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Our understanding of the link between neural activity and perception remains incomplete. Microstimulation and 
optogenetic experiments have shown that manipulating cortical activity can influence sensory-guided 
behaviour or elicit artificial percepts. And yet, some perceptual tasks can still be solved when sensory cortex 
is silenced or removed, suggesting that cortical activity may not always be essential. Reconciling these 
findings, and providing a quantitative framework linking cortical activity and behaviour, requires knowledge of 
the identity of the cells being activated during the behaviour, the engagement of the local and downstream 
networks, and the cortical and behavioural state. Here, we performed two-photon population calcium imaging 
in L2/3 primary visual cortex (V1) of headfixed mice performing a visual detection task while simultaneously 
activating specific groups of neurons using targeted two-photon optogenetics during low contrast visual 
stimulation. Only activation of groups of cells with similar tuning to the relevant visual stimulus led to a 
measurable bias of detection behaviour. Targeted photostimulation revealed signatures of centre-surround, 
predominantly inhibitory and like-to-like connectivity motifs in the local network which shaped the visual 
stimulus representation and partially explained the change in stimulus detectability. Moreover, the behavioural 
effects depended on overall performance: when the task was challenging for the mouse, V1 activity was more 
closely linked to performance, and cortical stimulation boosted perception. In contrast, when the task was easy, 
V1 activity was less informative about performance and cortical stimulation suppressed stimulus detection. 
Altogether, we find that both the selective routing of information through functionally specific circuits, and the 
prevailing cortical state, make similarly large contributions to explaining the behavioural response to 
photostimulation. Our results thus help to reconcile contradictory findings about the involvement of primary 
sensory cortex in behavioural tasks, suggesting that the influence of cortical activity on behaviour is 
dynamically reassigned depending on the demands of the task.  

Understanding the relationship between cortical activity 

and perception remains one of the most fundamental 

and challenging problems in neuroscience1. 

Microstimulation experiments have provided direct 

evidence for a causal role of activity in specific cortical 

circuits in biasing perception2-7. Moreover, 

microstimulation on its own can elicit artificial percepts8-

10, as can optogenetic activation of cortical circuits11-13. 

Nevertheless, the number and functional identity of the 

stimulated neurons which are responsible for 

modulating behaviour are unknown14,15, although 

activity in just a single cell can be detected with 

extensive training16-18. Moreover, since the local and 

downstream network activity resulting from the 

manipulation have typically not been recorded, 

mechanistically linking the manipulation and behaviour 

via circuit dynamics has previously not been possible. 

Another complication is that silencing19-21 and lesion22-

25 experiments have in some cases produced 

contradictory findings about the requirement for cortical 
activity in perception and behaviour26,27. The modulation 

of cortical responses by behavioural state28-31, task 

outcome32 and task demands33,34 have been well 

reported. However, how the modulation of cortical 

activity by state or task corresponds to the influence of 

that area on behaviour has only been studied using 
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largely correlative methods35,36. Consequently, we lack 

a causal framework for linking activity in specific cortical 

populations with perception in different behavioural 

states.  

To probe the importance of the identity of individual 

members in an active population of neurons and their 

influence on cortical activity and behaviour, we 

activated specific groups of cells distributed through a 

volume of visual cortex with two-photon optogenetic 
stimulation37-39 while performing simultaneous two-

photon population calcium imaging of the same 

volume40-45. We employed our all-optical approach in 

mice trained on a visual detection task where task 

difficulty, and evoked cortical responses, were titrated 

by adjusting stimulus contrast. This allowed us to 

address the following questions. First, how important is 

the functional identity of individual members of an active 
group of cells? And second, under what conditions does 

cortical activity guide a perceptually-driven behaviour, 

and how does this depend on the specific routing of 

information through the local V1 circuit?  

We coexpressed the calcium sensor GCaMP6s46-48 with 
the excitatory, somatically-restricted opsin C1V1 49,50 in 

pyramidal cells of L2/3 primary visual cortex (V1) of 

mice performing a visually guided behaviour. Mice were 

head-fixed and trained to perform a visual stimulus 

detection task (Fig. 1a) incorporating a randomised no-

lick period before a small drifting sinusoidal grating 

patch with a random orientation was presented, during 

which a reward could be obtained via a lick spout (Fig. 
1b). Mice learned the task quickly with a maximal 

contrast stimulus, reaching a high level of stable 

performance (Supplementary Fig. 1). Lowering the 

stimulus contrast modulated performance on the task 

(Supplementary Fig. 1). To test the influence of activity 

in functionally defined groups of neurons in V1 we 

targeted multiple cells for two-photon photostimulation 
while recording the resulting neuronal and behavioural 

responses. We first identified sensory- and 

photostimulation-responsive neurons in the 

retinotopically appropriate field of view (Fig. 1d), and 

then designed and stimulated three different ensembles 

of neurons (Fig. 1e): 1. Cotuned (CT, in which all 

constituent cells responded preferentially to the 

orientation of the low-contrast visual stimulus), 2. Non-

cotuned (NCT, in which all constituent cells were 

responsive to the visual stimuli but preferred different 
orientations, with each of the 4 orientations represented 

equally) and 3. Non-responsive (NR, where all 

constituent cells were not responsive to the presented 

visual stimuli). We randomised the photostimulation of 

the three different ensemble types during low contrast 

visual stimulation with an orientation matched to the 

cotuned ensemble’s preference. We also presented the 

low-contrast visual stimulus without photostimulation 
and included trials where we stimulated the same 

ensembles in the absence of a visual stimulus. These 

trials were all interleaved with a high rate of non-

photostimulation, high contrast, random-orientation 

trials to maintain engagement in the overall task. 

Averaged across all sessions in all mice, the 

detectability of the low contrast visual stimulus was 

unchanged by photostimulation (Fig. 1f,g, P(Lick) for 
Low: 0.35 ± 0.21, Low+CT: 0.34 ± 0.15, Low+NCT: 0.39 

± 0.19, Low+NR: 0.36 ± 0.19. P = 0.76 Kruskal-Wallis 

test. N = 21 sessions, 14 mice). Surprisingly, on a 

session by session basis, the stimulus detection rates 

on trials with photostimulation displayed a clear 

dependence on task performance during that session: 

mice performing poorly on low contrast trials were 
helped by photostimulation, and mice which were 

performing well were hindered by photostimulation (Fig. 
1h, R2 = 0.48, P < 0.001 for CT stimulation). This 

relationship was observed when stimulating any of the 

three ensembles (Supplementary Fig. 2), but it 

reached statistical significance (in comparison to 

resampling the non-stimulation trials) only when 

stimulating the CT ensemble (Fig. 1i, slopes for CT: 
0.52 ± 0.12, P = 0.004; NCT: 0.76 ± 0.12, P = 0.353; 

NR: 0.72 ± 0.13, P = 0.214; compared to slopes from 

the resampled distribution [0.86 ± 0.12]. Intercepts for 

CT: 0.16 ± 0.05, P = 0.010; NCT: 0.13 ± 0.05, P = 0.054; 

NR: 0.10 ± 0.05, P = 0.185; compared to intercepts from 

the resampled distribution [0.05 ± 0.05]. N = 21 

sessions, 14 mice). We therefore focus the remainder 
of our analysis on the change in behaviour when 

stimulating CT ensembles. 
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Figure 1. Two-photon photostimulation of cotuned ensembles influences detection behaviour depending on performance in the task. a. 
Schematic outlining the experiment. Mice coexpress GCaMP6s and C1V1-Kv2.1 permitting cellular resolution reading and writing of neural activity. 
Mice are headfixed and are trained to perform a visual stimulus detection task. b. Structure of behavioural trials. After withholding licks for a 
randomised interval (4 ± 3 sec) a stimulus is presented to the mouse. The mouse can respond throughout the stimulus duration (1 sec) to receive a 
water reward. c. 5 different trial types are presented to the mouse in a pseudorandom blocked structure. High contrast trials are interleaved with low 
contrast, probe (photostimulation) and catch (no stimulus) trials. There are 3 types of stimulation ensemble for each probe trial type, giving a total of 
9 different trial types per session. Any trial with a visual stimulus is rewarded if the mouse responds during the response window. d. Top: Example 
FOV (one plane from a 4-plane volume) showing construct expression in L2/3 mouse primary visual cortex. GCaMP6s is expressed transgenically 
and C1V1-Kv2.1 is expressed virally through injection. Middle: Visual stimulus orientation preference map. 4 different orientations of drifting gratings 
are presented to the mouse. Pixel intensity is dictated by the stimulus triggered average response magnitude. Hue corresponds to stimulus orientation. 
Bottom: Prior to designing the functionally defined stimulation ensembles we had to find which cells were expressing both constructs sufficiently for 
photostimulation. The majority of recorded cells were grouped into 76 different clusters of 50 cells each (distributed across 4 planes) and targeted for 
sequential photostimulation to confirm responsivity prior to the experiment. Pixel intensity indicates the change in florescence caused by 
photostimulation. Colour corresponds to the photostimulation cluster which caused the largest change in activity. White circles in the middle panel 
indicate example targets within this plane selected for targeted photostimulation of a cotuned ensemble. All scale bars 100 μm. e. 3 different types of 
stimulation ensemble are designed per experiment: cotuned (CT, all cells prefer same visual stimulus), non-cotuned (NCT, cells prefer different visual 
stimuli), and non-responsive (NR, cells are not responsive to the visual stimuli). Left: example visual stimulus orientation tuning curves of the target 
cells. Right: example average photostimulation response for all cells (coloured lines) and group average (black line) when only that group of cells is 
stimulated. Line colours indicate preferred orientation of visual stimulus for that cell. f. Example lick raster. Trials are sorted by type for display. The 
stimulus is delivered at time zero. Licks are indicated by black dots with the first lick indicated by a larger dot. Trial outcome is indicated to the right 
(Black = licked, grey = no lick). The average probability of licks per trial type for this example session is shown on the right. g. Average performance 
for all trial types across all animals (N = 14 mice, 21 sessions total). h. A strong relationship of behavioural modulation by CT photostimulation with 
task performance is seen. At low performances photostimulation enhances behavioural stimulus responses while at higher performances 
photostimulation suppresses responses. Diagonal unity line is shown. Grey shaded region indicates CI of fit. i. To account for possible regression to 
mean confounds the relationship in h. is compared to the range of expected fits from a resampling procedure using the mean lick probability and trial 
numbers for each set of low contrast trials. Only stimulation of cotuned ensembles results in a significant and detectable deviation from the permutation 
test bounds. Error bars indicate the standard error of the slope and intercept estimates.  

The opposite effects of photostimulation depending on 

overall performance suggests that V1 serves different 

roles during different behavioural demands and cortical 

states. We therefore investigated the relationship 
between the state of cortex and the behavioural effects 

of cortical stimulation. We first examined network 

synchronicity, which is linked to arousal and 

attention51,52, in the period when the mice were waiting 

for a visual stimulus (Fig. 2a, measured by average 
pairwise correlations between all cells in the 4 seconds 
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prior to the low contrast visual stimulus). We found that 

successful (hit) low-contrast visual stimulus trials were 

preceded by more asynchronous activity patterns than 

miss trials (Fig. 2b. Z-scored pre-trial correlation 
coefficient on hits: -0.35 ± 0.33, on misses: 0.05 ± 0.18, 

P = 0.0017 Wilcoxon sign rank test. N = 21 sessions, 14 

mice) as recently reported 53,54. Since cortical 

synchronicity is linked to perceptual performance, we 

next asked if the average difference in pre-stimulus 

synchronicity between hit and miss trials in a given 

session varies with the level of overall performance in 

that session. We found evidence for a greater difference 
between the pre-stimulus network synchronicity on hit 

and miss low-contrast trials when the task was more 

difficult for the mice (Fig. 2c, R2 = 0.18, P = 0.052. N = 

21 sessions, 14 mice. See also Supplementary Fig. 3). 

That pre-trial network synchronisation is a better 

predictor of trial outcome in low performance conditions 

(compared to high-performance conditions) suggests 

that cortex was more actively engaged and played a 
more prominent role in solving the task. This 

interpretation was confirmed on photostimulation trials 

where we found a significant relationship between the 

difference in network synchronicity before hit and miss 

trials, and the effect of photostimulation on behaviour 

(Fig. 2d, R2 = 0.19, P = 0.048. N = 21 sessions, 14 mice. 

See also Supplementary Fig. 3). In summary, when 

animals performed poorly at detecting the low-contrast 
stimulus, the baseline correlation structure of the 

cortical network was a better predictor of performance, 

and in this behavioural state photostimulation of CT 

ensembles improved the detection of stimuli. 

 
Figure 2. The state of cortex before and evoked by the visual stimulus influences the behavioural impact of photostimulation. a. Cartoon 
indicating the period of average spontaneous pairwise correlations preceding the initiation of the behavioural trial and presentation of the visual 
stimulus. b. The average pairwise spontaneous correlations between all cells within a session before hit trials are lower than before miss trials. Each 
data point is one experiment (N = 21 sessions, 14 mice), the green point indicates the mean correlation before hit trials, the grey point indicates mean 
correlation before miss trials (comparison also shown inset, error bars indicate 95% CI). c. The difference in pre-stimulus network correlations between 
hit and miss low-contrast trials (resampled 10,000 times to match hit and miss trial numbers) within a session is plotted against the overall task 
performance on low-contrast trials in that session. Each data point is one session. d. The photostimulation-mediated change in detection rate of the 
low-contrast stimulus (ΔP(Lick)) in a session is plotted against the difference in the pre-stimulus average network correlation between hit and miss 
low-contrast trials on that session. Each data point is one session and is coloured by the animal’s performance on low-contrast trials without 
photostimulation. e. Cartoon indicating behavioural trial and visual stimulus evoked responses. f. There is more activity evoked on average in visually-
responsive cells on hit trials than miss trials. Each grey line is one session. g. The trial-outcome modulation of evoked response magnitude depends 
on overall task performance. For all cells in each experiment, the difference in evoked response on hit and miss trials (y-axis) is binned (10 equal 
sized bins) by average response magnitude (x-axis) of that cell regardless of outcome (resampled 10,000 times to match hit and miss trial numbers). 
The trial outcome modulation of the entire recorded population in a given session is then defined as the linear slope of the binned response versus 
outcome-modulation relationship. Each line represents one session, coloured by performance on low-contrast trials in that session. h. The slope of 
modulation of responses by trial outcome for a given session, which we interpret as a sign of active cortical engagement, correlates with the 
behavioural effect of photostimulation (ΔP(Lick)) in that session. Each point is one session, coloured by performance on low-contrast trials without 
photostimulation. 
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Next, we examined the relationship between activity 

evoked by the behavioural trial and task performance, 

reasoning that activity evoked by the low-contrast 

stimulus is likely to be a stronger determinant of its 
perceptual salience than background activity before the 

stimulus. We first looked at the activity resulting from 

the behavioural trials with low-contrast visual stimuli 

without photostimulation (Fig. 2e). On average, low 

contrast hit trials were associated with more evoked 

activity in neurons that were responsive to high-contrast 

visual stimuli (Fig. 2f. Hit: 0.19 ± 0.19 ΔF/σF, Miss: 0.13 

± 0.13 ΔF/σF measured in a 500 ms window 
immediately after the end of stimulus presentation. P = 

0.0041 Wilcoxon signed rank test. N = 21 sessions, 14 

mice). We looked into this further by examining how 

behavioural outcome is encoded in the activity of all 

recorded neurons. We investigated how the modulation 

of evoked activity by trial outcome depended on the 

mean visual response of a neuron and the overall 

performance level of the mouse in the session during 
which each neuron was recorded. More strongly 

visually responsive neurons showed stronger 

modulation by behavioural output such that neurons 

excited by the visual stimulus on average were relatively 

more excited on hit trials in comparison to misses, and 

neurons suppressed by the stimulus were more 

suppressed, producing a positive relationship between 
the mean response of neurons to the visual stimulus 

and the extent of their modulation by trial outcome (Fig. 
2g). Furthermore, we found that the slope of this 

relationship, which defines the extent to which a 

population is modulated by trial outcome, depended on 

the overall performance on the session in which the 

neurons were recorded (Fig. 2g. and Supplementary 
Fig. 4 and 5). In sessions with good overall 
performance there was little to no modulation of evoked 

activity by trial outcome, but when performance was 

poor there was a large difference between the activity 

evoked on hit and miss trials. Similar to our findings on 

pre-trial correlation structure, when animals found the 

task challenging, cortical activity was more heavily 

modulated by trial outcome. 

These results suggest that the relationship between 

cortical activity and performance depends on 

perceptual demand. In other words, when the detection 

of low contrast stimuli is perceptually demanding for the 
mouse, V1 activity is more tightly linked to behavioural 

performance, displaying less correlated activity in 

general (Fig. 2c) and a larger dynamic range of activity 

evoked by the stimulus (Fig. 2g). This indicates that 

these activity states reflect an active role of V1 when the 

perceptual demand is high. We next tested this 

hypothesis by examining photostimulation trials and 

asking how the cortical signatures of active 
engagement correlate with the influence of 

photostimulation on behaviour. We found a positive 

relationship between the effect of photostimulation on 

stimulus detectability and the extent of trial outcome 

modulation of the recorded population in the same 

sessions (Fig. 2h. R2 = 0.44, P = 0.0011; N = 21 

sessions, 14 mice). When trial outcome modulation was 

large, the effect of photostimulation was to increase 
stimulus detection and this corresponded to sessions 

where animal performed relatively poorly. Conversely, 

when mice performed the task easily, V1 was more 

passive in its representation of stimuli and associated 

trial outcome and photostimulation under these 

conditions suppressed the detection of visual stimuli. 

Together, this confirms a shift in the role served by 
cortical activity (from beneficial to suppressive) 

depending on perceptual demand.  

How does photostimulation influence behaviour? The 

answer will depend on how activity propagates from the 

directly stimulated neurons. To begin answering this 
question we analysed how targeted photostimulation 

engaged the local circuitry. We first examined the 

patterns of network activity evoked by photostimulation 

of neuronal ensembles in the absence of a visual 

stimulus (Fig. 3a) and found that responsive neurons in 

the local network could be either excited or inhibited 

(Fig. 3b). The dominant effect of photostimulation was 

inhibition of other pyramidal cells revealing the known 
pattern of dense inhibitory connectivity 55-61. As we 

increased the number of photostimulated cells, the 

number of inhibited cells in the local network scaled 
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approximately linearly with the number of activated cells 

(Fig. 3c, for target-zone neurons: R2 = 0.71, P < 0.001; 

excited network neurons: R2 = 0.18, P < 0.001; inhibited 

network neurons: R2 = 0.33, P < 0.001; N = 14 mice, 63 
sessions (stimulation ensembles pooled)). Concomitant 

with the increased inhibition we saw a reduction of the 

number of spontaneously excited cells. The progressive 

recruitment of inhibition resulted in the overall activity 

levels in the network remaining approximately constant 

as the number of photostimulated cells increased 

(Supplementary Fig. 6). We next examined the spatial 

distribution of activated and inhibited cells by creating a 
photostimulation-triggered spatial average of 

responding cells. The excited cells were localised in a 

narrow zone around each targeted cell, whereas the 

inhibited cells had a more widespread distribution, 

forming an annulus around the directly targeted cells 

(Fig. 3d). The differences between these distributions 
produces an overall centre-surround motif of excitation 

and inhibition, where the spatial spread of inhibition is 

larger than that of excitation (Fig. 3e, spread of 

excitation: 89 ± 48 μm; inhibition: 166 ± 51 μm. P < 

0.001 Wilcoxon signed rank test. N = 14 mice, 63 

sessions (stimulation ensembles pooled; see also 50). 

Interestingly, we found no differences in the total 

evoked activity or the spatial profile amongst the three 
different classes of stimulation ensemble 

(Supplementary Fig. 6).  

 

Figure 3. Photostimulation reveals net-inhibitory and centre-surround circuit architecture. a. Example segmented ROIs from one FOV coloured 
by evoked response to photostimulation during grey screen periods (catch trials). 4 planes were imaged simultaneously. Vertical black lines indicate 
SLM targets (35 cells targeted for simultaneous activation in this experiment). b. Example responses from a single trial showing the averages 
responses in directly targeted cells (black), detected excited responders (red, mean fluorescence in the response window is greater than 1 SD of the 
baseline window), non-responders (grey), and inhibited responders (blue, mean fluorescence in the response window is less than -1 SD of the 
baseline window). Bold lines indicate the median and shading indicates the interquartile range across all detected cells on this trial. c. Input-output 
function of the local network. The probability of detecting an excitatory (red) or inhibitory (blue) response in the network (excluding directly targeted 
cells) across all trials without visual stimulus, after subtracting the spontaneous rate, is plotted as a function of the proportion of cells stimulated. Each 
point represents the average response in one session, coloured by the type of response being measured (Target cell excitation (black), non-targeted 
network excitation (red) or inhibition (blue)). The lines indicate the fit, of recorded response against proportion of cells photostimulated, through all 
sessions. The shading indicates the 95% CI of the fits. d. The spatial profile of photostimulation is revealed by plotting the probability of detected 
responses (within the same plane as the stimulated cells) in 10x10 μm spatial bins, where each non-stimulated cell is positioned relative to its nearest 
stimulated target cell. Left: The spatial profile of the probability of detecting excitatory responses in the same plane as the stimulated cells after 
subtracting the probability of response seen in spontaneous periods. The spatial profiles are gaussian blurred (sigma = 10 μm) within each session 
and averaged across all sessions (N = 21 sessions, 14 mice). Middle: The probability of detecting inhibitory responses. Right: The difference between 
the excitatory and inhibitory response profiles reveals a small focal region of net excitation surrounded by an annulus of net inhibition. e. Quantification 
of the mean collapsed spatial profile of response probability similar to d. but across all recorded planes. Directly targeted cells and excluded nearby 
cells shown in black (the peak seen at 33 μm are likely indirectly stimulated cells immediately above and below a directly targeted cell), excitation of 
non-targets shown in red, and inhibition shown in blue. The dashed lines indicate 95% CI. Inset: The functional spread of inhibitory responses is wider 
than the spread of excitatory responses. The marginal coloured dots indicate the median and interquartile range. 
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These findings suggest that the effect of stimulating 

specific ensembles on behaviour (Fig. 1) cannot be 

explained simply by their influence on the overall activity 

of the local circuit. We therefore examined the effect of 
photostimulation on the functional identity of the 

recruited network and how that modified the neural 

representation of the visual stimulus, given that 

preferential connections between similarly tuned 

neurons have been reported in V155,62,63. We thus 

restricted our next analysis to visually responsive 

neurons. We plot the probability of response of a neuron 

to the low contrast visual stimulus with and without 
photostimulation as a function of two variables: first, the 

tuning similarity to the fixed orientation of the low 

contrast visual stimulus, and second, the physical 

distance between the neuron and the nearest 

photostimulated neuron (Fig. 4a). Photostimulating CT 

ensembles during the visual stimulus enhanced the 

responses of nearby (< 50 µm) cells with tuning 

matched to the stimulus and therefore, the CT 
ensemble. The responses of dissimilar cells at these 

distances were suppressed. Outside of this focal zone 

(> 50 µm) we observed net and indiscriminate 

suppression of visually evoked responses. This motif of 

selective enhancement and suppression of cells in the 

local circuit when stimulating CT ensembles sharpens 

the population tuning curve of the network (Fig. 4bc. 
Population OSI change for neurons within 50 μm of the 

nearest stimulated cell when stimulating CT: 0.26 ± 

0.47; NCT: -0.02 ± 0.41; NR: -0.14 ± 0.40. CT versus 

NCT P = 0.0045, CT versus NR P = 0.0078, NCT versus 

NR P = 0.1672. For neurons greater than 50 μm away 

from the nearest stimulated target when stimulating CT: 

0.05 ± 0.09; NCT: -0.03 ± 0.23; NR: 0.00 ± 0.21. CT 

versus NCT P = 0.0129, CT versus NR P = 0.1808, NCT 
versus NR P = 0.3754. Wilcoxon signed rank test with 

Bonferroni multiple comparison correction). The 

sharpening of the population tuning curve was a specific 

result of stimulating cotuned, visually-responsive cells 

(Supplementary Fig. 5). Moreover, stimulation of non-

visually-responsive neurons inhibited the visually-

responsive neurons (Fig. 4b, Supplementary Fig. 7), 
revealing the existence of multiple competing 

populations. 

To relate these circuit level effects of photostimulation 

to behaviour we trained a classifier to decode the 

presence and orientation of a visual stimulus from 

activity of non-targeted cells on high-contrast trials. We 
then tested the decoder on activity evoked by the low-

contrast visual stimulus with and without 

photostimulation (Fig. 4d). As expected, when the low-

contrast evoked activity pattern more closely resembled 

that evoked by the high-contrast stimuli the decoder 

performed better (Supplementary Fig. 8). Overall 

decoder performance did not correlate with animal 

performance across all sessions, with no difference in 
performance seen between hit and miss trials 

(Supplementary Fig. 8). However, a strong 

relationship was observed between the 

photostimulation-mediated change in decoder 

performance and the associated change in behavioural 

detection of the stimulus (Fig. 4e, R2 = 0.36, P = 0.004). 

When photostimulation acted to improve the stimulus-

decoder performance the animal’s perceptual 
performance also improved. Conversely, when the 

stimulus representation was impaired by 

photostimulation the perceptual detectability of the 

stimulus was suppressed. These results thus provide a 

causal link between neuronal stimulus encoding and 

behavioural performance. 

Our results provide a new perspective for 

understanding the link between activity in sensory 

cortex and perception, and for interpreting the 

consequences of perturbation experiments. We 

demonstrate that the behavioural effect of activation of 

cortical ensembles depends on their functional identity, 
with ensembles that normally represent the stimulus 

having the most potent effect. However, the effect of 

stimulating these ensembles has a bidirectional effect 

on behaviour: either boosting or inhibiting detection 

behaviour depending on task difficulty for the animal. 

Furthermore, we show that stimulating appropriate 

ensembles recruits postsynaptic activity in a functionally 

specific manner. This is likely a consequence of the 
wiring specificity of the local circuit 50,55,62,63. Functionally 

specific postsynaptic recruitment would be expected to 

alter stimulus representation and potentially behaviour.  
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Consistent with this, we find that the success of a linear 

decoder of stimulus identity is altered by 

photostimulation and changes in decoding success are 

correlated with changes in behaviour in response to 

photostimulation. 

 

 

Figure 4. Photostimulation reveals like-to-like circuit architecture which impacts the stimulus encoding capacity of the network and the 
behavioural report of the stimulus. a. Restricting analysis to the non-stimulated visually-responsive subpopulation of neurons to relate sensory 
stimulus tuning to connectivity. Left: The probability of response of neurons to low contrast visual stimulus, binned by selectivity to the visual stimulus 
and by distance to the nearest stimulated target cell (note, there is no photostimulation in these trials), averaged across all experiments (N = 21 
sessions, 14 mice). Middle: Responses to low contrast visual stimulus but with simultaneous photostimulation of CT ensemble. Right: The subtraction 
of visual-only from visual with photostimulation reveals that photostimulation causes net inhibition with feature-specific excitation and inhibition in a 
small spatial region close to the stimulated cells. Convolved with a gaussian filter, sigma = 1 bin (10 μm) for display only (N = 21 sessions, 14 mice). 
b. Population orientation tuning curves. The photostimulation evoked change in the visual stimulus response for all visually-responsive cells, binned 
by orientation preference (aligned to the stimulus orientation used for the experiment; Δ0 is the orientation of the visual stimulus and thus the 
preference of the cotuned ensemble) and then averaged across experiments. Two curves are shown, one for cells within 50 μm of the target cells 
(black) and one for cells further than 50 μm away from the nearest target cell (grey). Data at Δ-90 is the same as Δ+90, for display only. Thick lines 
show the mean and the shaded errors bars show the standard deviation. c. The selectivity (ratio of the value at Δ0 compared to the baseline, termed 
OSI) of the change in population orientation tuning curves from b. when stimulating each of the 3 types of ensemble. Thick lines indicate the mean 
across animals and sessions and error bars indicate the 95% confidence intervals. d. A decoder was trained to classify stimulus presence and 
orientation given the activity of visually-responsive non-target cells on high contrast trials. The classifier was then tested on low contrast trials with 
and without simultaneous photostimulation. e. The session average behavioural change of an animal detecting the low-contrast visual stimulus, 
caused by photostimulation (ΔP(Lick)), is correlated with the photostimulation-mediated change in the accuracy of stimulus decoding from population 
activity. 
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To examine the interplay between these factors we 

constructed a multiple linear regression model (Fig. 5a, 
b. Full model R2 = 0.75, P < 0.001), to define the relative 

influence of different neuronal population activity 
parameters in determining behavioural outcome in 

response to photostimulation. The model revealed that 

the dominant effects are the state of cortex as 

measured by the trial-outcome modulation of visually 

evoked responses (Fig 2h, referred to as ‘StateStim’), 

and the photostimulation-induced modification to the 

stimulus encoding of the network (Fig. 4e, referred to 

as ‘ActivityΔStim’) (Fig. 5c, correlation coefficients 
against the residual from otherwise complete models 

(semi-partial correlation) for StateStim: 0.51 [95% CI: 

0.10 0.77], P = 0.017; ActivityΔStim: 0.52 [95% CI: 0.12 

0.78], P = 0.014). The dual effects of cortical 

engagement and the stimulus decoding work in concert 

to explain the behavioural change caused by 

photostimulation. Despite being a simple linear model, 

the combination of neuronal population measures has 
strong predictive power for the influence of 

photostimulation on this detection behaviour (Fig. 5d, 

Reduced model, without StatePre, predicted values 

compared to actual values R2 = 0.6, P < 0.001, RMSE 

= 0.08). 

These results help to reconcile apparently contradictory 

findings about the engagement of the cortex in 

behavioural tasks20,21,25-27. Our results suggest that 

when task demands are high, primary sensory cortex is 

engaged and plays a positive causal role in determining 

task performance. When the task is easy to solve then 

alternative pathways and downstream networks are 
likely already optimally engaged, and cortical 

stimulation represents a distractor. Our results parallel 

recent findings from lesion and silencing experiments26 

showing that learned tasks are no longer cortically 

dependent and additionally suggest that cortical 

resources are dynamically allocated depending on task 

difficulty and performance. Our findings differ from a 

recent study64 which found that photostimulation at just 
two cell locations could recruit an associated ensemble 

which then always positively biased stimulus 

perception. However, the perceptual demands of their 

discrimination task are greater than for our detection 

task, which is consistent with the interpretation of our 

results.  

A prominent feature of the local network response to 

photostimulation was inhibition of other cells, similar to 

other reports50,65,66. This suggests that there exists strict 

control over the balance between excitatory and 

inhibitory activity levels67, similar to what has been 

observed during spontaneous and stimulus evoked 
activity states in awake visual cortex68. We did not 

observe large scale ‘pattern completion’ modes of 

activity triggered by photostimulation of cotuned cells as 

recently reported64 but rather observed a more 

constrained and balanced interplay between the identity 

and the activity of groups of cells. A recent study50 found 

that photostimulating single cells predominantly 

inhibited other similarly tuned cells, while excitation was 
reserved for a very small population of very similar cells. 

We hypothesise that the more relaxed relationship of 

influence versus stimulus tuning that we observed could 

arise through multiple cells being photostimulated 

coincidently in our experiments. 

Our findings raise a number of outstanding questions. 

First, which downstream networks69-73, either cortical or 

subcortical, are charged with reading out the task-

dependent information carried by the stimulated layer 

2/3 neurons? This will require recording and 

manipulation of deeper cortical layers and subcortical 

target areas, as well as recording from multiple areas 

simultaneously. Second, which circuits, including 
neuromodulatory pathways28,31,74, are responsible for 

modulating the contribution of cortex to the task? Our 

results also raise a more general question of how and 

where multiple streams, including the collicular 

pathway75,76, of visual processing combine and interact. 

Finally, uncovering the detailed elements of the neural 

code underlying perception will require further 
refinements in the temporal precision, spatial resolution 

and physical coverage of both recording and stimulation 

approaches, as well as performing flexible real-time 

activity-guided manipulations77 in concert with 

sophisticated analytical frameworks78. 
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Figure 5. The behavioural effect of photostimulation is explained by both the cortical state of the animal and the evoked changes to local 
network activity. a. Multiple regression model for the session average effect of photostimulation on the change in detection behaviour, incorporating 
terms relating to the state of the animal (extracted from neural data pre and post stimulus (StatePre, StateStim), see Fig. 2) and the photostimulation-
evoked change in local network activity (excitation/inhibition of all cells including targets (ActivityΔE/I), and the change in encoding capacity of the 
visually responsive cells (ActivityΔStim), see Fig. 3). b. Sequentially adding terms from results shown in previous figures to construct the full model. 
Errors bars indicate S.D. of the variance explained across all leave-one-out permutations (N = 21 sessions). c. Semi-partial correlations (the correlation 
between one model term and the residuals from a model containing all but that model term) of model coefficients against Δ P(Lick) show the 
relationship of the variables of interest while accounting for all other variables in the full model. Both the trial outcome modulation of responses 
(StateStim) and the change in stimulus decoding (ActivityΔStim) significantly explain the behavioural effect of photostimulation. Error bars indicate the 
95% CI of the semi-partial correlation coefficient. d. The predictive capacity of the reduced (excluding StatePre) model is evaluated with leave-one-out 
cross validation by comparing the experimentally obtained ΔP(Lick) with the value predicted from the model excluding this session from the training 
set. The shaded region indicates the CI of the fit. 
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Methods 

All experimental procedures were carried out under 
license from the UK Home Office in accordance with the 

UK Animals (Scientific Procedures) Act (1986).  

Animal preparation 

We used transgenic GCaMP6s mice (Emx1-

Cre;CaMKIIa-tTA;Ai94 47 and CaMKIIa-tTA;tetO-G6s 48) 

of both sexes aged between P41 and P73. Doxycycline 

treatment in drinking water from birth to P49 prevented 

interictal activity in the Ai94 mouse line 79. Briefly, to 

prepare the mice for all-optical experiments we excised 

the scalp and implanted a metal headplate. We then 
removed the skull and dura overlying visual cortex, 

injected virus encoding the opsin and implanted a 

chronic cranial imaging window in place of the skull. 

Sterile procedures were used throughout. Before 

surgery, mice were given a subcutaneous injection of 

0.3 mg/mL buprenorphine hydrochloride (Vetergesic) 

and anaesthetised with isoflurane (5% for induction, 

1.5% for maintenance). The scalp above the dorsal 
surface of the skull was removed and an aluminium 

headplate with a 7 mm diameter circular imaging well 

was fixed to the skull centred over the right monocular 

primary visual cortex (2.5 mm lateral and 0.5 mm 

anterior from lambda) using dental cement. A 4 mm 

diameter craniotomy was drilled inside the well of the 

headplate, and the dura was then carefully removed. A 
calibrated pipette bevelled to a sharp point (inner 

diameter ~15 μm) connected to a hydraulic injection 

system (Harvard apparatus) was used to inject small 

volumes of virus (AAV2/9-CaMKII-C1V1(t/t)-mRuby2-

Kv2.1). The dilution of virus in buffer solution (20 mM 

Tris, pH 8.0, 140 mM NaCl, 0.001% Pluronic F-68) was 

adjusted throughout experiments to optimise 

expression levels and ranged from 8-fold to 25-fold 
dilution of stock (stock concentration: ~6.9x1014 gc/ml). 

We made ~5 insertions of the injection pipette, each site 

spaced by ~300 μm. At each site we slowly lowered the 

pipette to a depth of 300 µm below pia and injected 150 

nl of the virus solution at 50 nl/min. After each injection 

the pipette was left in place for a further 3 minutes 

before slowly retracting. We then press-fit a chronic 

window (a 3 mm coverslip bonded to the underside of a 

4 mm coverslip with UV-cured optical cement, NOR-61, 

Norland Optical Adhesive) into the craniotomy, sealed 

with cyanoacrylate (Vetbond) and fixed in place with 
dental cement (SuperBond). Following surgery, animals 

were monitored and allowed to recover for at least 7 

days. After recovery we began behavioural training. All-

optical experiments were then performed > 3 weeks 

post-surgery allowing for sufficient expression levels 

(animals were aged P67 – P134, median = P97 at time 

of experiments). 

Behavioural training 

We used an operant conditioning protocol whereby 

headfixed mice were required to lick at a water spout 
positioned in front of them to report detection of a visual 

stimulus. Licks were recorded electrically. If the mice 

reported presence of the stimulus correctly a sugar 

water reward (10 % w/v sucrose) was delivered through 

the water spout. The behaviour hardware was 

controlled by custom software (PyBehaviour, 

https://github.com/llerussell/PyBehaviour) interfacing 

with an Arduino to trigger stimuli, record licks and 
deliver rewards. Mice had free access to food in their 

home cage but access to water was limited to that 

acquired during the task. Mice had their weight 

monitored before and after daily training and were 

supplemented with additional water to maintain a 

minimum of 80% of their starting body weight. Before 

training mice were habituated to handling and head 

restraint over 2 days. Training then took place in 
individual sound-dampened enclosures in which the 

mice were head-fixed and allowed to run on a treadmill. 

While not an integral part of the task design we found 

that allowing mice to run improved their performance in 

the task. Trials were triggered after mice withheld licks 

for 4 ± 3 seconds, after which a monocular visual 

stimulus appeared in the centre of the monitor. If the 
mice licked at the water spout at any point during the 

stimulus a reward was delivered. In the first few days of 

training a reward was delivered automatically at 800 ms. 

Mice quickly learnt the requirements of the task and 

their reaction times preceded this automatic reward 

delivery time. After a few days the automatic reward 
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delivery was disabled. After the stimulus and response 

window there was a fixed inter-trial period of 7 seconds 

before the next ‘withhold’ period was started. We also 

delivered randomly interleaved catch trials (no visual 
stimulus) to record chance rate of licking and assess 

accuracy in the task. Once stable performance was 

reached, we progressed the mice to a psychophysical 

variant of the task where we introduced a range of 

contrasts to assess their perceptual threshold. We 

found that task performance was insensitive to stimulus 

location on the monitor. For the final experiment the trial 

order was pseudo randomised so as to ensure a 
constant rate of ‘easy’ trials and rewards while also 

ensuring that repeats of the same probe types were not 

immediately consecutive. 

Visual stimulation 

Visual stimuli were generated using custom software 

(using PsychoPy 80). 30 o Gabor patches of drifting 

sinusoidal gratings (8 directions, 0 to 315 o in 45 o 

increments) with a spatial frequency of 0.04 cycles/o 

and a temporal frequency of 2 Hz were presented on a 

monitor (typically 51.8 cm width, 32.4 cm height, 15 cm 
from the animals left eye covering up to ± 47 o of the 

vertical visual field and ± 60 o of the horizontal visual 

field), with a spherical distortion applied to correct 

perspective errors. 

Training. During training the orientation of the stimulus 
was randomised on every trial and the duration of the 

stimulus was 1 second. Rewards were delivered if the 

mouse licked during the stimulus regardless of the 

orientation. 

Mapping orientation preference. To map orientation 
preference with two-photon imaging the gratings were 

positioned in the retinotopically appropriate location and 

were presented in a randomised order with a duration 

of 3 seconds, interleaved by 5 seconds of mean 

luminance grey. If mice licked at the water spout during 

this mapping block a water reward was delivered.  

Experiment. During the behavioural experiments with 

photostimulation the visual stimuli parameters were the 

same as during training except the stimulus was 

positioned in the retinotopically appropriate location for 

the imaging field of view. Two contrasts were used, high 

(100%) and low (range: 1 - 10%, mean ± SD = 4.8 ± 3 

%). The direction of the high contrast stimulus was 
randomised on every trial. The direction of the low 

contrast stimulus was fixed to match the orientation 

preference of the ‘cotuned’ photostimulation ensemble. 

Widefield imaging 

To locate primary visual cortex, and position the 

experimental field of view, widefield GCaMP imaging 

was performed (usable FOV ~ 2 x 2 mm). GCaMP6s 

fluorescence produced by one-photon excitation (470 

nm LED, Thorlabs) was collected through a 5x/0.1-NA 

air objective (Olympus) onto a CMOS camera 
(Hamamatsu ORCA Flash 4.0, binned image size of 

512 x 512 pixels, 20 Hz frame rate). Contrast-reversing 

checkerboard bars, 10o wide were drifted vertically and 

horizontally across a grey screen at a speed of 25 o/s in 

an interleaved sequence. Stimulus triggered change in 

fluorescence for the two different stimuli revealed areal 

borders and identification of primary visual cortex 81. 

This was repeated with two-photon imaging on the day 
of the experiment to confirm the retinotopic location of 

the chosen field of view. 

Two-photon population imaging 

Two-photon imaging was performed with a resonant 

scanning microscope (Ultima II, Bruker Corporation) 

using a Chameleon Ultra II laser (Coherent) driven by 

PrairieView. A 16x/0.8-NA water-immersion objective 

(Nikon) was used for all experiments. An ETL (Optotune 

EL-10-30-TC, Gardasoft driver) was used to perform 

volumetric imaging, spanning a 100 μm range with 33.3 
μm spacing between planes. The FOV size ranged from 

600 x 600 to 850 x 850 μm, at a constant image size of 

512 x 512 pixels. The number of cells recorded (ROIs) 

per experiment ranged from 316 to 4,454 (mean = 2,266 

± 1,607). In single-plane experiments the frame rate 

was 30 Hz, in volumetric experiments the per-plane 

frame rate was 7 Hz. GCaMP6s was imaged at 920 nm 

and mRuby (conjugated to C1V1-Kv2.1) was imaged at 
765 nm. Power on sample was 50 mW at the shallowest 

plane (~150-200 μm below pia) and increased to ~85 
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mW at the deepest plane (~250-300 μm), interpolating 

for intermediate planes, to equalise imaging quality 

across planes. To maximise imaging quality 82 we 

calculated the tilt of the sample relative to the 
microscope and then rotated the objective along two 

axes to be perpendicular to the implanted coverslip 

window. 

Two-photon photostimulation 

Two-photon photostimulation was carried out using a 

fibre laser at 1030 nm (Satsuma, Amplitude Systèmes, 

2 MHz rep rate). The laser beam was split via a 

reflective spatial light modulator (SLM) (7.68 x 7.68 mm 

active area, 512 x 512 pixels, OverDrive Plus SLM, 

Meadowlark Optics/Boulder Nonlinear Systems) which 
was installed in-line of the photostimulation path 

(Neuralight, Bruker Corporation). Phase masks used to 

generate focused beamlet patterns in the sample were 

calculated via the weighted Gerchberg-Saxton 

algorithm. The targets were weighted according to their 

location relative to the centre of the SLM’s addressable 

FOV to compensate for the decrease in diffraction 

efficiency when directing beamlets to peripheral 
positions. We calibrated the targeting of SLM spots in 

imaging space by burning arbitrary patterns with the 

SLM using the photostimulation laser in a fluorescent 

plastic slide before taking a volumetric stack of the 

sample with the imaging laser. We manually located the 

burnt spots and the corresponding affine transformation 

from SLM space to imaging space was computed. For 

3D stimulation patterns we interpolated the 
transformation required from the nearest calibrated 

planes (Calibration code: 

https://github.com/llerussell/SLMTransformMaker3D). 

To increase stimulation efficiency, we offset the 

photostimulation FOV with the photostimulation 

galvanometers such that the centre of SLM space was 

close to the cortical/imaging-space centroid of targeted 
cells. Spiral photostimulation patterns (3 rotations, 10 

μm diameter, 20 ms duration) were generated by 

moving all beamlets simultaneously with the 

galvanometer mirrors. The laser power was adjusted to 

maintain 6 mW per target cell. 

Naparm (Near automatic photoactivation response 

mapping) 

To find photostimulation-responsive cells we semi-

automatically detected cell locations from expression 

images and stimulus-triggered average or pixel-

correlation images (STA Movie Maker, 

https://github.com/llerussell/STAMovieMaker). These 

cell body coordinates were then clustered into equal 

size groups of user-determined size (between 10 and 
50) and the groups were stimulated one by one. The 

associated phase mask, galvanometer positioning and 

Pockels cell control protocol were generated with 

custom MATLAB software (Naparm, 

https://github.com/llerussell/Naparm) and executed by 

the photostimulation modules of the microscope 

software (PrairieView, Bruker Corporation) and the SLM 

control software (Blink, Meadowlark). For responsivity 
mapping purposes we used a stimulation rate of 20 Hz, 

for 500 ms per pattern, and performed 8-10 trials. These 

data were then analysed online together with the visual 

response mapping data to extract activity traces and 

design stimulation ensembles (see below). 

Synchronisation 

For subsequent synchronisation during analysis, 

analogue signals of various trigger lines were recorded 

with a National Instruments DAQ card, controlled by 

PackIO 83. The recorded inputs included two-photon 
imaging frame pulses, photostimulation triggers, 

galvanometer command signals, triggers to and frame 

flip pulses from the visual stimulus and the SLM phase 

mask update. Photostimulation trials for the responsivity 

mapping block were triggered at a fixed rate from an 

output line on the DAQ card. For the online behaviour 

experiments photostimulation and visual trials were 

triggered through the behaviour software and hardware. 

Experimental protocol 

On the day of the full experiment the following protocol 
was used. First, we located an expressing region of 

cortex and quickly mapped the corresponding 

retinotopic location with two-photon imaging. After 

determining where to position the visual stimulus on the 
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monitor we then presented drifting gratings of 8 different 

orientations while performing two-photon imaging to 

map orientation preferences of the recorded cells. 

Rewards were delivered during the visual stimuli if the 
mouse licked. Next, we stimulated a large proportion of 

all cells in the recorded volume to find which ones were 

photostimulation-responsive. Finally, we designed 

photostimulation patterns for use in the behaviour 

experiment (see below). We then gave animals ~10 

trials to warm up before estimating the perceptual 

threshold for that animal on that day, after which the 

main behavioural experiment began. We recorded in 20 
minute blocks, manually correcting for any drift in 

imaging FOV. 

Neuronal response metric 

To measure neuronal responses we extracted the mean 

fluorescence in a ~500 ms window (4 frames for 3D 

experiments, 15 frames for 2D experiments) starting 

immediately after the photostimulation ended (and/or 

visual stimulus to ensure comparable measurements) 

and subtracted the mean fluorescence in the ~1 second 

baseline (7 frames for 3D experiments, 30 frames for 
2D experiments) before the onset of photostimulation 

(or visual stimulus). We divided the difference in the 

means by the standard deviation of the baseline 

window, to give a signal-to-noise ratio (ΔF/σF). If on a 

given trial, for a given cell, this value was greater than 1 

the response was scored as excited, and if it was below 

-1 the response was scored as inhibited 

(Supplementary Fig. 9). We excluded all 
photostimulation frames because of the associated 

artefact contaminating the activity traces. The slow 

kinetics of GCaMP6s permit this, although the 

magnitude of response is underestimated. We 

additionally compute a net response probability for each 

cell as the difference between that cells probability of 

being excited and inhibited across all trials. For 
comparison across experiments we then subtracted 

either the visually evoked response probability, or for 

trials without visual stimulation, the probability of 

detecting a positive or negative response in catch trials. 

 

Online photostimulation ensemble design 

To increase speed of data analysis immediately prior to 
the experiment we streamed the raw acquisition 

samples to custom software (PrairieLink, 

RawDataStream, 

https://github.com/llerussell/Bruker_PrairieLink). We 

used this raw stream to process the pixel samples, 

construct imaging frames and in a subset of 

experiments, perform online registration. Processing 
online allowed us to directly output to a custom file 

format making the data immediately available for 

analysis. Motion corrected movies were loaded into 

MATLAB (MathWorks) and traces were extracted from 

both the photostimulation and the visual stimulation 

movies, using the photostimulation targets as seed 

points around which circular ROIs were dilated. We 

subtracted a neuropil signal from the ROI signal before 
determining responsivity. We determined cells as 

photostimulation-responsive if their evoked response 

(in a ~500 ms window after stimulus offset) to their direct 

stimulation was > 30% ΔF/F on > 50% trials. We 

determined cells as visually-responsive by the same 

criteria (with response window of 2 seconds during the 

stimulus presentation), additionally specifying their 

preferred orientation as the stimulus that elicited the 
largest average response (Supplementary Fig. 10). 

Three types of task-relevant stimulation patterns were 

then designed in each experiment. After filtering for 

photostimulation-responsive cells the groups were 

designed and matched for number of activated cells, 
average evoked response magnitude and spatial 

clustering (average pairwise distance and nearest 

neighbour distance) but differed maximally in sensory 

tuning. The cotuned group was selected first, taking the 

largest group of photostimulation-responsive and 

orientation tuned neurons (minimum number of targets: 

4, maximum: 79, median: 17) and thus set the 
constraints for the other groups to match. Groups were 

matched within session, not across sessions 

(Supplementary Fig. 11).  
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Pre-processing: Imaging frame registration, ROI 

segmentation and neuropil correction 

For the final analysis the raw calcium imaging movies 

were pre-processed using Suite2p 84. The pipeline 

included image registration, segmentation of active 

region of interest (ROIs), and of local surrounding 

neuropil signal. The final selection of ROIs was filtered 

semi-automatically using anatomical criteria to include 

only neuronal somata and discard spurious ROIs. We 
manually inspected all FOVs to ensure consistent 

results. We subtracted a neuropil signal from every ROI 

signal. The contamination of the ROI signal by the 

neuropil signal depends on many factors including 

expression levels, imaging quality, and axial sectioning 

by the imaging plane. We used robust linear regression 

to estimate the coefficient of neuropil contamination for 

each ROI (Supplementary Fig. 12 46). The slope of this 
fit was used to scale the neuropil signal before 

subtraction from the ROI signal, such that after 

subtraction there was no correlation between the ROI 

baseline and neuropil. Neuropil subtraction had minimal 

effect on the response magnitude and negative 

responses were seen even without subtracting the 

neuropil contamination (Supplementary Fig. 13,14). 

ROI exclusion zones 

In order to reduce potential off-target photostimulation 

artefacts we excluded from consideration all cells within 
a 20 μm diameter cylinder extending through all axial 

planes when analysing the network response to 

photostimulation due to potential imaging and 

photostimulation artefacts (see Supplementary Fig. 
13). We redefined our target stimulation pattern 

identities based on the ROIs segmented by Suite2p 

within the 20 μm lateral disk around each of the SLM 

target locations. We also excluded ROIs in the first 100 
rows of pixels of each imaging frame due to an ETL 

artefact related to the settle time of the lens when 

changing planes. 

Behavioural session truncation 

To ensure we only analysed periods of the behavioural 

session where the mice were similarly engaged and 

motivated, we truncated the session when the rolling 

average performance (20 trial sliding window) of the 

‘easy’ high contrast trials dropped below 70% of the 

starting performance. 

Data exclusion criteria 

We excluded trials if > 50% of photostimulation targets 

failed to respond on that trial. We also excluded trials if 
the mice licked early (within the first 150 ms of the 

presentation of the visual stimulus). Whole sessions 

were excluded if fewer than 10 trials in the low-contrast 

or low-contrast with photostimulation condition 

remained (the median minimum number of trials in 

included sessions = 31 trials (range 11 – 69)). Out of 30 

completed sessions, 9 were excluded (5 because too 
few trials remained, and 4 because of poor 

photostimulation efficiency) 

Statistical procedures 

No statistical methods were used to predetermine 

sample size. The experiments were not randomised, 

and investigators were not blinded to allocation during 

experiments and outcome assessment. Summary 

statistics in the text are reported as mean +/- SD unless 

otherwise indicated. Statistical tests used are specified 

in the text and were generally two-tailed and non-

parametric. 

Behavioural effect of photostimulation resampling 

procedure 

To assess statistical significance, we devised a 

procedure to determine whether the photostimulation 

induced perceptual bias we observed across sessions 

could occur by chance through behavioural variability. 

For each session we had a mean lick rate to low 

contrast stimuli (baseline performance), and a mean lick 

rate to low contrast stimuli with photostimulation. When 

we plot these values from every session against each 
other, we get a slope that deviates from 1. To assess 

the significance of this slope, we generated many 

resampled “fake” lick rates for each session, then took 

one resample per session for every session and 

calculated a “fake” slope across sessions for each 
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resample. Each resample for each session was 

constructed by sampling the same number of trials as 

were available for that session in the low-contrast 

photostimulation trial type where each individual trial 
had the same probability of being a hit (lick) as the real 

mean lick rate to the low contrast stimuli. We did this 

10,000 times and then asked if the real slope across all 

sessions fell outside of the resampled distribution of 

slopes. 

Pre-trial correlations 

To compute the network synchrony prior to presentation 

of the visual stimulus we used deconvolved activity 

traces (OASIS 84,85) smoothed with a Gaussian filter 

(sigma = 0.5 s). We used a 4.5 – 0.5 s window 
immediately prior to the initiation of the trial (delivery of 

a stimulus, if not a catch trial) as the ‘pre-trial’ period. 

We then computed pairwise correlations within these 

windows and averaged together all pairwise correlation 

coefficients across all cells (including targets) to give the 

total network correlation. We then z-scored all network 

correlations within animal and across all trial types to 

facilitate across animal comparisons. When comparing 
hit and miss trials we resampled 10,000 times to match 

trial numbers. 

Stimulus decoder 

We used a multiple-class support vector machine 

(SVM) to decode and classify trial type (presence and 

orientation of high contrast visual stimulus) within a 

session, in which the output of multiple binary classifiers 

are compared to one another. We only used ROIs which 

were determined to be ‘visually responsive’ and 

excluded all target and nearby ROIs. We randomly 
selected half of the high contrast visual stimulus trials 

and half of the catch trials (no visual stimulus) in a 

session to train that sessions’ model. The remaining 

50% of trials were used for cross-validating the 

performance on the held out high contrast and catch 

trials. We repeated this cross-validation procedure 100 

times. We evaluated the high-contrast models with all of 

the available low-contrast trials. Note there was only 
one orientation of low-contrast stimulus in each session. 

We averaged the test results across all 100 

permutations of the trained models for each session.  

Code availability 

Custom code used for data acquisition, 
photostimulation control, behavioural training and 
analysis have been deposited online: 

Naparm 
(https://github.com/llerussell/Naparm) 
PyBehaviour 
(https://github.com/llerussell/PyBehaviour) 
3D SLM calibration 
(https://github.com/llerussell/SLMTransformMaker3D) 
STAMovieMaker 
(https://github.com/llerussell/STAMovieMaker) 
RawDataStream 
(https://github.com/llerussell/Bruker_PrairieLink) 
Objective rotation 
(https://github.com/llerussell/MONPangle) 
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