

1 Plant respiration: controlled by photosynthesis or biomass?

2 **Running title:** Metabolism and size drive forest C-balance

3 **List of Authors:** Alessio Collalti^{1,2*}, Mark G. Tjoelker³, Günter Hoch⁴, Annikki Mäkelä⁵,
4 Gabriele Guidolotti⁶, Mary Heskel⁷, Giai Petit⁸, Michael G. Ryan^{9,10}, Giovanna Battipaglia¹¹, I.
5 Colin Prentice^{12,13,14}

6 **Institutional affiliations:**

7 1. Institute for Agriculture and Forestry Systems in the Mediterranean, National Research
8 Council of Italy (CNR-ISAFOM), 87036, Rende (CS), Italy (alessio.collalti@cnr.it)

9 2. Department of Innovation in Biological, Agro-food and Forest Systems, University of
10 Tuscia, 01100 Viterbo, Italy

11 3. Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751,
12 Australia. (M.Tjoelker@westernsydney.edu.au)

13 4. Department of Environmental Sciences – Botany, University of Basel, Schönbeinstrasse 6,
14 Basel 4056, Switzerland. (guenter.hoch@unibas.ch)

15 5. Institute for Atmospheric and Earth System Research (INAR), Faculty of Science & and
16 Faculty of Agriculture and Forestry, P.O. Box 27 (Latokartanonkaari 7) FI-00014 University
17 of Helsinki, Finland. (annikki.makela@helsinki.fi)

18 6. Institute of Research on Terrestrial Ecosystem, National Research Council of Italy (CNR-
19 IRET), 00015, Monterotondo Scalo (RM), Italy. (gabriele.guidolotti@cnr.it)

20 7. Department of Biology, Macalester College, Saint Paul, MN USA 55105.
21 (mheskel@gmail.com)

22 8. Department of Land, Environment, Agriculture and Forestry, University of Padova, 35020
23 Legnaro (PD), Italy. (giai.petit@unipd.it)

24 9. Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523-
25 1499, USA. (mryan@rams.colostate.edu)

26 10. USDA Forest Service, Rocky Mountain Experiment Station, Fort Collins, CO 80526, USA

27 11. Department of Environmental, Biological and Pharmaceutical Sciences and Technologies,
28 University of Campania «L. Vanvitelli», 81100, Caserta, Italy.
29 (giovanna.battipaglia@unicampania.it)

30 12. AXA Chair of Biosphere and Climate Impacts, Imperial College London, Department of
31 Life Sciences, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
32 (c.prentice@imperial.ac.uk)

33 13. Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109,
34 Australia

35 14. Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth
36 System Science, Tsinghua University, Beijing 100084, China

37 **Paper type:** Primary research article

38 **Keywords index:** *Plant respiration, biomass accumulation, carbon use efficiency, gross primary*
39 *production, net primary production, maintenance respiration, non-structural carbohydrates,*
40 *metabolic scaling theory.*

41 ***Contact information:** tel. +390761309587, email: alessio.collalti@cnr.it;

42 **Abstract**

43 Two simplifying hypotheses have been proposed for whole-plant respiration. One links
44 respiration to photosynthesis; the other to biomass. Using a first-principles carbon balance model
45 with a prescribed live woody biomass turnover, applied at a forest research site where

46 multidecadal measurements are available for comparison, we show that if turnover is fast the
47 accumulation of respiring biomass is low and respiration depends primarily on photosynthesis;
48 while if turnover is slow the accumulation of respiring biomass is high and respiration depends
49 primarily on biomass. But the first scenario is inconsistent with evidence for substantial
50 carryover of fixed carbon between years, while the second implies far too great an increase in
51 respiration during stand development – leading to depleted carbohydrate reserves and an
52 unrealistically high mortality risk. These two mutually incompatible hypotheses are thus both
53 incorrect. Respiration is *not* linearly related either to photosynthesis or to biomass, but it is more
54 strongly controlled by recent photosynthates (and reserve availability) than by total biomass.

55 **Introduction**

56 The amount of carbon that accumulates in actively growing stands of vegetation depends on
57 the balance of photosynthesis (gross primary production, P) and whole-plant (autotrophic)
58 respiration (R). The difference between these fluxes is net primary production (P_n). Most annual
59 P_n is allocated to structural growth (G), but some is stored as non-structural carbohydrates (NSC,
60 mostly starch and sugars), some is released back to the atmosphere in the form of biogenic
61 volatile organic compounds (BVOCs), and some is exuded to the rhizosphere (Chapin *et al.*
62 2006). The fraction of P that accumulates in biomass, and the fraction that returns to the
63 atmosphere through plant metabolism, are crucial quantities that determine the sign and
64 magnitude of the global climate-carbon feedback – which remains one of the greatest sources of
65 uncertainty in the global carbon cycle (Friedlingstein *et al.* 2014). But despite many
66 ecophysiological studies aiming to understand P_n and R dynamics during stand development, a
67 general understanding is still lacking.

68 Some authors have hypothesized a constant $P_n:P$ (carbon use efficiency, equivalent to 1 –
69 ($R:P$)) ratio, with R tightly constrained by P irrespective of biomass, climate, tree species and
70 stand age (e.g. Gifford 2003; Van Oijen *et al.* 2010). Waring *et al.* (1998, W98 hereafter)

71 indicated a universal $P_n:P$ of ~ 0.5 . Since, ultimately, R depends on the matter produced by
72 photosynthesis, Gifford (2003) suggested that these two processes must be tightly balanced over
73 the longer term – making R proportional to P , consistent with W98. He argued that prescribing
74 P_n (or R) as a constant fraction of P could be a simpler, and potentially more accurate, alternative
75 to explicit, process-based modelling of R . A number of land vegetation models (reviewed in
76 Collalti & Prentice 2019) adopt this simplification.

77 An alternative hypothesis, grounded in metabolic scaling theory, suggests that R should scale
78 with biomass following a power law, $Y = a X^b$ (West *et al.* 1999). According to some studies
79 (e.g. Reich *et al.* 2006, R06 hereafter), R (Y) scales isometrically ($b \sim 1$) with whole-plant carbon
80 (C) or nitrogen (N) contents (X), and this scaling is similar within and among different species,
81 and irrespective of environmental and climatic conditions – which might influence the
82 normalization constant (a), but not the exponent (b). Isometric scaling of R with biomass was
83 assumed in the traditional view of forest dynamics set out e.g. by Kira & Shidei (1967) and
84 Odum (1969). In the absence of major disturbances, if R increases in parallel with biomass, then
85 P_n necessarily declines – because ultimately P cannot increase indefinitely, but rather stabilizes
86 at canopy closure. Mori *et al.* (2010) however indicated that biomass and R are isometrically
87 related only in young trees, tending towards $b \sim 3/4$ in mature trees. A general value of $3/5$ has
88 also been proposed (Michaletz *et al.* 2014). But however it is interpreted, this scaling hypothesis
89 implies that R depends on biomass, and is related to P only to the extent that P and biomass vary
90 together.

91 Although many terrestrial vegetation models simulate plant respiration assuming R to be a
92 fixed fraction of P , others more explicitly couple R to biomass and thus only indirectly to P . The
93 most widely used (and observationally supported) mechanistic approach, also adopted here,
94 divides R into growth (R_G) and maintenance (R_M) components (McCree 1970; Thornley 1970).
95 R_G is considered to be a fixed fraction of new tissue growth, independent of temperature, the
96 fraction varying only with the cost of building the compounds constituting the new tissue

97 (Penning de Vries 1972). Temperature, substrate availability and the demand for respiratory
98 products are considered to control R_M (Cannell & Thornley 2000). Several studies have
99 investigated the effects of short- and long-term changes in temperature on R_M , mostly at the leaf
100 level (e.g. Heskel *et al.* 2016; Huntingford *et al.* 2017). The nature of the temperature responses
101 and the acclimation of R_M are important and much-discussed issues, but they are not considered
102 further here. In contrast, the effects on respiration of woody biomass (the substrate), its
103 accumulation, and the transition rate of respiring sapwood into non-respiring heartwood, have
104 received relatively little attention (Tjoelker *et al.* 1999; Kuptz *et al.* 2011). These latter processes
105 are the focus here.

106 The fixed-ratio hypothesis of W98 and the scaling hypothesis of R06 could both be used – at
107 least in principle, across the twenty orders of magnitude variation in plant mass – to estimate R
108 and P_n without the need for explicit process-based modelling of R (McMurtrie *et al.* 2008; Price
109 *et al.* 2010). However, they may yield quite different results, and both hypotheses (and their
110 supposed underlying mechanisms) have been subject to criticism (e.g. Medlyn & Dewar 1999;
111 Mäkelä & Valentine 2001; Kozłowski & Konarzewski 2005; O'Connor *et al.* 2007; Keith *et al.*
112 2010; Agutter & Tuszynski 2011; Price *et al.* 2012; Collalti *et al.* 2018, 2019; Collalti & Prentice
113 2019). To our knowledge, there has been no previous attempt to compare these two hypotheses
114 directly, and their consequences for forest carbon balance during stand development, and in the
115 same modelling framework. We attempt to fill this gap by providing illustrative simulations on
116 the long-term trajectories of R , P_n and $P_n \cdot P$, highlighting and discussing the large uncertainty
117 surrounding this issue. The simulations are based on the first principles of mass balance, as
118 adopted in most contemporary vegetation models, and implemented here into a process-based,
119 ecophysiological model that has been tested against detailed time-series observations in an
120 intensively monitored research forest site. We show how alternative assumptions about the live
121 woody turnover (live woody biomass is the metabolically active fraction of sapwood: see
122 Supporting Information) map on to the two alternative hypotheses, while seeking an answer to

123 the pivotal question: is R a function of photosynthesis alone (W98's hypothesis), or of biomass
124 alone (R06's hypothesis)? Insight into these conflicting hypotheses on plant respiration would
125 help towards a better mechanistic understanding and correct quantification of the stocks and
126 fluxes that determine the carbon balance of forests.

127 **Materials and methods**

128 *Theoretical framework*

129 A general equation describing autotrophic respiration (R) is:

$$130 \quad R = P - P_n = P - (G + G_R) \quad (1)$$

131 where P and P_n are gross and net primary production, G is structural and litter biomass
132 production and G_R is the flux to NSC reserves and secondary compounds including, exudates
133 and BVOCs (all in g C ground area $^{-1}$ time $^{-1}$). If R is further decomposed into growth (R_G) and
134 maintenance (R_M) respiration (McCree 1970, Thornley 1970), then:

$$135 \quad R = R_G + R_M = g_R G + m_R W_{live} \quad (2)$$

136 where g_R and m_R are the growth and maintenance respiration coefficients (i.e. respiratory CO $_2$
137 released per unit biomass produced by growth and by the maintenance of the existing biomass:
138 both, per unit time and unit mass; Penning de Vries 1975), and W_{live} is living biomass (Amthor
139 2000). W_{live} can be broken down further:

$$140 \quad W_{live} = W_{live_woody} + W_{green} \quad (3)$$

141 where W_{live_woody} and W_{green} are the biomass of live woody pools (living cells in stem,
142 branches and coarse roots) and non-woody tissues (leaves and fine roots), respectively. Because

143 plant tissues require N as a component of the enzymes that sustain metabolic processes
144 (including respiration), living biomass is often expressed in nitrogen units, g N ground area⁻¹
145 (Cannell & Thornley 2000), while respiration is expressed in carbon units. Then m_R is in units of
146 g C g N⁻¹ time⁻¹ (Penning de Vries 1975). Temporal changes in $W_{\text{live_woody}}$ can be summarized by
147 first-order biochemical kinetics:

$$148 \quad \underbrace{\frac{dW_{\text{live_woody}}}{dt}}_{\text{relative change}} = \underbrace{\varphi \cdot G_{\text{live_woody}}}_{\text{incoming flux}} - \underbrace{W_{\text{live_woody}} \cdot \tau}_{\text{outgoing flux}} \quad (4)$$

149 where $G_{\text{live_woody}}$ is the part of G allocated to live woody, φ converts carbon to nitrogen
150 content (g N g C⁻¹), and τ is the live woody turnover rate per unit time (t). A similar expression
151 can be written for W_{green} . The first term on the right-hand side of equation (4) represents the
152 “incoming” flux of new living cells; while second term represents the “outgoing” flux of living
153 cells that die and become metabolically inactive. But while W_{green} may be only a small fraction of
154 total forest biomass, not changing much after canopy closure, $W_{\text{live_woody}}$ (as also total W)
155 becomes large during forest development and is potentially a strong driver of R (Reich *et al.*
156 2008). However interpreted and wherever applied, this general approach including a turnover
157 rate parameter (τ) is equally valid for any mass-, area- or volume-based analyses (Thornley &
158 Cannell 2000).

159 Setting $\tau = 1 \text{ year}^{-1}$ in equation (4) would imply a tight coupling between the previous year’s
160 growth and the current year’s respiration flux – as suggested by Gifford (2003) – and yields a
161 close approximation to the W98 assumption of a fixed ratio between P_n and P , thus cancelling,
162 on an annual scale, any effect of biomass accumulation. The implication of a one-year-lag
163 between carbon fixation and respiration in woody compounds is consistent with the findings of
164 Amthor (2000), Kagawa *et al.* (2006a, b), Gough *et al.* (2008, 2009) and Richardson *et al.* (2013,

165 2015) of a physiological asynchrony by about one year between P and growth (and thus on
166 growth and maintenance respiration).

167 Alternatively, setting $\tau = 0.1 \text{ year}^{-1}$ would imply that most new sapwood cells live for many
168 years, and would closely approximate the R06 assumption of proportionality between R and
169 biomass. Thus, the amount of respiring biomass is regulated by the amount of substrate that is
170 produced each year, forming new sapwood, versus the amount that is converted into non-living
171 tissues and no longer involved in metabolism; the balance of these processes being controlled by
172 τ (see proofs-of-concept in Fig. 1a and b, and Table 1, for elaboration).

173 Because carbon supply (photosynthesis) and carbon metabolic demand (respiration) are not
174 necessarily synchronized, the model assumes that temporary carbon imbalances between P and R
175 (implying $P_n < 0$, Roxburgh *et al.* 2005) are met by the remobilization or recycling of NSC
176 stored during previous year(s) – so long as the NSC pool is not completely emptied (the carbon
177 starvation hypothesis; McDowell *et al.* 2008). A full description of the modelled NSC dynamics
178 is provided in Box 1.

179 ***Simulation set-up***

180 The logic described above was implemented in a process-based forest growth model (3D-
181 CMCC-CNR), parameterized at site level, and applied, as a case study, to an intensively
182 monitored temperate deciduous forest. Additional model description can be found in Supporting
183 Information, Collalti *et al.* (2014, 2016, 2018; and references therein), and Marconi *et al.* (2017).

184 Very limited data are available on the turnover rate τ of live cells in sapwood, which is often
185 either guessed or inferred by model calibration (e.g. White *et al.* 2000). We carried out ten
186 simulations with τ varied in arbitrary 0.1 yr^{-1} steps, from $\tau = 1 \text{ yr}^{-1}$ (100% of turnover, all the
187 previous year live cells of sapwood becomes non-respiring heartwood in the current year) with R
188 mostly depending on the left-hand side term of equation (2) ($R \sim g_R G$), down to $\tau = 0.1 \text{ yr}^{-1}$
189 (only 10% of the previous year's live cells of sapwood biomass dies) and R mostly depending on

190 the right-hand side term of equation (2) ($R \sim m_R W_{live}$). Thus, we started with the largest prior
191 distribution for τ , assuming that values outside this range are not functionally possible (Table 1).
192 This approach ensures that any difference in model results reflects difference in specific model
193 assumptions (respiration controlled by photosynthesis or biomass) rather than model structure.
194 We are unaware of any studies reporting changes in τ with age or biomass; we have therefore
195 necessarily assumed that τ is constant in time.

196 The standard model configuration assigns $\tau = 0.7 \text{ yr}^{-1}$ (Collalti *et al.* 2019) and this same
197 value has been used by several authors in various modelling contexts (e.g. Bond-Lamberty *et al.*
198 2005; Tatarinov & Cenciala 2006). Other models have applied different values (see Box 2).
199 Zaehle *et al.* (2005), Poulter *et al.* (2010) and Pappas *et al.* (2013) found that τ is a critical
200 parameter for both LPJ-DGVM and LPJ-GUESS. We are not aware of similar sensitivity
201 analyses for other models. Leaf and fine root turnover rates are assumed here to be 1 yr^{-1} ,
202 appropriately for deciduous trees (Pietsch *et al.* 2005). The model parameters accounting for ‘age
203 effects’ (e.g. those controlling, among other things, leaf conductance: Kirschbaum, 2000; Smith
204 *et al.* 2001) were set arbitrarily large, to avoid building in prior assumptions. Age- and size-
205 effects are therefore considered synonymous (Mencuccini *et al.* 2005). A stochastic background
206 whole-tree mortality rate (1% of trees removed each year) was retained and included in equation
207 (4) to ensure realistic self-thinning (Smith *et al.* 2001; Kirschbaum, 2005). All other parameters
208 were left unchanged from the standard model configuration.

209 ***Test site and model run***

210 The model was applied to simulate 150 years of even-aged stand development in a stand of
211 European beech (*Fagus sylvatica* L.; Sorø, Denmark; Wu *et al.* 2013, Reyer *et al.* 2019) in daily
212 time steps from 1950 to 2100. The reasons for choosing this stand are: (a) the extensive literature
213 on European beech, allowing key parameter values to be assigned with confidence; (b) the
214 exceptional quantity and length of data available at the Sorø site for initializing in 1950 and

215 evaluating the model more than fifty years later, thus, allowing long term processes (including
216 woody biomass accumulation) to emerge; and (c) because the trees are deciduous, we can
217 assume a complete annual turnover of leaves and fine roots and, therefore, more easily
218 disentangle the contributions of W_{green} and $W_{\text{live_woody}}$. Deciduous species are also expected to
219 have greater within-season variability in $P_n:P$, and greater asynchrony in carbon supply and
220 demand, than evergreen species (Dietze *et al.* 2014; Martínez-Vilalta *et al.* 2016). However, both
221 the model assumptions and its results are based on general principles and expected to apply more
222 generally than solely to this specific model and site.

223 We simulated forest development up to 2100, consistent with the common economic rotation
224 length for this species in northern Europe. After canopy closure, modelled leaf area index (LAI)
225 and the relative amounts of leaf and fine-root biomass became stable or even slightly decrease,
226 as is usually observed (Yang *et al.* 2011, 2016). Therefore, changes in modeled R , and its
227 components R_M and R_G , could be attributed to changes in the total amount of living woody
228 biomass and the costs of its maintenance.

229 In 1950 the stand was aged 30 years with an average tree diameter at breast height of ~ 6 cm
230 and a density of 1326 trees ha^{-1} . Model state variables were initialized using species-specific
231 functional and allometric relationships from the literature, and previous model applications at
232 this site (Collalti *et al.* 2016, 2018; Marconi *et al.* 2017). Model sensitivity to parameter values
233 and their uncertainties have been assessed in depth in a previous work (see Collalti *et al.* 2019,
234 especially their Fig. 2 and Table 3). Management, in the form of thinning, occurred at the site
235 only up to 2014. After that year, only stochastic mortality was accounted for in the model. Live
236 wood was initialized at 15% of sapwood biomass (as the fraction of current year sapwood:
237 Pietsch *et al.* 2005) and assigned a C:N ratio of 48 g C g N⁻¹, not changing with increasing
238 biomass (Ceschia *et al.* 2002; Damesin 2003). The minimum concentration of NSC was assumed
239 to be, $\sim 11\%$ of sapwood dry mass (Hoch *et al.* 2003; Genet *et al.* 2010; Martínez-Vilalta *et al.*
240 2016) consistent with measurements on deciduous species (and specifically beech). Daily

241 meteorological forcing variables were obtained as historical ensemble means from five Earth
242 System Models (ESMs) up to 2005 provided by the Inter-Sectoral Impact Model
243 Intercomparison Project (ISI-MIP, Warszawski *et al.* 2014). Data for the period 1995–2005 were
244 then randomly repeated up to 2100. Additional simplifying assumptions were made in order to
245 focus specifically on the effects of increases in tree size, as follows: no disturbances (whether
246 herbivory or management) after 2014; no effect of changes in soil N availability, thus excluding
247 confounding effects of altered N deposition; and, importantly, to avoid possible confounding of
248 temperature effects on R_M with other warming effects, a stable (1995–2005) climate and
249 atmospheric CO₂ concentration ($\sim 380 \mu\text{mol mol}^{-1}$). Exports of carbon to exudates and BVOCs
250 are very slight in this species, and they could therefore be neglected.

251 **Results**

252 ***Data-model agreement***

253 The standard model configuration satisfactorily reproduced P , R , P_n and the ratio $P_n:P$ when
254 compared to independent, site-level, carbon balance data (Wu *et al.* 2013) for the period 2006–
255 2010 (Fig. 2, Table 2), corresponding to a stand age of ~ 85 –90 yrs. P was in agreement with
256 eddy covariance data, while R was slightly underestimated compared to values in Wu *et al.*
257 Consequently, the model overestimated the average $P_n:P$ ratio by 14% compared to Wu *et al.*
258 However, Wu *et al.* argued that the values of R they obtained (by subtracting modelled
259 heterotrophic from measured ecosystem respiration) may have been overestimated, given also
260 the large standard deviation ($\pm 143 \text{ g C m}^{-2} \text{ yr}^{-1}$). The model results are otherwise in good
261 agreement with Wu *et al.* for woody carbon stocks (both above- and below-ground), annual
262 wood production (the sum of carbon allocated to stems, branches and coarse roots), and annual
263 above- and below-ground litter production (the sum of carbon allocated to leaves and fine roots)
264 (Table 2). Modelled respiration of the woody compartments, leaf and total (above- and below-
265 ground) respiration, and NSC pool and fluxes, are all compatible with values reported by

266 previous investigations, and within the ranges of total, wood and leaf respiration, and $P_n:P$ ratios
267 reported for European beech (e.g. Barbaroux & Brèda 2002; Barbaroux *et al.* 2002; Knohl *et al.*
268 2003; Granier *et al.* 2008; Davi *et al.* 2009; Genet *et al.* 2010; Guidolotti *et al.* 2013). A model
269 validation forced by actual measured climate at this site is also described in previous papers
270 (Collalti *et al.* 2016; 2018; Marconi *et al.* 2017).

271 ***The effect of varying τ***

272 The simulations produced a spectrum of diverging trajectories, ranging from an
273 approximately steady-state with constant $P_n:P$ ratio (for large τ) to a constantly decreasing $P_n:P$
274 ratio (for small τ) (Fig. 1a). For $\tau = 1 \text{ yr}^{-1}$, $P_n:P$ stays close to 0.5. For $\tau \leq 0.2 \text{ yr}^{-1}$ $P_n:P$ eventually
275 falls below the lower limit of commonly observed values (0.22; Collalti & Prentice 2019) and
276 the physiological limit of 0.2 proposed by Amthor (2000). Figure 2 also shows the effects of
277 varying τ in determining different trajectories for P_n (Fig. 2b) and R (Fig. 2c) and consequent
278 differences in the partitioning between R_M and R_G (Fig. S2) with modelled R , at the end of
279 simulations, ranging from $\sim 800 \text{ g C m}^{-2} \text{ yr}^{-1}$, giving $P_n \sim 900 \text{ g C m}^{-2} \text{ yr}^{-1}$ and $P \sim 1700 \text{ g C}$
280 $\text{m}^{-2} \text{ yr}^{-1}$ (Fig. S1 and for NSC flux Fig. S3b) consistent with a steady-state between R or P_n and
281 P , to two cases ($\tau = 0.1, 0.2 \text{ yr}^{-1}$) in which trees die from starvation.

282 The model did not generate any consistent power-law relationship between R and biomass
283 either for $b \sim 1$ (i.e. R06), or for $\sim 3/4$ (Mori *et al.* 2010), or for $\sim 2/3$ (Makarieva *et al.* 2005), or
284 for $\sim 3/5$ (Michaletz *et al.* 2014) (Table S1). The simulations indicated $b \sim 1$ initially, shifting
285 with increasing tree size to $b \sim 0.74$ for $\tau = 0.1 \text{ yr}^{-1}$ ($R^2 = 0.99, n = 117$) or 0.19 for $\tau = 1 \text{ yr}^{-1}$ (R^2
286 = 0.84, $n = 150$; ‘ n ’ corresponds to years of simulation). For the relation between R and whole-
287 plant N, again the simulations indicated $b \sim 1$ initially, shifting to $b \sim 0.82$ for $\tau = 0.1 \text{ yr}^{-1}$ ($R^2 =$
288 0.99, $n = 117$) or 0.27 for $\tau = 1 \text{ yr}^{-1}$ ($R^2 = 0.82, n = 150$) (Figs. 3a and 3c). The highest b values
289 corresponded to simulations which ended because the trees died.

290 **Discussion**

291 ***R* is not entirely determined by *P***

292 A constant $P_n:P$ ratio, as implied by W98's hypothesis and obtained here by setting $\tau = 1 \text{ yr}^{-1}$,
293 conflicts with observations from many different tree species that show a substantially slower
294 turnover rate of living cells. In fact, parenchyma cells within secondary xylem are very often
295 more than a year old, and can be up to 200 years old (Spicer & Holbrook 2007). The constant
296 ratio hypothesis is also contrary to the evidence in trees that much of the recently-fixed
297 assimilate pool is at first stored as reserves, and only later used for metabolism or growth
298 (Schiestl-Aalto *et al.* 2015, 2019). Indeed, there are some reports of decoupling between growth
299 (which would imply some CO_2 released for both R_G and subsequently R_M) and photosynthesis –
300 with growth ceasing long before photosynthesis – because of the different sensitivities of growth
301 and photosynthesis to environmental drivers. Kagawa *et al.* (2006a) reported for *Larix gmelinii*
302 Mayr. that up to 43%, and according to Gough *et al.* (2009) up to 66%, of annual
303 photosynthetates in bigtooth aspen (*Populus grandidentata* Michx.) and northern red oak
304 (*Quercus rubra* L.) are used during the year(s) after they have been fixed. Gaudinski *et al.*
305 (2009), Malhi (2012), and Delpierre *et al.* (2016) all found negative correlations between annual
306 carbon inflows and above- or below-ground wood growth, from temperate to tropical tree
307 species. Analysing Luysaert *et al.*'s (2007) global database, Chen *et al.* (2013) found that R
308 does not scale isometrically with P . Some authors have suggested that R_G could be supplied
309 exclusively by recent photosynthates while R_M by previously stored ones (Lötscher *et al.* 2004).
310 Along the same lines, Maier *et al.* (2010) for loblolly pine trees (*Pinus taeda* L.), Kuptz *et al.*
311 (2011) for beech (*Fagus sylvatica* L.) and Norway spruce (*Picea abies* Karst.), and Lynch *et al.*
312 (2013) for a sweetgum plantation (*Liquidambar styraciflua* L.), found that both R_G and R_M are
313 not completely satisfied by recent assimilates, and that some current R_M can be derived from
314 woody tissues constructed in previous years. Litton *et al.* (2007) and Yang *et al.* (2016) both

315 found low correlations between respiration and the annual production of woody compounds in
316 large datasets. Many studies have also reported little variation in the CO₂ efflux from sapwood in
317 relation to tree-ring age, despite a stepwise decrease in the fraction of living cells towards the
318 centre of the stems (e.g. Ceschia *et al.* 2002; Spicer & Holbrook 2007; Pallardy 2010). These
319 various observations imply that some carbon is fixed one year and used for the tree's own
320 growth and metabolism in the next or subsequent years, and that the inner sapwood contains a
321 population of living cells formed in previous years.

322 These observations are all incompatible with the hypothesis of a tight coupling of R and P
323 (alone), and with model results obtained by assuming complete turnover of live cells in sapwood
324 during a single year.

325 ***R is not entirely determined by biomass***

326 On the other side of the ledger, model simulations indicate that low τ values ($\leq 0.2 \text{ yr}^{-1}$) can
327 lead to excessively high respiration burdens, impossibly low $P_n:P$ ratios (< 0.2), and ultimately
328 carbon starvation when all NSC is consumed and whole-tree R_M or growth can no longer be
329 sustained (Fig. 2). This model result is quantitatively dependent on the values adopted for C:N
330 ratio and the minimum NSC-pool which increases with tree size, but it is consistent with the idea
331 that $P_n:P$ ratios ≤ 0.2 are not physiologically sustainable (Amthor, 2000). Amthor described, for
332 a large dataset comprising grasses, tree crops and forest trees worldwide, the 0.65 – 0.2 bounds
333 as reflecting maximum growth with minimum maintenance expenditure (0.65) and minimum
334 growth with maximum physiologically sustainable maintenance costs (0.2). Such a minimum
335 $P_n:P$ value agrees also with Keith *et al.*'s (2010) reasoning (analysing *Eucalyptus* forests of
336 south-eastern Australia) that trees always require some annual biomass production in order to
337 survive. With such low τ , simulated woody $R_M:R$ exceeds 90%, a value much higher than those
338 (56 – 65%) reported by Amthor & Baldocchi (2001) (Supporting Information Fig. S2). This
339 situation initiates a spiral of decline, whereby neither P nor NSC drawdown are sufficient to

340 avoid a long-term carbon imbalance (Supporting Information, Figs. S3a and b; Wiley *et al.* 2017;
341 Weber *et al.* 2018).

342 Slightly higher τ values (from 0.3 to 0.5 yr^{-1}) were found to limit woody biomass increase
343 because of high NSC demand, leading to a shift in the allocation of assimilates to refill NSC at
344 the expense of growth, and $P_n:P$ values close to 0.2 (Fig. 2a). Values of $\tau > 0.5$ did not show
345 such behaviour and allowed structural and non-structural compounds to accumulate in parallel,
346 while P_n gradually declined and eventually levelled off. This scenario allows structural biomass
347 accumulation to continue even in older trees, as has been observed (Stephenson *et al.* 2014).

348 ***Scaling relationships***

349 We simulated forest dynamics from juvenile up to very large, mature trees while R06's results
350 supporting isometric scaling were based on measurements of seedlings and 6- to 25-year-old
351 trees with, presumably, very little heartwood. ~~Mori *et al.* (2010) analysed single trees located~~
352 ~~outside forests, so neither of these studies is strictly comparable with ours.~~ Some other studies
353 have suggested that the scaling slope of approximately 1 for whole-plant mass may be valid early
354 in stand development, but that the exponent may eventually become smaller than $3/4$, a
355 phenomenon that has been termed 'ontogenetic drift' (Makarieva *et al.* 2008). Piao *et al.* (2010) in
356 a global analysis also found a low correlation, and a low scaling exponent, between R and whole-
357 plant biomass ($b = 0.21$, corresponding to $\tau \sim 0.9$ in our simulations). Piao *et al.* (2010) argued
358 that, for large mature trees, an increasing fraction of woody C and N biomass is composed of
359 metabolically inactive heartwood, and concluded that a linear-relationship between respiration
360 and whole-plant biomass should not be expected (even if there is a linear relationship of
361 respiration to the live component of woody biomass), while a curvilinear-relationship at the
362 small end of the size-spectrum seemed more appropriate (Kozłowski & Konarzewski 2005). Li
363 *et al.* (2005) also found no evidence for an isometric or $3/4$ power scaling relationship, indicating
364 instead a range between 1.14 and 0.40, decreasing with plant size. The only approximately

365 isometric relationship we found in our simulations – across all τ used – was between R and the
366 living components of biomass C (b in the range of 0.8 to 1, with R^2 always > 0.93) and biomass
367 N ($b \sim 0.9$, with R^2 always > 0.97) (Figs. 3b and 3d; Makarieva *et al.* 2005; Kerkhoff & Enquist
368 2006; Gruber *et al.* 2009). Conversely, and in accordance with Piao *et al.* (2010), by considering
369 all woody biomass (sapwood and heartwood), b consistently deviates from linearity for both C
370 and N in biomass, because – as observed in mature and big trees – an increasing amount of
371 biomass is composed of metabolically inactive tissues that do not respire.

372 None of these findings are compatible with a tight isometric relationship of R to whole-plant
373 C (or N) biomass as proposed by R06.

374 ***R is determined by P, biomass and the demand for reserves***

375 Plants store large amounts of non-structural carbohydrates (potentially enough to rebuild the
376 whole leaf canopy one to more than four times: Hoch *et al.* 2003) and, when needed, plants can
377 actively buffer the asynchronies between carbon demand (i.e. R and G) and supply (i.e. P) by
378 tapping the pool of non-structural carbon (see Fig. S3 in Supporting Information for NSC
379 trends). Several lines of evidence and a growing body of literature support the view of an active
380 sink of NSC. That is, NSC competes with growth, while it controls R (and including other non-
381 metabolic functions, see Hartmann & Trumbore 2016), in a compensatory mechanism (high
382 NSC demands for respiration means low carbon supply for biomass growth and *vice versa*).
383 Schuur & Trumbore (2006) and Carbone *et al.* (2007) for boreal black spruce forest (*Picea*
384 *mariana* B. S. P), and Lynch *et al.* (2013) for a *Liquidambar styraciflua* plantation, all reported
385 that plant-respired CO₂ is a mixture of old and new assimilated carbohydrates. Likewise, Vargas
386 *et al.* (2009) for semi-deciduous tree species, Carbone *et al.* (2013) and Richardson *et al.* (2013)
387 for red maple trees (*Acer rubrum* L.), Muhr *et al.* (2013, 2016) for different Amazonian tree
388 species, and Solly *et al.* (2018) for pines (*Pinus sylvestris* L.), beeches (*Fagus sylvatica* L.),

389 spruces (*Picea abies* Karst) and birches (*Betula nana* L.), they all found that old NSC (up to 17
390 year old) and remobilized from parenchyma cells, can be used for growth or metabolism.

391 Aubrey & Teskey (2018) found that carbon-starved roots and whole-tree saplings die before
392 complete NSC depletion in longleaf pine (*Pinus palustris* L), but the threshold NSC level at
393 which this happens remains unknown for most species. These thresholds are likely to vary
394 among tissues (Weber *et al.* 2018), species (Hoch *et al.* 2003), phenotypes, habit and wood
395 anatomy (Dietze *et al.* 2014), and to increase with tree size (Sala *et al.* 2012). Others have
396 reported that aspen trees (*Populus tremuloides* Michx) cannot draw down NSC to zero because
397 of limitations in carbohydrate remobilization and/or transport (Wiley *et al.* 2017). A minimum
398 NSC level, which has been found to proportionally increase with biomass, may also be required
399 to maintain a safety margin and a proper internal functioning of trees (including
400 osmoregulation), regardless of whether growth is limited by carbon supply (Woodruff &
401 Meinzer 2011; Sala *et al.* 2011, 2012; Martínez-Vilalta *et al.* 2016; Huang *et al.* 2019). Genet *et*
402 *al.* (2010) found for beech and sessile oak (*Quercus petraea* (Matt.) Liebl.) shifts during
403 ontogeny in carbon allocation from biomass growth to reserves regardless of seasonal
404 fluctuations, habitat and climate. Palacio *et al.* (2012) found that black pine trees (*Pinus nigra*
405 Arnold) that were repeatedly defoliated for 11 years, and left to recover for another 6 years,
406 showed reduced growth but similar stem NSC concentration when compared to control trees.
407 Fierravanti *et al.* (2019) found that low NSC accumulation in conifers defoliated by spruce
408 budworm led to a reduction in growth and an increase in mortality.

409 It has further been suggested that a considerable fraction of NSC (mostly starch) in the inner
410 part of wood may become compartmentalized and sequestered away from sites of phloem
411 loading, and thus no longer accessible for either tissue growth or respiration (Sala *et al.* 2012).
412 Root exudation to mycorrhizal fungi and secondary metabolites (not accounted for here) could
413 also accelerate NSC depletion (Pringle 2016), and potentially create a risk of carbon starvation
414 even for values of τ well above 0.2.

415 Overall, asynchrony between (photosynthetic) source and (utilization) sink implies some
416 degree of uncoupling of R , and consequently P_n (and growth), from P and biomass. Carbon
417 demand for metabolism and growth can be mediated by tapping the pool of NSC but only to the
418 extent and to the amount that it is accessible and useable by plants. Therefore, if this active role
419 of NSC can be experimentally confirmed, it will imply that plants prioritize carbon allocation to
420 NSC over growth.

421 ***Implications***

422 It has been suggested that the observed decline of P_n during stand development cannot be
423 exclusively caused by increasing respiration costs with tree size (Tang *et al.* 2014). The idea,
424 implicit in the growth and maintenance respiration paradigm – that the maintenance of existing
425 biomass (R_M) is a ‘tax’ that must be paid first and which ultimately controls growth – has also been
426 criticized for lack of empirical support (Gifford 2003). While this paradigm has some weaknesses
427 (Thornley 2011), and has not changed much over the last 50 years despite some theoretical and
428 experimental refinements (e.g. accounting for temperature acclimation: Tjoelker *et al.* 1999), it
429 reflects the prevailing assumption embedded in models because, so far, no other general (and
430 similarly promising) mechanistic approach to the modelling of whole-plant respiration has been
431 proposed.

432 Although plant physiologists are well aware that respiration is neither entirely determined by
433 photosynthesis nor entirely determined by biomass, but rather by plants’ energy requirements for
434 their functioning and growth, we highlight the persistent large uncertainty surrounding this issue in
435 the forestry and forest ecology literature. Both the literature reviewed here and our model results
436 show that any successful modelling approach for plant respiration must necessarily allow plants to
437 steer a middle course between tight coupling to photosynthesis (inconsistent with a carbon steady-
438 state in forest development, and with many observations) and dependence on ever-increasing

439 biomass (risking carbon starvation and death), coupled to the buffering capacity of reserves during
440 carbon imbalances (see Box 1). It seems likely that plants strive to keep an appropriate quantity of
441 living cells that can effectively be sustained by photosynthesis or, when necessary, by drawing on
442 NSC and down regulating allocation to non-photosynthetic, but metabolically active, tissues as to
443 minimize maintenance costs (Makarieva *et al.* 2008). This would suggest active control on carbon
444 use efficiency and on the turnover of the living cells by plants. Yet, despite its importance, NSC use
445 is overlooked in “state-of-the-art” vegetation models. The present study has not been able to
446 provide tight numerical constraints on τ . However, we can unequivocally reject the two, mutually
447 incompatible simplifying hypotheses as both conflict with a large and diverse body of evidence.

448 Other processes, including hydraulic and nutrient limitations, may be in play (Carey *et al.*
449 2001; Xu *et al.* 2012). Malhi *et al.* (2015) argued for a link between high whole-plant mortality
450 rates and high forest productivity as ecophysiological strategies that favour rapid growth may also
451 result in fast turnover of trees. However, Spicer & Holbrook (2007) noted that metabolic activity
452 does not decline with cell age; and Mencuccini *et al.* (2005) noted that effects of age *per se*
453 (including cellular senescence and apoptosis) are likely not responsible for declining P , but are
454 linked to the functional and structural consequences of increasing plant size. This is an important
455 conclusion because it allows models to avoid accounting explicitly for age.

456 In conclusion, to reduce the large uncertainty surrounding this issue, it will be necessary on
457 the one hand to use models that explicitly account for the turnover of biomass and the reserves
458 usage; and on the other hand, to carry out experimental and field measurements of the dynamics of
459 living cells in wood and the availability of and demand for labile carbon stores. These processes
460 have a direct bearing on the stocks and fluxes that drive the carbon balance of forests.

461 Acknowledgements

462 We gratefully acknowledge Owen K. Atkin, Dennis Baldocchi, Ben Bond-Lamberty, Marcos
463 Fernández-Martínez, Roger Gifford, Francesco Loreto, Maurizio Mencuccini and Richard

464 Waring for reading the many drafts of this paper and having returned many insightful and
465 constructive comments. We thank Andreas Ibrom for providing the site data and for the useful
466 discussions and Carlo Trotta, Angelo Rita, Giulia Mengoli, Elisa Grieco for technical assistance.
467 This work contributes to the AXA Chair Programme in Biosphere and Climate Impacts and the
468 Imperial College initiative on Grand Challenges in Ecosystems and the Environment. It has
469 received funding from the European Research Council (ERC) under the European Union's
470 Horizon 2020 research and innovation programme (grant agreement No: 787203 REALM). We
471 thank the ISI-MIP project (<https://www.isimip.org/>) and the COST-Action PROFOUND (FP
472 1304) for providing the climate historical scenarios and site data used in this work. The 3D-
473 CMCC-CNR-FEM model code is freely available at: <https://github.com/3D-CMCC-CNR-FEM>

474 **Author contribution:** A.C., M.T., G.H., G.G., G.P., G.M., and I.C.P. designed the study.
475 A.C., G.H., G.G., and M.G.R. carried out modelling work and data analysis. A.C., G.G., M.G.R.,
476 G.P., and I.C.P. drafted the manuscript with contributions from all authors.

477

478

479

480

481 **References**

482 Agutter P.S., Tuszynski J.A. (2011). Analytic theories of allometric scaling, *The Journal of*
483 *Experimental Biology*, 214: 1055–1062.

484 Amthor J. (2000). The McCree-de Wit-Penning de Vries-Thornley Respiration Paradigms: 30 Years
485 Later. *Annals of Botany*, 86: 1–20.

486 Amthor J., Baldocchi D. (2001). Terrestrial higher plant respiration and net primary production. In
487 *Terrestrial Global Productivity*, ed. J. Roy, B. Sauger, and H. A. Mooney, 33–59. San Diego,
488 CA: Academic Press

489 Arora V., Boer G. (2005). A parameterization for leaf phenology in the terrestrial ecosystem
490 component of climate models. *Global Change Biology*, 11 (1): 33–59.

491 Aubrey D.P., Teskey R.O. (2018). Stored carbohydrates can maintain root respiration for extended
492 periods. *New Phytologist*, 218: 142–152.

493 Barbaroux C., Brèda N. (2002). Contrasting distribution and seasonal dynamics of carbohydrate
494 reserve in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. *Tree*
495 *Physiology*, 22: 1201–1210.

496 Barbaroux C., Brèda E., Dufrêne E. (2002). Distribution of above-ground and below-ground
497 carbohydrate reserves in adult trees of two contrasting broad-leaved (*Quercus cerris* and *Fagus*
498 *sylvatica*). *New Phytologist*, 157: 605–615.

499 Bonan G.B., Levis S., *et al.* (2003). A dynamic global vegetation model for use with climate
500 models: concepts and description of simulated vegetation dynamics. *Global Change Biology*, 9:
501 1543–1566

502 Bond-Lamberty B., Gower S., *et al.* (2005). Reimplementation of the Biome-BGC model to
503 simulate successional change. *Tree Physiology*, 25: 413–424.

504 Campioli M., Verbeeck H., *et al.* (2013). Can decision rules carbon allocation for years with
505 contrasting and extreme weather conditions? A case study for three temperate beech forests.
506 *Ecological Modelling*, 263: 42–55.

507 Cannell M., Thornley J. (2000). Modelling the Components of Plant Respiration: Some Guiding
508 Principles. *Annals of Botany*, 85: 45–54.

509 Carbone M.S., Czimzik CI, McDufee K.E., Trumbore S.E. (2007). Allocation and residence time
510 of photosynthetic products in a boreal forest using a low-level ^{14}C pulse-chase labelling
511 technique. *Global Change Biology*, 13: 466–477.

512 Carbone M.S., Czimczik C.I., Keenan T.F., *et al.* (2013). Age, allocation and availability of non-
513 structural carbon in mature red maple trees. *New Phytologist*, 200: 1145–1155.

514 Carey E.V., Sala A., Keane R., *et al.* (2001). Are old forests underestimated as global carbon sinks?
515 *Global Change Biology*, 7: 339–344

516 Chapin III F.S., Woodwell G.M., *et al.* (2006). Reconciling Carbon-cycle Concepts, Terminology,
517 and Methods. *Ecosystems*, 9(7): 1041–1050

518 Chen G., *et al.* (2013). Allocation of gross primary production in forest ecosystems: allometric
519 constraints and environmental responses. *New Phytologist*, 200: 1176–1186.

520 Ceschia E., Damesin C., *et al.* (2002). Spatial and seasonal variations in stem respiration of beech
521 trees (*Fagus sylvatica*). *Annals of Forest Science*, 59: 801–812.

522 Collalti A., Perugini L., Santini M., *et al.* (2014). A process-based model to simulate growth in
523 forests with complex structure: Evaluation and use of 3D-CMCC Forest Ecosystem Model in
524 a deciduous forest in Central Italy. *Ecological Modelling*, 272: 362–378.

525
526 Collalti A., Marconi S., Ibrom A., *et al.* (2016). Validation of 3D-CMCC Forest Ecosystem Model
527 (v.5.1) against eddy covariance data for 10 European forest sites. *Geoscientific Model
528 Development*, 9: 479–504.

529 Collalti A., Trotta C., Keenan T.F., *et al.* (2018). Thinning can reduce losses in carbon use
530 efficiency and carbon stocks in managed forests under warmer climate. *Journal of Advances in
531 Modeling Earth System*, 10(10): 2427–2452.

532 Collalti A., Thornton P.E., Cescatti A., *et al.* (2019). The sensitivity of the forest carbon budget
533 shifts across processes along with stand development and climate change. *Ecological
534 Applications*, 29(2): 1–18.

535 Collalti A., Prentice I.C. (2019). Is NPP proportional to GPP? Waring's hypothesis twenty years on.
536 *Tree Physiology*, doi: 10.1093/treephys/tpz034.

537 Damesin C., Ceschia E., *et al.* (2002). Stem and branch respiration of beech: from tree
538 measurements to estimations at the stand level. *New Phytologist*, 153: 159–172

539 Damesin C. (2003). Respiration and photosynthesis characteristics of current-year stems of *Fagus
540 sylvatica*: from the seasonal pattern to an annual balance. *New Phytologist*, doi: 10.1046/j.1469-
541 8137.2003.00756.x

542 Davi H., Barbaroux C., Francois C., Dufrêne E. (2009). The fundamental role of reserves and
543 hydraulic constraints in predicting LAI and carbon allocation in forests. *Agricultural and
544 Forest Meteorology*, 149: 349–361.

545 Delpierre N., *et al.* (2016). Wood phenology, not carbon input, controls the interannual variability
546 of wood growth in a temperate oak forest. *New Phytologist*, 210: 459–470

547 DeLucia E., Drake J., Thomas R., *et al.* (2007). Forest carbon use efficiency: Is respiration a
548 constant fraction of gross primary production? *Global Change Biology*, 13, 1157–1167.

549 Dewar R.C., Medlyn B.E., McMurtrie R.E.. (1999). Acclimation of the respiration/photosynthesis
550 ratio to temperature: insights from a model. *Global Change Biology*, 5: 615-622.

551 Dietze M., Sala A., *et al.* (2014). Nonstructural Carbon in Woody Plants. *Annual Review of Plant
552 Biology*, 65: 667–87.

553 Doughty C.E., Metcalfe D., Girardin C., *et al.* (2015). Drought impact on forest carbon dynamics
554 and fluxes in Amazonia. *Nature*, 519: 78–82.

555 Dufrêne E., Davi E., *et al.* (2005). Modelling carbon and water cycles in a beech forest. Part I:
556 Model description and uncertainty analysis on modelled NEE. *Ecological Modelling*, 185: 407-
557 436.

558 Enquist B.J., *et al.* (2007). Biological scaling: Does the exception prove the rule? *Nature*, doi:
559 10.1038/nature05548

560 Fatichi S., Leunzinger S., Körner C. (2014). Moving beyond photosynthesis: from carbon source to
561 sink-driven vegetation modeling. *New Phytologist*, 201: 1086–1095.

562 Fierravanti A, Rossi S, Kneeshaw D, *et al.* (2019). Low Non-structural Carbon Accumulation in
563 Spring Reduces Growth and Increases Mortality in Conifers Defoliated by Spruce Budworm.
564 *Front. For. Glob. Change*, 2:15, doi: 10.3389/ffgc.2019.00015

565 Friedlingstein P., Joel G., *et al.* (1999). Toward an allocation scheme for global terrestrial carbon
566 models. *Global Change Biology*, 5: 755–770.

567 Friedlingstein P., Meinshausen M., *et al.* (2014). Uncertainties in CMIP5 Climate Projections due to
568 Carbon Cycle Feedbacks. *Journal of Climate*, 27: 511–526.

569 Friend A.D., Lucht W., Rademacher T.T., Keribin R., Betts, R., *et al.* (2014). Carbon residence time
570 dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric
571 CO₂. *Proceedings of the National Academy of Sciences*, 111(9): 3280–3285.

572 Furze M.E., *et al.* (2019). Whole-tree nonstructural carbohydrate storage and seasonal dynamics in
573 five temperate species. *New Phytologist*, 221: 1466–1477. doi: 10.1111/nph.15462.

574 Gaudinski J.B., Torn M.S., *et al.* (2009). Use of stored carbon reserves in growth of temperate tree
575 roots and leaf buds: analyses using radiocarbon measurements and modelling. *Global Change
576 Biology*, 15: 992–1014.

577 Genet H., Bréda N., Dufrêne E. (2010). Age-related variation in carbon allocation at tree and stand
578 scales in beech (*Fagus sylvatica* L.) and sessile oak (*Quercus petraea* (Matt.) Liebl.) using a
579 chronosequence approach. *Tree Physiology*, 30: 177–192.

580 Gifford R. (2003). Plant respiration in productivity models: conceptualisation, representation and
581 issues for global terrestrial carbon-cycle research. *Functional Plant Biology*, 30: 171–186.

582 Goulden M.L., *et al.* (2011). Patterns of NPP, GPP, respiration, and NEP during boreal forest
583 succession. *Global Change Biology*, 17(2): 855–871.

584 Gough C.M., Vogel C.S., *et al.* (2008). Multi-year convergence of biometric and meteorological
585 estimates of forest carbon storage. *Agricultural and Forest Meteorology*, 148: 158–170.

586 Gough C.M., Flower C.E., *et al.* (2009). Whole-ecosystem labile carbon production in a north
587 temperate deciduous forest. *Agricultural and Forest Meteorology*, 149: 1531–1540.

588 Granier A., Breda N., *et al.* (2008). Ten years of fluxes and stand growth in a young beech forest at
589 Hesse. *Annals of Forest Science*, 65: 704. doi:10.1051/forest:2008052.

590 Gruber A., Wieser G., Oberhuber W. (2009). Intra-annual dynamics of stem CO₂ efflux in relation
591 to cambial activity and xylem development in *Pinus cembra*. *Tree Physiology*, 26: 641–649.

592 Guidolotti G., *et al.* (2013). Effect of environmental variables and stand structure on ecosystem
593 respiration components in a Mediterranean beech forest. *Tree Physiology*, 33: 960–972

594 Hartmann H., Trumbore S. (2016). Understanding the roles of nonstructural carbohydrates in forest
595 trees – from what we can measure to what we want to know. *New Phytologist*, 211: 386–403

596 Heskel M.A., O'Sullivan O., *et al.* (2016). Convergence in the temperature response of leaf
597 respiration across biomes and plant functional types. *Proceedings of the National Academy of
598 Sciences*, www.pnas.org/cgi/doi/10.1073/pnas.1520282113

599 Hoch G., Richter A., Körner C. (2003). Non-structural carbon compounds in temperate forest trees.
600 *Plant, Cell and Environment*, 26: 1067–1081.

601 Huang J., Hammerbacher A., Weinhold A., *et al.* (2019). Eyes on the future – evidence for trade-
602 offs between growth storage and defense in Norway spruce. *New Phytologist*, 222: 144–158

603 Huntingford C., Atkin O.K., *et al.* (2017). Implications of improved representations of plant
604 respiration in a changing climate. *Nature Communications*, doi:10.1038/s41467-017-01774-z.

605 Kagawa A., Sugimoto A., Maximov T.C. (2006a). Seasonal course of translocation, storage and
606 remobilization of ¹³C pulse-labeled photoassimilate in natural growing *Larix gmelinii* saplings.
607 *New Phytologist*, 171: 793–804.

608 Kagawa A., Sugimoto A., Maximov T.C. (2006b). ¹³CO₂ pulse-labelling of photoassimilates reveals
609 carbon allocation within and between tree rings. *Plant, Cell & Environment*, 29: 1571–1584

610 Keith, H., Mackey, B., *et al.* (2010). Estimating carbon carrying capacity in natural forest
611 ecosystems across heterogeneous landscapes: addressing sources of error. *Global Change
612 Biology*, 16: 2971–2989.

613 Kerkhoff A.J., Enquist B.J. (2005). Ecosystem allometry: the scaling of nutrients stocks and
614 primary productivity across plant communities. *Ecology Letters*, 9: 419–427

615 Kira T., Shidei T. (1967) Primary production and turnover of organic matter in different forest
616 ecosystems of the Western Pacific. *Japanese Journal of Ecology*, 17:70–87.

617 Kirschbaum M.U.F. (2000). Forest growth and species distribution in a changing climate. *Tree
618 Physiology*, 20: 309-322.

619 Kirschbaum M.U.F. (2005). A model analysis of the interaction between forest age and forest
620 responsiveness to increasing CO₂ concentration. *Tree Physiology*, 25: 953–963.

621 Knohl A., Schulze E.-D., *et al.* (2003). Large carbon uptake by an unmanaged 250-year-old
622 deciduous forest in Central Germany. *Agricultural and Forest Meteorology*, 118: 151–167

623 Kozłowski T.T. (1992). Carbohydrate sources and sinks in woody plants. *Botanical Review*, 58:
624 107–222

625 Kozłowski T.T., Konarzewski M. (2005). West, Brown and Enquist's model of allometric scaling
626 again: the same questions remain. *Functional Ecology*, 19: 739–743

627 Krinner G., Viovy N., *et al.* (2005). A dynamic global vegetation model for studies of the coupled
628 atmosphere-biosphere system. *Global Biogeochemical Cycles*, doi:10.1029/2003GB002199.

629 Kuptz D., Fleischman F., *et al.* (2011). Seasonal patterns of carbon allocation to respiratory pools in
630 60-yr-old deciduous (*Fagus sylvatica*) and evergreen (*Picea abies*) trees assessed via whole-
631 tree stable carbon isotope labelling. *New Phytologist*, 191: 160–172.

632 Li H.T., Han X.G., Wu J.G. (2005). Lack of evidence for ¾ scaling of metabolism in terrestrial
633 plants. *Journal of Integrative Plant Biology*, doi.org/10.1111/j.1744-7909.2005.00167.x

634 Litton C., Raich J., Ryan M.G. (2007). Carbon allocation in forest ecosystems. *Global Change
635 Biology*, 13: 2089–2109.

636 Lynch D.J., Matamala R., Iversen C.M., Norby R.J., Gonzalez-Meler M.A. (2013). Stored carbon
637 partly fuels fine-root respiration but is not used for production of new fine roots. *New
638 Phytologist*, 199: 420–430.

639 Machado J.-L., Reich P.B. (2006). Dark respiration rate increases with plant size in saplings of
640 three temperate tree species despite decreasing tissue nitrogen and nonstructural carbohydrates.
641 *Tree Physiology*, 26: 915–923.

642 Malhi Y. (2012). The productivity, metabolism and carbon cycle of tropical forest vegetation.
643 *Journal of Ecology*, 100: 65–75.

644 Malhi Y., Doughty C.E., *et al.* (2015). The linkages between photosynthesis, productivity, growth
645 and biomass in lowland Amazonian forests. *Global Change Biology*, 21: 2283–2295.

646 Maier C.A., Johnsen K.H., *et al.* (2010). Relationships between stem CO₂ efflux, substrate supply,
647 and growth in young loblolly pine trees. *New Phytologist*, 185: 502–513.

648 Makarieva A.M., Gorshkov V.G., Li B.-L. (2005). Revising the distributive network models of
649 West, Brown & Enquist (1997) and Banavar, Maritan & Rinaldo (1999). Metabolic inequity of
650 living tissues provides clues for the observed allometric scaling rules. *Journal of Theoretical
651 Biology*, 237, 291–307.

652 Makarieva A.M., Gorshkov V.G., Li B.-L., *et al.* (2008). Mean mass-specific metabolic rates are
653 strikingly similar across life's major domains: Evidence for life's metabolic optimum.
654 *Proceedings of the National Academy of Sciences*, doi/10.1073/pnas.0802148105.

655 Mäkelä A., Valentine H. (2001). The ratio of NPP to GPP: evidence of change over the course of
656 stand development. *Tree Physiology*, 21: 1015–1030.

657 Marconi S., Chiti T., *et al.* (2017). The Role of Respiration in Estimation of Net Carbon Cycle:
658 Coupling Soil Carbon Dynamics and Canopy Turnover in a Novel Version of 3D-CMCC
659 Forest Ecosystem Model. *Forests*, 8: 220–227.

660 Martínez-Vilalta J., Sala A., *et al.* (2016). Dynamics of non-structural carbohydrates in terrestrial
661 plants: a global synthesis. *Ecological Monographs*, 86(4): 495–516

662 McDowell N., Pockman W.T., *et al.* (2008). Mechanisms of plant survival and mortality during
663 drought: why do some plants survive while others succumb to drought? *New Phytologist*, 178:
664 719–739.

665 McCree K. (1970). An equation for the rate of respiration of white clover plants grown under
666 controlled conditions. In S. I., *Prediction and measurement of photosynthetic productivity* (pp.
667 221–229). Wageningen: The Netherlands: Centre for Agricultural Publishing and
668 Documentation.

669 McMurtrie R.E., Norby R.J., *et al.* (2008). Why is plant-growth response to elevated CO₂ amplified
670 when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation
671 hypothesis. *Functional Plant Biology*, 35: 521–534

672 Medlyn, B., & Dewar, R. (1999). Comment on the article by R. H. Waring, J. J. Landsberg and M.
673 Williams relating net primary production to gross primary production. *Tree Physiology*, 19 (2):
674 137–138.

675 Meir P., Grace J. (2002). Scaling relationship for woody tissue respiration in two tropical rain
676 forests. *Plant, Cell and Environment*, 25: 963–973

677 Merganičová K., Merganič J., Lehtonen A., *et al.* (2019). Forest carbon allocation modelling under
678 climate change. *Tree Physiology* (under review).

679 Mencuccini M., Martínez-Vilalta J. *et al.* (2005). Size-mediated ageing reduces vigour in trees.
680 *Ecology Letters*, 8: 1183–1190

681 Mori S., Yamaji K., *et al.* (2010). Mixed-power scaling of whole-plant respiration from seedlings to
682 giant trees. *Proceedings of the National Academy of Sciences*,
683 www.pnas.org/cgi/doi/10.1073/pnas.0902554107

684 Muhr J., Angert A., *et al.* (2013). Carbon dioxide emitted from live stems of tropical trees is several
685 years old. *Tree Physiology*, 33: 743–752

686 Muhr J., Messier C., Delagrange S., *et al.* (2016). How fresh is maple syrup? Sugar maple trees
687 mobilize carbon stored several years previously during early springtime sap-ascent. *New
688 Phytologist*, 209: 1410–1416.

689 O'Connor M.P., Kemp S.J., Agosta S.J., *et al.* (2007). Reconsidering the mechanistic basis of the
690 metabolic theory of ecology. *Oikos*, 116: 1058–1072.

691 Odum E.P. (1969). The Strategy of Ecosystem Development. *Science*, doi:
692 [10.1126/science.164.3877.262](https://doi.org/10.1126/science.164.3877.262)

693 Oleson K.W., Lawrence D.M., *et al.* (2013). Technical Description of version 4.5 of the
694 Community Land Model (CLM). Ncar Technical Note NCAR/TN-503+STR, National Center
695 for Atmospheric Research, Boulder, CO, 422 pp.

696 Palacio S., Hernández R., Maestro-Martínez M., Camarero J.J. (2012). Fast replenishment of initial
697 carbon stores after defoliation by the pine processionary moth and its relationship to the re-
698 growth ability of trees. *Trees – Structure and Function*, 26: 1627–1640

699 Pallardy S.G., (2010). *Physiology of Woody Plants*, New York, USA: Academic Press.

700 Pappas C., Fatichi S., *et al.* (2013). Sensitivity analysis of a process-based ecosystem model:
701 Pinpointing parameterization and structural issues. *Journal of Geophysical Research*, 118: 502–
702 528

703 Penning de Vries F.W.T. (1975). The cost of maintenance processes in plants. *Annals of Botany*, 39,
704 77–92.

705 Piao S., Luyssaert S., *et al.* (2010). Forest annual carbon cost: a global-scale analysis of autotrophic
706 respiration. *Ecology*, 91 (3): 652–661.

707 Pietsch S.A., *et al.* (2005) BGC-model parameters for tree species growing in central European
708 forests. *Forest Ecology and Management*, 211: 264–295.

709 Poulter B., Hattermann F., *et al.* (2010). Robust dynamics of Amazon dieback to climate change
710 with perturbed ecosystem model parameters. *Global Change Biology*, 16: 2476–2495.

711 Price C.A., Gillooly J.F., *et al.* (2010). The metabolic theory of ecology: prospects and challenges
712 for plant biology. *New Phytologist*, 188: 696–710

713 Price C.A., Wietz J.S., *et al.* (2012). Testing the metabolic theory of ecology. *Ecology Letters*, 15:
714 1465–1474.

715 Reich P.B., Tjoelker M.G., *et al.* (2006). Universal scaling of respiratory metabolism, size and
716 nitrogen in plants. *Nature*, doi:10.1038/nature04282.

717 Reich P.B., Tjoelker M.G., *et al.* (2008). Scaling of respiration to nitrogen in leaves, stems and
718 roots of higher land plants. *Ecology Letters*, doi: 10.1111/j.1461-0248.2008.01185.x

719 Reyer C., Silveyra Gonzalez R. Dolos K., *et al.* (2019). The PROFOUND database for evaluating
720 vegetation models and simulating climate impacts on forests. V. 0.1.12. *GFZ Data Services*.
721 <http://doi.org/10.5880/PIK.2019.008>

722 Richardson A.D., Carbone M.S., *et al.* (2013). Seasonal dynamics and age of stemwood
723 nonstructural carbohydrates in temperate forest trees. *New Phytologist*, 206: 590–597.

724 Richardson A.D., Carbone M.S., *et al.* (2013). Distribution and mixing of old and new nonstructural
725 carbon in two temperate trees. *New Phytologist*, 197: 850–861.

726 Roxburgh S.H., Berry S.L., Buckley T.N., Barnes B., Roderick M.L. (2005). What is NPP?
727 Inconsistent accounting of respiratory fluxes in the definition of net primary production.
728 *Functional Ecology*, 19: 378–382.

729 Sala, A., Fouts W., Hoch G. (2011). Carbon storage in trees: does relative carbon supply decrease
730 with tree size? In *Size- and Age-Related Changes in Tree Structure and Function*. Eds. Meinzer
731 F.C., Lachenbruch B. and Dawson T.E.. Springer, Dordrecht, pp. 287–306.

732 Sala A., Woodruff D.R., Meinzer F.C. (2012). Carbon dynamics in trees: feast or famine? *Tree
733 Physiology*, 32: 764–775.

734 Sala A., Mencuccini M. (2014). Plump trees win under drought. *Nature Climate Change*, 4: 666–
735 667.

736 Sato H., Itoh A., Kohyama T. (2007). SEIB–DGVM: A new Dynamic Global Vegetation Model
737 using a spatially explicit individual-based approach. *Ecological Modelling*, 200: 279–307

738 Schiestl-Aalto P., Kulmala L., *et al.* (2015). CASSIA – a dynamic model for predicting intra-annual
739 sink demand and interannual growth variation in Scots pine. *New Phytologist*, 206: 647–659.

740 Schiestl-Aalto P., Ryhti K. Mäkelä A., *et al.* (2019). Analysis of the NSC Storage Dynamics in Tree
741 Organs Reveals the Allocation to Belowground Symbionts in the Framework of Whole Tree
742 Carbon Balance. *Front. For. Glob. Change*, 2:17. doi: 10.3389/ffgc.2019.00017

743 Schuur E.A.G., Trumbore S.E. (2006). Partitioning sources of soil respiration in boreal black spruce
744 forest using radiocarbon. *Global Change Biology*, 12: 165–176.

745 Schwalm C.R., Ek A.R. (2004). A process-based model of forest ecosystems driven by
746 meteorology. *Ecological Modelling*, 179: 317–348.

747 Sitch S., Smith B., *et al.* (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial
748 carbon cycling in the LPJ dynamic global vegetation model. *Global Change Biology*, 9: 161–
749 185.

750 Smith B., Prentice I.C., Sykes M.T. (2001). Representation of vegetation dynamics in the modelling
751 of terrestrial ecosystems: comparing two contrasting approaches within European climate
752 space. *Global Ecology and Biogeography*, 10: 621–637

753 Smith A.M., Stitt M. (2007). Coordination of carbon supply and plant growth. *Plant, Cell and
754 Environment*, 30: 1126–1149.

755 Solly E.F., Brunner I., Helmisaari H.-S., *et al.* (2018). Unravelling the age of fine roots of temperate
756 and boreal forests. *Nature Communications*, DOI: 10.1038/s41467-018-05460-6

757 Spicer R., Holbrook N.M. (2007). Parenchyma cell respiration and survival in secondary xylem:
758 does metabolic activity decline with cell age?. *Plant, Cell and Environment*, 30: 934–943

759 Stephenson N.L., Das A.J., *et al.* (2014). Rate of accumulation increases continuously with tree
760 size. *Nature*, doi:10.1038/nature12914.

761 Tang J., Luyssaert S., Richardson A.D., Kutsch W., Janssens I.A. (2014). Steeper declines in forest
762 photosynthesis than respiration explain age-driven decreases in forest growth. *Proceedings of
763 the National Academy of Sciences*, doi/10.1073/pnas.1320761111.

764 Tatarinov F., Cenciala E. (2006). Application of BIOME-BGC model to managed forests 1.
765 Sensitivity analysis. *Forest Ecology and Management*, 237: 267–279.

766 Tjoelker M.G., Oleksyn J., Reich P.B. (1999). Acclimation of respiration to temperature and CO₂ in
767 seedlings of boreal tree species in relation to plant size and relative growth rate. *Global Change
768 Biology*, 49: 679–691.

769 Thornley JHM (1970). Respiration, growth and maintenance in plants. *Nature* 227, 304–305.

770 Thornley J.H.M., Cannell M.G.R. (2000). Modelling the components of plant respiration:
771 representation and realism. *Annals of Botany*, 85: 55–67.

772 Thornley J.H.M. (2011). Plant growth and respiration re-visited: maintenance respiration defined –
773 it is an emergent property of, not a separate process within, the system – and why the
774 respiration: photosynthesis ratio is conservative. *Annals of Botany*, 108: 1365–1380

775 Thornton P.E., Law B.E., *et al.* (2002). Modeling and measuring the effects of disturbance history
776 and climate on carbon and water budgets in evergreen needleleaf forests. *Agricultural and
777 Forest Meteorology*, 113: 185–222.

778 Turner M., Beer C., *et al.* (2017). Evaluation of climate-related carbon turnover processes in global
779 vegetation models for boreal and temperate forests. *Global Change Biology*, doi:
780 10.1111/gcb.13660

781 Van Oijen M., Rougier J., Smith R. (2005). Bayesian calibration of process-based models: bridging
782 the gap between models and data. *Tree Physiology*, 25: 915–927.

783 Van Oijen M., Schapendonk A., Hoglind M. (2010). On the relative magnitudes of photosynthesis,
784 respiration, growth and carbon storage in vegetation. *Annals of Botany*, 105: 739–797.

785 Vargas R., Trumbore S.E., Allen M.F. (2009). Evidence of old carbon used to grow new fine roots
786 in a tropical forest. *New Phytologist*, 182: 710–718.

787 Waring R.H., Landsberg J.L., Williams M. (1998). Net primary production of forests: a constant
788 fraction of gross primary production? *Tree Physiology*, 18: 129–134.

789 Warnant P., *et al.* (1994). CARAIB: A global model of terrestrial biological productivity. *Global*
790 *Biochemical Cycles*, 8(3): 255–270.

791 Warszawski L., Frieler K., *et al.* (2014). The Inter-Sectoral Impact Model Intercomparison Project
792 (ISI-MIP): Project Framework. *Proceedings of the National Academy of Sciences*, doi:
793 10.1073/pnas.1312330110.

794 Weber R., Schwendener A., *et al.* (2018). Living on next to nothing: tree seedlings can survive
795 weeks with very low carbohydrate concentration. *New Phytologist*, doi: 10.1111/nph.14987.

796 Werten T.M., Teskey R.O. (2008). Close coupling of whole-plant respiration to net photosynthesis
797 and carbohydrates. *Tree Physiology*, 28: 1831–1840.

798 West G.B., Brown J.H., Enquist B.J. (1999). A general model for the structure and allometry of
799 plant vascular systems. *Nature*, 400, 664–667

800 White M., Thornton P.E., *et al.* (2000). Parameterization and Sensitivity Analysis of the BIOME-
801 BGC Terrestrial Ecosystem Model: Net Primary Production Controls. *Earth Interactions*, 4: 1–
802 85.

803 Wiley E., Helliker B. (2012). A re-evaluation of carbon storage in trees lends greater support for
804 carbon limitation to growth. *New Phytologist*, 195: 285–289.

805 Wiley E., *et al.* (2017). Dying piece by piece: carbohydrate dynamics in aspen (*Populus*
806 *tremuloides*) seedlings under severe carbon stress. *Journal of Experimental Botany*, 68(18):
807 5221–5232.

808 Woodruff D.R., Meinzer F.C. (2011). Water stress, shoot growth and storage of nonstructural
809 carbohydrates along a tree height gradient in a tall conifer. *Plant, Cell & Environment*, 11:
810 1920–1930.

811 Wu J., Larsen K., *et al.* (2013). Synthesis on the carbon budget and cycling in a Danish, temperate
812 deciduous forest. *Agricultural and Forest Meteorology*, 181: 94–107.

813 Xu C.-Y., *et al.* (2012). Age-related decline of stand biomass accumulation is primarily due to
814 mortality and not to reduction in NPP associated with individual tree physiology, tree growth or
815 stand structure in a *Quercus*-dominated forest. *Journal of Ecology*, 100: 428–440

816 Yang Y., *et al.* (2011). Carbon and nitrogen dynamics during forest stand development: a global
817 synthesis. *New Phytologist*, 190: 977–989

818 Yang J., He Y., Aubrey D.P., *et al.* (2016). Global patterns and predictors of stem CO₂ efflux in
819 forest ecosystems. *Global Change Biology*, 22: 1433–1444.

820 Yoda K., Kira T., Ogawa H., Hozumi K. (1963). Self-thinning in overcrowded pure stands under
821 cultivated and natural conditions. *J. Biol. Osaka City Univ.* 14, 107–129.

822 Zaehle S., Sitch S., *et al.* (2005). Effects of parameter uncertainties on the modelling of terrestrial
823 biosphere dynamics. *Global Biogeochemical Cycles*, 19, doi:10.1029/2004GB002395

824

825

826

827

828 **Tables**

829 **Table 1** Underlying modelling assumptions adopted in the analysis

τ level	Corresponding underlying assumption	Reference
$\tau = 0.1$	Low turnover rate, which implies only accumulation of respiring biomass (<i>i.e.</i> $R \propto \text{biomass}$)	Reich <i>et al.</i> 2006
$\tau = 1$	High turnover rate, with death of cells annually equalling live cell production (<i>i.e.</i> $R \propto P$)	Waring <i>et al.</i> 1998
$0.1 < \tau < 1$	Intermediate turnover rate	e.g. White <i>et al.</i> 2000, see Box 2
$\tau = 0$	Functionally impossible, because it would imply no mortality of cells	-
$\tau > 1$	Physically impossible, because turnover would exceed the number of available living cells	-

830

831 **Table 2** Model validation (averages for the years 2006–2010), in brackets standard deviation

832 (when available). Literature data come from Wu *et al.* (2013).

2006-2010		$P_n \cdot P$	P	R	P_n	$P_{n\text{woody}}$	$P_{n\text{litter}}$	Above Ground- R	Below Ground- R	Above Ground woody stocks	Below Ground woody stocks	Total woody stocks
Units												
Literature	0.37	1881 (± 127)	1173 (± 143)	708 (± 65)	307 (± 57)	401	872	301	9885 (± 279)	1848 (± 160)	11733 (± 281)	
Modelled	0.45 (± 0.02)	1706 (± 52)	937 (± 30)	768 (± 60)	309 (± 56)	314 (± 9)	635 (± 20)	302 (± 9)	8993 (± 278)	1954 (± 545)	10948 (± 333)	

833

834

835 **Figures**

836 **Fig. 1** Proofs-of-concept for total R_M (a) and live woody biomass accumulation (b) over the
837 course of forest development (time) and increases in size, assuming different live wood turnover
838 (τ , yr^{-1}) rate values, from 1 (W98) to 0.1 yr^{-1} (R06) and including two intermediate values at 0.5
839 and 0.7 yr^{-1} (e.g. White *et al.* 2000). R_{M_green} (i.e. leaf and fine root R_M) was assumed constant
840 over-time and arbitrarily equal to 2. Summing up R_{M_wood} and R_{M_green} gives the total R_M . Initial
841 woody biomass was arbitrarily considered equal to 10, new annual live wood was also arbitrarily
842 considered equal to 10, $m_R = 0.2$; ($R_M = (W_{\text{live_woody}} + W_{\text{green}}) \cdot m_R$; see Eq. 3). (b) Initial woody
843 biomass was arbitrarily considered equal to 10, new annual live wood was arbitrarily considered
844 equal to 10. The model is: $W_{\text{live_woody (t+1)}} = W_{\text{live_woody (t)}} + \Delta W_{\text{in live_woody (t+1)}} - \Delta W_{\text{out dead_woody (t+1)}}$
845 (see equation 4 in the main text).

846 **Fig. 2** Model results for (a) $P_n:P$ ratio (dimensionless), (b) net primary production (P_n , g C m^{-2}
847 yr^{-1}) and, (c) autotrophic respiration (R , $\text{g C m}^{-2} \text{yr}^{-1}$) performed with varying τ (coloured lines).
848 The beginning of simulations correspond to 1950 (stand age 30 years); the end of simulations
849 correspond to 2100 (stand age 180 years). The dark-pointed red line can be considered as a
850 mechanistic representation of W98's fixed $P_n:P$ ratio ($\tau = 1 \text{ yr}^{-1}$) while the dark pink line
851 approximates R06's scaling relationship between R and biomass ($\tau = 0.1 \text{ yr}^{-1}$). Orange dotted
852 lines represent Amthor's (2000) (A00) 'allowable' range for the $P_n:P$ ratio (0.65 to 0.2). The red
853 dots give the average measured values (Wu *et al.* 2013) at the site for (a) $P_n:P$ ratio, (b) P_n and
854 (c) R . Vertical bars represent the standard deviation with horizontal bars representing the period
855 2006–2010 (stand age ~ 85 –90 years). The shaded area represents the overall uncertainty of
856 model results.

857 **Fig. 3** Regression analyses between whole-plant autotrophic respiration (R , $\text{g C m}^{-2} \text{yr}^{-1}$) and (a)
858 whole-plant carbon (W ; g C m^{-2}), (b) carbon in living pools ($W_{\text{live_woody}} + W_{\text{green}}$; g C m^{-2}), (c)

859 whole-plant nitrogen (W ; g N m⁻²) and (d) nitrogen in living pools ($W_{\text{live_woody}} + W_{\text{green}}$; g N m⁻²).

860 Different colours represent different τ values as described in the legend panels (with $\tau = 0.1$ yr⁻¹,

861 $n = 117$; with $\tau = 0.2$ yr⁻¹, $n = 149$; otherwise $n = 150$).

862

863

864

865

866

867

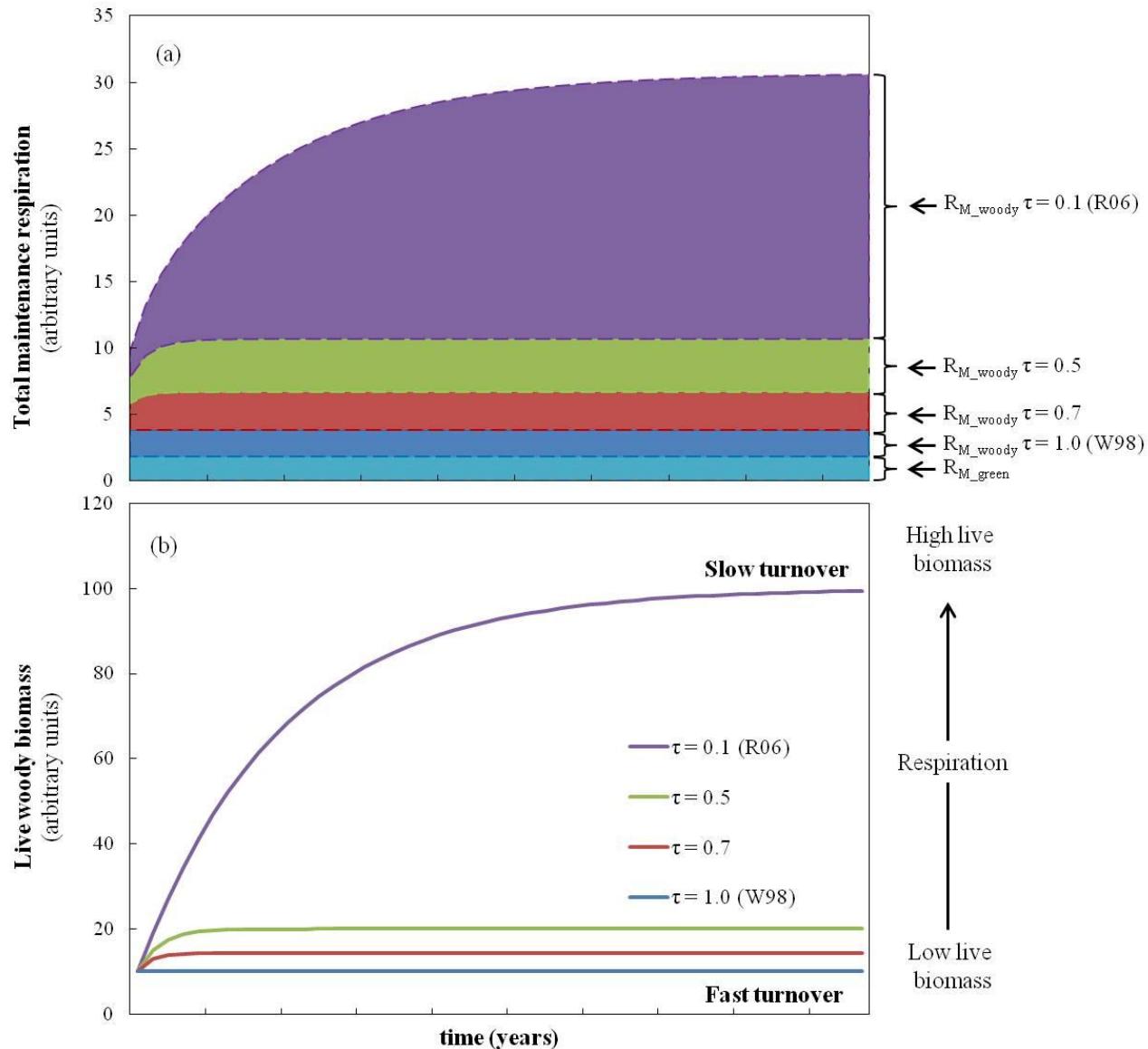
868

869

870

871

872


873

874

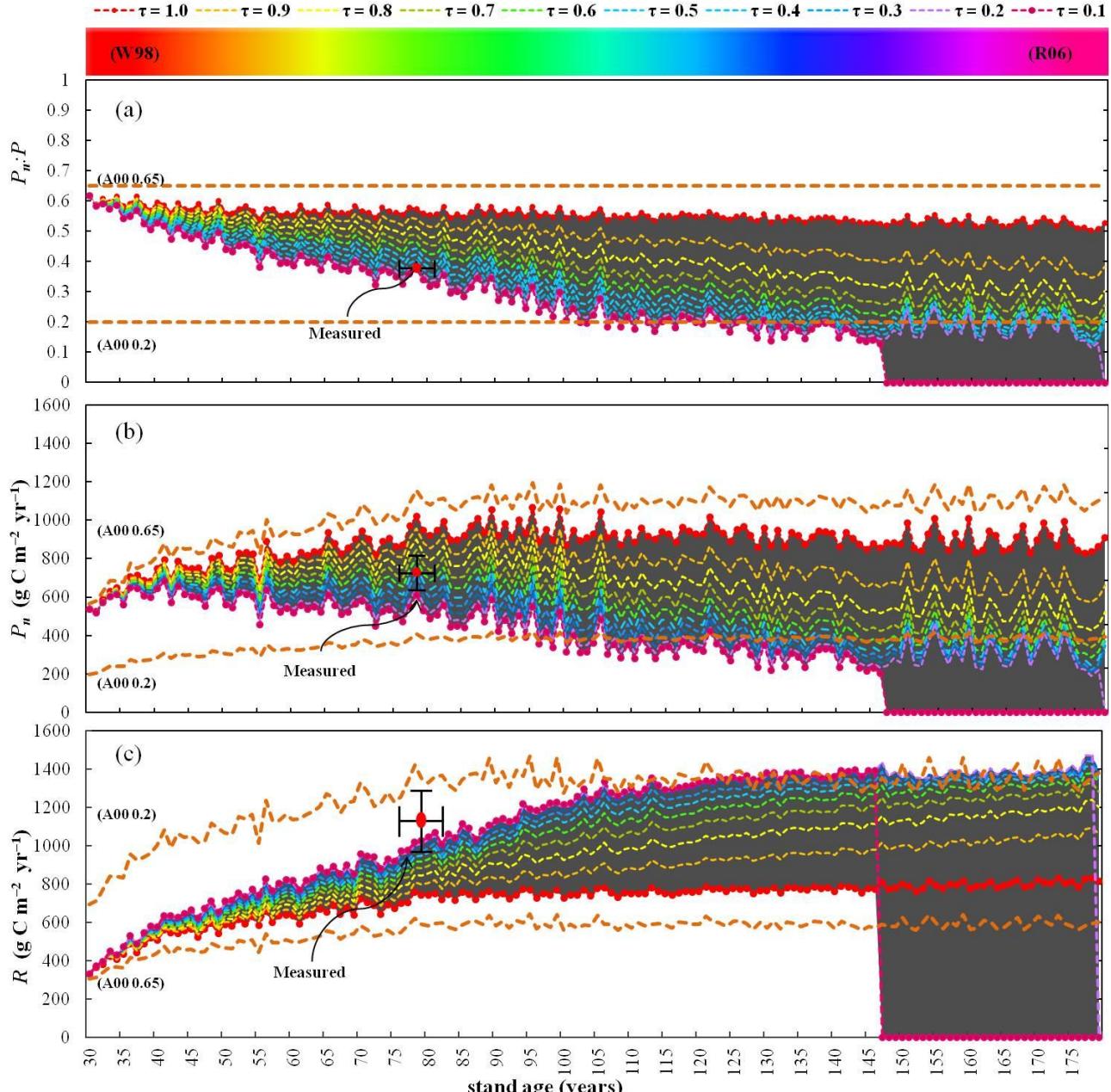
875

876

877

878

879 Fig. 1


880

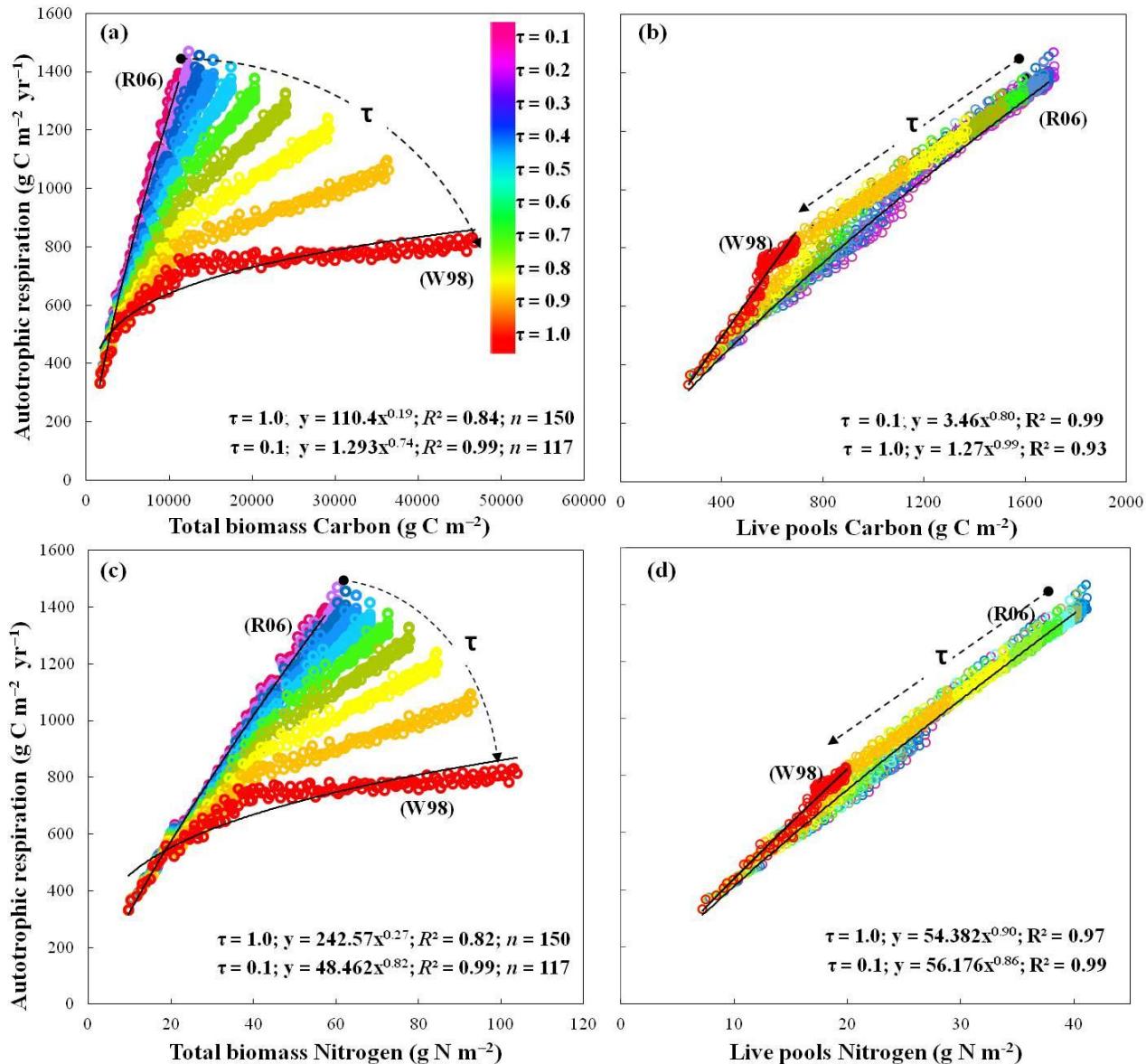
881

882

883

884

885


886 Fig. 2

887

888

889

890

891

892 Fig. 3

893

894

895

896

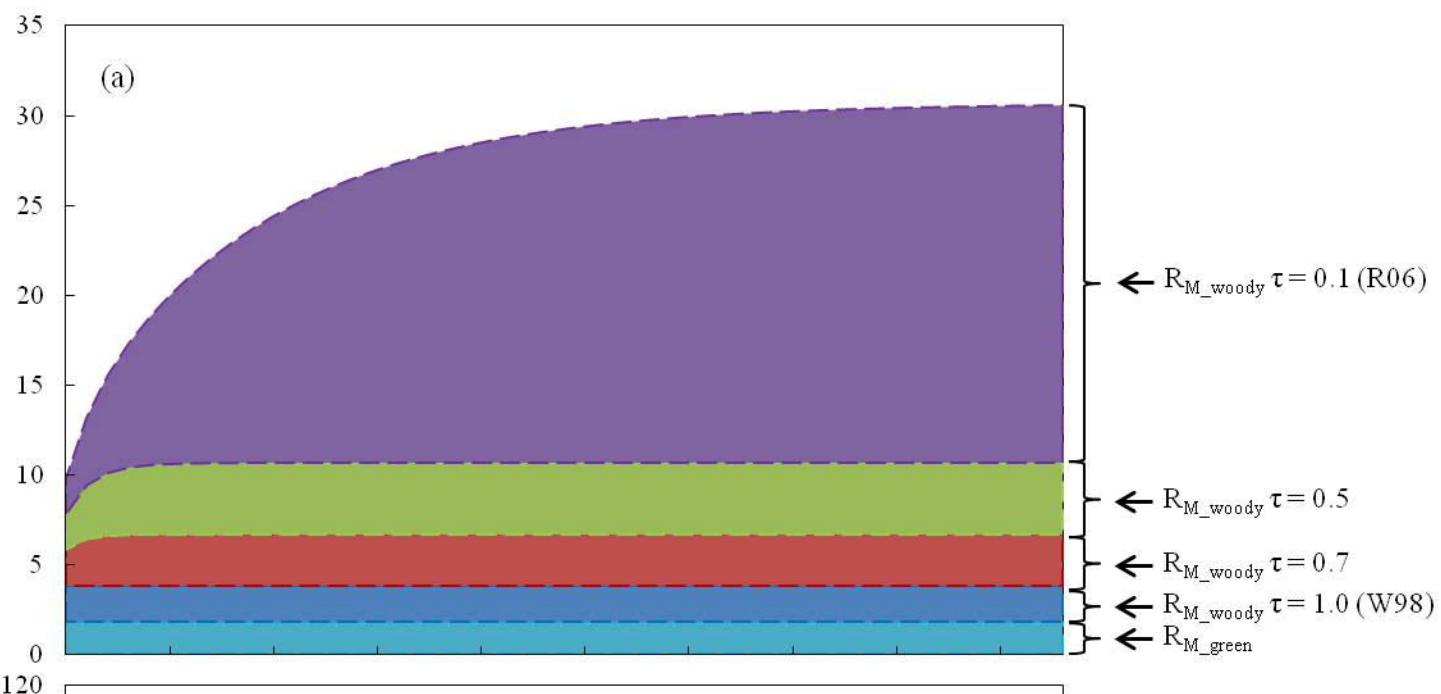
897

898 **BOX 1**

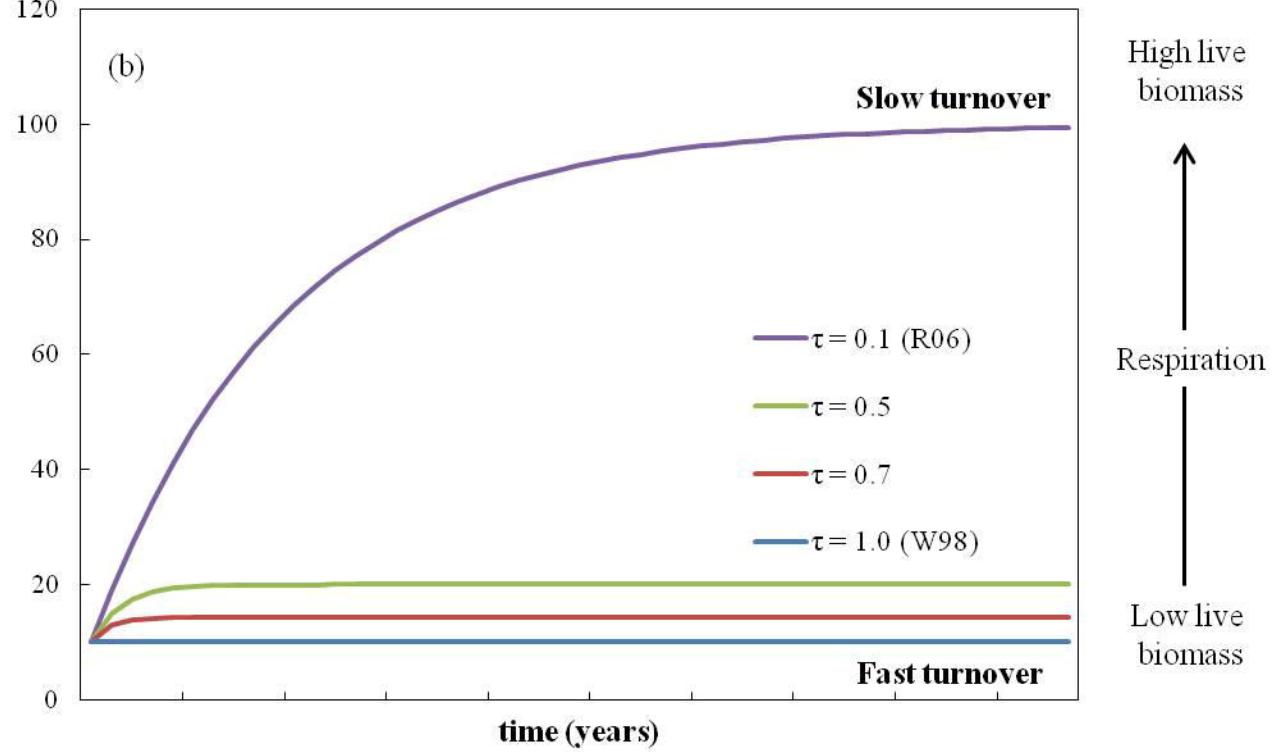
899 ***The function and dynamics of non-structural carbohydrates***

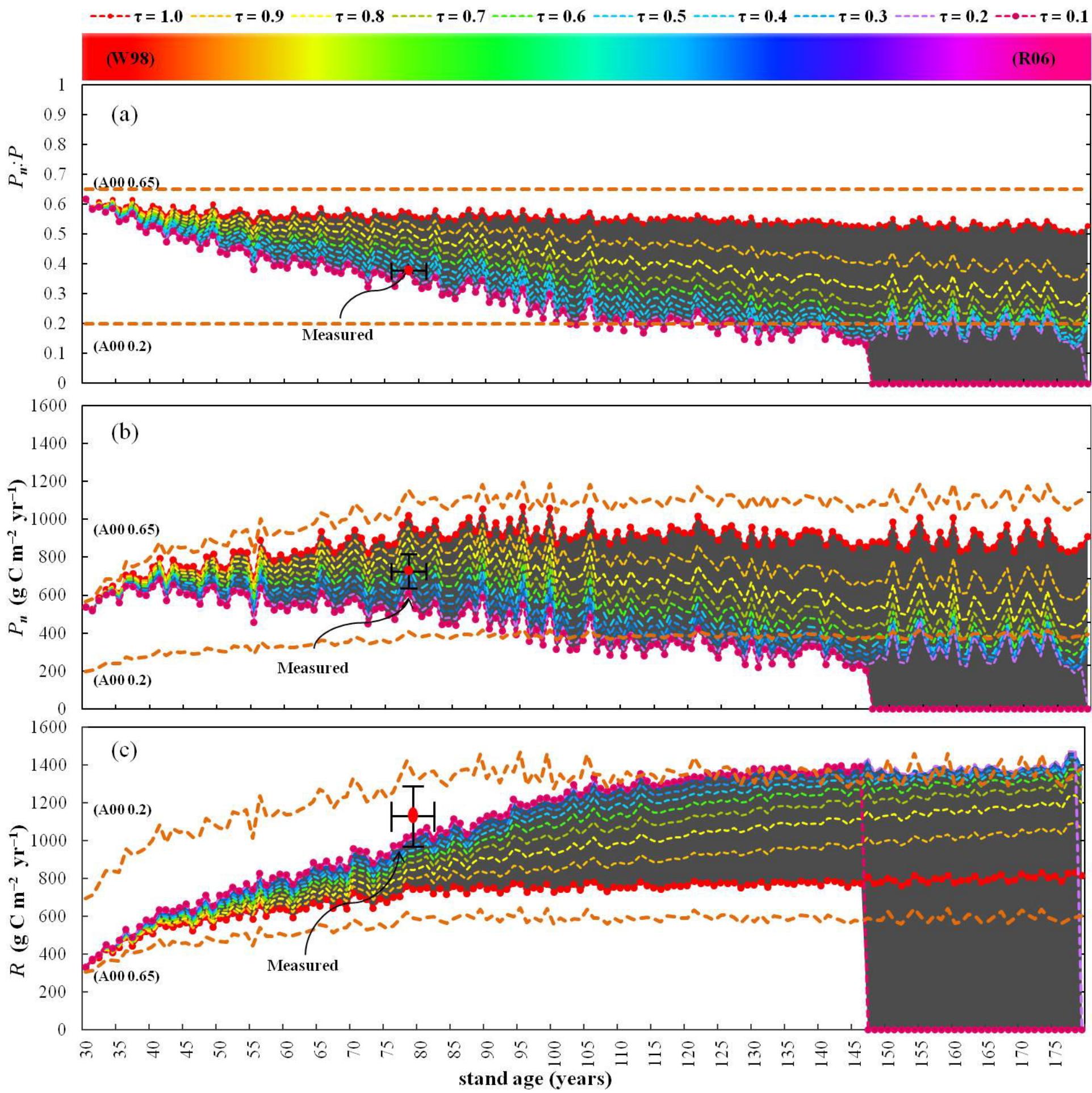
900 NSC is a surprisingly poorly known component of the whole-tree carbon balance, and
901 commonly disregarded in models (Schiestl-Aalto *et al.* 2019; Merganičová *et al.* *under*
902 *review*). However, the ability of trees to prioritize storage over growth depends on the role of
903 NSC in allowing temporal asynchrony between carbon demand and carbon supply (Fatichi *et*
904 *al.* 2014). Such imbalances are assumed to be buffered by drawing down NSC reserves.
905 Recent studies support this assumption, showing that during periods of negative carbon
906 balance (for example during the dormant season, periods of stress, or natural or artificially
907 induced defoliation episodes) NSC is remobilized and transported from the sites of phloem
908 loading, while during periods of positive carbon balance plants preferentially allocate recently
909 assimilated carbon to replenish NSC. Only afterwards is “new” carbon used to sustain growth
910 (Weber *et al.* 2018; Huang *et al.* 2019). Because ultimately plant survival depends more on
911 metabolic carbon demands than on growth, some have argued that all positive carbon flows
912 should be used to replenish NSC at the expense of growth until a minimum NSC pool size
913 (30–60% of the seasonal maximum, Martínez-Vilalta *et al.* 2016) is reached (‘active’ storage:
914 Sala *et al.* 2012), thus maintaining a safety margin against the risk of carbon starvation (Wiley
915 & Helliker 2012; Huang *et al.* 2019). Note that this assumption departs from the notion that
916 NSC is a mere reservoir for excess supply of carbon relative to growth demand (‘passive’
917 storage: Kozłowski 1992). In the model, carbon allocation to all tree structural and non-
918 structural pools is computed here daily and is controlled by functional constraints due to
919 direct and lagged C-requirements (Huang *et al.* 2019). It is assumed that a minimum NSC
920 threshold level concentration (11% of sapwood dry mass for deciduous and 5% for evergreen
921 species: Genet *et al.* 2010) has to be maintained for multiple functions including
922 osmoregulation, cell turgor, vascular integrity, tree survival (reviewed in Hartmann &

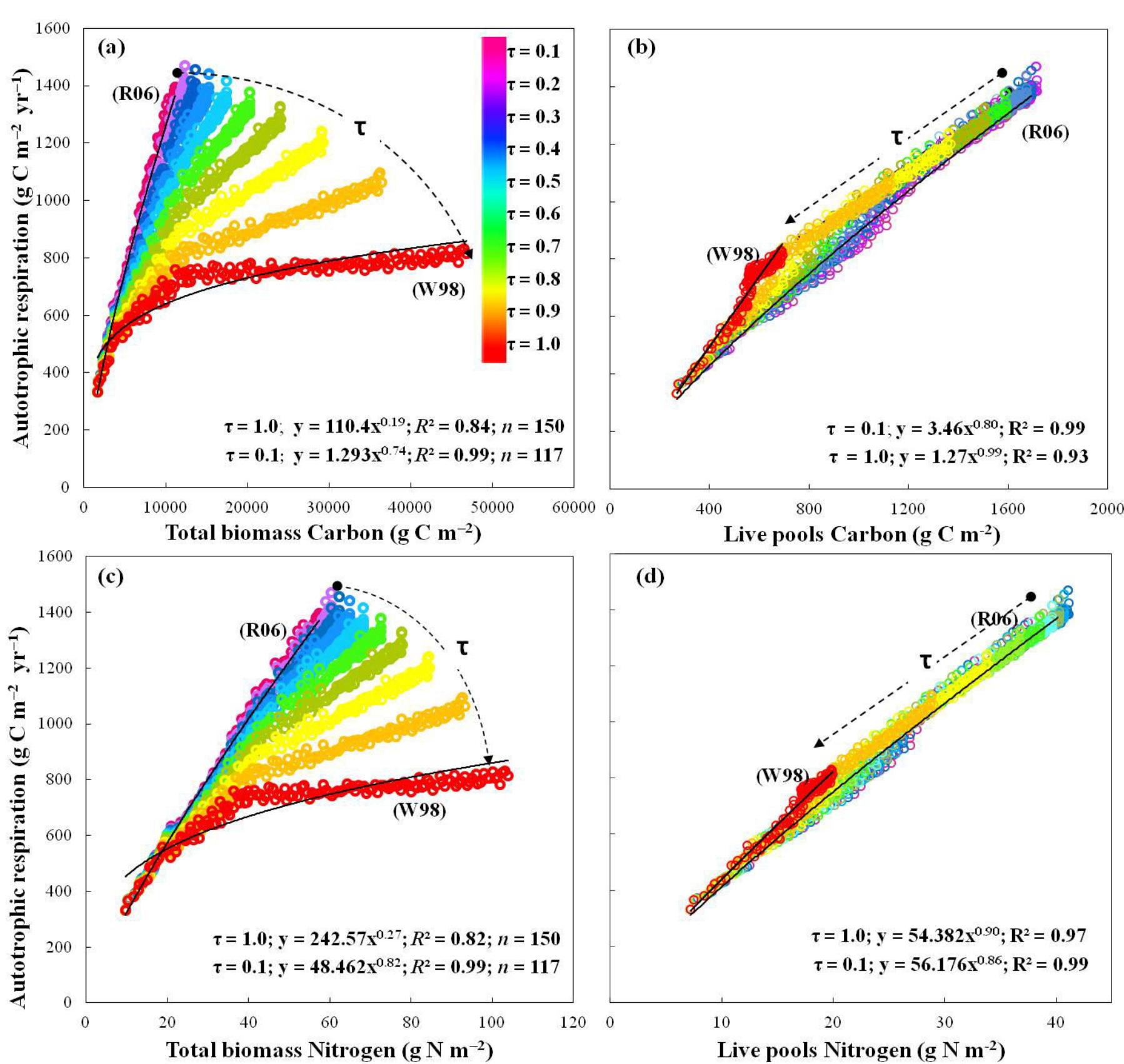
923 Trumbore 2016) and organ-specific phenology (leaf and fine-root formation). The greater the
924 sapwood mass, the greater the minimum NSC threshold must be (Dietze *et al.* 2014). For
925 deciduous trees, four phenological phases are distinguished: (i) the *dormant* phase, where R is
926 fuelled by NSC-consumption; (ii) the *leaf onset* phase, when leaf and fine root production
927 consume NSC (unless the carbon balance is positive, in which case new assimilates are used)
928 until the predicted maximum annual LAI is reached; (iii) the *full growing* phase, when new
929 assimilates are allocated to stem, coarse roots, branch, and fruits, and only into the NSC pool
930 if this is below its minimum level; (iv) the *leaf fall* phase, when all assimilates are allocated to
931 the NSC reserve pool while some ($\sim 10\%$) NSC is relocated from falling leaves and dying
932 fine roots (Campioli *et al.* 2013). For evergreen species the model follows a simpler schedule
933 consisting of a first maximum growth phase, when the model allocates NSC to foliage and
934 fine roots up to peak LAI, and a second full growing phase, when the model allocates to all of
935 the pools (Kuptz *et al.* 2011). Such patterns of whole-tree seasonal NSC dynamics have been
936 all recently confirmed by Furze *et al.* (2018) and Fierravanti *et al.* (2019) and a similar
937 phenological and carbon allocation scheme has been adopted by other models (e.g. Krinner *et*
938 *al.* 2005; Arora & Boer 2005).

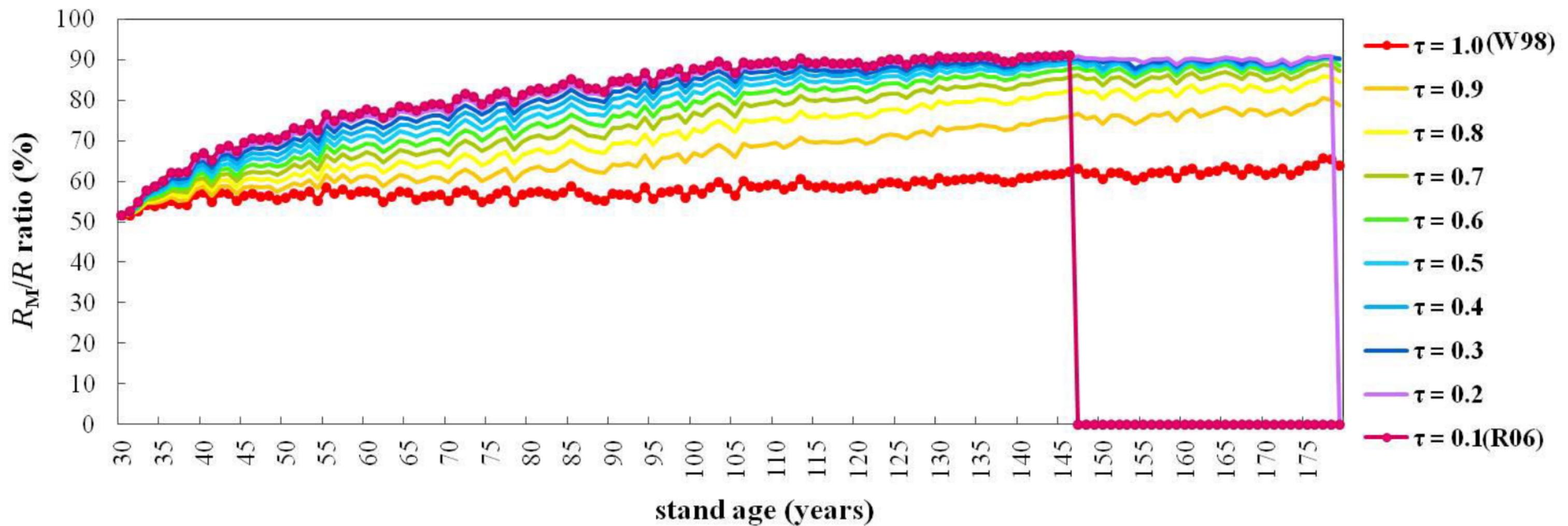

939 **BOX 2**

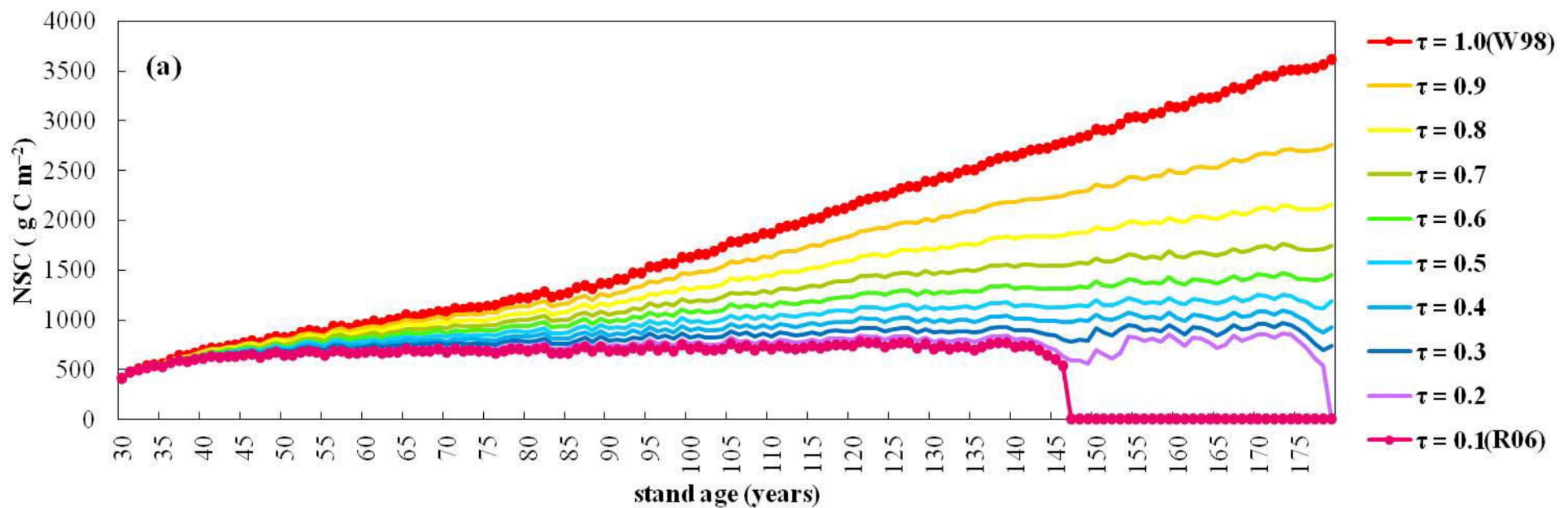
940 ***Turnover rates and other uncertainties in models***


941 Most vegetation models assume, among other parameters commonly maintained constant, a
942 fixed rate of sapwood turnover, τ . However, lack of information on this parameter has been
943 already shown to be an important source of uncertainty in the modelled carbon balance of
944 vegetation stands (Goulden *et al.* 2011; Malhi 2012; Collalti *et al.* 2019). Values adopted in
945 current models include: $\tau = 0.7 \text{ yr}^{-1}$ in CLM (Oleson *et al.* 2013), Forest v.5.1 (Schwalm & Ek
946 2004), 3D-CMCC-CNR (Collalti *et al.* 2019) and Biome-BGC (Thornton *et al.* 2002); $\tau \sim 0.75$
947 yr^{-1} in CASTANEA (Dufrêne *et al.* 2005); $\tau = 0.85 \text{ yr}^{-1}$ in LPJ-GUESS (Smith *et al.* 2001); $\tau =$
948 0.95 yr^{-1} in SEIB-DGVM (Sato *et al.* 2007), LPJ-DGVM (Sitch *et al.* 2003) and NCAR-LSM
949 (Bonan *et al.* 2003); and $\tau \sim 1 \text{ yr}^{-1}$ in CARAIB (Warnant *et al.* 1994), PnET (Whythers *et al.*
950 2013), and ORCHIDEE (Krinner *et al.* 2005).


951 Additional sources of uncertainty include the lack of consideration of a size- or age-related
952 decline in the ratio of living to dead cells (suggesting a declining τ) (Damesin *et al.* 2002;
953 Ceschia *et al.* 2002), the effect of changes in climate (which could temporarily increase τ to
954 reduce maintenance costs in favour of growth: Doughty *et al.* 2015), changes in tissue N and
955 NSC concentrations (Machado & Reich 2006; Thurner *et al.* 2017), and, a probable, genetically
956 controlled down-regulation of basal respiration rates with the ageing of cells (Carey *et al.* 2001;
957 Wiley *et al.* 2017). Moreover, both τ and basal respiration rates (g_R and m_R) are likely to vary
958 among different tree biomass pools (Reich *et al.* 2008). Respiratory carbon losses per unit plant
959 mass may also change to sustain growth as an acclimatory response to carbon demand due to
960 increasing plant size, and perhaps with changing climate (Smith & Stitt 2007). These hypotheses
961 are all grounded in theory, but are supported by very limited observations (Friend *et al.* 2014;
962 Thurner *et al.* 2017).


Total maintenance respiration
(arbitrary units)




Live woody biomass
(arbitrary units)

