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Abstract 
 
Objective: We aimed to study the role of coding VPS13C variants in a large cohort of late-onset PD 

(LOPD) patients. 

Methods: VPS13C and its untranslated regions were sequenced using targeted next-generation 

sequencing in 1,567 PD patients and 1,667 controls from 3 cohorts. Association tests of rare potential 

homozygous and compound heterozygous variants and burden tests for rare heterozygous variants were 

performed. Common variants were analyzed using logistic regression adjusted for age and sex in each of 

the cohorts, followed by a meta-analysis. 

Results: No bi-allelic carriers of rare VPS13C variants were found among patients and two carriers of 

compound heterozygous variants were found in two controls. There was no statistically significant burden 

of rare (MAF<1%) or very rare (MAF<0.1%) coding VPS13C variants in PD. A VPS13C haplotype 

including the p.R153H-p.I398I-p.I1132V-p.Q2376Q variants was nominally associated with a reduced 

risk for PD (meta-analysis of the tagging SNP p.I1132V (OR=0.48, 95%CI=0.28-0.82, p=0.0052). This 

haplotype was not in linkage disequilibrium (LD) with the known genome-wide association study 

(GWAS) top hit.   

Conclusions: Our results do not support a role for rare heterozygous or bi-allelic VPS13C variants in 

LOPD. Additional genetic replication and functional studies are needed to examine the role of the 

haplotype identified here associated with reduced risk for PD.   

 

Keywords: Parkinson’s disease; genetic variants; VPS13C; association study 
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Introduction 

The vacuolar protein sorting 13C (VPS13C) gene is located within a risk locus for Parkinson Disease 

(PD), reported in large genome-wide association studies (GWAS) of European population 1, 2. The SNP 

reported in the GWAS (rs2414739, chr15.hg19:g.61994134G>A) was also studied in several Asian 

populations and in Iranians, with conflicting results 3-7, possibly due to ethnicity-related differences. 

Subsequently, homozygous and compound-heterozygous VPS13C mutations were identified as a 

rare cause of early onset PD (EOPD) characterized by rapid progression and early cognitive dysfunction. 

It was demonstrated that VPS13C is partially localized at the mitochondrial membrane, and its silencing 

led to mitochondrial dysfunction and increased PINK1/Parkin-dependent mitophagy 8. A follow-up study 

in 80 EOPD patients identified an additional patient with compound-heterozygous mutations with similar 

clinical features to the previously reported patients 9. In another recent study, a homozygous deletion in 

VPS13C was reported to be the probable cause of an early onset parkinsonism in one patient 10. Thus far, 

full sequencing studies of VPS13C have not been reported in late onset PD (LOPD).  

To further study the potential role of VPS13C variants in PD, we sequenced its coding and 

regulatory regions using targeted next-generation sequencing in three cohorts of PD (predominantly 

LOPD) and in controls. We examined the association of common, rare and bi-allelic VPS13C variants on 

the risk for PD. We further tested whether any coding variant or variants in the untranslated regions of 

VPS13C are in linkage disequilibrium (LD) with the top VPS13C-associated GWAS hit, to determine if 

any of these variants can explain the GWAS association of this locus. 

 

Methods 

Study population  

Three cohorts, with a total of 1,567 unrelated PD patients and 1,667 controls, were included in this study, 

detailed in Table 1. First cohort was composed of French and French-Canadian participants recruited in 

Quebec (Canada) and in France. This cohort was previously genotyped using the GWAS OmniExpress 
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array, the ethnicity was confirmed using principal component analysis, and samples that were of different 

ethnicities were not included in this study. The second cohort was recruited in New York - Columbia 

University, and was previously described11. The majority of participants from New York are of European 

descent and 38% are Ashkenazi Jewish (AJ), 40% of PD patients and 35% of controls. This difference 

was not statistically significant, yet we adjusted for ethnicity when analyzing this cohort, to avoid effects 

of ethnicity on the results. The third cohort was recruited in Israel (Sheba Medical Center) and all 

participants included in this study from the Israeli cohort are of full AJ origin (all four grandparents are 

full AJ). All patients were consecutively recruited through the clinics, and they represent the typical 

LOPD patient population with AAO of about 60 (Table 1), as opposed to the studies published so far on 

VPS13C in EOPD. As detailed below, due to the differences in age and sex (Table 1), statistical analysis 

was adjusted and included age and sex as co-variates. To account for different ethnicities in the New York 

cohort, an ethnicity covariate was also introduced in this cohort (GWAS data was not available for this 

cohort, therefore the reported ethnicity was used and not principal components). All three cohorts were 

sequenced in the same lab (McGill University), following the same protocol. All PD patients were 

diagnosed by movement disorder specialists according to the UK brain bank criteria 12, without excluding 

patients with family history of PD, since it is now known that there are familial cases of PD, so patients 

who reported family history of PD were included. However, it is important to emphasize that in the 

current study only unrelated patients were included, there were no multiple cases from the same family.  

 

Standard Protocol Approvals, Registrations, and Patient Consents 

The institutional review board (McGill University Health Center Research Ethics Board - MUHC REB) 

approved the study protocols (reference number IRB00010120). Informed consent was obtained from all 

individual participants before entering the study.  
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DNA extraction and VPS13C sequencing  

DNA was extracted using a standard salting out protocol. The coding sequence and regulatory regions of 

VPS13C were targeted using molecular inversion probes (MIPs), that were designed as previously 

described 13. MIPs were selected based on their predicted coverage, quality and overlap. All MIPs used to 

sequence VPS13C in the present study are included in Table e-1. Targeted DNA capture and amplification 

was done as previously described 14, and the full protocol is available upon request. The library was 

sequenced using Illumina HiSeq 2500 platform at the McGill University and Genome Quebec Innovation 

Centre. Reads were mapped to the human reference genome (hg19) with Burrows-Wheeler Aligner 15. 

Genome Analysis Toolkit (GATK, v3.8)  was used for post-alignment quality control and variant calling 

16 , and ANNOVAR was used for annotation 17. Data on the frequency of each VPS13C variant were 

extracted from the public database Genome Aggregation Database (GnomAD) 18. Validation of the 

tagging variant p.I1132V was performed using Sanger sequencing, with the following primers: forward 5’ 

– CCGGGAAGGTAATGACAAAA – 3’, reverse 5’ – CCCCTGATTGAAAAGTCACA– 3’ 

 

Quality control  

During quality control (QC) filtration using PLINK software v1.9 19, SNPs with genotyping rate lower 

than 90% were excluded. Genotyping rate cut-off for individuals was 90%, and individuals with a lower 

genotyping rate were excluded. SNPs that deviated from Hardy-Weinberg equilibrium set at p=0.001 

threshold were filtered out. Threshold for missingness difference between cases and controls was set at 

p=0.05 and the filtration script adjusted it with Bonferroni correction. After these QC steps, cohort 

composition was as described in Table 1. To be included in the analysis, minimum quality score (GQ) 

was set to 30. Rare variants (minor allele frequency, MAF<0.01 or 0.001) had to have a minimal coverage 

of >50x to be included, and common variants had to have a minimal coverage of >15x to be included in 

the analysis.  
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Statistical Analysis 

The association between common VPS13C variants and PD was examined by using logistic regression 

models using PLINK v1.9, with the status (patient or control) as a dependent variable, age and sex as 

covariates in all cohorts, and AJ ancestry as an additional covariate in the New York cohort. To analyze 

rare variants (MAF < 0.01) and very rare variants (MAF < 0.001), an optimised sequence Kernel 

association test (SKAT-O, R package) was performed 20. In addition, we examined using SKAT-O the 

burden of predicted pathogenic variants with Combined Annotation Dependent Depletion (CADD) score 

of ≥ 12.37 representing the top 2% of potentially deleterious variants. The effects of SNP genotypes on 

the AAO was tested using analysis of variance (ANOVA; in R software). Meta-analysis of common 

variants in the three cohorts was performed using Metafor Package in R software 21. Linkage 

disequilibrium in our data was examined by PLINK v1.9 and LD between discovered SNPs and the 

GWAS top hit rs2414739 was tested using LDlink application, selecting all non-Finish Europeans 22. 

 
Data availability statement  

Anonymized data is available upon request by any qualified investigator. 

 

Results  

Rare VPS13C variants and homozygous or compound heterozygous VPS13C variants are 

not associated with late onset PD.   

The average coverage of VPS13C with the MIPs was 94% of nucleotides covered at > 10x, and 90% 

covered at > 50x. This coverage, while not ideal, is better than the whole exome sequencing coverage 

reported in the original paper on VPS13C in PD, and better than the whole exome and whole genome 

sequencing coverage of this specific gene in gnomAD (https://gnomad.broadinstitute.org/). There were no 

differences in coverage between the cohorts and between patients and controls. A total of 60 rare variants 

that are either nonsynonymous, stop variants or potentially affect a splicing site were identified in the 

three cohorts and are detailed in Table e-2. 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2019. ; https://doi.org/10.1101/705533doi: bioRxiv preprint 

https://doi.org/10.1101/705533
http://creativecommons.org/licenses/by-nd/4.0/


 9

In order to examine whether rare homozygous or compound heterozygous VPS13C variants may 

cause LOPD, and since patients with VPS13C bi-allelic mutations are very rare, we included in this 

analysis only rare variants with allele frequency < 0.001. Only two carriers of two heterozygous variants 

were identified, and both were controls (Table e-3), suggesting that bi-allelic mutations are not common 

in LOPD. Of note, we did not examine whether these two variants were on the same allele or different 

allele (compound heterozygous), since they were found only in controls, which suggests that rare bi-

allelic variants are not involved in LOPD in our cohorts. 

To further study a potential role for rare (allele frequency < 0.01) or very rare (allele frequency < 

0.001) VPS13C nonsynonymous or splice variants in LOPD, a SKAT-O was performed on the variants 

detailed in Table e-2. In the French and French Canadian cohort, 33 (6.6%) PD patients carried a rare 

variant compared to 49 (6.2%) in controls. In the NY cohort, 43 PD patients (8.6%) carried a rare variant 

compared to 29 (11.8%) controls. In the Israeli cohort 57 (11.9%) PD patients carried a rare variant 

compared to 59 (12.1%) among controls. There was no association between rare variants (French/French 

Canadian cohort p=0.44, New York cohort p=0.34, Israel cohort p=0.91) or very rare variants 

(French/French Canadian cohort p=0.17, New York cohort p=0.85, Israel cohort p=0.89) and PD. We 

further examined whether rare variants that are predicted to be deleterious based on CADD score ≥ 12.37 

are enriched in PD (the variants included in this analysis are detailed in Table e-4), and no association 

was found (French/French Canadian cohort p=0.58, New York cohort p=0.39, Israel cohort p=0.40). 

 

 

A VPS13C haplotype including the p.R153H-p.I398I-p.I1132V-p.Q2376Q coding variants is 

nominally associated with reduced risk for PD. 

We have identified 14 common coding variants in our cohort of French and French Canadians, and 13 

such variants in each of NY and Israeli cohorts. More details on the number of carriers and frequencies 

can be found in Table e-5. To test whether common coding variants in VPS13C are associated with 

LOPD, logistic regression models adjusted for age and sex were performed, and additional adjustment for 
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ethnicity was included in the New York cohort (see methods). A nominal association was observed in 

four variants (p.R153H [rs12595158, chr15.hg19:g.62316035C>T], p.I398I [rs9635356, 

chr15.hg19:g.62299603T>G], p.I1132V [rs3784635, chr15.hg19: g.62254989T>C] and p.Q2376Q 

[rs17238189, chr15.hg19: g.62212781T>C]) with reduced risk for PD in the New York cohort (Table 2). 

These remained nominally significant with and without including adjustment for ethnicity, suggesting that 

ethnicity has no role in this association, and only one of them, p. I1132V (OR 0.28, 95% CI 0.12-0.64, 

p=0.0025), remained statistically significant after correction for multiple comparisons. In the two other 

cohorts, these variants showed the same directionality as in the New York cohort, but did not reach 

statistical significance (Table 2). These four variants, p.R153H, p.I398I, p.I1132V and p.Q2376Q, are in 

strong or even complete LD (Table e-6). The most significant tagging SNP of this haplotype, p. I1132V, 

was validated using Sanger sequencing in all three cohorts. Meta-analysis of all the common coding 

variants showed an association of these four linked SNPs with reduced risk for PD (Figure 1), with 

similar directionality across all cohorts. To examine whether this haplotype may affect AAO of PD, 

ANOVA with the status of the p. I1132V variant was performed. This variant was not associated with 

AAO in all three cohorts (French/French Canadian cohort p=0.65, New York cohort p=0.34, Israel cohort 

p=0.99).  

None of these variants were in LD with the known GWAS top hit, rs2414739, and therefore these 

associations do not explain the GWAS hit in the VPS13C locus. Of all the other common coding variants, 

only one variant, p.E2008D (rs78071599, chr15.hg19: g.62223303C>G), was in some LD with the 

GWAS top hit (D’=0.808, r2=0.006, Table e-7), but this variant was not associated with LOPD, and 

therefore it also cannot explain the GWAS hit in our populations. Interestingly, an intronic variant, 

rs78530361 (chr15.hg19: g.62214265C>T), was in strong LD with the top GWAS SNP (D’=1, r2=0.003). 

Of note, r2 is low since this intronic SNP has a much lower allele frequency than the top GWAS hit, but 

every time the rs78530361 SNP is found, it is on an allele which harbors the top GWAS hit rs2414739. 

However, in our cohorts, this variant was not associated with PD (p=0.66), likely due to its very low r2 

with the GWAS hit. 
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Discussion 
 
Our study, which included full sequencing of VPS13C in three cohorts, identified 60 rare VPS13C 

variants (MAF<0.01) that are nonsynonymous or affect splicing, and 18 common variants (MAF>0.01) in 

coding regions of the gene and splice sites. Our results suggest that rare homozygous and compound 

heterozygous variants are rare in LOPD and probably have importance mainly in early onset PD, as 

previously described. We have identified a potentially protective haplotype, which includes four variants, 

two of which are substitutions of amino acids, p.R153H and p.I1132V. The association was driven by the 

NY cohort mainly, but the two other cohorts demonstrated similar directionality of effect and effect size, 

and also contributed to the association. It is unlikely that differences in ethnicity in the NY cohort drove 

the association, since analysis was with adjustment for ethnicity, and analysis without adjustment yielded 

nearly identical results, ruling out effect of ethnicity. The other two cohorts were of homogeneous 

ethnicities, therefore in these cohorts too, ethnicity could not have affected the results. Interestingly, this 

haplotype is not in LD with the top GWAS SNP, rs2414739, suggesting that this may be a secondary 

association in the VPS13C locus, which was not identified in previous studies. However, this should be 

considered as preliminary results and needs to be examined in additional cohorts in order to conclude 

whether this haplotype is indeed associated with reduced risk for PD. Since the disease-causing mutations 

reported in VPS13C are loss-of-function mutations, a protective effect could occur for example due to 

gain of function or overexpression. In GTEx (https://www.gtexportal.org/home/) these variants were not 

associated with increased expression or affect splicing. The two nonsynonymous variants of this 

haplotype, p.R153H and p.I1132V, have high CADD scores (22.8 and 13.7, respectively), suggesting that 

they may affect the protein structure or function. Whether there is such effect and whether it is associated 

with gain-of-function will need to be examined in follow-up studies. Furthermore, the full sequencing 

analysis did not identify any coding variant that is in LD with the original GWAS hit that can explain the 

GWAS association in this locus. This may suggest that the variant that has the main effect on the risk for 
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PD in the VPS13C is outside of the coding and untranslated regions of the gene, likely being a regulatory 

element.  

 Previous studies on the top GWAS hit in the VPS13C locus demonstrated conflicting results. 

While significant associations of the top GWAS hit in this locus (rs2414739) with PD were found in 

Iranian 5 and East Asian 3 populations, negative results were reported in Taiwanese 4 and Han Chinese 6, 7 

populations. Therefore, it is possible that the association of VPS13C with PD is population dependent. Of 

note, that the association in the current study was mainly driven by populations enriched in Ashkenazi 

Jews, while in the French/French Canadian cohort the differences between patients and controls were 

much smaller and not statistically significant (Table 2). This may suggest that this haplotype association 

is population specific, and additional studies in different populations are required to answer this question.   

In our three cohorts, we did not find any very rare homozygous variants with MAF<0.001 and 

found only two carriers of two heterozygous variants, both of which were controls (Table e-3). We were 

unable to determine if the variants were in cis or trans, but since no carriers of two variants was found 

among patients, it is clear that VPS13C bi-allelic mutations do not contribute to PD in our cohorts. 

Previously reported cases of PD in carriers of compound heterozygous or homozygous mutations all 

shared a specific clinical presentation of PD: early onset, rapid progression and early cognitive 

dysfunction 8, 9. In one study, the patient’s AAO was 39, and disease progression was moderately severe 

with psychiatric symptoms and impaired cognition 9. In another study, the three patients showed severe 

phenotypes: AAO of 25, 33, and 46 years, severe and early cognitive dysfunction, and became bedridden 

at 31, 43, and 58 years, respectively. Considering the young age of one of the compound heterozygous 

VPS13C variant carriers in our cohort (30 years), it is still possible, although unlikely that this individual 

will develop PD in the future. The negative results of the SKAT-O analyses demonstrate that rare 

heterozygous variants in VPS13C do not have an important role in PD in our cohorts.  

 Our study has several limitations. The differences between PD patients and controls in sex and 

mainly age are significant in some of our cohorts. To address this limitation, we included age and sex as 

covariates in the regression models. Therefore, if the association of the protective haplotype was related 
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to age and not to disease status, we would likely not observe an association in the adjusted model. 

Furthermore, the association with the haplotype had the same directionality and similar effect size in the 

NY cohort in which the controls were older (and the association was statistically significant), and in the 

other two cohorts where the controls were younger, likely ruling out effect of age. There was no 

significant difference in the percentage of Ashkenazi Jews between patients and controls in the New York 

cohort, yet we still performed the regression model with and without ethnicity as a covariate, and in both 

analyses the results remained significant. Nevertheless, the fact that our populations are enriched with 

relatively homogeneous populations such as Ashkenazi Jews and French Canadians requires additional 

studies in other populations. Another potential limitation is that we could not analyze the effect of CNVs 

in VPS13C with our data. Loss of function and exonic deletions/duplications are rare in gnomAD, found 

in only 3 individuals at a heterozygous state, and therefore not likely to have a major contribution in PD. 

However, future studies to examine the potential role of VPS13C in PD are required. Furthermore, as no 

functional experiments were performed in the current study, the potential effects of variants that we report 

here should be examined in additional studies. 

 In conclusion, our results suggest that VPS13C variants have a limited role in late-onset PD. The 

potentially PD protective haplotype located within VPS13C, which requires additional replications, may 

suggest that VPS13C could be a future target for PD therapeutic development. If naturally occurring 

genetic variants may reduce PD risk, it is conceivable that drugs that can mimic their effects could be 

developed. Additional genetic and functional studies will be required to determine if VPS13C may be a 

viable target for PD drug development.  
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Figure legends 

Figure 1 Legend: Forest plots – meta-analyses of four VPS13C coding variants associated 

with reduced risk for Parkinson Disease. The forest plots depict the effects of the four 

VPS13C coding variants that create the haplotype associated with reduced PD risk in the three 

cohorts studied, and their meta-analyzed effect on risk for PD. The results in the random effect 

model are nearly identical. CI, confidence interval; FE, fixed effect 
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Table 1: Study population details 
 

Sequenced 

Cohort 
Min Depth of 

Coverage 

Analyzed 

N 

(cases) 

 

N 

(controls) 

 

Cases Controls 
Genotyping 

call rate 

% 
N 

Mean Age 

(SD) 

y 

%Male N 

Mean age 

(SD) 

y 

%Male 

543 866 
French/French-

Canadian 

15x 534 59.7(11.4) 63.7 858 42.0(13.6) 51.6 99.6 

50x 498 59.8(11.2) 63.5 785 42.3(13.5) 52.0 99.2 

533 270 New York 
15x 520 59.3(11.8) 64.0 262 65.0(9.8) 34.0 99.9 

50x 502 59.3(11.8) 64.1 245 65.4(9.6) 32.7 99.5 

491 531 Israel 
15x 482 60.6(11.7) 61.8 488 33.9(7.2) 57.8 99.3 

50x 478 60.7(11.7) 61.7 487 33.9(7.2) 57.7 99.3 

N, number; Min, minimum; y, year  
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Table 2: Four variants forming the protective haplotype found in VPS13C and the results of the logistic regression in three 
cohorts  

nt: nucleotide; N, number; MAF, minor allele frequency; GnomAD, Genome Aggregation Database; OR, odds ratio; CI, confidence 
interval; P, p value; F/FC, French/French-Canadian; NY, New York.  
†GnomAD_ASJ frequencies were used for the Israeli cohort; all samples are Ashkenazi Jewish.  
 

Variant rs number nt-
substitution 

Cohort 
N 

(cases) 
 

N 
(controls) 

 

Affected 
MAF 

Unaffected 
MAF 

GnomAD 
MAF† 

 
OR (95%CI) P 

p.R153H rs12595158 c.G458A 
F/FC 15 27 0.0143 0.0157 

0.0734 
0.56 (0.26-1.20) 0.1358 

NY 14 16 0.0135 0.0324 0.38 (0.17-0.84) 0.0172 
Israel 16 22 0.0166 0.0225 0.0236 0.70 (0.19-2.6) 0.5940 

p.I398I rs9635356 c.A1194C 
F/FC 15 28 0.0143 0.0163 

0.0737 
0.56 (0.26-1.20) 0.1330 

NY 16 16 0.0154 0.0324 0.42 (0.20-0.91) 0.0274 
Israel 15 19 0.0156 0.0195 0.0214 0.75 (0.19-2.89) 0.6752 

p.I1132V rs3784635 c.A3394G 
F/FC 15 26 0.0143 0.0152 

0.0726 
0.69 (0.32-1.48) 0.3404 

NY 11 18 0.0106 0.0363 0.28 (0.12-0.64) 0.0025 
Israel 14 19 0.0145 0.0195 0.0233 0.65 (0.16-2.65) 0.5444 

p.Q2376Q rs17238189 c.A7128G 
F/FC 10 24 0.0095 0.0140 

0.0698 
0.51 (0.21-1.23) 0.1344 

NY 16 17 0.0154 0.0344 0.42 (0.20-0.90) 0.0245 
Israel 16 20 0.0166 0.0215 0.0212 0.47 (0.07-3.10) 0.4350 
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