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Abstract 

Our understanding of information processing by the mammalian visual system has come through a variety of 

techniques ranging from psychophysics and fMRI to single unit recording and EEG. Each technique provides 

unique insights into the processing framework of the early visual system. Here, we focus on the nature of the 

information that is carried by steady state visual evoked potentials (SSVEPs). To study the information 

provided by SSVEPs, we presented human participants with a population of natural scenes and measured the 

relative SSVEP response. Rather than focus on particular features of this signal, we focused on the full state-

space of possible responses and investigated how the evoked responses are mapped onto this space.  Our 

results show that it is possible to map the relatively high-dimensional signal carried by SSVEPs onto a 2-

dimensional space with little loss.  We also show that a simple biologically plausible model can account for a 

high proportion of the explainable variance (~73%) in that space.  Finally, we describe a technique for 

measuring the mutual information that is available about images from SSVEPs.  The techniques introduced 

here represent a new approach to understanding the nature of the information carried by SSVEPs.  Crucially, 

this approach is general and can provide a means of comparing results across different neural recording 

methods.  Altogether, our study sheds light on the encoding principles of early vision and provides a much 

needed reference point for understanding subsequent transformations of the early visual response space to 

deeper knowledge structures that link different visual environments. 
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Introduction 

On any given day, we receive a stream of visual information that is sampled from the environment in the form 

of retinal images.  Exactly how the early visual system enables unique neural representations from this 

onslaught of visual information is a long-standing question in systems neuroscience.  The last two decades 

have provided novel insights into the early visual encoding of real world stimulus images (“natural scenes”) in 

non-human vertebrates at levels of analysis ranging from single-units [1-9] to local population measures [10-

12], and in humans using macro-scale measures such as EEG or fMRI [13-18] and psychophysics [19-24].  

Together, such methods have contributed to a better understanding of how information is transformed along 

the visual pathway as well as why it is coded as it is.  

 Each of these techniques has both advantages and disadvantages and each reveals unique spatio-

temporal features of the visual signal. EEG measures have the advantage that they are non-invasive, have 

good temporal resolution and can be relatively inexpensive. Despite their appeal, there remains considerable 

debate regarding the information that is provided by these signals. Studies with visual evoked potentials 

(VEPs) have focused on particular features of the response (e.g., N75, P100) and the effects that different 

stimulus conditions have on shaping the morphology of specific components. However, by focusing on 

particular features and not the signal as a whole, we feel that such an approach misses important properties 

of the signal. We believe that, rather than focusing on particular features, it is important to examine the full 

space of possible neural responses and consider how a population of responses falls within that space. By 

understanding the geometry of responses within this space, we believe that we can gain fundamental insights 

into the information available in these population measures.  

In this study, we begin with a particular form of evoked cortical responses known as steady-state visual 

evoked potentials (SSVEPs), a well-established measure of visual responses in the early visual system 

(reviewed in [25-26]). Steady-state VEPs have a number of useful properties for measuring early visual 

responses in human observers [26].  Briefly, the SSVEP paradigm involves recording evoked potentials on the 

scalp while a participant views a stimulus that is modulated periodically at a particular frequency.  If the 

stimulus drives a neural response that can be recorded on the scalp, the evoked potential will oscillate at the 

modulation frequency (and related harmonics) of the stimulus.  An SSVEP can therefore be conceptualized by 

analogy to a steady-state response in a resonant circuit: by showing an observer an oscillating stimulus at a 

given frequency, the resulting electrical potentials entrain to the carrier frequency and remain stable in 

amplitude and phase [27-28].  We focus on SSVEPs because they allow us to collect neural response data with 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/705376doi: bioRxiv preprint 

https://doi.org/10.1101/705376
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

a signal to noise ratio (SNR) that is high enough to permit the recording of a relatively large number of images 

using relatively few stimulus repetitions.   

The current study focuses on SSVEP responses to a broad population of natural scenes. A wide variety 

of studies have noted the importance of using ecologically relevant stimuli when probing sensory systems. The 

use of such stimuli allows us to observe the natural modes of activity of the visual system across the responses 

of different neural ensembles. In this study, we used a population of natural scenes as stimuli and determined 

the variety of brain responses that are produced by individual scenes as well as by repetitions of the same 

scene. Through the use of such stimuli, we will show that it is possible to use a relatively simple model of the 

early visual system to capture a high proportion of the explainable variance. By understanding how much of 

the neural response is driven by low level stimulus features, such models can allow one to deduce the amount 

of residual response variance that might be attributed to higher level factors. 

The goal of the current study is to map and model the relative population responses that are 

generated by a set of natural scenes. Rather than focus on particular features of the neural response profile, 

we utilize a state-space approach.  As we will show, one of the advantages of the SSVEP paradigm is that the 

output is low-dimensional, which allows us to consider a relatively simple state-space framework for 

understanding how images are organized by the early visual system. The state-space framework is a 

geometrical approach that considers the set of responses that a system produces in relation to the space of all 

possible responses. This geometric distribution of responses can then be understood in accordance with the 

distribution of images that have been projected to different encoding spaces (such as those defined by visual 

filter outputs). This general approach has been used in theories of sparse coding [29] and the non-linear 

behavior of visual neurons [30-31].  By focusing on the full state-space geometry of the responses produced by 

an evoked potential (rather than simple features of the response), our experiments will show that it is possible 

to provide both a rational model of the signal as well as to provide an estimate of the information carried by 

that signal. 

We addressed the above across three experiments.  In Experiment 1, we presented participants with a 

large set of natural scene images to measure the corresponding SSVEP-defined neural state-space. We 

assessed the reliability of that space by repeating images both within- and across experimental sessions, and 

quantified the reliability by estimating the mutual information between the SSVEP signal and each individual 

image. We replicated and extended these results with a larger set of images in Experiment 2, enabling us to 

better capture the boundaries of SSVEP state-space. Modeling revealed that 73% of the explainable variance 

in the SSVEP state-space could be accounted for by a Fourier filter-power model, a biologically plausible model 
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of early visual processing. Experiment 3 then provided causal support for the modeling results. Overall, the 

techniques we describe here allow us to quantify the information provided by SSVEPs and to quantitatively 

characterize the organization of individual images by evoked potentials. The low-dimensional nature of the 

SSVEP state-space, while coarse, provides sufficient information for testing and contrasting theories of early 

visual processing. Moreover, the state-space framework is general, meaning that responses obtained from any 

neural recording technique (direct or indirect) can be projected into that space, thereby enabling comparative 

analyses of common stimulus sets across different types of recordings. 

 

Experiment 1 

 

Method 

 

Apparatus 

All stimuli were presented on a 23.6” VIEWPixx/EEG scanning LED-backlight LCD monitor with one ms black-to-

white pixel response time.  Maximum luminance output of the display was 100 cd/m2, with a frame rate of 

120 Hz and resolution of 1920 x 1080 pixels.  Single pixels subtended .0362° of visual angle as viewed from 36 

cm.  Head position was maintained with an Applied Science Laboratories (ASL) chin rest.   

 

Participants 

A total of 20 participants were recruited for this experiment.  Of those, 3 failed to complete both recording 

sessions and 4 failed to produce signal to noise ratios (SNRs) at any electrode that exceeded chance SNR 

(measured on a participant-by-participant basis, described later).  The age of the remaining 13 participants (4 

female, 10 right-handed) ranged from 18-31 (median age = 20).  All participants had normal (or corrected to 

normal) vision as determined by standard ETCRS acuity charts, gave Institutional Review Board-approved 

written informed consent before participating, and were compensated for their time. 

 

Stimuli 

Stimuli were selected from a large database of real-world scenes consisting of 2500 photographs that varied in 

content from purely natural to purely carpentered (both indoor and outdoor), with various mixtures of 

natural/carpentered environments in between.  The images were largely sampled from several existing 

databases [20, 32-33], with several hundred sampled from Google Images (copyright-free).  Selection criteria 
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included 1) images that were in focus at all depths, 2) had a minimum pixel dimensions between 512 and 

1024, and 3) were largely devoid of people or faces.  All images were then cropped to 512 x 512 pixels and 

converted to grayscale using the standard weighted sum conversion in Matlab. 

Stimuli were selected by randomly sampling 150 images from the image database.  All stimuli 

subtended 18.5° of visual angle, and were made to possess the same root mean square (RMS) contrast (0.2) 

and mean pixel value (127) as described in Appendix 1.  All images were fit with a circular linear edge-ramped 

window (512-pixel diameter, ramped to the pixel mean) to obscure the square frame of the images, thereby 

ensuring contrast changes at the boundaries of the image were not biased to any particular orientation [20, 

34]. 

  

Procedure 

The experiment consisted of two recording sessions, each lasting ~55 minutes.  Within each session, all 150 

stimuli were presented once in each of two sequential blocks, with a random order within each block, 

resulting in a total of four repetitions per image over both recording sessions.  Each trial began with a 3000 ms 

blank (mean gray) screen, followed by a 6000 ms stimulus interval.  During that interval, the stimulus image 

was contrast-modulated at a rate of 5 Hz with a sinusoidal temporal profile1.  Participants were engaged with 

a distractor task at fixation, which consisted of detecting a luminance change (black to white) of a 4 x 4-pixel 

square placed at the center of the stimulus image.  The luminance change occurred on 50 random trials, and 

the images for those trials were not considered in subsequent analyses (an additional 50 images were used on 

those trials). Thus, a total of 350 images (300 experimental, and 50 luminance change) images were presented 

per session.  Participants reported when a luminance change occurred via gamepad response, and were given 

the opportunity to rest every 50 trials.   

 

EEG Recording and Processing 

Continuous EEGs were recorded in a Faraday chamber using Electrical Geodesics Incorporated’s (EGI; Philips 

Neuro) Geodesic EEG acquisition system (GES 400).  All EEGs were obtained by means of Geodesic Hydrocel 

sensor nets consisting of a dense array of 128 channels (electrolytic sponges).  The on-line reference was at 

the vertex (Cz), and the impedances were maintained below 50 kΩ (EGI amplifiers are high-impedance 

                                                             
1 We chose 5 Hz because it enabled a smooth sinusoidal temporal profile (yet was high enough to allow several cycles of oscillation) 
and was sufficiently below the 10 Hz alpha bias known to dominate occipital electrodes.  Our measures of SSVEP state-space are 
therefore specific to that particular stimulus modulation and might not generalize well to higher stimulus modulation frequencies 
that may recruit neural populations with different temporal sensitivities. 
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amplifiers). All EEG signals were amplified and sampled at 1000 Hz. The digitized EEG waveforms were band-

pass filtered offline from 0.1 Hz to 50 Hz to remove the DC offset and eliminate 60 Hz line noise. Finally, each 

trial event was tagged via photodiode response to a small white square that flashed in the upper left-hand 

corner of the display (obscured from participant’s view) at the start of each trial.  Tagging trials in this manner 

eliminated the offset time and clock drift between the acquisition computer and the experiment station 

computer. 

To remove onset transients from the analysis, the first 1000 ms of the stimulus interval was removed. 

Thus, all continuous EEGs were segmented into 5000 ms waveforms corresponding to the last 5000 ms of the 

stimulus interval. Segments that contained eye-movements, eye-blinks, or transients greater than ± 250 µV 

(fewer than 7% of the trials on average) were flagged but were found to have no impact on the stimulus 

fundamental frequency (or its harmonics) and were therefore included in all subsequent analyses.  

Topographic plots were generated for all experimental conditions using EEGLAB (Delorme & Makeig, 2004) 

version 13.5.4b in Matlab (ver. R2017a).   

 

Electrode Selection 

Electrode selection was carried out in a data-driven manner via significance testing.  First, we calculated the 

SNR for each trial epoch by fast Fourier transforming each electrode’s EEG waveform, and then divided the 

amplitude at the fundamental frequency (5Hz) by the average of the neighboring frequencies (4.4 to 4.8 Hz 

and 5.2 to 5.6 Hz), referred to here as the noise denominator.  In order to compare the observed SNR to what 

could be expected by chance, we estimated the null SNR for each electrode across all epochs by randomly 

sampling two noise denominators and taking their ratio.  This process was repeated 5000 times to generate a 

null SNR distribution for each electrode.  To determine which electrodes produced SNRs that were significantly 

different (p < 0.05) from their corresponding null SNR distribution, right-tail z-tests were run for all SNRs for 

each electrode (across all trials) against that electrode’s null SNR distribution.  The electrode with the largest 

effect size (“best electrode”) was automatically included in subsequent analyses.  To test for other electrodes 

with averaged SNRs on par with the “best electrode”, we tested the best electrode’s SNR distribution against 

all other significant electrode SNR distributions (left-tail z-tests), and those that were not significantly different 

from the best electrode were also included in subsequent analyses.  This method identified 3-8 electrodes 

across participants, and these were always located over the occipital pole.  Participants were excluded from 

subsequent analyses if none of their electrode SNRs (averaged across trials) were different from their 

corresponding null SNR distributions, or if their SNRs were all below 2, as SNRs below that value were 
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observed to result from a lack of entrainment of the 5Hz fundamental to the phase of the sinusoidal stimulus 

modulation. 

 Lastly, the final time series data were generated by averaging epochs across all selected electrodes to 

yield a single 5000 (time points) x 300 (trials) matrix for each participant and for each recording session. 

 

Results 

 

SSVEP Signal Characteristics 

To measure signal quality for each image, all repetitions for each image were averaged together in the time 

domain, thereby reducing the two 5000 x 300 matrices to a single 5000 x 150 matrix which was used to 

calculate an SNR spectrum for each trial (Figure 1b).  Each SNR spectrum was calculated by measuring the SNR 

for each frequency in the Fourier amplitude spectrum of each SSVEP.  The size of the windows used to define 

the noise denominator was the same as that described in the Electrode Selection section.  Each trial’s SNR 

spectrum was then sampled at whole integer frequencies and averaged across trials. This process was 

repeated for each participant, and then averaged across participants and plotted in Figure 1b.  The 

experimental paradigm yielded strong signal strength at the fundamental frequency (5 Hz) as expected, as well 

as the next three harmonics that reflect nonlinear responses that were also entrained to the stimulus 

modulation.  For a more complete view of each entrained signal, the averaged time series data were filtered 

(in turn) at the fundamental and each of the three harmonics to extract each frequency’s phase which was 

then plotted in polar form along with each frequency’s SNR (Figure 1c).  The results show that three of the 

four frequencies have the majority of their phase angles falling within ±30° of a central angle, with the 10Hz 

harmonic showing a similar phase angle tuning centered on mean angles that differ by ~180°.  Figure 1c 

therefore illustrates that the periodic modulation was successful in entraining the fundamental and harmonic 

frequencies because an un-entrained oscillation would yield a uniform distribution of phase angles.  
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Figure 1. Experiment 1 signal characteristics.  (a) Amplitude spectrum resulting from averaging across images and 
participants (black trace).  Each light gray trace shows each participant’s amplitude spectrum averaged across images.  
(b)  Signal-to-noise (SNR) spectrum calculated from the across participant and image average shown in black, with gray 
symbols showing each participant’s SNR averaged across images.  (c) Polar plots showing participant and image 
averaged SNR (radial axis) and phase angle (theta axis) for the fundamental frequency (5Hz) and the three most 
prominent harmonic frequencies. 
 

Principal Component Analysis 

The results illustrated in Figure 1 show that there are a relatively small number of Fourier components in the 

SSVEP response.  If we think of the first four Fourier components, each with real and imaginary components 

(or amplitude and phase), this suggests that the denoised signal is no more than 8-dimensional.  However, the 

dimensionality may be much lower if some of those dimensions are highly correlated.  To measure the true 

dimensionality of SSVEP state-space, we turn to principal component analysis (PCA).   

Having only four stimulus modulated frequencies in the SSVEP signal (e.g., Figure 1a-b) means that the 

rest of the energy in the signal was not modulated by the stimulus and can therefore be treated as noise.  We 

filtered the time series data to contain the fundamental plus the three harmonic frequencies.  That particular 

compound-frequency signal implies that the dimensionality is no more than eight (four frequencies each with 

a sine and cosine component), but could be significantly less.  Further, because the amplitude of each 

frequency is the sum of signal and noise, we normalized each frequency’s waveform peak to its corresponding 

SNR on a trial-by-trial basis.  We then submitted the 5000 x 150 filtered and SNR-normalized data matrix to 

PCA.  The first three principal components (PCs) were found to account for 97% of the variance in the data,  
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Figure 2.  Experiment 1 Principal Component (PC) Analysis results.  (a) Percentage of variance explained by the first 10 
PCs.  (b-d) Amplitude spectrum for each of the first three PC basis functions (i.e., PC scores) showing that each PC 
contains amplitude at the fundamental and next three harmonic frequencies.  Note that the scales of those plots are 
different.  (e) Principal component coefficients 1 and 2 for the 150 images.  Here each data point is an image in neural 
state-space and has been color coded according to the average SNR of the fundamental and next three harmonic 
frequencies.  (f) The exact same space color coded according to the circular average of the phase angles of the 
fundamental and harmonic frequencies. 
 

with the first PC accounting for most (92%, see Figure 2a). To evaluate whether the four stimulus induced 

frequencies contributed to each of the PC basis functions (i.e., the PC scores), we submitted each PC’s basis 

function to Fourier analysis.  The results of that analysis revealed that all four frequencies contribute to each 

PC dimension (Figure 2b-d).  To assess the reliability of the first three PC dimensions, PCA was conducted on 

the SSVEP matrices for each repetition (on a participant-by-participant basis).  Next, each PC’s eigenvector was 

correlated with its corresponding eigenvector across each repetition.  We found that only PC1 and PC2 

produced statistically significant correlations across stimulus repetition (across participants, the correlation 

cofficients for PC1 ranged between 0.45 – 0.72, 0.18 – 0.35 for PC2, and -0.08 to 0.06 for PC3).  Thus, only PCs 

1 and 2 captured variance in a reliable manner across stimulus repetition, and were included in all subsequent 

analyses.  To visualize SSVEP state-space, we plotted the joint distribution of images defined by the first two 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/705376doi: bioRxiv preprint 

https://doi.org/10.1101/705376
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

eigenvectors (i.e., the rotation of each image’s SSVEP to each PC’s basis function) (Figure 2e-f).  The lack of 

symmetry in this space implies that these first two eigenvectors are not independent.  Because each 

component is a linear combination of the four frequencies, the data points have been color coded according 

to the average SNR-normalized amplitude (Figure 2e) and averaged phase angle (Figure 2f).  In order to 

express phase angle linearly, we used circular averaging [35].  As a result, we see that the first PC is extracting 

signal magnitude (R2 = 0.95, p < 0.001), with the second partially coding for phase (circular-linear R2 = 0.48, p < 

0.001).  

 Next, we examined how the images are organized along the eigenvector axes of the SSVEP state-space. 

Figure 3 (bottom) shows images ordered according to PC1’s eigenvector coefficients from lowest (left) to 

highest (right) (rows are in arbitrary order).  The ordering of images according to the coefficients for PC2 are 

shown in the Supplementary Materials section (Figure S1). We also generated topographic plots of the 

averaged SNR for each electrode for each of the five bins (Figure 3, top).  As noted in the method section, 

SNRs were greatest at electrodes over the occipital pole and here we see that SNR increases in magnitude in 

proportion to PC1’s eigenvector coefficients at those electrodes.  Interestingly, the organization of the images 

along PC1 bears a striking resemblance to the spatial principal components of scenes as reported by [36] and 

seem to be organized in terms of increasing contrast energy at high spatial frequencies.  This observation was 

verified by measuring the amount of Fourier power of the stimuli with a wide range of log-Gabor filters 

(detailed in Appendix 2) tuned to different spatial frequencies (SFs) (0.05, 0.125, 0.25, 0.50, 1.0, 2.0, 4.0, 6.0, 

and 8.0 cycles per degree, cpd) and orientations (0°-165° in steps of 15°) – Figure 4.  The resulting filter spectra 

show a clear transition from being largely dominated by lower SFs at smaller PC1 eignevector coefficients to 

largely high SF dominated at larger eigenvector coefficients.  We will return to this observation in the 

Information Analysis and Modeling sections of this study. 
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Figure 3.  Experiment 1.  Top: topographic plots of SNR (averaged across participants) for the 5 Hz fundamental for sets 
of images organized along PC1 (small coefficients on the left and large coefficients on the right).  Bottom: Stimuli binned 
along PC1 (x-axis of the image array). To facilitate a visual presentation, the images were sorted according to the 
participant-averaged PC1 coefficients and binned into 5 sets with 30 images per bin (thus there is no inherent meaning to 
the y-axis of the image array).   
 

 
Figure 4.  Fourier filter-power analysis of the stimuli used in Experiment 1, organized along PC1 from left-to-right (smaller 
coefficients to large coefficients).  The top row shows the Fourier power for each of the 108 filters.  Rows show the spatial 
frequency (SF) in cycles per degree (cpd) peak of each filter and the columns show the peak orientation (in degrees) of 
each filter.  The bottom row replots the filter power spectra shown above in a standard line plot format. 
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Experiment 2 

 

The results of Experiment 1 show that the SSVEP signal can be described in a low-dimensional space whose 

dimensions systematically code for visual features known to be extracted in early visual processing.  However, 

in order to measure that space with reasonable stability, each image was repeated four times, thereby placing 

an upper limit on the number of unique images included in that experiment.  As a result, our sampling of the 

natural scene defined SSVEP state-space was relatively sparse, possibly blurring the boundaries of the space.  

Here, we sought to characterize the state-space boundaries observed in Experiment 1 by probing that space 

with more images (700 in total).  To keep the experiment within a reasonable time limit, each image was 

presented only once.  However, we aimed to ‘regain’ signal quality at the image level by averaging the SSVEP 

time series data across a reasonably large number of participants.   

 

Apparatus 

Same as in Experiment 1. 

 

Participants 

A total of 25 participants were recruited for this experiment. Of those, 2 failed to complete both recording 

sessions and 5 failed to produce SNRs at any electrode that exceeded chance SNR (detailed in Experiment 1). 

The age of the remaining 18 participants (8 female, 16 right-handed) ranged from 17 to 23 (median age = 18). 

All participants had normal (or corrected to normal) vision as determined by standard ETCRS acuity charts. All 

participants gave Institutional Review Board-approved written informed consent before participating and 

were compensated for their time. 

 

Stimuli 

The stimuli consisted of the same 150 images from Experiment 1 plus 550 additional images randomly 

sampled from our 2500 image database.  All stimuli were prepared as described in Experiment 1. 

 

Procedure 

The stimuli were randomly assigned to one of two recording sessions and were randomly interleaved within 

each recording session (350 images per session, with each session lasting ~55 min). The trial sequence and 

contrast modulation were identical to Experiment 1.  Participants were engaged with a distractor task at 
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fixation, which consisted of detecting a color change (blue to red or green) of a 4 x 4 pixel square placed at the 

center of the stimulus image.  When the color changed during each trial, and whether or not a color change 

occurred at all was determined randomly. Participants reported the color changes via gamepad response and 

were given the opportunity to rest every 50 trials.   

The EEG recording details, data processing pipeline, and electrode selection routine were identical to 

Experiment 1.  As in Experiment 1, artifact trials (no more than 8% across all participants) were found to have 

no influence on the fundamental frequency and were therefore included in all subsequent analyses.  Thus, 

each participant’s data consisted of an electrode- averaged time series matrix that was 5000 (time points) x 

700 (stimuli). As in Experiment 1, the number of included electrodes ranged from 3-8 across participants.  All 

participant data matrices were then averaged and submitted for analysis. 

 

Results 

 

SSVEP Signal Characteristics 

We calculated the SNR spectrum as in Experiment 1, except here we used the participant- averaged 5000 x 

700 data matrix.  This approach yielded strong signal strength at the fundamental frequency (5Hz), as well as 

the next three harmonics, consistent with Experiment 1 (Figure 5b). Next, the averaged time series data were 

filtered (in turn) at the fundamental and each of the harmonics to extract each frequency’s phase angle which 

was then plotted in polar form along with each frequency’s SNR (Figure 5c). The results are consistent with 

Experiment 1 in that the phase angles largely fall between ±30° of a central angle (excepting the 20 Hz 

harmonic, which mostly fell between ±60° of its central angle). 
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Figure 5.  Experiment 2 signal characteristics.  (a) The amplitude spectrum of the participant averaged time series data 
(black trace) bounded by 95% confidence intervals (shaded gray) across all 700 stimulus trials.  (b) The SNR spectrum 
calculated from the participant averaged time series data.  (c) Polar plots showing participant and image averaged SNR 
(radial axis) and phase angle (theta axis) for the fundamental frequency (5Hz) and the three most prominent harmonic 
frequencies. 
 

Principal Component Analysis 

The participant-averaged time series matrix was filtered to contain the fundamental plus the three harmonic 

frequencies, and SNR-normalized as in Experiment 1.  We then submitted the resulting 5000 x 700 data matrix 

to PCA.  The first three PCs were found to account for 96% of the variance in the data, with the first PC 

accounting for most (90%), similar to Experiment 1. Fourier analysis of the first three PC basis functions 

revealed patterns that were virtually identical to those shown in Figure 2b-d.  The coefficients from the first 

two eigenvectors were plotted against one another (Figure 6) and show a non-symmetric distribution as was 

observed in Experiment 1.  Figure 6 is color coded by average SNR-normalized amplitude and phase angle as 

they were in Experiment 1 (Figure 2) and shows the same SNR amplitude and phase angle relationship, 

specifically, the first PC is extracting signal amplitude (R2 = 0.96, p < 0.001), with the second partially coding for 

phase (circular-linear R2 = 0.49, p < .001). 
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Figure 6.  Left: Principal component coefficients 1 and 2 for the 700 images used in Experiment 2.  Each data point is an 
image in neural state-space and has been color coded according to the average SNR of the fundamental and next three 
harmonic frequencies.  Right: The exact same space color coded according to the circular average of the phase angles of 
the fundamental and harmonic frequencies. 
 

 A visual demonstration of how the images are organized along the eigenvector axes of the SSVEP 

neural response-space is provided in Figure 7 (bottom). The ordering of images according to the coefficients 

for PC2 are shown in the Supplementary Materials section (Figure S2).  We also generated topographic plots of 

the averaged SNR for each electrode (Figure 7, top). The organization of the images according to the 

eigenvector coefficients for PC1 is very similar to that observed in Experiment 1 (Figure 3), which was 

confirmed with regression between the Euclidean distances between PC1 coefficients of the corresponding 

images across both experiments (R2 = 0.65, p < .001). 
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Figure 7.  Experiment 2.  Top: topographic plots of SNR (averaged across participants) for the 5 Hz fundamental for sets 
of images organized along PC1 (small coefficients on the left and large coefficients on the right) – each topographic plot 
corresponds to the 20 x 5 image bin directly below.  Bottom: Stimuli binned along PC1. To facilitate a visual presentation, 
the images were sorted according to the participant-averaged PC1 coefficients (low to high) and binned into 7 sets with 
100 images per bin (as with Figure 3, row membership is arbitrary). 
 

Information Analysis 

 

The data from Experiments 1 and 2 allow us to provide an estimate of the information that is carried by the 

SSVEP signal with respect to our population of natural scenes. The information is a function of the reliability of 

the SSVEP response across repeated image presentations as well as the uniqueness of the response to each 

image. The analysis described below calculates the mutual information between our image set and the SSVEP 

responses from Experiment 1. It is important to first recognize the particular constraints imposed on these 
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conclusions. First, we are describing the average information in the signal with respect to a particular 

population of natural scenes. These scenes are normalized to have the same RMS contrast and they extend 

18.5 degrees centered on the fovea. Second, we are not attempting to calculate the true entropy of natural 

images (which would be much too difficult - i.e., see [37]). Rather, we are considering our set of images as a 

finite set of stimuli (150 images = 7.23 bits) and the information we calculate provides an estimate of how 

accurately a particular image can be identified given the SSVEP signal (the maximum possible is 7.23 bits).  

Third, we are also using the “best electrode” approach as described in the previous section and not using the 

information contained in the spatial distribution of activity across the different electrodes. Fourth, we use just 

four presentations of the stimulus to make an estimate of the variance of the response. Finally, we are making 

this estimate with only the first two principal components because the third PC accounted for only 1.76% of 

the variance and did not show clear relationship with repeated measures.  

 Given these limitations, there are a number of values that we can calculate. Each value provides only a 

rough estimate, but they provide broad insights into the reliability of the signal. The mutual information 

between two signals (X and Y) is defined as the difference between two entropies: 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) 

 

For this study, we define H(X) as the entropy of the SSVEP signal across the entire set of images.  

Intuitively, this quantity should reflect the spread of image points across a space defined by the first two PCs 

of SSVEP activity. To operationalize this, for each of the four presentations of each image, we computed the 

mean and covariance of the coefficients from the first two eigenvectors, and modeled each image as a 

multivariate elliptical Gaussian distribution. We then summed these Gaussians together, and divided by the 

total to create a probability distribution over PC space, p in a grid of 100 by 100, defined by the range of each 

principal component. Entropy was then computed as standard: 

𝐻(𝑋) = −+𝑝- ∗ log2 𝑝-

3

-45

 

 

Where n is the number of cells in the grid2. 

 H(X|Y) is then defined as the entropy of the SSVEP signal conditioned on a particular image. For this 

study, we operationalized this as the probability density defined by the multivariate elliptical Gaussian fit to 

                                                             
2 We tested grid sizes between 2x2 to 500x500, and found stable results for grid sizes larger than 50x50. 
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the four presentations of each single image. The mutual information value for each participant is the average 

mutual information over the 150 images. 

 As shown in Figure 8a, when there is a good deal of similarity in the SSVEP across the four image 

presentations of a given image, there is a higher resulting mutual information value. This is because the 

variability in PC locations across presentations is small, resulting in a smaller H(X|Y) relative to H(X). On the 

other hand, when SSVEP responses are variable across image presentations, higher variability in PC locations 

result in larger H(X|Y). In other words, the probability distribution for that image becomes more similar in size 

to that of the entire set of images, captured by H(X). This results in low mutual information between the 

SSVEP and the given image. 

 We found that the mutual information between the SSVEP responses and our image set is ~2.1 bits 

(range across participants: 1.5 to 2.5 bits). This value gives us an estimate of how much information the SSVEP 

signal gives us about the specific image being presented. Additionally, we collapsed across participants and 

examined the distribution of mutual information across images. As shown in Figure 8b, we found that images 

with low mutual information with the SSVEP signal tended to have more high spatial frequency content than 

those with higher mutual information. We tested the generality of this observation by correlating the average 

mutual information value of each image with the filter power of the images at nine spatial frequencies and 12 

orientations (detailed in the Results section of Experiment 1) (Figure 8c). We found that across all images, low 

spatial frequencies were associated with higher mutual information (R2 = 0.55, p < 0.05, collapsed across 

orientation, Figure 8d). By contrast, orientation (when collapsed across spatial frequency) was not linearly 

associated with mutual information (R2 = 0.03, n.s.). However, as shown in Figure 8e, this is because 

orientations around 90° were associated with higher mutual information than the oblique angles of 45° and 

135°. 

 Again, we must emphasize that this measure of information is only a general estimate limited to the 

conditions we have used in this study, and most likely a lower bound. With only four presentations of each 

image, we are likely overestimating the variability of each image. A wider range of natural scenes (e.g., where 

the contrast is not constrained or the images are colored or larger) may likely provide a larger value. It is also 

likely that if we opened the data set to a much wider variety of scenes (e.g., gratings, abstract textures, etc.) 

that we would find that the SSVEP signal carries more information about the signal. 

 While it is worth knowing that SSVEP signals carry significant information regarding image content, this 

approach provides less insight about what kind information is carried in that signal.  To explore this question, 

we developed a model of how the SSVEP signal is represented by the visual system, allowing us to determine 
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what aspects of the stimulus predict the SSVEP responses. In the next section, we describe this model and 

demonstrate that it can predict a relatively high proportion of the response variance.  

 
Figure 8. Mutual information between image and SSVEP signal. (a) Left: We fit multivariate Gaussian distributions to the 
four presentations of each of the 150 images in a space defined by the first two PCs. The entropy of the SSVEP signal 
(H(SSVEP)) was estimated by summing these 150 Gaussians. Right: The individual Gaussians constitute the image-defined 
entropy (H(SSVEP|Image)). The mutual information is the difference between these quantities. (b) Histogram of mutual 
information values across participant (mean=2.1 bits). Side images indicate images with particularly low- or high- mutual 
information with SSVEP signal. (c) Correlation of mutual information and Gabor filter parameters (spatial frequency and 
orientation). (d) Marginal correlation of spatial frequency and mutual information. (e) Marginal correlation of 
orientation and mutual information. For both (d-e), error bars indicate +/- 95% confidence interval. 
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Explaining the SSVEP Response Space 

 

The analyses reported thus far point to spatial frequency being an important organizing factor along PC1 (e.g. 

Figure 4), as well as a modulator of mutual information between the stimulus and response (e.g. Figure 8D). 

This suggests that the mapping between image state-space and SSVEP response space may rely on a Fourier-

power based encoding scheme, a well-justified model of the early visual system (V1 in particular) [38]. Here, 

we test this empirically by measuring the relationship between Euclidean distances between the filter power 

spectra of our stimuli and their corresponding distances in SSVEP response state-space.   

Steady-state visual evoked potentials represent a global measure of the underlying neural operations 

at the circuit level, meaning that the entrained signal measured on the scalp likely stems from a summation of 

the underlying responses tuned to different image attributes.  If the majority of the summation arises from 

early visual cortical processes (reviewed in [38]), then we can expect a good portion of the sum to be 

explained by contrast in different bands of spatial frequency and orientation. Therefore, to model the cortical 

response, we represented each image in terms of an array of filters selective to different positions, spatial 

frequencies and orientations inline with the sort of tuning that is found in area V1. Although it is certainly 

possible that the SSVEP signal carries higher level information, we believe a strong, initial approach is to see 

what can be explained by these low level features. 

  All stimuli in Experiments 1 and 2 were filtered using log-Gabor filters (detailed in Appendix 2) 

centered on nine different spatial frequencies and 12 orientations. The filters were set to have an SF 

bandwidth of 1.4 octaves (full width at half height) and an orientation bandwidth of 36° (full width at half 

height) [39-40].  Each image’s power spectrum was multiplied by each filter and summed and we then 

calculated the log of this sum.  After this transformation, each image is represented as an array of 108 filter 

responses (log Fourier power), which can be used to construct an item-by-item Euclidean distance matrix, 

which can then be directly compared to the item-by-item Euclidean distances in the eigenvector-defined 

SSVEP state-space [41]. This process resulted in a 150x150 distance matrix for Experiment 1 and a 700x700 

distance matrix for Experiment 2. We then calculated Euclidean distance matrices between each image’s 

location along each axis of the SSVEP state-space for Experiments 1 and 2 separately.  To ensure that the 

distances reflected the difference in variance explained by PC 1 and 2, the eigenvector coefficients were first 

weighted by the square root of each PC’s corresponding eigenvalue.  Regression analyses between filter 

output distances and state-space distances from each experiment resulted in only modest relationships (Expt 

1: R2 = 0.32, p < .001; Expt 2: R2 = 0.30, p < .001).  However, Experiments 1 and 2 both revealed that the first 
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PC accounted for > 90% (in both experiments) of the variance in the SSVEP response space.  While the 

eigenvectors were weighted by the square root of their corresponding eigenvalues in the above analysis, it is 

likely that the inclusion of PC2 added noise to the aforementioned analysis due to the small amount of 

variance that it explained.  Further, the filter-power distances were driven by the log power of 108 filters, 

many of which may not have been instrumental in driving SSVEP entrainment.   

To provide an analysis more suitable to the PC-defined SSVEP state-space, the log filter-power across 

all stimuli for each peak SF and orientation was regressed against PCs 1 and 2 separately for each experiment 

(i.e., we attempted to model each eigenvector dimension of the SSVEP state-space).  The results using the PCs 

from Experiment 1 are plotted in Figure 9a-b.  Interestingly, for both PCs, we see that most of the variance in 

the PC eigenvector coefficients is accounted for by filter-power at the higher spatial frequencies, with a bias at 

the oblique orientations.  We then repeated this analysis for each participant.  To build a full model that 

minimized multicollinearity across filters, we averaged together the power at the cardinal orientations (0° and 

90°) and oblique orientations (45° and 135°) for each image (resulting in 18 predictors, 9 SFs each for cardinal 

and oblique orientations). The filter-power predictors were then entered into a multiple regression against 

PC1 eigenvector coefficients for each participant (based on the average of all four repetitions). We estimated 

upper and lower bounds of explainable variance given the noise inherent in the data according to Appendix 3 

on a participant-by-participant basis (Figure 9c). We then estimated the success of the model by taking the 

ratio of the model R2 and the upper bound of explainable variance.  The model was able to account for 72.8% 

(SE = 2.17%) of the explainable variance in PC1 coefficients (Figure 9c), and 60% (SE = 4.5%) of explainable 

variance in PC2 coefficients (not shown).  For both PCs, the higher SFs (≥4 cpd) accounted for an averaged 

~86% of the full model’s R2.  Thus, a simple Fourier filter-power model can explain an impressive portion of the 

organization of SSVEP neural response-space along both PCs. 

The above analyses were repeated for Experiment 2, first using the participant averaged data (Figure 

10a-b).  Here, the estimated upper and lower bounds of explainable variance were calculated across 

participants as described in Appendix 3.  Consistent with Experiment 1, 74% of the explainable variance in PC1 

coefficients is accounted for by the higher SFs, with 50% of PC 2’s explainable variance again accounted for by 

the higher SFs.  Next, we conducted the same analysis on a participant-by-participant basis (explainable 

variance bounds could not be estimated for this analysis) and report the results in Figure 10c, which, as 

expected, shows lower overall variance explained (only one trial per image)3. 

                                                             
3 We tested the explanatory power of the filter-power encoding model relative to other image encoding models based on well-
established image statistics (e.g., amplitude spectrum slope, structural complexity, orientation bias, whitened skewness, whitened 
kurtosis, and the slope of the phase-only second spectrum).  To cut down on the number of predictors associated with the filter-
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Figure 9.  Fourier filter-power model results for Experiment 1.  (a) On the left is an R2 spectrum showing the regression 
coefficient for each filter against PC1 from the participant averaged time series data.  Rows represent peak SF of the 
filters in cpd, columns show peak orientation (in degrees) of the filters.  On the right are the same data shown in 
standard line plot format.  (b) Same as (a), but for PC2.  (c) Plotted on the left is the full regression model (18 filter-power 
predictors; see text for detail) performance according to variance explained (y-axis) for PC1 for each participant (x-axis).  
The shaded red area represents the lower and upper bounded region for explainable variance (see text for further detail).  
On the right shows the same results plotted according to explainable variance accounted for by the full regression model 
(the ratio of variance explained and the upper bound of estimated explainable variance). 

                                                             
power model, all responses were averaged over orientation (i.e, 9 predictors in total for each image).  Multiple regression was run 
on each of the PC coefficients from Experiment 1 with the outputs of the reduced filter-power model and the the six image statistic 
models used as predictors).  The high spatial frequencies (>= 4 cpd) of the filter-power model explained more unique variance for 
each of the PC coefficients (25% and 17% represpectively) than any of the image statistics encoder models (highest predicted unique 
variance across all six image encoder models = PC1: 8%; PC2: 3%). 
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Figure 10.  Fourier filter-power model results for Experiment 2.  (a) On the left is an R2 spectrum showing the regression 
coefficient for each filter against PC1 from the participant averaged time series data.  Rows represent peak SF of the 
filters in cpd, columns show peak orientation (in degrees) of the filters.  On the right are the same data shown in 
standard line plot format.  (b) Same as (a), but for PC2.  (c) Plotted on the left is the same as in (a) but was calculated for 
PC1 of each participant and then averaged (error bars are 95% confidence intervals).  The plot on the right was 
calculated the same way as on the left, but for PC2. 
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Experiment 3 

 

The model described above suggests that for both Experiments 1 and 2, the relative positions of images along 

the two primary PC dimensions of the SSVEP response space can be explained by filter power at SFs ≥ 4 cpd 

(with the oblique orientations playing a dominant role in that account).  However, it is important to note that 

this model treats each filter as an isolated entity.  The difficulty is that the model is looking at only the 

correlations between SSVEP responses and isolated SF power.  Because the stimuli are broadband, 

correlations with any given frequency band could be due to the simultaneity of that band along with other 

bands (or some other broadband feature that is correlated with a given band’s power). The current 

experiment therefore set out to test for a causal explanation for two major observations made from the 

modeling results.  In particular, does the amount of filter power in higher SFs (relative to lower SFs) drive the 

magnitude of SSVEP SNRs?  And, is SSVEP SNR driven more by higher SF oblique orientations than cardinal 

orientations? 

The current experiment consisted of two primary conditions.  The first involved measuring SSVEP SNRs 

while participants viewed bandpass filtered natural images (i.e., narrowband in SF and orientation) that had 

variable amounts of filter power at each frequency and orientation.  If SNRs are being driven by filter power in 

any given band of SFs and orientations, then we would expect to see SNR increase with increasing filter power 

within particular bands (e.g., high SF obliques). The second condition was designed to measure the same SNR 

trends mentioned above, but with compound stimuli.  Specifically, all orientations at one SF band would be 

held constant in terms of Fourier power, while the Fourier power of cardinal or oblique orientations at 

another SF band are varied.  The idea behind this particular stimulus manipulation is to test for an SNR 

modulation at a band of SFs and orientations due to systematic increases in Fourier power, while 

simultaneously ‘activating’ neural populations tuned to other SFs and orientations, thereby providing a causal 

account that is closely related to activity that would likely be observed with broadband stimuli. 

 

Apparatus 

Identical to Experiments 1 and 2, except that the experimental monitor’s gamma was set so that the filtered 

image pixel values were linear on the display. 

 

Participants 
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A total of 16 participants were recruited for this experiment.  Of those, 1 failed to produce SNRs at any 

electrode that exceeded chance SNR (as explained in Experiment 1). The age of the remaining 15 participants 

(5 female, 13 right-handed) ranged from 18 to 31 (median age = 19).  All participants had normal (or corrected 

to normal) vision as determined by standard ETCRS acuity charts.  All participants gave Institutional Review 

Board-approved written informed consent before participating and were compensated for their time. 

 

Stimuli & Filtering Procedure 

Five natural scene images were pseudo-randomly selected from the stimulus set of Experiment 2. The stimuli 

were randomly selected from those at the higher end of PC 1 (to optimize SNR) and evaluated to ensure that 

there was an approximately equivalent amount of Fourier power across all orientations (see [20] for details). 

The stimuli were then submitted to two linear filtering routines corresponding to the two main conditions of 

the current experiment.  All filtering took place using the log-Gabor functions defined in Appendix 2.  

However, here we reduced edge effects by using the standard symmetrizing technique (e.g., all stimuli were 

copied and flipped left-to-right, with the result copied and flipped top-to-bottom, thereby doubling the 

dimensions of the original image) prior to filtering.  Target SFs were doubled to account for the increase in 

dimensions.  The original 512 x 512 image was then cropped from the symmetrized filtered image. 

For the bandpass filtering condition, all stimuli were filtered to target one of two peak SFs (namely, 

0.125 cpd and 4 cpd), with the SF bandwidth of the filter set to 1 octave (full width at half height), and one of 

four different orientations (vertical, 45° oblique, horizontal, and 135° oblique) with an orientation bandwidth 

of 16° (full width at half height).  Once filtered, 5 copies were made by scaling the power from 12.5 to 14.5 (log 

units) in steps of 0.5.  Thus, each image yielded 40 stimulus images (2 SFs by 4 orientations x 5 levels of 

power). 

For the compound filtering condition, two different sets of filtered images were created.  One set 

contained image content from all orientated filters at 0.125 cpd (1 octave SF bandwidth, 16° orientation 

bandwidth) combined with either the cardinal orientations (0° and 90°) or the oblique orientations (45° and 

135°) at 4cpd (1 octave SF bandwidth, 16° orientation bandwidth).  The power of the 4 cpd filters was scaled 

as described above and held constant at 13.5 log units for the 0.125 cpd filters.  The other set was the 

opposite, with all four orientations at 4cpd held at a constant power with variable power at 0.125 cpd for the 

cardinal or oblique orientations.  Thus, each image yielded 20 stimulus images (5 overall levels of power x 2 

variable orientations at 0.125 x 2 variable power orientations at 4 cpd). 

In total, each stimulus image had 60 different filtered versions, for a total of 300 different stimuli. 
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Procedure  

The experiment consisted of a single recording session lasting ~48 min.  All 300 stimuli were presented once 

and were randomly interleaved.  The trial sequence and temporal contrast modulation were identical to 

Experiments 1 and 2.  Participants engaged in a distractor task that was identical to Experiment 1, except here, 

there was a luminance change on 60 trials (randomly distributed across the session) and was applied to all 

filtered stimuli from one of the five images.  Participants reported (via gamepad response) when a luminance 

change occurred and were given the opportunity to rest every 50 trials.  The trials that contained a luminance 

change were not included in the analysis, resulting in a total of 240 stimuli used in analysis. 

The EEG recording details, data processing pipeline, and electrode selection routine were identical to 

Experiments 1 and 2.  Artifact trials (no more than 5% across all participants) were found to have no influence 

on the fundamental frequency and were therefore retained for all subsequent analyses.  Thus, each 

participant produced an electrode-averaged (3 to 8 electrodes selected per participant) time series matrix that 

was 5000 (time points) x 240 (stimuli). That matrix was then split into the 60 different data blocks described 

above and averaged across the four exemplar images at each level of Fourier power, yielding a 5000 x 60 time 

series data matrix for each participant. 

 

Results 

 

Signal to noise ratios were calculated for the 5Hz fundamental (as described in the previous experiments) for 

each of the 60 averaged time series waveforms (60 data points for each participant), then averaged across 

participants and plotted in Figure 11.  Beginning with the bandpass conditions, Fourier power has virtually no 

influence on SNR for 0.125 cpd stimuli (Figure 11a).  This was verified with four different repeated measures 

ANOVAs, all of which failed to show a main effect of power or significant linear trend (all p’s > 0.05). However, 

as Fourier power increases for stimuli filtered at 4 cpd (Figure 11b), all orientations yield SNRs that increase 

linearly (significant linear trend; all p’s < 0.022; all partial η2s > 0.32), and a significant main effect of power for 

all orientations (all p’s < 0.031; all partial η2s > 0.185). Follow-up paired t-tests revealed no significant 

differences between the orientation SNRs at higher levels of power. The SNR trends for the compound stimuli 

show a similar pattern. That is, as power in the 0.125 cpd band for the cardinal or oblique orientations 

increases against a 4 cpd fixed power pedestal, SNR is virtually unchanged (Figure 11c). This observation was 

confirmed with two different repeated measures ANOVAs, all of which failed to show a main effect of power 
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and no significant linear trend (all p’s > 0.05). This is in direct contrast to the complementary compound 

condition where SNR increases with increasing power of the 4 cpd band against a 0.125 cpd fixed power 

pedestal for both orientation sets (Figure 11d).  Again, this was verified with two different repeated measures 

ANOVAs that showed a main effect of power (both p’s < 0.03; both partial η2s > 0.193), and a significant linear 

trend (both p’s < 0.023; both partial η2s > 0.32).  Follow-up paired t-tests failed to differentiate between 

cardinal and oblique orientations at the higher levels of power. 

 Together, the results of Experiment 3 support a causal role of power at the higher SFs (≥ 4 cpd) in 

driving SSVEP signal strength, thereby defining the organization of the SSVEP state-space as measured here.  

However, we did not observe a prominent role for the oblique orientations, suggesting that the predictive bias 

observed in the model results of Experiments 1 and 2 most likely resulted from coincidental variation in power 

at other orientations. 

 
Figure 11.  Results from Experiment 3.  All plots show SNR for the 5Hz fundamental on the y-axis.  The x-axis shows 
stimulus power for the peak SF and orientation that was modulated for each condition.  Refer to the text for further 
detail. 
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General Discussion 

 

Considered together, the results of the current study provide a description of the information carried by the 

SSVEP signal in response to natural scenes, as well as provide a quantitative account of the state-space 

geometry of the brain responses to those scenes. We believe that this approach has significant advantages for 

understanding the nature of the SSVEP signal and for understanding what the SSVEP signal can tell us about 

the processing and organization of natural scenes based on early visual signals. 

 First, we note that our experiments demonstrate that in response to natural scenes, the SSVEP signal is 

low dimensional. Although, the Fourier components of the de-noised signal imply that the signal is eight 

dimensional or fewer, PCA on this signal demonstrates that it is significantly lower. Specifically, the first two 

PCs of the SSVEP response space captured almost all of the signal's variance (> 94% across both experiments). 

The low dimensionality of this response space has both methodological advantages and disadvantages. One 

important disadvantage is that the low number of dimensions implies that the SSVEP signal cannot capture the 

vast statistical diversity of natural scenes. On the other hand, with a low-dimensional signal, we can easily 

visualize the relationships coded by the neural population response and visualize the dependencies of these 

dimensions. Although most of the variance in the signal is captured by the first PC, the second PC does 

account for significant variability (~4% across both experiments), and is well explained by the phase of the 

SSVEP waveforms. Furthermore, as shown in Figures 2 and 6, the two eigenvectors of the response are not 

independent of each other, which may reflect a dependence of SSVEP phase (i.e., entrainment lag or advance) 

on image contrast within different bands of spatial frequency.  

    In the Information Analysis section, we provided an estimate of the information carried by the SSVEP 

signal regarding our set of natural scenes. As we have noted, our estimates are restricted to the parameters of 

experiment. Under the conditions of Experiment 1, where all the images are natural scenes with normalized 

contrast, and using test/retest reliability, we find that the SSVEP provides ~2.1 bits of information about the 

image. We believe that although this this number may seem relatively low (i.e, it allows us to categorize these 

scenes in just over 4 categories), this is a useful approximation. However, that number is based on a set of 

assumptions regarding the inherent noise in test/retest reliability and how representative our images are with 

respect to the population of natural scene images. We are currently investigating some of these assumptions, 

but we believe this approach can provide important insight into both SSVEP and VEP signals.  

 A more interesting approach is to consider the nature of the information that appears in the 

population response. In the modeling section, we used a biologically plausible neural model of activity where 
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the images were compared through the sum of squared filter responses. This is basically a complex cell model 

where the SSVEP signal represents coarse information regarding orientation and SF. Subsequent modeling of 

the two dominant SSVEP state-space dimensions revealed that filter-power could be used to explain the 

relative positions of image signals along each PC dimension of the SSVEP neural response space.  Interestingly, 

filter-power at SFs ≥ 4 cpd played a dominant role in defining the organization of images within the neural 

state-space.  Further, collapsing the filter bank to cardinal and oblique orientations across nine SFs (just 17% 

of all filters initially employed) could explain ~73% of PC1 and 60% of PC2.  We were surprised at the relative 

power of this simple model. Using machine learning techniques, we may be able to improve on this 

explanatory power. However, the filter-power model provides a more straightforward interpretation of the 

organization of images based on SSVEP signals.  Indeed, filter-power models have been successful in 

explaining relatively large amounts of response variance in other studies focused on natural image processing 

using different neural recording techniques [e.g., 16, 43-45].  

 Another interesting facet of the SSVEP state-space concerns the role that higher SFs play in defining 

the relative positions of image responses in that space.  We see a similar response dependency in the visual 

evoked potential (VEP) literature.  Specifically, the earliest VEP measured for stimuli presented to the fovea 

(the fC1, [42]) shows a highpass tuning response for sinusoidal grating stimuli beginning around 4 cpd and 

increasing in magnitude with increasing SF [42, 46-48].  The latency of that component also increases with 

increasing SF from ~75 msec out to ~90 msec but has been observed as late as 120 msec [48].  Further, when 

systematically extending sinusoidal gratings (or narrowband filtered natural images) to broadband natural 

images, the magnitude of that component as well as a later negativity peaking around 150 msec is driven by 

RMS contrast at the higher SFs [14-15].  While the current study was not designed to map the mechanisms 

that were entrained by our SSVEP paradigm to those responsible in signaling components in VEP paradigms, 

the connection between the current results and those from VEP studies using natural scenes is intriguing.  

Interestingly, data that we collected for another study (manuscript in preparation) suggest that the VEP 

response at 100-200 msec post stimulus onset is highly correlated (maximum R2 = 0.78) with PC1 in the SSVEP 

response. This is the VEP time range that typically shows selectivity to high SF contrast in natural images (or 

sinusoidal gratings) [14-15] and suggests that the mechanisms responsible for those VEPs are those largely 

entrained by our SSVEP paradigm. 

 The reliance on high SFs observed here (as well as in the VEP literature) has several interesting 

implications for cortical whitening. It has been argued that in response to the 1/f structure of natural scenes, 

the visual system increases the relative gain of higher versus lower spatial frequencies [49-50]. Such an 
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approach would explain why white noise perceptually appears to be dominated by high SFs.  However, while 

the apparent role of high SFs in shaping the neural state-space is interesting, it is important to temper those 

claims given the coarse nature of EEG recordings.  That is, EEG is only able to measure the largest neural 

responses arising from piecemeal cortical signals (e.g., those best aligned to yield dipolar summation), and will 

not pick up signals from underlying populations that are too weak or happen to cancel out due to the relative 

orientation of the pyramidal cell generators.  For example, the more peripheral signals may cancel due to their 

origins in the upper and lower banks of the calcarine, thereby leaving only activity arising from the fovea, 

which would be dominated by high SF responses [51-54].  Thus, the dominance of high SFs may be due to an 

important transformation of broadband input but could also simply result from being a signal that largely 

arises from foveal generators.  We are currently running experiments in order to advance one hypothesis over 

the other. 

 In sum, we have described a state-space approach for characterizing the SSVEP response to natural 

scenes. We have found that the signal is low dimensional but that the signal contains significant information 

regarding the image content. We believe this approach provides important insights into the information 

carried by this signal. We are currently using this approach to investigate the geometry and dimensionality of 

the VEP signal. Although we find this non-entrained signal to be more complex, the signal is still relatively low 

dimensional (98% of the variance captured in the first 4 dimensions). We believe that describing the response 

in terms of the location in this high dimensional space is much more informative than current approaches that 

focus on the positions and amplitudes of particular features.  

The early geometric representation of natural images serves as an important step to elucidate “higher” 

level state-space representations.  One possible candidate model for bridging the current findings to higher 

knowledge spaces may be the spatial envelope model [55].  In fact, the feature vectors that contribute to the 

linear discriminant filters (i.e., filters built from LDA) in that model consist of Gabor wavelet responses (similar 

to those used here) to natural scenes.  While LDA may not be a viable means for modeling the transformation 

of an early filter space to a high categorical space, the initial geometric representation of the input to that 

model certainly seems to be plausible given the model performance observed in the current study. 

 

Conclusion 

In this study, we have described the information carried by the SSVEP signal in response to natural scenes, as 

well as the state-space geometry of the responses to those scenes. Further, we show that a log-Gabor filter 

model can account for a high proportion of the explainable variance along each axis of the SSVEP state-space 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/705376doi: bioRxiv preprint 

https://doi.org/10.1101/705376
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

(~73% for PC1 and ~60% for PC2). This suggests that the majority of the information in the entrained neuronal 

signal can be explained by lower-level statistical features of the stimuli (high SF filter responses in particular). 

It may well be that higher percentages of the variance could be explained by models that also include higher 

level features that are not fully explained by the lower level features (emotional impact, task relevance, etc.). 

However, the success of the feature-based model implies that low-level features play the primary role in the 

SSVEP entrainment.  An understanding of how the electric dipoles are produced by the millions of active 

neurons, is beyond the scope of this paper. However, this paper provides clear evidence that there is 

significant information about natural scenes contained in this non-invasive signal.  

 We believe that this approach can also be applied to VEP data and we are currently exploring that 

option. From our geometric point of view, each response (VEP or SSVEP) is a point in the relatively low 

dimensional space of possible responses. By understanding the geometric distribution of these points, we 

believe we can gain important insights into the nature of the transformation of the visual signal. Further work 

is needed to understand how particular features of the stimulus influence the position of each image in this 

space. However, this approach allows us to characterize the full response to individual stimuli in a relatively 

low dimensional space and does not simply focus on particular features of that space.  Finally, the state-space 

approach does not depend on the particular recording technique that is used (e.g., EEG, MEG, fMRI, fNIRS), 

and lends itself to any type of encoding model.  In fact, recent fMRI work has used PCA to build state-space 

like response spaces from lexical encoders [e.g., 58].  All recording techniques will result in some type of 

response for each stimulus.  Projecting those responses into a state-space framework as we have done here 

will put them in a common metric space, enabling direct comparision of response spaces built from common 

sets of stimuli.  Such comparisons may enable insight into how different neural circuits are contributing to the 

signals captured by macro-scale measures such as those mentioned above. 
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Appendix 
 
1.0 RMS contrast manipulations 
Root mean square contrast is defined as the standard deviation of all pixel luminance values divided by the 
mean of all pixel luminance values.  Here, images are treated as arrays, I(y), with each array set to have the 
same RMS contrast and zero mean using the following operations. 
 
The pixels values of each image array are first normalized to fall between [-.5 .5] with zero mean as follows, 
 
                                                                        𝐼67 =

5
2
∗ 89:
;<=|89:|

 

with Izm defined as: 
 

𝐼>? = 𝐼(𝑦) − A
1
𝑌+𝐼(𝑦-)

C

-45

D 

 
Here, Y represents the total number of pixels in each array.  Next, we calculated RMS for Isc as follows: 
 

𝑅𝑀𝑆67 = 2 ∗ I
1

𝑌 − 1+𝐼67(𝑦-)2
C

-45

 

 
We then calculated an RMS scaling factor, Srms = (2*RMSt)/RMSsc, with RMSt set to a reasonable target RMS 
value.  By reasonable, we mean a value that did not result in significant (> 5%) clipping of the resulting pixel 
values.  That value was 0.20 for the images used in the current study.  Finally, each image array was scaled to 
have an RMS equal to RMSt and reassign to I(y) as follows: I(y) = 127*(Isc*Srms).  Note that scaling by 127 puts 
the scaled pixel values of I(y) back in the original range of Izm.  Image arrays were then converted back to 
matrix form. 
 
2.0 Measuring log-Gabor filter power 
All image filtering was conducted in the Fourier domain using the images in matrix form.  The images were 
first made to possess a zero mean and an RMS contrast of 0.20 (see Appendix 1).  To minimize edge effects in 
the Fourier domain due to the non-periodic nature of natural images, the images were multiplied with a 2D 
circular Hann window prior to the Fast Fourier transform.  To construct the window, a 2D radial matrix, MR, 
was built within which the values increased from the center out to (𝑋/2) ∗ K√2/2M and modulated according 
to: 
 

𝑤(𝑥, 𝑦) = 	 R
1
2 ∗

S1 − cos V2𝜋
𝑀X(𝑥, 𝑦) − (𝑋/2)

𝑋 YZ[ 

 
with X being the maximum dimension of the image to be weighted by w(x,y).  Each windowed image was 
submitted to the 2D fast Fourier transform to obtain H(u,v) as follows:   
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where I(x,y) represents a given image, with X and Y representing the dimensions of the image.  Next, the 
amplitude spectrum was calculated according to:  
 

𝐴(𝑢, 𝑣) = 	_𝐻X(𝑢, 𝑣)2 + 𝐻8(𝑢, 𝑣)2 
 
with HR(u,v) and HI(u,v) representing the real and imaginary parts of H(u,v), respectively.  For filtering 
convenience, the amplitude spectrum, A(u,v) was shifted to polar coordinates and in this form will be denoted 
as A(f,θ), with f serving as the index along the radial (i.e., spatial frequency) dimension, and θ as the index 
along the theta (i.e., orientation) dimension.  
 A 2D log-Gabor filter [46] in the Fourier domain consists of a log-Gaussian function along the f axis and 
a Gaussian function along the θ axis, and can be obtained by multiplying a 2D log-Gaussian filter (i.e., a log 
‘doughnut’ filter) with a 2D Gaussian ‘wedge’ filter.  The construction of the 2D log-Gaussian filter, Lgaus(f, θ), 
took place in same polar coordinate frame as A(f,θ).  Thus, for each θ axis, Lgaus(f) was modulated as follows. 
 

𝐿bcd6(𝑓, 𝜃) = 𝑒𝑥𝑝
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Where f increases with spatial frequency (radial distance), fpeak represents the peak of the function, and fσ 
representing the SF bandwidth of the filter.  Next, a 2D Gaussian function (modulated across θ in radians) 
about a central orientation was generated as follows. 
 

𝐺~(𝑓, 𝜃) = 𝑒𝑥𝑝 RS
−𝜃2

2 ∗ 𝜃v
Z[ 

 
The log-Gabor filter, LG(f, θ), was then constructed by multiplying Gθ(f, θ) by Lgaus(f, θ).  To obtain filter power, 
the amplitude spectrum in polar coordinates, A(f, θ), was first squared to obtain the power spectrum, P(f, θ).  
Power for each filter then measured as follows. 
 

𝐹𝑖𝑙𝑡𝑒𝑟	𝑝𝑜𝑤𝑒𝑟 =++𝑃�(𝑓, 𝜃) ∗ 𝐿𝐺(𝑓, 𝜃)
~4��45

 

 
Where Pw(f,θ) is the power spectrum multiplied by a hard-edged circular window containing ones everywhere 
within a diameter equal to the image dimension and zeroes everywhere else.  Applying that window ensured 
equal SF sampling across all orientations. 
 
3.0 Explainable Variance Bounds 
The upper and lower bounds of the model regression coefficients, R2, were calculated according to the 
following expression (based on [56-57]). 
 

𝐻(𝑢, 𝑣) =
1
𝑋𝑌++𝐼(𝑥, 𝑦)𝑒��2��
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𝑅�2 =
2

1 + 1
𝑅�2

 

 
Here, the upper bound, RU

2, is the estimated R2 that would be expected between PCs taken from the actual 
neural signal (i.e., as averaged over an infinite number of samples, thereby containing zero noise) and the 
observed PCs (i.e., PCs extracted from a finite number of averaged trials).  This value therefore represents an 
approximation to the highest R2 that would be expected given the noise inherent in the data.  The lower 
bound, RL

2, is the averaged R2 taken between pairs of PCs extracted from the average of pairs of trial 
repetitions (Experiment 1) or the average across half of the participants compared to the other half 
(Experiment 2).  Specifically, for Experiment 1 an RL

2 was measured for each participant by calculating R2 
between a given PC based on the average of two trial repetitions and the same PC from the average of the 
other two repetitions.  This process was repeated for all possible unique pairs of repetitions and then 
averaged.  For Experiment 2, RL

2 was measured by calculating R2 between a given PC from the averaged data 
of half of the participants and the same PC form the average of the other half of the participants.  This process 
was repeated 100 times (each time randomly assigning different participants to the first and second half 
averages) and the average of those R2s was taken as RL

2. 
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Supplementary Material 
 
 

Figure S1. Experiment 1.  Stimuli binned along PC 2 (x-axis of the image array). To facilitate a visual 
presentation, the images were sorted according to the participant-averaged PC 2 coefficients and binned into 
5 sets with 30 images per bin (thus there is no inherent meaning to the y-axis of the image array).   
 
 

 
Figure S2. Experiment 2.  Stimuli binned along PC 2. To facilitate a visual presentation, the images were sorted 
according to the participant-averaged PC 2 coefficients (low to high) and binned into 7 sets with 100 images 
per bin (as with Figure S1, row membership is arbitrary). 
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