA-seq,
leading to an inflation of zero-expression measurements. Furthermore, although several methods
have been developed to impute missing expression values, questions remain about the performance
of these methods [8]. This technical limitation is particularly relevant for resting primary cells,
such as CD4" T cells, and mainly limits the robust detection and quantification of lowly expressed
genes, including lineage-defining transcription factors, which are critical for cell-type
identification and annotation. An important recent technical advance has been the development of

new methods, such as CITE-seq [9] and REAP-seq [10], allowing the combination of whole-
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transcriptome scRNA-seq with measurement of protein expression at the single-cell level using
oligo-conjugated antibodies. These methods provide critical insight into cell function and
increased clustering resolution, although the resulting sequencing cost, especially when combining
large numbers of antibodies targeting highly expressed proteins, still limits the use of this

technology as a widely-applicable immunophenotyping tool.

In this study we describe an integrated targeted scRNA-seq workflow, to simultaneously
quantify the expression of 397 genes at the mRNA level and up to 68 genes at the protein level
with oligo-conjugated antibodies (AbSeq) [11]. We sought to assess the sensitivity and cost-
effectiveness of this multi-omics system to immunophenotype human primary CD4" T cells at the
single-cell level, and to identify discrete cell-states providing potential new insight into the
functional heterogeneity of T cells. By combining the expression of a targeted set of genes with
the highly quantitative measurement of key protein markers, we have generated a high-resolution
map of human CD4" T cells in blood and tissue, and delineated distinct trajectories of T-cell
differentiation associated with a gradient of activation, which were apparent even in resting
primary cells. Our data also shows very clearly the frequent low correlation between mRNA and
protein expression in primary CD4" T cells, thereby challenging the current dogma that our current
understanding of the immune system can be re-defined based on single-cell transcriptional data
alone. These attributes provided novel evidence for the potential mechanisms leading to the
expression of exogenous CD80 and CD86 on the surface of human primary Tregs, thus revealing
a biomarker for activated Tregs that have recently contacted antigen presenting cells expressing

these T-cell co-stimulatory signaling molecules.
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Results

Simultaneous protein quantification increases the power of scRNA-seq to dissect the functional

heterogeneity of human CD4" T cells

In this study we wanted to investigate the power of a unified high-throughput experimental
workflow combining targeted scRNA-seq and the quantification of protein expression at the
single-cell level to dissect the heterogeneity of resting human primary CD4" T cells in blood. To
address this question, we initially profiled the expression of 397 genes at the mRNA level, coupled
with 37 protein targets (Table S1) using the AbSeq technology [11] in CD4" T cells isolated from
blood of a systemic lupus erythematosus (SLE) patient. To enrich for the relative distribution of
two less abundant CD4" T-cell subsets: (i) CD127°%CD25" T cells, containing the Treg
population; and (ii) CD127°%CD25"% T cells, containing a subset of non-conventional
CD25°"FOXP3" Tregs previously characterised in autoimmune patients [12], we devised a FACS-
sorting strategy to isolate and profile equal numbers of cells from the three defined T-cell subsets
(Fig. 1a). Following FACS sorting, cells from each subset were labeled with a barcoded oligo-
conjugated antibody (sample tag) prior to cell loading — a method related to the recently described
cell-hashing technique [13] — to identify their original sorting gate and to assess the frequency of

cell multiplets obtained in this experiment.

A total 0f 9,898 captured cells passed initial QC, of which a small proportion (1.9%; Table
S2) were assigned as multiplets and excluded from the analysis. Of note, we observed complete
sequencing saturation of the mRNA library, assessed as the number of cDNA molecules with a
novel Unique Molecular Identifier (UMI) identified with increasing sequencing coverage, for a
coverage of <3,000 reads/cell (Fig. S1a). In contrast, we obtained an 80% sequencing saturation
at a coverage of >6,000 reads/cell for the AbSeq library (Fig. S1b). This is illustrated in the large
dynamic range of expression of the protein targets, reaching up to thousands of unique copies in
cells displaying higher levels of expression (Fig. S1¢). Of note, the distribution of most proteins,
including all those that are known not to be expressed on CD4" T cells was centered around zero
copies (Fig. S1c), which demonstrates the high specificity of the AbSeq immunostainings. To

further test the sensitivity of the AbSeq protein measurements, we next generated a two-
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dimensional plot depicting the AbSeq expression of IL-2RA (CD25) and IL-7R (CD127), which
we found to recapitulate the flow cytometric profile obtained with the same two markers used for
the FACS-sorting of the assessed T-cell subsets (Fig. 1b). Furthermore, by overlaying the sample-
tag information, we were able to confirm that the expression profiles of CD127 and CD25
mimicked the sorting strategy precisely for all three subsets (Fig. 1b), therefore illustrating the

highly quantitative nature of the protein measurements.

Next we performed unsupervised hierarchical clustering combining the mRNA and protein
expression data and visualised the clusters in a two-dimensional space using Uniform Manifold
Approximation and Projection (UMAP) [14]. One of the main drivers of functional differentiation
in CD4" T cells is the acquisition of a memory phenotype in response to antigen stimulation,
typically marked by the expression of CD45RA on naive cells and CD45RO on memory cells.
However, because these are splice forms of the same gene (PTPRC; CD45), its discrimination
cannot be achieved using UMI-based scRNA-seq systems targeting the 3’ or 5° ends of the
transcript. By measuring the expression of the two isoforms at the protein level, we were able to
identify a marked expression gradient associated with a gradual loss of CD45RA and concomitant
gain of CD45RO along the first component of the UMAP plot, indicating that the acquisition of a
memory phenotype is indeed the main source of biological variation driving the clustering of CD4*
T cells (Fig. 1¢). One notable exception was the re-expression of CD45RA in the most
differentiated memory cells (Fig. 1c). This observation is consistent with the phenotype of
differentiated effector memory CD4" T cells that re-express CD45RA (TEMRAs) [15], and
illustrates the power of this highly multiparametric approach to identify subtle alterations in CD4*
T-cell states, while mitigating the potential issue of cell-type misclassification based on a few

prototypical markers such as CD45RA/RO.

Single-cell mRNA and protein immunophenotyping identifies distinct trajectories of CD4" T cell
differentiation in blood

Integration of the multiparametric transcriptional and proteomics data generated provided

distinct clustering of CD4" T cells into discrete clusters along the naive/memory differentiation
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axis (Fig. 1d). We observed an increased number of clusters within the memory compartment,
marked by the differential expression of defined sets of signature genes (Fig. 1e and Fig. S2a),
which was consistent with the increased phenotypic diversity in differentiated CD4" T-cell subsets.
Moreover, we observed that the expression of the canonical Thl (7BX21, encoding TBET) and
Th17 (RORC, encoding RORyt) lineage-defining transcription factors was restricted to specific
clusters within the effector memory T-cell (mTeff) population (Fig. 1f), indicating that these
clusters are highly enriched for Thl and Th17 Teffs. More importantly, we observed a distinct
gradient of expression of these transcription factors. Consistent with this gradient of functional
differentiation, we observed a marked co-expression of canonical Thl effector-type molecules
with the expression of TBET (Fig. 1f), revealing a subset of highly activated Th1 T cells with a
putative cytotoxic profile in the blood of this SLE patient. Similarly, a gradient of expression of
Th17-signature genes, including RORC, could be observed from cluster 8 to 7 (Fig. 1le,f),

indicating a trajectory of Th17 differentiation.

In addition to resting CD4" T cells, we also profiled the same subsets of cells following
short in vitro stimulation (90 min) with PMA + ionomycin, to assess cell-type specific cytokine
production. Similarly to the resting condition, in vitro stimulated CD4" T cells formed discrete
clusters along the naive-memory differentiation axis (Fig. S3a,b). Furthermore, we observed a
consistent induction of expression of Thl (IFNy) and Th17 (IL-22) type cytokines that were
restricted to the respective Thl and Th17 clusters (Fig S3c¢,d). Furthermore, although primers for
the Th2 transcription factor GATA-3 were not included in this assay, therefore precluding the
annotation of Th2 cells in resting CD4" T cells, we noted that in vitro stimulation revealed a distinct
cluster of Th2 mTeffs cells marked by the expression of Th2-type cytokines, such as IL-13 (Fig
S3e), but also IL-4, IL-5 and IL-9 (Fig. S2b).

Recently, several scRNA-seq studies have refined our understanding of the heterogeneity
of CD4" Tregs and their functional adaptation in tissues, in both mice and humans [16,17]. Given
the sorting strategy used in this study, we were able to significantly enrich our CD4" T-cell dataset
for the Treg population, which is highly enriched within the CD127"°"CD25" population.
Consistent with this enrichment strategy, we identified a large Treg population marked by the
expression of the transcription factor FOXP3, but also other classical Treg signature genes,

including HELIOS (encoded by /KZF?2), IL-2RA, CTLA-4 or TIGIT (Fig. 2a,b). In agreement
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with their Treg-specific transcriptional programme, we found a marked suppression of IL-2
transcription in Tregs following in vitro stimulation (Fig. S3f). Notably, we found that the
differentiation of Tregs from a naive to memory phenotype was strongly associated with the
expression of two transcription factors: BACH2 and BLIMP1 (encoded by PRDM1I). These two
key transcription factors displayed a very distinct mutually exclusive expression pattern, with high
expression of BACH? in naive cells, declining gradually — with concomitant gradual increase in
PRDM]1 expression — along the naive-memory differentiation axis (Fig. 2¢). The gradual increase
of PRDM 1 expression was found to be strongly associated with the expression of Treg activation
markers such as HLA-DRA, DUSP4 and CD39 (Fig. 2d), and revealed a trajectory of Treg
activation in resting primary CD4" T cells. These data suggest that the transcriptional interplay
between BACH2 and BLIMP-1 is critical to regulate the differentiation of memory Treg subsets,
which is in agreement with previous data in both mouse and humans [16]. The dynamic interplay
of BACH2 and PRDM]1 in the differentiation of Tregs was even more pronounced following in
vitro stimulation (Fig. S4), which further supports the hypothesis that they are primary regulators
of the transcriptional programme associated with the differentiation of suppressive activated Tregs

in humans in response to antigen stimulation.

Statistical methods are currently being developed to identify and reconstruct
developmental trajectories from heterogeneous scRNA-seq datasets using pseudotime analysis. To
validate our findings, we next applied the recently developed partition-based graph abstraction
(PAGA) method [18] to reconstruct the developmental trajectories in our dataset. Consistent with
our previous findings, pseudotime analysis revealed a gradient of T-cell differentiation along the
naive-memory differentiation axis, which lead to the identification of three distinct differentiation
pathways associated with the acquisition of a Thl, Th17 or Treg phenotype (Fig. 3a,b). These
identified differentiation trajectories were associated with gradual increased expression of the
lineage-specific transcription factors TBET, RORyt and FOXP3, which regulate the transcriptional
programme associated with the respective T-cell lineages (Fig. 3c-e). In particular, we confirmed
a very distinct and gradual differentiation of the Thl lineage in this SLE patient, leading to the
temporal acquisition of activated Thl cells expressing IFN-y in cluster 5 and the terminal
differentiation of a subset with cytotoxic profile (cluster 9). Of note, this analysis identified cluster

2 as an intermediate memory Teff cell state, leading to the differentiation of either Th1 (cluster 5
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and 9) or Th17 (cluster 7) T cells. Moreover, pseudotime analysis also recapitulated the acquisition
of an activated Treg trajectory from naive Tregs (cluster 0) to activated memory Tregs (cluster 3),
which was regulated by the mutually exclusive expression of the BACH2 and BLIMP-1
transcription factors (Fig. 3e). An intriguing observation was the identification of cluster 8
representing a potential intermediate T-cell state on a Treg-Th17 developmental pathway, which
is consistent with the plasticity and putative common co-evolutionary origin between these two

lineages [19].

The identification of the temporal differentiation of these T-cell lineages was also
recapitulated using Single-cell Trajectories Reconstruction (STREAM) [20], another method that
has been developed to visualise developmental trajectories using multi-omics data (Fig. 3f).
Further supporting a putative common developmental pathway of Treg and Th17 cells, STREAM
analysis also identified FOXP3* mTregs as a less differentiated T-cell state, which share a
developmental trajectory with differentiated RORyt"™ Th17 cells, with cluster 8 representing an
intermediate transitional cell-state in this trajectory (Fig. 3g). These data illustrate not only the
sensitivity of the targeted scRNA-seq approach to sensitively quantify lowly expressed
transcription factor genes, but also highlight the power of this integrated multi-omics approach to
identify subtle cell-state transitions. The large number of captured single-cells and the combination
of protein and mRNA measurement that we obtained in this study makes this dataset particularly
well suited to identify continuous cell-state transitions and reconstruct the differentiation

trajectories from resting human primary T cells.

Protein expression of CD80 and CD86 marks a subset of recently activated D4* Tregs in

circulation.

A feature of the most activated Treg cluster (cluster 3), was the marked increased
expression of CD80 and CD86 at the protein level (Fig. 2b,d), two T-cell costimulatory molecules
usually expressed in antigen presenting cells (APCs). These findings were recapitulated on the
pseudotime analysis, which identified CD80/CD86 protein expression as markers of the temporal

Treg differentiation trajectory (Fig. 3e). Consistent with their APC-restricted expression pattern,
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we observed virtually no detectable expression of either CD80 or CD86 at the mRNA level in
either resting or in vitro stimulated CD4" T cells (Fig. 4a,b), suggesting a likely exogenous source

of the detected protein expression.

Recently, two mechanisms have been postulated to lead to the expression of APC-restricted
proteins on the surface of activated T-cells, and Tregs in particular: (i) a CTLA-4 dependent
mechanism (trans-endocytosis), whereby CTLA-4 expression on the surface of activated T cells
can lead to the removal and subsequent endolytic degradation of CD80/CD86 molecules from the
surface of APCs [21]; and (ii)) a TCR-dependent mechanism (trogocytocis), whereby TCR
engagement with the peptide-MHC complex on APCs can lead to the re-expression of APC-
restricted molecules on the surface of activated T cells [22]. To validate the detected expression of
CD80 and CD86 in human resting primary CD4" T cells, and to shed light into the mechanisms of
expression, we next designed a flow cytometry panel to investigate the expression of these proteins
in CD4" T cells isolated from blood of two healthy donors. We differentiated between surface and
intracellular expression of the assessed markers by performing immunostaining either prior or
following cell fixation and permeabilisation. Consistent with this strategy, we confirmed that
although the expression of CTLA-4 on the surface of CD4" T cells is very low, intracellular
staining revealed much higher expression, most notably in the different Treg subsets (Fig. 4c,d).
Notably, we detected a remarkable co-expression between CD86 and CTLA-4. In fact, CD86
expression was only detected on CTLA-4" T cells, and was therefore mainly restricted to memory
Treg (mTreg) subsets, on the cells expressing the higher levels of CTLA-4 (Fig. 4e). In addition,
we also observed a strong co-expression of CD86 and HLA-DR, another marker associated with
Treg activation (Fig. 4f). In contrast to CD86, the co-expression between CD80 and CTLA-4 on
mTregs was less pronounced, although still displaying preferential expression on CTLA-4" cells
(Fig. 4g). Furthermore, we also observed notable differences in the cellular location of CD80 and
CD86 expression. While CTLA-4 and CD86 displayed a predominantly intracellular location,
expression of CD80 was mostly restricted to the surface of the cells and was detected at similar
levels using either surface or intracellular immunostaining (Fig. 4h). Taken together, these data
reveal novel insight into the specific mechanisms of CD80 and CD86 protein expression on the

surface of human Tregs, and suggest that they could be useful as novel biomarkers of recently
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activated T cells in the circulation and indicative of their engagement with CD80/CD86-expressing

APCs.

Multi-omics immunophenotyping approach identifies a rare subset of circulating CCR9"

Tregs displaying hallmarks of tissue-resident T cells

Another example of a rare T-cell population that we were able to identify in circulation
using this multimodal immunophenotyping strategy was a subset of FOXP3" T cells marked by
the specific expression of the small intestine-homing chemokine receptor CCR9 (cluster 10; Fig.
2e). This cluster was also marked by increased expression of other classical markers of tissue
residency and migration to the gut, such as /ITGA4 (CD49d) and ITGAE (CD103; Fig. 2e). One
distinguishing feature of this subset was the expression of the transcription factor POU2AF I (Fig.
2e). Although POU2AF1 (encoding OCA-B), has been mainly characterised as a B-cell specific
transcription factor in blood, where it plays a role in B-cell maturation [23], it has also been
recently shown in mice to regulate the maintenance of memory phenotype and function in
previously activated CD4" T cells [24], and the differentiation of T follicular helper (Tfh) cells in
the tissue [25]. In agreement with this putative tissue-resident phenotype, pseudotime analysis
demonstrated that these cells correspond to a highly differentiated cell state (Fig. 3a). These data
suggest that this subset of CCR9" T cells may represent a previously uncharacterised population
of recirculating tissue-resident Tregs in humans, and provides an illustrative example of the power
of this multiparametric immunophenotyping approach to identify rare immune populations and

reveal novel insight into the biology of CD4" T cells.

Single-cell comparison of mRNA and protein expression levels reveals modest and variable levels

of correlation in primary CD4" T cells

Given that the main advantage of this combined targeted scRNA-seq and proteomic
approach is the ability to immunophenotype large numbers of cells from multiple donors, we next

investigated whether we were able to integrate data generated from independent experiments. We

11
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replicated the initial experiment using the same pre-sorting strategy to isolate the three assessed
CD4" T-cell subsets from an individual with type 1 diabetes and one healthy donor. To further test
the potential of the protein quantification, we extended the AbSeq panel to 43 protein targets
expressed on CD4" T cells (Table S1). In agreement with the initial experiment, unsupervised
clustering of the 23,947 cells passing QC revealed a similar discrimination of CD4" T-cell subsets
(Fig. Sa). More importantly, we found very good alignment of the data from the three donors, with
minimal evidence of significant experimental batch effects (Fig. Sb). Analysis of the donor-
specific distribution of the identified CD4" T-cell clusters also showed that the frequency of the
putative CD4" cytotoxic Thl subset (cluster 11), marked by the co-expression of TBET and
effector-type cytokines, was highly increased in the SLE patient (Fig. Sc-e). To avoid age-specific
differences in the relative distribution of the CD45RA" naive and CD45RO" memory
compartments in these donors, we normalised the analysis to the memory T-cell clusters only,
which we were able to robustly annotate using the AbSeq data for the expression of CD45RA and
CD45RO. Although we detected a few cells with this activated Th1 phenotype in circulation from
every donor, there was a very substantial expansion in the SLE patient (2.5% of memory CD4" T
cells compared to 0.3% and 0.1% in the T1D patient and healthy donor, respectively; Fig. 5d),
suggesting that it could represent a pathogenic CD4" T-cell subset associated with systemic

autoimmunity in this patient.

The parallel quantification of mRNA and protein expression for a large number of genes
expressed in CD4" T cells in this experiment provided a unique opportunity to investigate their
systematic correlation at the single-cell level. From the 43 proteins quantified with AbSeq, 26 were
also assessed at the transcriptional level and detected in our CD4" T-cell dataset. Generally, we
observed relatively weak (mean Pearson correlation coefficient = 0.214) but variable levels of
correlation in total resting CD4" T cells, ranging from 0.049 for TNFRSF9 to 0.808 in KLRBI
(encoding CD161; Fig. 5f). Furthermore, we note that with the exception of CXCR), the estimated
correlations were very consistent between the two independent donors (Fig. 5f). These findings
were consistent with previous observations [9,10], and suggest that primary CD4" T cells are
highly specialised cells, where transcription is subject to tight regulation to avoid excessive energy
consumption by the cell and to control effector function. As expected, by normalizing our analysis

to a functionally more homogeneous population of memory CD4" T cells, we observed higher
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levels of correlation (mean = 0.233), which is consistent with their increased expression of the
majority of the assessed T-cell markers. A slightly decreased correlation (mean = 0.178) was
observed in in vitro stimulated CD4" T cells, suggesting an increased variance of protein and

mRNA expression in activated CD4" T cells (Fig. 5g).

Parallel mRNA and protein profiling provides increased cell-type resolution of the heterogeneous

CD45" immune cell population in blood and tissue

To investigate how this combined targeted scRNA-seq and transcriptomics approach
performs on a more heterogencous population of immune cells, we isolated total CD45" cells
isolated from blood and a matching duodenal biopsy from two coeliac disease (CD) patients with
active disease. In this experiment we captured 31,907 single-cells that passed QC and expanded
the AbSeq panel to the detection of 68 protein targets (Table S1). As expected, we observed a very
defined clustering of the different cell populations representing the CD45" immune cells (Fig. 6a).
Consistent with previous data [26,27], we found a clear separation in cells isolated from either
blood or the small intestine (Fig. 6b), indicating a strong transcriptional signature of tissue-
residency. Furthermore, clustering of the cells isolated from either blood (Fig. 6¢ and Fig. S5a) or
tissue (Fig. 6d) separately, revealed clear identification of the expected cell populations. The main
distinction was the relative distribution of the main immune populations, with a marked increased
representation of B-cell, NK-cell and CD14"CD16° monocyte populations in blood, and a
significant increase in the frequency of plasma cells in the small intestine. In agreement with our
findings in CD4" T cells, we found that the acquisition of a memory phenotype was the main driver
of the clustering of both CD4" and CD8" T cells (Fig. S5b,¢). In addition, we identified other
clusters of non-conventional T cells, including a subset of yo T cells and mucosal-associated
invariant T cells (MAIT) in blood, which shared similarities with the transcriptional signature of
memory CD8" T cells, marked by the expression of effector-type cytokines genes, such as NKG7
(Fig. S5¢). In contrast, tissue-resident CD4" T cells isolated from the small intestine were restricted
to a memory phenotype and displayed a markedly different subset distribution, including a
substantially enlarged population of FOXP3" Tregs (Fig. 6e,f). Morcover, the simultaneous
assessment of the protein expression of CXCRS, ICOS and PD-1, identified a cluster of Tth cells
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(Fig. 6e), which could be distinctly clustered along a trajectory of Tth-cell activation, as illustrated

by the gradient of expression of key Tth functional transcripts, such as IL21, CXCL13 and BTLA
(Fig. 6g).

Similarly, we also identified distinct trajectories of cell differentiation in other immune cell
types, as illustrated by the gradient of differentiation and class-switching of B cells in blood (Fig.
S6a-c). Peripheral B cells were clearly dominated by a naive IgD*IgM* CD27- subset, and only a
small fraction of class-switched IgG* CD27" memory B cells, which was consistent with the young
age of the CD patients. In contrast, tissue-resident B cells were much less abundant and contained
mostly cells with a class switched IgG"™ CD27" memory phenotype. In addition, we identified a
vastly expanded population of antibody-secreting plasma cells (Fig. S6d,e). Of note, because we
were able to specifically assess the expression of the secreted Ig isotypes, we could also
discriminate precisely the different functional plasma cell subsets, including a very abundant
population of IgA-secreting plasma cells (Fig. S6f), which are known play a critical role in
interaction with the microbiome in the gut. Together, these data provide an example of the power
of this multimodal approach to identify trajectories of cell differentiation and cell states in diverse

immune cell and tissue types.

14


https://doi.org/10.1101/706275
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/706275; this version posted November 29, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

Discussion

The advent of scRNA-seq has proved to be a transformative technology that is shaping our
understanding of the complexity and function of the human immune system [28,29]. However,
currently, both the elevated costs to perform these experiments, as well as the reliance on
transcriptional data alone, pose significant challenges to the widespread practical applicability of
these technologies. In this study, we present an integrated, cost-effective, approach to sensitively
assess simultaneous expression of mRNA and protein for hundreds of key immune targets at the

single-cell level using the AbSeq technology [11].

Recently, two similar approaches, CITE-seq [9] and REAP-seq [10], have been described
to measure protein expression using oligo-conjugated antibodies in parallel with scRNA-seq data.
Furthermore, other applications are currently being developed to integrate the growing portfolio
of single-cell omics technologies [30,31]. A fundamental difference with the approach described
in this study is that these technologies all rely on whole-transcriptome data, providing a high-level
cross-sectional representation of all polyA mRNA transcripts in the cell. In contrast, by using
targeted scRNA-seq, we are relying on prior knowledge to specifically assess the expression of
hundreds of selected genes in single cells. Moreover, a targeted approach provides a more sensitive
quantification of expression of the selected genes at a fraction of the cost to generate the
sequencing libraries, as it avoids the detection of highly expressed invariant housekeeping genes,
which take up the vast majority of the whole-transcriptome scRNA-seq libraries. The increased
sensitivity of a targeted approach is particularly relevant for the accurate assessment of lowly-
expressed genes with critical regulatory function, such as transcription factors, which can be poorly
quantified using traditional whole-transcriptome scRNA-seq data. It therefore, provides a
knowledge-based approach to validate and extend whole-transcriptome scRNA-seq findings, that
can be widely implemented in any research or clinical setting. Similarly to other widely-
implemented knowledge-based single-cell immunophenotyping tools such as flow-cytometry and
CyTOF, the highly customisable nature of this approach is critical to investigate specific research
questions with very high sensitivity and in larger number of samples. However, in contrast to
CyTOF which is inherently time-consuming and requires the availability of large numbers of cells
to maximise the information generated by each run, this technology is ideally suited for unique

and highly valuable clinical samples, for which cell availability and number are major practical
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constraints. Furthermore, the digital nature and lack of spectral overlap issues with the AbSeq
measurements provide a superior specificity and sensitivity compared to flow cytometry for the
quantification of lowly-expressed proteins, allowing accurate detection of zero or very low copy
numbers, which are usually difficult to discriminate by flow cytometry. A good example was the
sensitive quantification of the co-stimulatory protein CD80 by AbSeq, whose expression was
found to be restricted to activated T cells. In comparison, flow cytometric assessment of CD80
expression was much less well-resolved with higher background, resulting in lower dynamic range

of expression comparing to AbSeq.

The increased sensitivity and high number of parameters simultaneously assessed using

this multi-omics approach can also lead to unanticipated novel biological findings. An illustrative
example of this potential is the identification of the APC-restricted CD&0 and CD86 co-stimulatory

proteins as markers of activated Tregs in peripheral blood. Although mechanisms of CD80/86

protein expression on the surface of T cells, including trogocytosis and trans-endocytosis, have

been previously demonstrated, they have been restricted to either mouse models or to in vitro cell

line models [32—-34]. Our data demonstrate that expression of CD80 and CD86 at the protein level
can also be detected in humans on the surface of primary T cells isolated ex vivo from blood, and
reveal specific differences between the expression of these two proteins that could provide novel
insight into the functional mechanism(s) leading to their expression. Notably, while CD86
expression was remarkably restricted to CTLA-4" Tregs and intracellular, CD80 was less
dependent on CTLA-4 expression and mostly detected on the surface of T cells. Consistent with
these results, the AbSeq data revealed that CD86 expression was restricted to a small subset of
memory Tregs displaying hallmarks of a highly activated phenotype, supporting the hypothesis
that CD86 molecules captured by CTLA-4 could be transiently expressed on the surface of
activated Tregs prior to internalisation and degradation. In contrast to CD86, CD80 protein
expression could also be detected in Tregs with lower CTLA-4 levels, and displayed broader
expression profile in other activated T-cell subsets. In particular the pseudotime analysis in our
dataset, identified CD80 as a marker of the temporal differentiation of Th17 cells, which may
provide a mechanistic rationale for the recently reported suppression of Th17 differentiation in
response to anti-CD80 treatment in mice [35]. Furthermore, we also note a distinct co-expression

of CD80 protein and HLA-class I mRNA (HLA-DRA) in a subset of activated Thl cells, which
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could indicate recent activation in the context of strong TCR signaling required to induce the

differentiation of Th1 cells [36,37].

Owing to the strong upregulation of CTLA-4 on activated T cells, our data cannot provide
conclusive evidence for the occurrence of trans-endocytosis in primary human T cells.
Nevertheless, the co-expression between CD86 and CTLA-4 and its restricted expression on
activated Tregs, suggest that likely both trogocytosis and trans-endocytosis contribute to the
expression of APC molecules on the surface of human primary CD4" T cells. In addition, we also
cannot rule out that the possibility that CD80 and CD86 are specifically expressed on activated
CD4" T cells, but that the mRNA has a very short half-life, a hypothesis that has been previously
reported [38]. Nevertheless, these data point to subtle, previously uncharacterized, differences in
the expression of CD80 and CD86 in different T cell subsets. To our knowledge, these findings
provide the first evidence for the occurrence of these mechanisms in human primary T cells, and
indicate that surface expression of CD80 and CD86 could be valuable new markers for the isolation

of antigen-specific T cells for functional assays.

Another example of the of the potential of this multi-omics approach to reveal novel
biological findings was the identification of a Thl CD4" T-cell subset with marked cytotoxic
profile that we found to be selectively expanded in an SLE patient. Of interest, this subset displayed
a phenotype that is consistent with a population of CXCR3* PD-1" CD4" T cells that were recently
found to be expanded in blood from SLE patients [39]. Although our current dataset is limited in
patient numbers, the transcriptional profile of the heterogeneous CXCR3*PD-1" CD4" T-cells
described by Caielli et al display the same distinct Th1 profile, marked by the expression of the
transcription factor TBET and numerous cytotoxic effector molecules. Our data suggest that a
specific enrichment with the cytotoxic CD4" T-cell subset described in this study could be
responsible for the reported enrichment of CXCR3"PD-1* CD4" T-cells in SLE patients, and
provides additional functional characterisation of this heterogeneous subset at the single-cell level,

which could be critical to further investigate its role in the pathogenesis of SLE.

An important finding from this study and other related studies [9,10], is the generally low
levels of correlation between mRNA and protein expression in primary CD4" T cells at the single-
cell level. One possible explanation for this observation is that reduced sensitivity of scCRNA-seq

to quantify mRNA expression, may be leading to an underestimation of the correlation
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coefficients. However, we note that there are notable exceptions, such as CD161, which displayed
a high correlation between mRNA and protein levels at 0.847 in memory CD4" T cells,
demonstrating that a systematic error in the quantification of mRNA levels by scRNA-seq
technologies is not the only factor contributing to the observed low level of correlation. These
findings therefore underscore the importance of parallel protein quantification to better identify
stable cellular phenotypes associated with cell function. In contrast to mRNA expression, proteins
display a much larger dynamic range of expression and longer half-life [40,41], resulting in much
higher copy numbers, and a more accurate and reliable quantification compared to their mRNA
counterparts. This is particularly relevant in differentiated resting primary cells, such as CD4" T
cells, where transcription is tightly regulated to maintain effector function. These low copy
numbers result in increased stochastic variation in mRNA quantification and dropout rate, which
impair the accuracy single-cell methods that rely only on transcriptional data. Furthermore, mRNA
profiling provides only a snapshot into the current functional state of the cell, which can be better
assessed with combined protein expression data. An illustration of the power of this combined
multimodal approach is the detailed trajectories of differentiation that we identified in resting
primary CD4" T cells, which were recapitulated by precise gradients of mRNA expression. The
sensitivity of these measurements combined with the high numbers of cells analysed lend
themselves to identify gradual and subtle changes in cell states, which are critical to identify
dynamic changes reflecting mechanisms of functional adaptation in a heterogeneous cell

population.

In summary we here show that combined targeted scRNA-seq and protein expression
analysis provides a high-resolution map of human immune cells in blood and tissue, and reveals
novel biological insights into the biology of CD4" T cells, as illustrated by the identification of
CD80/CD86 expression on activated Tregs in circulation and the functional characterisation of a
potential pathogenic cytotoxic CD4" T-cell subset in SLE. Our data provide a proof-of-principle
for the implementation of this integrated approach as a widely applicable, and cost-efficient
research tool for immunologists that could be particularly valuable in a clinical setting for the
characterisation of rare patient samples with limited cell numbers, as well as to assess the
functional consequence at the single-cell level of targeting key biological pathways in vivo, in

patients treated with immunotherapeutic drugs.
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Methods

Subjects

Study participants included one SLE patient (37 y/o female), recruited from the Cambridge
BioResource, and one T1D patient (16 y/o male) and one autoantibody negative healthy donor (14
y/o male) recruited from the JDRF Diabetes—Genes, Autoimmunity and Prevention (D-GAP)
study.

Comparison of total CD45" immune cells isolated from paired blood and a duodenal biopsy was
performed in cells isolated from two paediatric coeliac disease (CD) patients with active disease
(one 5 y/o male with Marsh scale disease score of 3¢, and one 15 y/o male with Marsh scale disease

score of 3b).

Flow cytometric assessment of the expression of CTLA-4, CD80 and CD86 in the Treg subsets
was performed in two adult healthy donors (46 y/o female and 51 y/o male), recruited from the

Oxford Biobank.

Cell preparation and FACS sorting

T-cell centric assays were performed on cryopreserved peripheral blood mononuclear cells
(PBMCs). Cryopreserved PBMCs were thawed at 37°C and resuspended drop-by-drop in X-VIVO
(Lonza) with 1% heat-inactivated, filtered human AB serum (Sigma). Total CD4" T cells were
isolated by negative selection using magnetic beads (StemCell Technologies), and incubated with
Fixable Viability Dye eFluor 780 (eBioscience) for 15 min at room temperature. After washing in
PBS with 0.02% BSA cells were stained in Sml FACS tubes (Falcon) with the fluorochrome-
conjugated antibodies used for cell sorting and the BD AbSeq oligo-conjugated antibodies (BD

Bioscience), according to the manufacturer’s instructions.

Cell sorting was performed using a BD FACSAria Fusion sorter (BD Biosciences) at 4°C into 1.5
mL DNA low bind Eppendorf tubes containing 500ul of X-Vivo with 1% heat-inactivated, filtered
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human AB serum. Following cell sorting, the three assessed T-cell subsets were incubated with
sample tag antibodies (Sample multiplexing kit; BD Bioscience), washed 3 times in cold BD
sample buffer (BD Biosciences) and counted. Samples were then pooled together in equal ratios
in 620 ul of cold BD sample buffer at the desired cell concentrations — ranging from 20 to 40
cells/ul for an estimated capture rate of 10,000-20,000 single-cells — and immediately loaded on a

BD Rhapsody cartridge (BD Biosciences) for single-cell capture.

For the in vitro stimulated condition, sorted CD4" T-cell subsets were incubated in round-bottom
96-well plates (20,000 cells/well) at 37°C for 90 min in X-Vivo with 5% heat-inactivated, filtered
human AB serum with a PMA and ionomycin cell stimulation cocktail (eBioscience), in the
absence of protein transport inhibitors. Cells were harvested into FACS tubes, washed with cold
BD sample buffer and further incubated with the BD AbSeq oligo-conjugated antibodies,
according to the manufacturer’s instructions. All FACS/sorting and AbSeq antibodies used in this

study are listed in Table S1.

CD80/86 immunophenotyping

Immunophenotyping of the co-stimulatory molecules CD80/CD86 and CTLA-4 was performed in
freshly isolated PBMCs. Cells were initially stained with fluorochrome-conjugated antibodies
against surface receptors (see Table S1) in BD Brilliant stain buffer (BD Biosciences) for 30 min
at room temperature. Fixation and permeabilisation was performed using FOXP3 Fix/Perm Buffer
Set (eBioscience) according to the manufacturer’s instructions, and cells were then immunostained
with fluorochrome-conjugated antibodies against intracellular markers (including CTLA-4, CD80
and CD86 where indicated) in BD Brilliant stain buffer for 45 min at room temperature.
Immunostained samples were acquired using a BD Fortessa (BD Biosciences) flow cytometer with

FACSDiva software (BD Biosciences) and analysed using FlowJo (Tree Star, Inc.).

Tissue dissociation and isolation of CD45" immune cells
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For the characterisation of CD45" immune cells from tissue and tissue, blood-derived PBMCs and
paired duodenal biopsies were cryopreserved in CryoStor CS10 reagent (StemCell) and stored in
liquid nitrogen until sample processing. Blood-derived PBMCs were processed as described
above. The paired duodenal biopsies were thawed at 37°C in X-Vivo with 1% heat-inactivated,
filtered human AB serum then subjected to gentle mechanical dissociation using gentleMACS
(Miltenyi Biotec) followed by short 20 min enzymatic dissociation at 37°C using a very low
concentration of Liberase TL (0.042 mg/ml; Sigma), 10 nM HEPES and 1mg/ml DNase I in X-
Vivo with 10% FBS. Following enzymatic dissociation, the biopsies were homogenised using a
more vigorous gentleMACS cycle and strained through a 70um filter with physical maceration to
generate single-cell suspensions. CD45" immune cells were further enriched using a 70/35%
Percoll gradient (Sigma). The dissociation protocol and low concentration of Liberase TL enzyme
were optimised to show minimal effect on the degradation of surface protein expression levels, as
assessed by flow cytometry. This was critical to ensure maximal sensitivity and specificity of the

AbSeq protein quantification in these samples.

Blood- and tissue-derived single-cell suspensions were incubated with Fixable Viability Dye
eFluor 780 for 15 min at room temperature and total CD45" cells were isolated by FACS sorting.
Following FACS sorting the individual blood and tissue-derived subsets were incubated with Fc
block reagent (BD Biosciences) and Sample Tag antibodies for 20 min at room temperature.
Following three rounds of washing, cells were counted and equal numbers (35,000 cells) of blood-
and tissue-derived cells from the same donor were pooled together and incubated with AbSeq
antibody mastermix (Table S1) according to the manufacturer’s instructions. Cells were then
washed two times in cold sample buffer, counted and resuspended in 620 ul of cold sample Buffer

at a final concentration of 40 cells/ul for loading on a BD Rhapsody cartridge.

cDNA library preparation and sequencing

Single-cell capture and cDNA library preparation was performed using the BD Rhapsody Express
Single-cell analysis system (BD Biosciences), according to the manufacturer’s instructions.

Briefly, cDNA was amplified - 10 cycles for resting cells and 9 cycles for in vitro activated cells -

21


https://doi.org/10.1101/706275
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/706275; this version posted November 29, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

using the Human Immune Response primer panel (BD Biosciences), containing 399 primer pairs,
targeting 397 different genes. The resulting PCR1 products were purified using AMPure XP
magnetic beads (Beckman Coulter) and the respective mRNA and AbSeq/Sample tag products
were separated based on size-selection, using different bead ratios (0.7X and 1.2X, respectively).
The purified mRNA and Sample tag PCR1 products were further amplified (10 cycles), and the
resulting PCR2 products purified by size selection (1X and 1.2X for the mRNA and Sample tag
libraries, respectively). The concentration, size and integrity of the resulting PCR products was
assessed using both Qubit (High Sensitivity dsDNA kit; Thermo Fisher) and the Agilent 4200
Tapestation system (High Sensitivity D1000 screentape; Agilent). The final products were
normalised to 2.5 ng/ul (mRNA), 0.5 ng/ul (Sample tag) and 0.275 ng/ul (AbSeq) and underwent
a final round of amplification (6 cycles for mRNA and 8 cycles for Sample Tag and AbSeq) using
indexes for [llumina sequencing to prepare the final libraries. Final libraries were quantified using
Qubit and Agilent Tapestation and pooled (~38/58/2% mRNA/AbSeq/Sample tag ratio) to achieve
a final concentration of 5SnM. Final pooled libraries were spiked with 10% PhiX control DNA to
increase sequence complexity and sequenced (75bp paired-end) on HiSeq 4000 sequencer

(ITlumina).

Data analysis and QC

The FASTQ files obtained from sequencing were analysed following the BD Biosciences
Rhapsody pipeline (BD Biosciences). Initially, read pairs with low quality are removed based on
read length, mean base quality score and highest single nucleotide frequency. The remaining high-
quality R1 reads are analysed to identify cell label and unique molecular identifier (UMI)
sequences. The remaining high-quality R2 reads are aligned to the reference panel sequences
(mRNA and AbSeq) using Bowtie2. Reads with the same cell label, same UMI sequence and same
gene are collapsed into a single molecule. The obtained counts are adjusted by BD Biosciences
developed error correction algorithms — recursive substitution error correction (RSEC) and
distribution-based error correction (DBEC) — to correct sequencing and PCR errors. Cell counts
are then estimated, using second derivative analysis to filter out noise cell labels, based on the

assumption that putative cells have much more reads than noise cell labels. Thus when cells are
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sorted in the descending order by number of reads, the inflection point can be observed on a log
transformed cumulative curve of number of reads. For the CD45" sorted cells, due to the
heterogeneity of the sample, we observed two inflection points (and two corresponding second
derivative minima), and therefore, only cell labels after the second inflection point were considered
noise labels. Barcoded oligo-conjugated antibodies (single-cell multiplexing kit; BD Biosciences)
were used to infer origin of sample (ie. sorted cell population) and multiplet rate by the BD

Rhapsody analysis pipeline.

The DBEC-adjusted molecule counts obtained from the Rhapsody pipeline were imported and the
expression matrices were further analysed using R package Seurat 3.0 [42]. Most cells identified
as undetermined by the Rhapsody pipeline had low number of features (mMRNA and protein reads).
These cells along with other cells with similarly low (<35) number of features were filtered out.
Identified multiplet cells were also filtered out at this stage. A detailed summary of the number of
putative captured cells, estimated multiplet rate and number of cells filtered from the analysis in
each of the three experiments performed in this study is provided in table S2. The resulting
matrices were log normalised using the default parameters in Seurat and the UMI counts were
regressed out when scaling data. Uniform Manifold Approximation and Projection (UMAP) was
used for dimensionality reduction. The default number of used dimensions of PCA reduction was
increased to 30 based on Seurat elbow plot. For clustering, we increased the default resolution
parameter value for clustering to 1.2 to obtain more fine-grained set of clusters. Differential
expression analysis was performed using negative binomial generalized linear model implemented
in Seurat, and integration of data from multiple experiments was performed using a combination
of canonical correlation analysis (CCA) and identification of mutual nearest neighbours (MNN),

implemented in Seurat 3.0 [43].

The Seurat objects were further converted and imported to the SCANPY toolkit [44] for
consecutive analyses. We have computed diffusion pseudotime according to Haghverdi L et al.
[45] which is implemented within SCANPY and used the Partition-based graph abstraction
(PAGA) method [18] for formal trajectory inference and to detect differentiation pathways. For
visualisation purposes we discarded low-connectivity edges using the threshold of 0.7.
Additionally we have also performed pseudotime analysis using another independent method:

Single-Cell Trajectories Reconstruction (STREAM) [20]. In this case to generate appropriate input
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files the Seurat objects were subsampled to include N=2,500 cells. The values other parameters

not mentioned here were set to default.
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Abbreviations

CD: coeliac disease;
FACS: Fluorescence-activated cell sorting;

FC: fold-change;

scRNA-seq: single-cell RNA-sequencing;

SLE: systemic lupus erythematosus;

T1D: type 1 diabetes;

Teft: effector T cell;

Treg: CD4" regulatory T cell;

UMAP: Uniform Manifold Approximation and Projection;

UMI: unique molecular identifier.
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Fig. 1. Combined single-cell transcriptional and proteomics immunophenotyping provides a

high-resolution map of human primary CD4" T cells in blood.

(a) Summary of the experimental workflow. FACS plot depicting the sorting strategy for the
isolation of the three assessed CD4" T cell populations. (b) Two-dimensional plot depicting the
expression of IL-7R and IL-2RA at the protein level using oligo-tagged antibodies (AbSeq) on
each captured single cell. Cells are colored according to their respective sorting gate, as assessed
using oligo-conjugated sample-tagging antibodies. (¢) Uniform manifold approximation
projection (UMAP) plot depicting clustering of all captured CD4" single cells using the combined
proteomics and transcriptomics data. Expression levels of the CD45RA (black to green) and
CD45RO (black to red) isoforms using AbSeq antibodies are depicted in the plot. (d) UMAP plot
depicting the clustering of resting primary CD4" T cells (n = 9,708) isolated from blood of a
systemic lupus erythematosus (SLE) patient. Identifying cluster numbers are assigned
consecutively based on the total number of cells contained in each identified cluster. (e) Heatmap
displaying the top 10 differentially expressed genes in each identified resting CD4" Teff cluster.
(f) UMAP plots depicting the expression of the CD4" T-cell lineage-defining transcription factors
TBET (Th1) and RORyt (Th17) in resting CD4" T cells. Arrows recapitulate the identified axis of
Thl and Thl17 differentiation, and are supported both on the gradient of expression of the
respective lineage-restricted transcription factor (TBET and RORyt, respectively), but also on the
developmental trajectories identified by pseudotime analysis depicted in Fig. 3. (g) Expression of
the effector-type cytokine transcripts /IFNG, NKG7, PRF1, CCL5, GZMH and GZMK in resting
CD4" T cells.

32


https://doi.org/10.1101/706275
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/706275; this version posted November 29, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

UMAP 2

UMAP 2

under aCC-BY-ND 4.0 International license.

b Treg Cluster | |
BIRC3
IKZF2

Treg
FOXP3 activation
IL2RA-CD25-Ab
LEF1

Myc

JUN

EGR1
CXCR5-CD185-Ab
SELL

HLA-DRA

DUSP4
1COS-CD278-Ab
ICOSLG-CD275-Ab
CDB6-CDEE-AD
CCR4-CD194-Ab
RGS1

\ ENTPD1-CD39-Ab
| CDBO-CDBO-Ab
,' PTPRC-CD45RO-Ab
h CD27-CD27-Ab

BACH?2 (log UMI)

L\ 7 o ' GAPDH
Naive |\ . . - ’ cos2
Teffs ‘. 7 $100A10
CCR9

UMAP 1

) [ 1 POU2AF1
KLRB1

50
“h
246810

PRDM1
(log UMI)

UMAP 1 KLRB1-CD161-Ab
e °
HLA-DRA ., CD39_Ab g
8% i | 25
o9
g
w
g
<3
R
23
-
CCR4_Ab ., CD80_Ab CD86_Ab ., g
| B B | 5 3
% °
e E E
<
S 3
S ¢
a5
i

Cluster

Fig. 2. Integrated single-cell targeted multi-omics approach provides identifies a trajectory

of human CD4" regulatory T cell (Treg) activation.

(a) UMAP plot depicting the expression of the canonical Treg transcription factor FOXP3 in the
identified resting CD4" T-cell clusters. (b) Heatmap displaying the top 10 differentially
expressed genes within the four identified resting Treg clusters, depicted in Fig. 1D. (¢) UMAP
plot depicting the overlaid expression of two key CD4" T-cell transcription factor BACH?2 (black
to green) and PRDM]I (encoding BLIMP-1; black to red). (d) Illustrative example of the
expression of highly differentially expressed genes within the cluster of activated Tregs (cluster
3), including HLA-DRA and DUSP4 at the mRNA level and CD39, CCR4, CD80 and CD86 at
the protein level. (e). Violin plots depicting the expression of CCRY, ITGA4 and the transcription
factor POU2AF [ in each defined CD4" T-cell cluster.
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Fig. 3. Pseudotime analysis reveals distinct trajectories of CD4" T cell differentiation in vivo.

(a) UMAP plots depicting the inferred diffusion pseudotime of each single-cell in the identified
T-cell clusters. (b) Graph reconstructing the developmental trajectories between the identified T-
cell clusters. Edge weights represent confidence in the presence of connections between clusters.
The analysis was performed in the combined transcriptional and proteomics data using the
Partition-based graph abstraction (PAGA) method. (c-e) Reconstructed PAGA paths for the
differentiation of the identified Th1 (c), Th17 (d) and Treg (e) lineages. Expression of the lineage-
specific transcription factors and selected differentially expressed genes is depicted for each
trajectory. (f) Schematic representation of the identified lineage differentiation trajectories using
the Single-Cell Trajectories Reconstruction (STREAM) method. Colour code corresponds to the
cluster assignment depicted in panel A. (g) Expression of the memory-associated CD45RO
1soform and the lineage-specific transcription factors 7BX21 (encoding TBET), RORC (encoding
RORyt) and FOXP3 is depicted along the identified developmental branches.
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Fig. 4. Surface expression of the co-stimulatory molecules CD80 and CD86 marks a subset

of highly activated CTLA-4" human Tregs in vivo.

(a,b) UMAP plots depicting the mRNA expression levels of the co-stimulatory molecules CD80
and CD86 in the identified CD4" T-cell subsets in resting (a) and in vitro stimulated (b) conditions.
Dashed lines delineate the identified activated Treg clusters. (¢) Gating strategy for the delineation
of the Treg subsets according to the intracellular expression of the canonical Treg markers FOXP3
and HELIOS. (d) Histograms depicting the mean fluorescence intensity (MFI) of the CTLA-4
expression in the assessed CD4" T cell subsets. CTLA-4, CD80 and CD86 immunostaining was
performed under three different experimental conditions: (i) Surface immunostaining only (black);
(i1) Immunostaining after cell permeabilization and fixation (IC; blue); and (iii) Both surface
immunostaining and after cell permeabilization and fixation (red). (e) Dot plots depicting the co-
expression of CTLA-4 and CD86 in CD45RA"- CD127°¥CD25" Tregs (mTregs) and in the
HELIOS'FOXP3* mTregs. Flow cytometric data was generated from the intracellular
immunostaining of CTLA-4 and CD86. (f,g) Two dimensional plots depicting the co-expression

of CTLA-4 and CD80 (f) and HLA-DR and CD86 (g) in mTregs. Flow cytometric data was
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generated from the intracellular immunostaining of the assessed markers. (h) Histograms depict
the mean fluorescence intensity (MFI) of CD80 and CD86 expression in mTregs. Data was
obtained from the flow cytometric assessment of CD80 and CD86 by (i) Surface immunostaining
only (black); (i1) Immunostaining after cell permeabilization and fixation (blue); and (iii) Both
surface immunostaining and after cell permeabilization and fixation (red). Data shown in this
figure was generated using freshly isolated PBMCs from two healthy donors recruited from the
Oxford Biobank (depicted in red and blue, respectively). Cell frequencies from the respective

donor are also indicated for each assessed population.
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Fig. 5. Data from independent experiments can be robustly integrated.

(a) UMAP plot depicting the clustering of resting primary CD4" T cells from one systemic lupus
erythematosus (SLE; n = 9,708 cells) patient, one type 1 diabetes (T1D; n = 7,042 cells) patient
and one healthy donor (n = 7,197 cells). Data was integrated from two independent experiments
using the same CD4" T-cell FACS sorting strategy (described in Fig. 1A). (b) Alignment of the
integrated targeted transcriptomics and proteomics data generated from the three assessed donors
in two independent experiments. (¢) UMAP plots depicting the donor-specific clustering of the
CD4" T cells. (d) Relative proportion of the identified CD4" T-cell clusters in each donor.
Frequencies were normalised to either the annotated naive or memory compartments to ensure
higher functional uniformity of the assessed T-cell subsets and to avoid alterations associated with
the declining frequency of naive cells with age. (e) UMAP plots depicting the relative expression
of the canonical Thl transcription factor 7BX21 (encoding TBET) and the effector cytokines
NKG?7 and PRFI on the three assessed donors. (f, g) Correlation (Pearson correlation coefficient)
between mRNA and protein expression for 26 markers with concurrent mRNA and protein
expression data in resting (f) and in vitro stimulated (g) CD4" T cells. Correlation was calculated
in total CD4" T cells (red) or in the CD45RA™ memory (green) or CD45RA™ naive (blue) T-cell
subsets separately. Individual-level correlation in the type 1 diabetes (T1D) patient (square) and

heathy donor (diamond) and median correlation in both donors are displayed in the figure.
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Fig. 6. Targeted scRNA-seq and proteomics approach delineates distinct functional subsets

in a heterogeneous CD45" immune cell population isolated from blood and tissue.

(a) UMAP plot depicting the clustering of the targeted scRNA-seq and transcriptional data of a
heterogeneous population of total CD45" cells (n = 31,907) isolated from blood and a paired
duodenal biopsy from two coeliac disease (CD) patients with active disease. (b) Sample tag
information identifies samples isolated from blood (red) or from the paired duodenal biopsy (teal).
(¢, d) UMAP plot depicting the clustering of the CD45" cells isolated from blood (¢) or the paired
duodenal biopsy (d). (e) Heatmap displaying the top 10 differentially expressed genes in each
identified cluster from the CD45" immune cells isolated from the duodenal biopsies. (f) UMAP
plot depicting the expression of the CD4 at the protein level (AbSeq) within the CD3" T cells
isolated from the small intestine.
CXCLI13 and BTLA in tissue-resident CD4" T cells.
TNFRSF25); TRM, tissue-resident memory T cells; MAIT, mucosal-associated invariant T cells;

(g) Gradient of expression of the Tth effector genes /L21,
DR3, death-receptor 3 (encoded by

ILC3, type 3 innate lymphoid cell.
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Supplementary Materials

Table S1. FACS and AbSeq anti-human monoclonal antibodies used in this study.

Table S2. Summary of the cell capture efficiency and multiplet rates for the experiments

performed in this study
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Fig. S1. Protein expression displays much larger dynamic range of expression.

(a, b) Sequencing saturation metrics of the mRNA (a) and protein (b) libraries. Saturation of the
sequencing libraries was quantified as the number of identified distinct, non-clonally amplified
cDNA molecules, marked by a unique molecular identifier (UMI), with increasing sequencing
coverage. (¢) Data shown depicts the distribution (median and range) of the expression of the 42
protein targets measured by AbSeq. Data was derived from the analysis of the first experiment

performed on pre-sorted resting CD4" T cell populations from a systemic lupus erythematosus
(SLE) patient.
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Fig. S2. Differential expression in the identified resting and in vitro stimulated primary CD4*

T-cell subsets.

(a, b) Heatmaps displaying the top 10 differentially expressed genes in each identified resting (a)

or in vitro stimulated (b) CD4" T-cell clusters. Stimulation condition involved a short period of

incubation (90 min) with PMA + ionomycin.
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Fig. S3. In vitro stimulation reinforces the trajectories of CD4" T cell differentiation.

(a) UMAP plot depicting the clustering of the in vitro stimulated primary CD4" T cells (n= 7,265)
isolated from blood of a systemic lupus erythematosus (SLE) patient. Stimulation condition
involved a short period of incubation (90 min) with PMA + ionomycin. (b) Data shown depicts
the overlaid protein expression levels of the CD45RA (black to green) and CD45RO (black to red)
isoforms in each CD4" T cell following in vitro activation with PMA + ionomycin. (¢, d) UMAP
plots depicting the co-expression of the CD4" T-cell lineage-defining CD4" Thl transcription
factor TBET and the Thl effector cytokine IFN-y (¢), as well as the Th17 transcription factor
RORyt and the Th17 effector cytokine IL-22 (d) after in vitro stimulation with PMA + ionomycin
for 90 min. (e) Expression of the canonical Th2 effector molecule IL-13 in in vitro stimulated
CD4" T cells. (f) UMAP plot depicting the expression of the Treg transcription factor FOXP3 and
the prototypical CD4" Thl Teff cytokine IL-2 in the identified CD4" T-cell subsets after in vitro

stimulation with PMA + ionomycin for 90 min.
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Fig. S4. Interplay between the BACH2 and BLIMP-1 transcriptional programmes regulate
CD4" Treg activation in humans.

(a) UMAP plot depicting the expression of the canonical Treg transcription factor FOXP3 in the
identified in vitro stimulated CD4" T-cell clusters. (b) Data shown depicts the overlaid protein
expression levels of the transcription factors BACH2 (black to green) and BLIMP-1 (encoded by
PRDM ; black to red) in each CD4" T cell following in vitro activation with PMA + ionomycin.
(¢) Heatmap displaying the top 10 differentially expressed genes within the four identified Treg
clusters following in vitro stimulation with PMA + ionomycin. (d) UMAP plots depicting the
gradient of expression of highly differentially expressed genes in the cluster of activated Tregs
(cluster 3) following in vitro stimulation with PMA + ionomycin. Red arrows in this figure indicate
the gradient of decreasing BACH?2 and concomitant gain in PRDM 1 expression associated with the
gradual expression of Treg activation molecules and the acquisition of an activated Treg

phenotype.

44


https://doi.org/10.1101/706275
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/706275; this version posted November 29, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

e el [ o IRRARERP R O | - [ IRENET] 14

CD45RA_Ab CD4_Ab CD8_Ab
Naive CcD4*

% Tcells
T T e L

Naive %;b & WA
. # H
' \ -
Memory ; ic3 Momory 1 :
TRDC (TCRy chain) DPP4_Ab (CD26) NKG7
”~
s I I '

Tcells ©

Fig. S5. Single-cell mRNA and protein quantification identifies distinct functional
populations of human circulating CD3* T cells.

(a) Heatmap displaying the top 10 differentially expressed genes in each identified cluster from
the CD45" immune cells isolated from blood of two coeliac disease (CD) patients with active
disease. (b) UMAP plot depicting the clustering of the circulating CD45" immune cells. Dashed
lines outline the annotated CD3" T-cell clusters annotated from the differentially expressed genes
in those clusters. (¢) Functional annotation of the peripheral T-cell subsets using the expression
profile of CD45RA and additional key lineage-defining T-cell markers such as CD4, CDS8, TRDC,
DPP4 and the effector cytokine gene NKG7. Arrows indicate the gradient of decreasing CD45RA
and concomitant gain in CD45RO expression associated with the acquisition of a memory
phenotype in response to antigen stimulation in CD4" and CD8" T-cells. DR3, death-receptor 3
(encoded by TNFRSF25); TRM, tissue-resident memory T cells; MAIT, mucosal-associated
invariant T cells; ILC3, type 3 innate lymphoid cell.
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Fig. S6. Targeted multi-omics approach reveals trajectories of B-cell differentiation and class
switching in blood and tissue.

(a) UMAP plots depicting the clustering of the total CD45" immune cells isolated from blood of
two coeliac disease (CD) patients with active disease. Dashed lines outline the annotated B-cell
and plasma cell subsets annotated from the differentially expressed genes in those clusters. (b, ¢)
Expression of key B-cell differentiation and class switching (b) and plasma cell (¢) markers,
including CD27 mRNA and selected surface expressed or secreted immunoglobulin (Ig) receptors
in the identified circulating B-cell and plasma cell clusters. (d) UMAP plots depict the clustering
of the total CD45" immune cells isolated from duodenal tissue biopsies. Dashed lines outline the
annotated B-cell and plasma cell subsets annotated from the differentially expressed genes in those

clusters. (e, f) Expression of key B-cell differentiation and class switching (e) and plasma cell (f)
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markers, including CD27 mRNA and selected surface expressed or secreted immunoglobulin (Ig)

receptors in the identified in the tissue-resident B-cell and plasma cell clusters.
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