

Mechanistic Insights into the Protective Roles of Polyphosphate Against Amyloid Cytotoxicity

Justine Lempart^{1,2}, Eric Tse³, James A. Lauer², Magdalena I Ivanova^{4,5}, Alexandra Sutter⁴, Nicholas Yoo², Philipp Huettemann², Daniel Southworth³, Ursula Jakob^{2,6*}

¹Graduate Program in Biochemistry, Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 München, Germany

²Department of Molecular, Cellular and Developmental Biology University of Michigan, 1105 N. University Ave, Ann Arbor, MI 48109, USA

³Institute for Neurodegenerative Diseases Dept. of Biochemistry and Biophysics, 675 Nelson Rising Lane, University of California, San Francisco, CA 94158, USA

⁴Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States.

⁵Department of Neurology, University of Michigan, Ann Arbor, MI 48109, United States.

⁶Department of Biological Chemistry University of Michigan, Ann Arbor, MI 48109, USA

*Corresponding author:

Ursula Jakob

5014 BSB, 1105 N. University Avenue, Ann Arbor, MI 48109-1085

ujakob@umich.edu

(734) 615-1286

Keywords: Polyphosphate, Parkinson's Disease, α -synuclein spreading, protein aggregation

1 **ABSTRACT**

2 The universally abundant polyphosphate (polyP) accelerates fibril formation of disease-related
3 amyloids and protects against amyloid cytotoxicity. To gain insights into the mechanism(s) by
4 which polyP exerts these effects, we focused on α -synuclein, a well-studied amyloid protein,
5 which constitutes the major component of Lewy bodies found in Parkinson's Disease. Here we
6 demonstrate that polyP is unable to accelerate the rate-limiting step of α -synuclein fibril
7 formation but effectively nucleates fibril assembly once α -synuclein oligomers are formed.
8 Binding of polyP to α -synuclein either during fibril formation or upon fibril maturation
9 substantially alters fibril morphology, and effectively reduces the ability of α -synuclein fibrils to
10 interact with cell membranes. The effect of polyP appears to be α -synuclein fibril specific, and
11 successfully prevents the uptake of fibrils into neuronal cells. These results suggest that altering
12 the polyP levels in the extracellular space might be a potential therapeutic strategy to prevent
13 the spreading of the disease.

14

15

16 **INTRODUCTION**

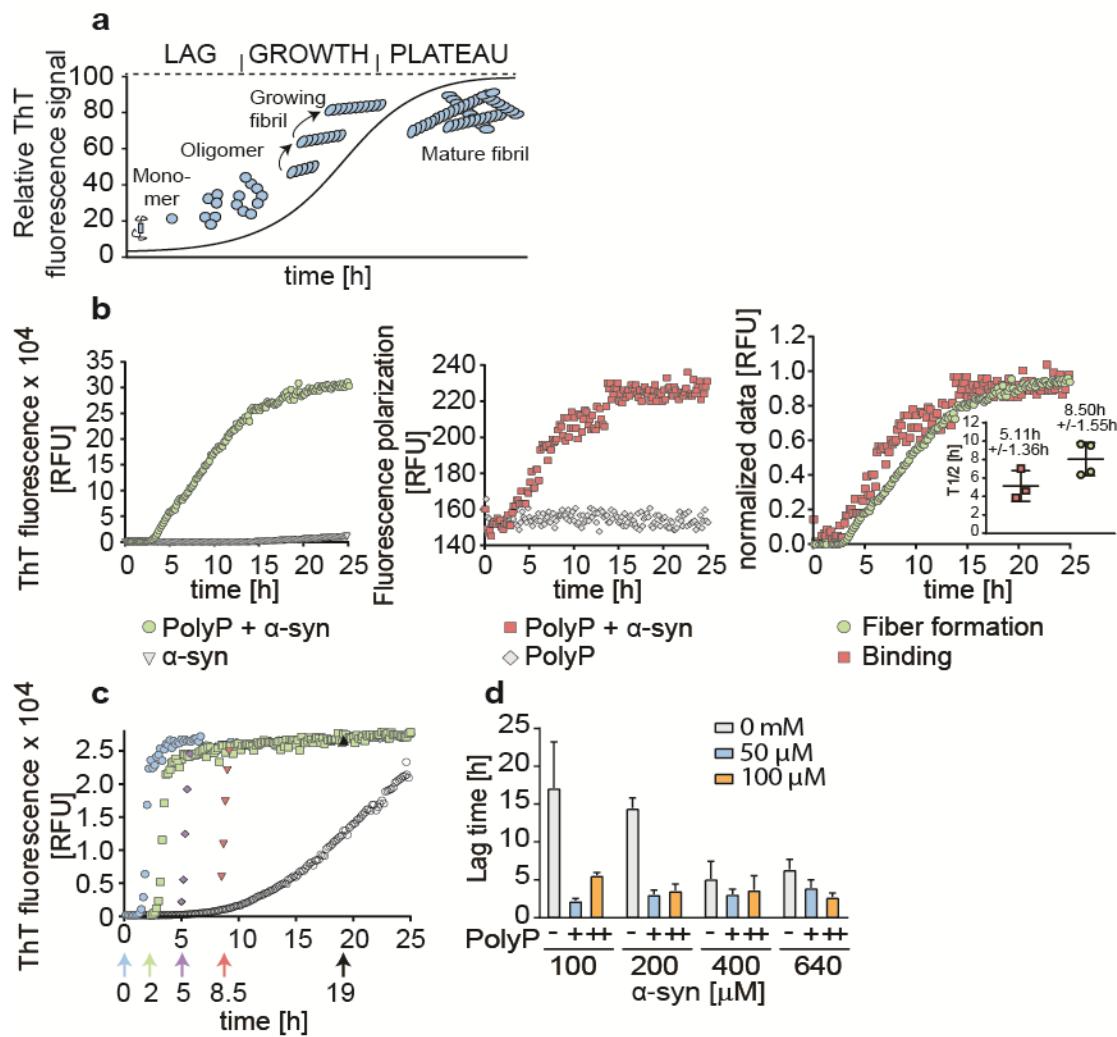
17 Parkinson's disease (PD), the second most common neurodegenerative disorder known ¹, is
18 characterized by a loss of dopaminergic neurons in the *substantia nigra* ^{2,3}. A hallmark of the
19 disease is the appearance of intracellular protein inclusions (i.e., Lewy bodies), which consist
20 primarily of insoluble fibrils of α -synuclein, a 140-aa protein involved in presynaptic vesicle
21 formation ^{4,5}. While it is now well established that deposition of α -synuclein fibrils associates
22 with the disease and that cell death can be elicited simply by incubating neuronal cells with α -
23 synuclein fibrils ⁶, many open questions remain concerning the mechanism of toxicity, the
24 structural features of the toxic α -synuclein species and the way(s) by which α -synuclein toxicity
25 propagates in the brain.

26 In solution, α -synuclein is a soluble monomer with extensive regions of intrinsic disorder ⁷. *In*
27 *vitro* studies demonstrated that upon prolonged incubation, α -synuclein monomers undergo
28 conformational rearrangements, which lead to the formation of aggregation sensitive oligomers
29 ⁸. These nuclei are capable of sequestering other α -synuclein monomers and will grow into
30 proto-fibrils and eventually into insoluble, protease-resistant fibrils ^{9,10}. *In vitro*, the rate-limiting
31 step in fibril-formation appears to be the formation of the initial nuclei, and fibril formation has
32 been shown to be accelerated by the addition of negatively charged polymers, including
33 glucosaminoglycans (i.e., heparin) ¹¹, RNA ¹² or phospholipids ¹³. The precise roles that these
34 additives play in *in vivo* fibril formation remain to be determined.

35 Recent studies provided supporting evidence that amyloid toxicity is not caused by the fibrils
36 *per se* but by oligomeric species that transiently accumulate on the pathway to fibril formation ⁶,
37 ¹⁴. These oligomers, which have been shown to affect mitochondrial function ¹⁵, membrane
38 permeability ^{16, 17} and/or the cytoskeleton ¹⁸, are thought to be responsible for the observed
39 neuroinflammation ¹⁹ and cell death ⁶. Moreover, amyloid oligomers seem to be the primary
40 species that spread among cells ^{20, 21}, and to be responsible for the prion-like propagation of PD
41 pathology ^{22, 23}. Cell-to-cell transmission appears to involve the active secretion of α -synuclein
42 oligomers into the extracellular space followed by the uptake of the amyloids into neighboring
43 recipient cells via micropinocytosis and glucosaminoglycan (GAG) receptors ²⁴⁻²⁶. Experiments
44 conducted in cell culture confirmed that α -synuclein oligomers can readily spread between
45 neurons and glial cells ^{27, 28}, and, once taken up by recipient cells, sequester monomeric α -
46 synuclein into insoluble foci ^{25, 29}.

47 Recent work from our lab demonstrated that polyphosphate (polyP), a highly conserved and
48 universally present polyanion, significantly decreases the cytotoxicity of amyloidogenic proteins
49 ³⁰. These results were corroborated in studies with amyloid β_{25-35} , which showed that pre-
50 incubation of PC12 cells or primary cortical neurons with polyP protects against the neurotoxic
51 effects of the peptide ³¹. *In vitro* studies revealed that polyP substantially accelerates α -
52 synuclein fibril formation in a chain-length dependent manner, causing the formation of both
53 shedding-resistant and seeding-deficient polyP-associated fibrils ³⁰. Localization studies
54 revealed that polyP, like α -synuclein, is both secreted and taken up by neuronal cells and hence
55 localizes both inside and outside of cells ³². These results raised intriguing questions as to what
56 α -synuclein species interact with polyP, how premature fibril formation might be avoided, and,
57 most importantly, by what mechanism polyP is able to protect neuronal cells against α -synuclein
58 toxicity.

59 Here we show that polyP does not interact with monomeric α -synuclein but effectively
60 nucleates α -synuclein fibril formation once prefibrillar species are present. PolyP causes
61 pronounced morphological changes in both *de novo* forming fibrils as well as upon its addition to
62 mature α -synuclein fibrils, demonstrating that α -synuclein fibrils are inherently dynamic and
63 amendable to polyP-mediated structural changes. Importantly, presence of polyP strongly
64 interferes with the interaction of α -synuclein fibrils with cell membranes, and prevents the uptake
65 of α -synuclein fibrils into differentiated neuroblastoma cells. These results explain the
66 cytoprotective effect of polyP and suggest that extracellular polyP might be able to influence the
67 spreading of this disease.


68

69 **RESULTS**

70 **PolyP accelerates fibril formation by nucleating α -synuclein oligomers**

71 Amyloid fibril formation is most commonly monitored by measuring the fluorescence of thioflavin
72 T (ThT), a small molecular dye that becomes highly emissive when intercalated into the β -
73 sheets of amyloidogenic oligomers and fibrils³³. ThT kinetics of amyloid fibril formation can be
74 divided into three distinct phases (Fig. 1a); the nucleation (i.e. lag) phase, in which soluble
75 monomers undergo structural changes and nucleate; the elongation (i.e., growth) phase, during
76 which ThT-positive oligomers and proto-fibrils form; and the equilibration (i.e., plateau) phase, in
77 which mature fibrils undergo cycles of shedding and seeding³⁴. Consistent with our previous *in*
78 *vitro* studies³⁰, we found that polyP substantially accelerates the fibril-forming process, both by
79 shortening the lag phase and by increasing the rate of fibril growth (Fig. 1b, c). To determine
80 when during the polymerization process polyP acts on amyloidogenic proteins, we conducted
81 fluorescence polarization (FP) measurements, which record the tumbling rate of fluorescent
82 molecules as read-out for real-time binding events³⁵. We labeled polyP₃₀₀-chains (MW: ~30
83 kDa) with AlexaFluor 647 (polyP_{300-AF647}) and conducted FP-measurements in the presence of
84 freshly prepared α -synuclein (MW: 14 kDa) for 40 hours (Fig. 1b, middle panel). Unexpectedly,
85 we did not observe any significant increase in the FP-signal over the first ~2.5 h of incubation,
86 suggesting that polyP does not interact with monomeric α -synuclein. After this lag-phase,
87 however, the FP-signal rapidly increased and reached a plateau after about 12 h of incubation.
88 By normalizing the ThT-aggregation and FP-binding results, we observed that the increase in
89 FP-signal ($T_{1/2} = 5.1 \pm 1.4$ h) may slightly precede the formation of ThT-positive amyloid
90 intermediates ($T_{1/2} = 8.5 \pm 1.6$ h) (Fig. 1b, insert in right panel). These results suggested that
91 polyP does not interact with α -synuclein species that occur early in the fibril-forming process
92 (i.e., monomers) but instead binds α -synuclein species shortly before or concomitant with their
93 ability to intercalate ThT. Time-delayed polyP addition experiments confirmed these results and
94 demonstrated that polyP acts on nucleation-competent oligomers and/or proto-fibrils. For these
95 studies, we used experimental conditions under which α -synuclein fibril formation proceeds with
96 a lag phase of ~ 6h in the absence and ~ 1.5 h in the presence of polyP (Fig. 1c, compare open
97 and cyan circles). When we added polyP two hours after the start of the incubation, the lag-
98 phase was reduced from the remaining 4h in the absence of polyP to less than 30 min (Fig. 1c,
99 green squares). Addition of polyP after 5h caused an immediate increase in ThT signal (Fig. 1c,
100 blue diamonds) while addition of polyP mid-way through the elongation phase of α -synuclein
101 fibril formation triggered maximal ThT binding within less than 10 min (Fig. 1c, red triangles).

102 These results strongly suggested that polyP binds to a range of presumably non-monomeric α -
103 synuclein species and supports their association into insoluble fibrils.
104

105
106
107 **Figure 1: Influence of polyP on α -synuclein fibril formation *in vitro*.** **a.** Model of the amyloid fibril
108 forming process using ThT-fluorescence. **b.** 100 μ M freshly prepared α -synuclein was incubated in the
109 absence or presence of 500 μ M fluorescently labeled polyP_{300-AF647} (in P_i units) at 37°C under constant
110 stirring. ThT fluorescence was used to monitor fibril formation (left panel) and fluorescence polarization
111 (FP) experiments were conducted to measure binding of polyP_{300-AF647} to α -synuclein (middle panel).
112 Overlay of normalized ThT and FP-curves (right panel). Insert: Half time ($T_{1/2}$) of fibril formation and
113 fluorescence polarization measurements. Data are the mean of three independent experiments \pm SD. **c.**
114 Addition of 500 μ M polyP (in P_i units) before (cyan circles) or at defined time-points during the fibril-
115 forming process of 300 μ M α -synuclein. ThT fluorescence was monitored. All experiments were
116 conducted at least three times. Representative kinetic traces are shown. **d.** Influence of different polyP₃₀₀
117 and α -synuclein concentrations on the lag phase of fibril formation. ThT fluorescence was monitored and
118 the lag phase was determined. The mean of four experiments \pm SD is shown.
119
120
121

122 **PolyP does not affect rate-limiting step of fibril formation**

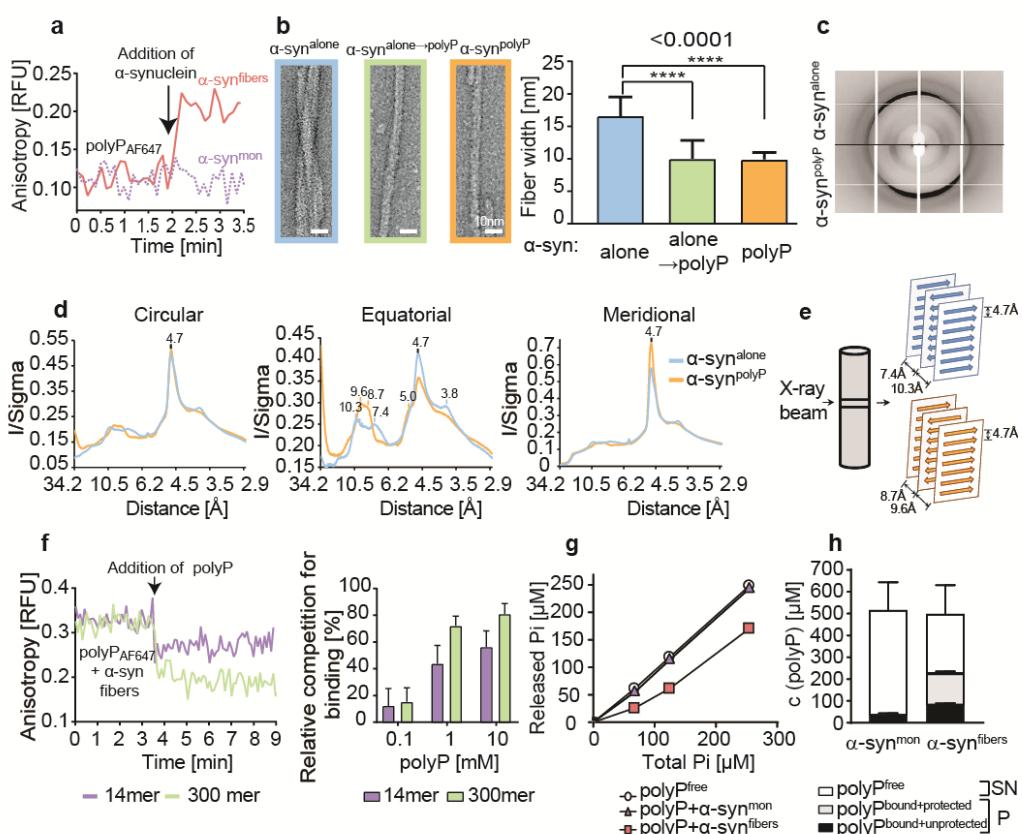
123 Our finding that polyP does not detectably interact with α -synuclein monomers but readily
124 stimulates fibril formation once ThT-positive oligomers have formed, suggested that polyP does
125 not affect the rate-limiting step of α -synuclein fibril formation. To test this idea, we combined
126 increasing α -synuclein concentrations with increasing polyP concentrations, and measured the
127 respective lag phase of fibril formation using ThT fluorescence (Fig. 1d). As expected,
128 increasing the α -synuclein concentration from 100 μ M to 400 μ M in the absence of polyP
129 reduced the lag phase from about 16 h to less than 7 h. Higher concentrations of α -synuclein
130 (i.e., 640 μ M) did not significantly shorten the lag phase any further. The presence of
131 physiological relevant concentrations of polyP₃₀₀ (50 μ M in P_i-units)^{36, 37} reduced this lag time to
132 2-3 h. Noteworthy, this reduction in lag time appeared to be independent of the α -synuclein
133 concentration used (Fig. 1d). Moreover, doubling the polyP concentration also failed to further
134 reduce the lag phase. These results agreed with previous results showing that α -synuclein
135 undergoes conformational changes and/or oligomerization processes that are rate-limiting^{9, 38},
136 and suggested that this step cannot be accelerated by the presence of polyP. We concluded
137 from these results that simple co-existence of polyP and α -synuclein in the same (extra)cellular
138 compartment will unlikely be sufficient to trigger *de novo* fibril formation.

139

140 **PolyP alters morphology of pre-formed α -syn fibrils**

141 FP-binding studies using pre-formed α -synuclein fibrils revealed that polyP not only interacts
142 with ThT-positive oligomers during *de novo* fibril formation but also binds to mature fibrils (Fig.
143 2a). Since α -synuclein fibrils that are formed in the presence of polyP (i.e., α -syn^{polyP}) have
144 significantly altered morphology compared to fibrils formed in the absence of nucleators (i.e., α -
145 syn^{alone})³⁰, we wondered whether polyP binding would also affect the morphology of mature
146 fibrils. This would possibly explain why the addition of polyP to preformed fibrils was as
147 cytoprotective as its addition during fibril formation³⁰. We therefore generated α -synuclein fibrils,
148 washed and purified them to remove any small oligomers and protofibrils, and either left them
149 untreated (α -syn^{alone}) or incubated them with polyP₃₀₀ (α -syn^{alone→polyP}). Immediately before as
150 well as 20 min after the addition of polyP to α -syn^{alone} fibrils, we fixed aliquots of the samples on
151 grids, and prepared them for transmission electron microscopy (TEM). As a control, we also
152 tested α -syn fibrils formed in the presence of polyP (α -syn^{polyP}). As shown in Fig. 2b, the
153 morphology of α -syn^{alone→polyP} fibrils was nearly indistinguishable from the morphology of α -
154 syn^{polyP} fibrils. Instead of two protofilaments, which typically form a twisted structure, α -
155 syn^{alone→polyP} and α -syn^{polyP} fibrils were significantly thinner, suggesting that polyP caused their

156 dissociation into single protofilaments. X-ray fibril diffraction measurements agreed with the
157 finding that incubation of preformed fibrils with polyP alters their conformations, and showed
158 particularly striking differences in the equatorial plots of the radial intensities (i.e., X-axis), which
159 arise from the packing of adjacent β -sheets in the amyloid fibril. In contrast, no differences were
160 observed on the meridian (Y-axis), which reflects the strand-to-strand packing, and produced a
161 sharp reflection at 4.7 \AA spacing for both fibril species (Fig 2c, d). These results suggested a
162 pronounced effect of polyP on the packing of the β -sheets within the protofilament (Fig. 2e).


163 To further investigate the dynamics of polyP-fibril interactions, we conducted FP-competition
164 experiments with pre-formed α -syn-polyP_{300-AF647} fibrils (Fig. 2f). As expected, we observed a
165 high initial FP-signal, consistent with the slow tumbling rate of polyP-fibril complexes. Upon
166 addition of un-labeled polyP₃₀₀, however, the FP-signal rapidly decreased, indicating that the
167 unlabeled polyP-chains replaced the labeled polyP in the fibrils. Addition of the much shorter
168 polyP₁₄ chain also reduced the FP-signal but to a lesser extent, suggesting that shorter chains
169 have lower binding affinities than longer chains (Fig. 2f). These results indicated that the polyP-
170 fibril interactions are highly dynamic in nature, and implied that fibrils, even when formed in the
171 absence of polyP, can rapidly adopt a novel conformation when exposed to polyP.

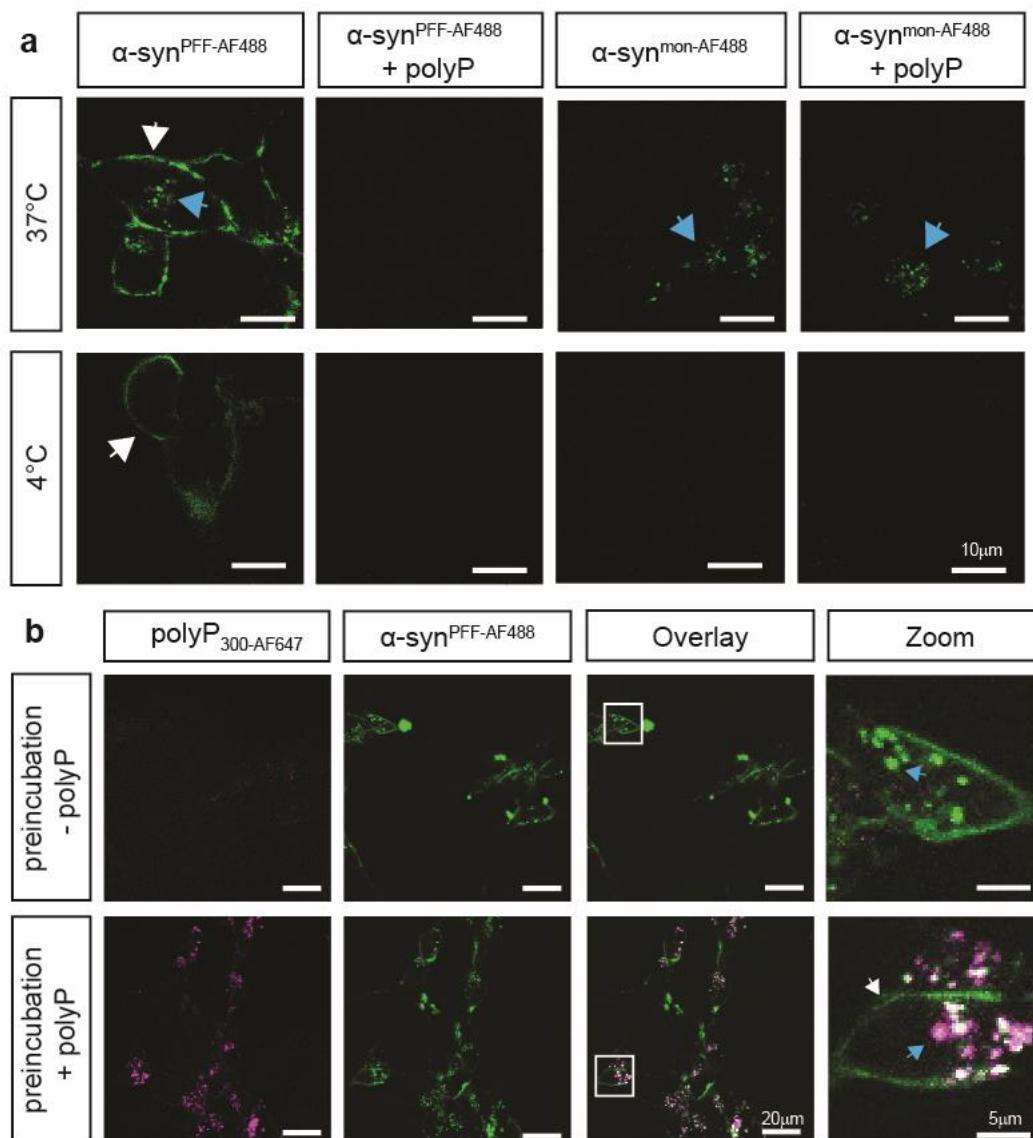
172

173 **PolyP-fibril complexes are polyphosphatase resistant**

174 Unbound polyP is very rapidly degraded by exopolyphosphatases, such as yeast PPX, which
175 hydrolyzes the phosphoanhydride bonds with a turnover rate of 500 $\mu\text{mol}/\text{mg}/\text{min}$ at 37°C³⁹. To
176 test whether degradation of polyP reverses the morphological changes that we observed in
177 fibrils bound to polyP, we incubated α -syn^{polyP} fibrils with yeast PPX. Surprisingly, however, we
178 did not observe any morphological changes in the α -synuclein fibrils by TEM (data not shown).
179 These results suggested either that the fibrils maintain their altered conformation even upon
180 hydrolysis of polyP or that polyP, once in complex with fibrils, resists PPX-mediated hydrolysis.
181 To investigate whether PPX is able to degrade fibril-associated polyP, we incubated 40 μM α -
182 synuclein monomers or preformed α -synuclein fibrils with increasing concentrations of polyP,
183 added PPX and measured PPX-mediated release of P_i using a modified molybdate assay⁴⁰.
184 Whereas polyP that was incubated with α -synuclein monomers was rapidly hydrolyzed and
185 yielded in the expected amount of P_i (Fig. 2g, triangles), presence of 40 μM α -synuclein fibrils
186 protected about 130 μM of P_i -units against hydrolysis (Fig. 2g). We obtained very similar results
187 when we incubated 40 μM α -synuclein monomers or fibrils with 500 μM polyP, spun down
188 polyP-associated fibrils and measured hydrolyzable polyP in both supernatant and pellet. Over
189 95% of PPX-hydrolyzable polyP was found in the supernatant of samples containing soluble α -

190 synuclein monomers. In contrast, about 45% of the total polyP pelleted with α -synuclein fibrils,
 191 of which about two thirds ($\sim 130 \mu\text{M}$) were resistant towards PPX-mediated hydrolysis (Fig. 2h).
 192 We concluded from these results that α -synuclein- fibrils resist conformational rearrangements
 193 by interfering with exopolyphosphatase-mediated polyP hydrolysis.
 194

195
 196 **Figure 2: Effects of polyP on α -synuclein fibril morphology.** **a.** Fluorescence polarization of $50 \mu\text{M}$
 197 polyP_{300-AF647} upon addition of $30 \mu\text{M}$ α -syn^{mon} or α -syn^{fibers}. The arrow indicates the time point of protein
 198 addition. **b.** Transmission electron microscopy of α -synuclein fibrils ($300 \mu\text{M}$) formed in the absence of
 199 polyP and left untreated (α -syn^{alone}) or incubated with 7.5 mM polyP₃₀₀ for 20 min at RT (α -syn^{alone → polyP}).
 200 Alpha-synuclein fibrils formed in the presence of 7.5 mM polyP₃₀₀ were used as control (α -syn^{polyP}).
 201 Quantitative analysis of fibril width was based on 10 individual micrographs and about 45 individual α -syn
 202 filaments. Statistical analysis was prepared with ONE-way Anova (****, p-value <0.0001). **c. and d.** X-
 203 ray fiber diffraction of α -synuclein formed in the absence or presence of polyP₃₀₀. The oriented samples
 204 produced cross- β diffraction patterns that contained a sharp reflection at 4.7 \AA spacing at the meridian
 205 (Y-axis) and a broad reflection $\sim 9 \text{ \AA}$ spacing at the equator (X-axis) (**c**). The intensities were radially
 206 averaged over a full circle (360° , left panel), an equatorial arc ($\pm 30^\circ$ around X-axis, middle panel), and
 207 meridional arc ($\pm 30^\circ$ around Y-axis, right panel) (**d**). **e.** Cartoon representation of the possible ways β -
 208 sheets and strands assemble in the fibril. **f.** Left panel: Fluorescence polarization of $30 \mu\text{M}$ of pre-formed
 209 α -synuclein - polyP_{300-AF647} fibrils before and after the addition of 1 mM unlabeled polyP₃₀₀ or polyP₁₄. The
 210 arrow indicated the time point of polyP addition. Right panel: Varying concentrations of polyP₁₄ or polyP₃₀₀
 211 in the competition experiment. The percent competition was calculated from the relative signal change
 212 upon polyP addition, setting the polyP_{300-AF647} fibril signal to 0% competition and the polyP_{300-AF647} alone
 213 signal as 100% competition. The mean of three experiments +/- SD is shown. **g.** $40 \mu\text{M}$ α -synuclein
 214 monomers (triangles) or preformed fibrils (squares) were incubated with increasing concentrations of


215 polyP₃₀₀ for 10 min. Samples were treated with ScPPX and assayed for released P_i. A standard curve of
216 polyP₃₀₀ in the absence of α -synuclein (circles) was used as control. **h.** 40 μ M α -synuclein monomers or
217 preformed fibrils were incubated with 500 μ M polyP₃₀₀ for 10 min. Samples were separated into
218 supernatant (SN) and pellet (P), treated with ScPPX and subsequently assayed for P_i. PolyP_{bound-unprotected}
219 represents the amount of P_i that was released upon ScPPX treatment in the pellet fraction. The amount of
220 polyP not released by ScPPX was considered to be protected by the fibrils against hydrolysis (polyP_{bound +}
221 protected).
222

223 **Extracellular polyP prevents intracellular enrichment of α -synuclein fibrils**

224 Our findings that polyP associates with pre-formed α -synuclein fibrils and changes their
225 conformation, served to explain results of our previous studies, which showed that α -synuclein
226 fibrils lose their cytotoxicity as soon as polyP is added ³⁰. However, they did not explain how
227 polyP is able to protect against amyloid toxicity. We reasoned that polyP might reduce the
228 formation of cytotoxic oligomers by stabilizing the fibrils in a conformation that has previously
229 been shown to be less prone to shedding ³⁰. Alternatively, we considered that binding of polyP
230 to the fibrils might either directly or indirectly interfere with the membrane association of α -
231 synuclein ^{41, 42} and/or its cellular uptake ^{25, 43}. Lastly, it was also conceivable that polyP binding
232 might increase the turnover of internalized α -synuclein or its sequestration into non-toxic
233 deposits. To gain insights into the potential mechanism(s) by which polyP protects neuronal
234 cells against amyloid toxicity, we compared uptake and intracellular fate of exogenously added
235 α -synuclein fibrils in the absence and presence of polyP. We labeled α -synuclein with
236 AlexaFluor 488, formed mature fibrils, pelleted them by centrifugation and sonicated the fibrils to
237 obtain a mixture of oligomeric species, protofibrils and short mature fibrils (i.e., α -syn^{PFF-AF488})⁴⁴,
238 (Supplemental Fig. 1a). We confirmed that sonication does not affect the interaction of fibrils
239 with polyP (Supplemental Fig. 1b). We then incubated differentiated SH-SY5Y neuroblastoma
240 cells with α -syn^{PFF-AF488} or freshly prepared fluorescently labeled monomeric α -synuclein (i.e., α -
241 syn^{mon-AF488}) at either 4°C or 37°C in the absence or presence of polyP for 24h, and analyzed
242 AF488-fluorescence using confocal microscopy. In the absence of polyP, we detected
243 significant intracellular fluorescence upon incubation of the cells with either α -syn^{mon-AF488} or α -
244 syn^{PFF-AF488} at 37°C but not at 4°C (Fig. 3a). Moreover, we noted an apparently stable
245 association of α -syn^{PFF-AF488} with the cell membrane at both temperatures (Fig. 3a), which was
246 confirmed by trypan blue staining (Supplemental Fig. 2a). These results were fully consistent
247 with previous studies, which reported that both monomers and fibrils use a temperature-
248 sensitive endocytic route for their cellular uptake ⁴⁶, and that α -synuclein fibrils stably associate
249 with cell membranes ⁴³. Incubation of the cells in the presence of polyP significantly reduced the
250 intracellular fluorescence signal of α -syn^{PFF-AF488} upon incubation at 37°C as well as the
251 membrane-associated signal upon incubation at either temperature (Fig. 3a). This result was

252 distinctly different from monomeric α -syn^{mon-AF488}, whose uptake at 37°C was not affected by
253 polyP. These results strongly suggested that polyP negatively influences the membrane
254 association and/or uptake of α -syn^{PFF-AF488}.

255

256
257
258

259 **Figure 3. Extracellular polyP prevents intracellular enrichment of α -synuclein fibrils. a.**

260 Differentiated SH-SY5Y neuroblastoma cells were incubated with 3 μ M freshly purified monomeric α -
261 $\text{syn}^{\text{mon-AF488}}$ or α -syn^{PFF-AF488} fibrils in the absence or presence of 250 μ M polyP₃₀₀ (in P_i-units) at either 4°C
262 or 37°C for 3 h. Membrane-associated α -syn^{AF488} is indicated with white arrows while internalized α -
263 $\text{syn}^{\text{AF488}}$ is indicated with blue arrows. **b.** Intracellular enrichment of cells with polyP₃₀₀ neither affects
264 uptake nor turnover of α -syn^{PFF-AF488}. Differentiated SH-SY5Y cells were incubated with 250 μ M polyP₃₀₀₋
265 AF647 at 37°C for 24 h and washed to remove extracellular polyP. Then, 3 μ M preformed α -syn^{PFF-AF488}
266 fibrils were added and fluorescence microscopy was conducted after 24 h of incubation.

267

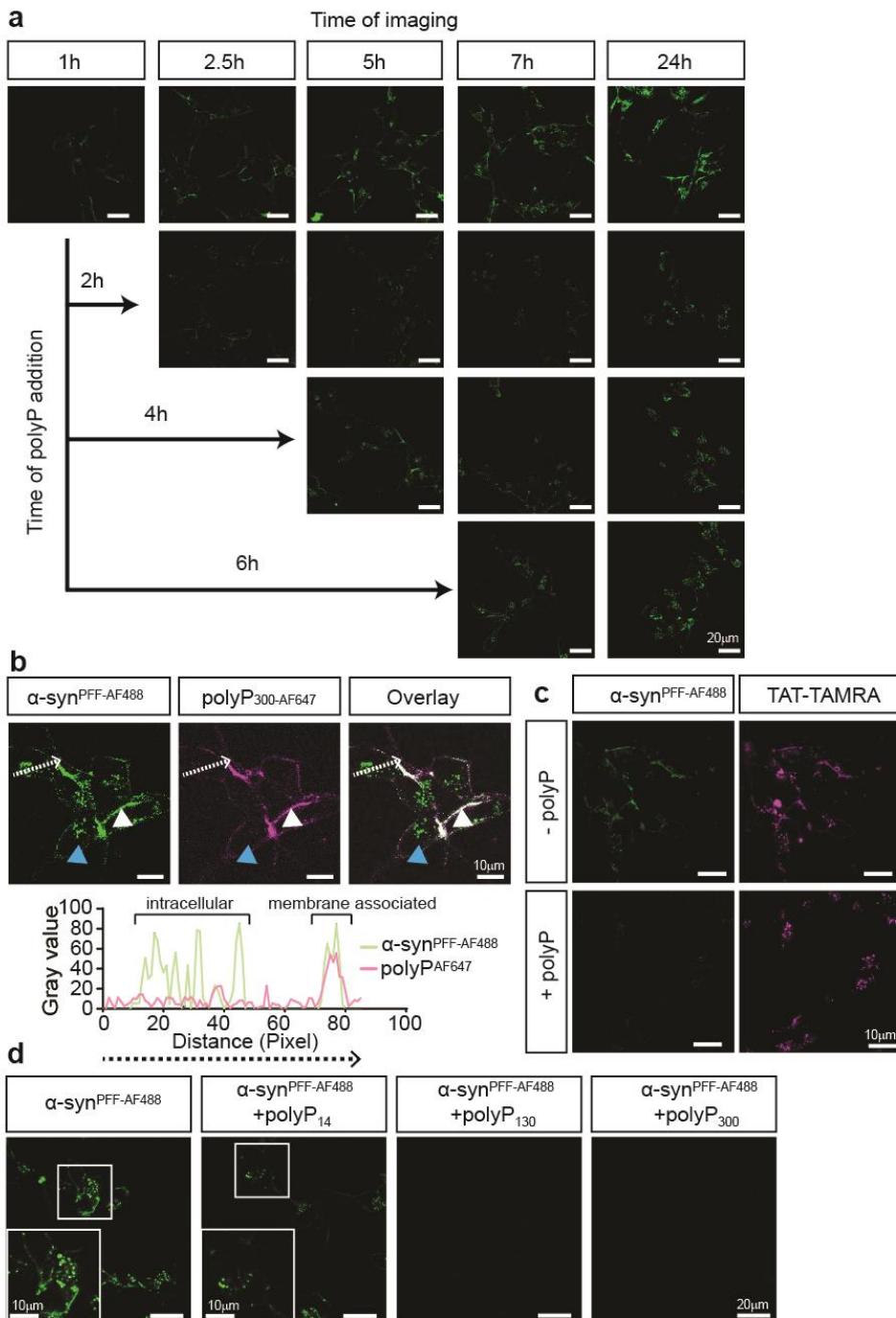
268 To test whether intracellular polyP influenced the uptake and/or intracellular foci formation of
269 exogenously added α -syn^{PFF-AF488}, we incubated differentiated SH-SY5Y neuroblastoma cells
270 with fluorescently-labeled polyP₃₀₀ (i.e., polyP_{300-AF647}) for 24 h, washed the cells to remove any
271 exogenous polyP and analyzed the cells using a confocal microscope. We observed a clear
272 AF647-fluorescence signal in cells incubated with fluorescently labeled polyP but not in our
273 control cells (Supplemental Fig. 2b). This result confirmed previous studies that showed that
274 neuronal cells are able to take up and enrich exogenous polyP³⁷. When we incubated the
275 polyP-enriched cells with α -syn^{PFF-AF488}, we observed the same rapid internalization and
276 intracellular enrichment of α -syn^{PFF-AF488} fibrils that we found in cells that were not pre-treated
277 with polyP (Fig. 3b). We concluded from these experiments that polyP needs to be present in
278 the extracellular space to interfere with the uptake of α -syn^{PFF}, and that intracellular polyP does
279 not substantially affect the fate of internalized α -synuclein fibrils. This is despite the fact that we
280 observed a clear co-localization between internalized α -syn^{PFF-AF488} and intracellular polyP₃₀₀₋
281 AF647 in select intracellular foci, demonstrating that polyP associates with α -syn^{PFF-AF488} also in
282 the context of intact cells (Fig. 3b, blue arrow).

283

284 **PolyP interferes with α -syn^{PFF} membrane association**

285 In order to further investigate the influence of polyP on fibril uptake, we incubated differentiated
286 SH-SY5Y cells with α -syn^{PFF-AF488} as before, and either left them untreated or added polyP
287 defined time points after start of the incubation. We reasoned that determining the effects of
288 polyP on cells that contained both membrane-associated and internalized α -syn^{PFF-AF488} would
289 likely reveal at what stage polyP acts. Before the imaging, we washed the cells to remove any
290 unbound α -syn^{PFF} and/or polyP. As expected, incubation of SH-SY5Y neuroblastoma cells with
291 α -syn^{PFF-AF488} in the absence of polyP revealed a persistent association of labeled α -syn^{PFF-AF488}
292 with the cell membrane, and a steady increase in the intracellular fluorescent signal (Fig. 4a).
293 When we added polyP to cells that were pre-incubated with α -syn^{PFF-AF488} for 2 hours, and
294 imaged the samples 30 min later, we observed a significantly reduced signal of membrane-
295 associated α -syn^{PFF-AF488} and lower levels of intracellular α -syn^{PFF-AF488} compared to the control
296 cells. In the presence of polyP, the fluorescence signals did not significantly change over the
297 next hours of incubation and only a slight increase in the intracellular signal of α -syn^{PFF-AF488} was
298 observed after 24h of incubation. Addition of polyP at later time points (i.e., 4 or 6 hours) caused
299 a similar cessation in α -syn^{PFF-AF488} uptake, and a decrease in cell membrane-associated α -
300 syn^{PFF-AF488} signal (Fig. 4a). Upon addition of fluorescently labeled polyP_{300-AF647} to cells

301 pretreated with α -syn^{PFF-AF488} for 6 h, we found both fluorescence signals to co-localize on the
302 outside of the cells, consistent with the formation of polyP-fibril complexes (Fig. 4b). These
303 results strongly suggested that binding of polyP to α -synuclein fibrils interferes with the
304 membrane association of α -synuclein, and hence prevents the uptake of fibrils. They also
305 served to explain why the uptake of monomeric α -synuclein, which does not stably interact with
306 polyP, is unaffected by the presence of polyP.


307 Recent studies suggested that one mechanism by which α -syn^{PFF-AF488} enter cells is through
308 the interaction with heparin glycan receptors ⁴⁷, in a mechanism termed micropinocytosis ⁴⁸. To
309 investigate the possibility that polyP inhibits the uptake of α -syn^{PFF-AF488} by generally blocking
310 micropinocytosis, we monitored the influence of polyP on the uptake of the Trans-Activator of
311 Transcription (TAT) protein fused to the fluorescent dye TAMRA (TAT-TAMRA) (AnaSpec). TAT
312 is a small viral protein, which contains the heparin sulfate binding sequence necessary for its
313 internalization via micropinocytosis ^{49, 50}. We incubated differentiated SH-SY5Y cells with both
314 TAT-TAMRA and α -syn^{PFF-AF488} either in the absence or in the presence of polyP₃₀₀ and
315 monitored the uptake of both proteins via fluorescence microscopy. In the absence of polyP₃₀₀,
316 we observed signals for both α -syn^{PFF-AF488} and TAT-TAMRA in the cells, indicating that both
317 proteins were taken up (Fig. 4c). In the presence of polyP, however, we observed only the TAT-
318 TAMRA signal inside the cells (Fig. 4c). These results are consistent with the model that polyP
319 selectively prevents the uptake of fibrillary α -synuclein without generally interfering with
320 endocytosis mechanisms.

321 To finally test whether the chain lengths of polyP influences its ability to prevent uptake of α -
322 syn^{PFF-AF488}, we incubated differentiated SH-SY5Y cells with α -syn^{PFF-AF488} as before but added
323 250 μ M (in P_i-units) of either polyP₁₄, polyP₁₃₀ or polyP₃₀₀. Analysis of internalized α -syn^{PFF-AF488}
324 after 24 hours demonstrated that whereas the longer polyP-chains completely inhibited the
325 uptake of α -syn^{PFF-AF488}, presence of polyP₁₄ had a much-diminished effect on the uptake (Fig.
326 4d). These results were in excellent agreement with our previous competition studies that
327 showed that polyP₁₄ chains are substantially less effective in binding to α -syn^{PFF-AF488} and/or
328 competing with polyP₃₀₀ and excluded that the observed effects are simply due to the presence
329 of densely charged polyanions. Instead, these results provided supportive evidence for the
330 conclusion that the mechanism by which polyP protects neuronal cells against α -synuclein
331 toxicity is through its specific interactions with extracellular α -synuclein fibrils, effectively
332 preventing their association with the cell membrane and limiting their uptake into neuronal cells.

333
334

335

336

337

338 **Figure 4. PolyP prevents the association of α -synuclein fibrils with the membrane.** **a.** Uptake of 3
339 μ M preformed α -syn^{PFF-AF488} fibrils after 1, 2.5, 5, 7 and 24 hours into differentiated SH-SY5Y cells. After
340 2, 4 or 6 hours of incubation, 250 μ M polyP_{300-AF647} was added, and the uptake of α -syn^{PFF-AF488} fibrils was
341 monitored as indicated. **b.** Upper panel: Differentiated SH-SY5Y cells were incubated with 3 μ M
342 preformed α -syn^{PFF-AF488} fibrils for 6 hours. Then, 250 μ M polyP_{300-AF647} was added, and co-localization of
343 α -syn^{PFF-AF488} fibrils and polyP_{300-AF647} was determined. The intracellular α -syn^{PFF-AF488} signal is indicated

344 with blue arrows while extracellular α -syn^{PFF-AF467} is indicated with white arrow. polyP_{300-AF647} was only
345 detected on the cell surface. Lower panel: Fluorescence signal of α -syn^{PFF-AF488} fibrils and polyP_{300-AF647} as
346 measured along the white line marked in the upper figure using the plot profile analysis in ImageJ. **c.**
347 Differentiated SH-SY5Y cells were incubated with 5 μ M TAT-TAMRA and 3 μ M α -syn^{PFF-AF488} in the
348 presence or absence of 250 μ M polyP₃₀₀. After 3 hours of incubation, the uptake was monitored. **d.**
349 Differentiated SH-SY5Y cells were incubated with α -synuclein fibrils for 24 hours in the absence or
350 presence of 250 μ M of different chain lengths of polyP.
351

352 DISCUSSION

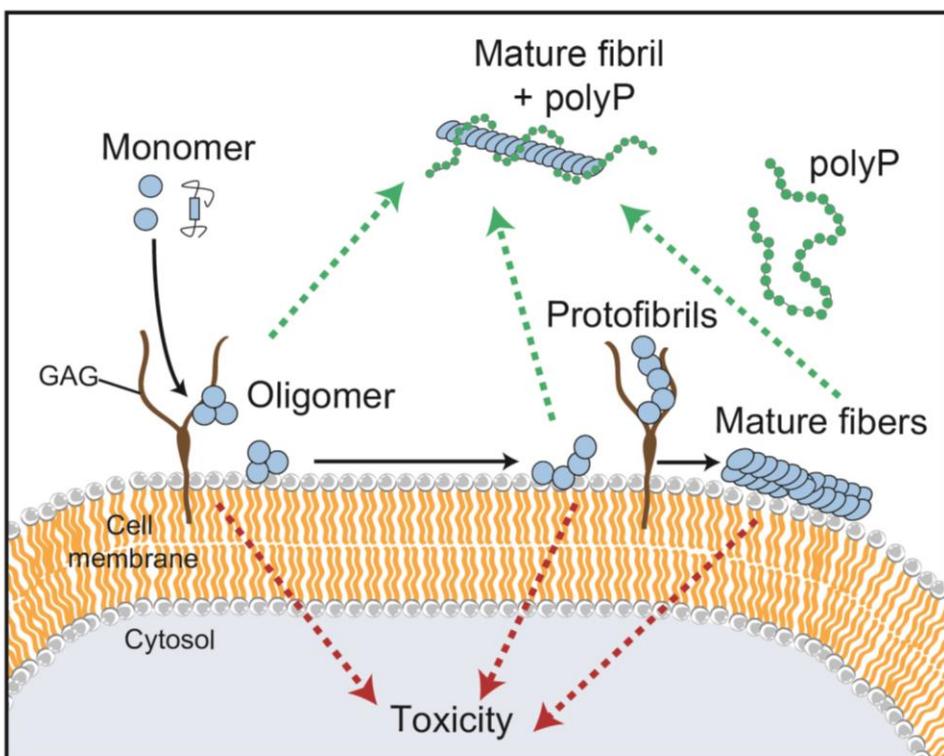
353 Effects of polyP on α -synuclein fibril formation and structure

354 Previous work from our lab demonstrated that polyP effectively accelerates fibril formation of
355 disease-related amyloids, and protects against amyloid toxicity both in cell culture as well as in
356 disease models of *C. elegans*³⁰. To gain insights into the mechanism by which polyP exerts
357 these effects, we tested at what stage during the fibril-forming process, polyP acts on α -
358 synuclein, one of the major amyloidogenic proteins involved in Parkinson's Disease. These
359 studies showed that polyP is unable to accelerate the rate-limiting step of α -synuclein fibril
360 formation. Instead, polyP binds to α -synuclein species that begin to accumulate at the end of
361 the lag phase, and are present throughout the elongation and stationary phase of fibril
362 formation. These results agreed well with previous solution studies, which showed that polyP
363 does not promote the conversion of α - helical proteins into β - sheet structures but instead
364 stabilizes folding intermediates once they have adopted a β -sheet conformation⁵¹. These
365 results also make physiological sense as they exclude the possibility that simple co-presence of
366 polyP and α -synuclein in the same cellular compartment cause fibril formation.

367 Earlier work on α -synuclein has shown that the primary nucleation step involves structural
368 changes within α -synuclein monomers and formation of small pre-fibrillar oligomeric
369 intermediates, which are rich in β -sheet structures yet unable to increase ThT-fluorescence^{10, 38,}
370⁵². It has been proposed that these oligomers undergo a cooperative conformational change,
371 leading to the formation of ThT-positive proto-fibrils and fibrils⁵². Our findings that polyP-binding
372 slightly yet reproducibly precedes ThT binding and substantially accelerates the formation of
373 ThT-positive protofibrils and fibrils suggest that polyP serves as a binding scaffold for pre-fibrillar
374 oligomers and increases the cooperativity of fibril formation.

375 A recently solved cryo-EM structure of mature α -synuclein₁₋₁₂₁ fibrils revealed that the double-
376 twisted nature of the fibrils results from the association of two protofilaments, which are
377 stabilized by intermolecular salt bridges⁵³. Moreover, the fibrils are characterized by dense
378 positively charged patches that are located in the vicinity of the interface and run in parallel to
379 the fibril axis. We now hypothesize that binding of the negatively charged polyP chains to such
380 densely positively charged patches that run alongside individual oligomers will support the

381 correct orientation of the oligomers along the fiber axis hence nucleate fibril formation. This
382 model would explain why polyP shows very low apparent affinity for soluble α -synuclein
383 monomers, and provide some rationale for the very low binding stoichiometry of polyP to α -
384 synuclein, which is a mere 5 P_i-units per one α -synuclein monomer. However, future high-
385 resolution structure studies are clearly necessary to answer the important question as to how
386 polyP and α -synuclein fibrils interact.


387 Our studies showed that polyP does not only change the morphology of α -synuclein fibrils when
388 present during *de novo* fibril formation but also of mature α -synuclein fibrils. These results agree
389 with recent findings, which suggested that fibrils are intrinsically dynamic and can adopt different
390 conformations over a time-scale of weeks to months⁵⁴. In the case of polyP, however, α -
391 synuclein fibril conformation dramatically changes within less than 20 min, clearly indicating that
392 changes in fibril morphology happen on a much shorter time scale. Future work needs to be
393 done to investigate the relative effects of polyP on the fibril morphology of disease-associated
394 mutant, which appear to be more resistant to morphology changes than wild-type α -synuclein. In
395 either case, however, our results suggest that polyP might play a pivotal role as modifier of
396 disease-associated fibrils.

397

398 **Mechanistic insights into polyP's protective role against α -synuclein toxicity**

399 The toxicity associated with α -synuclein fibril formation has long been attributed to the cellular
400 accumulation of insoluble fibril deposits^{55, 56}. However, increasing evidence now suggests that
401 oligomeric intermediates, which accumulate during amyloid fibril formation, interfere with
402 membrane integrity, mitochondrial activity and/or other physiologically important functions, and
403 elicit the neuro-inflammatory responses associated with the disease¹⁴. Similarly, disease
404 progression has also been proposed to be the responsibility of amyloid oligomers, which appear
405 to be able to spread from cell to cell in a prion-like manner^{20, 22, 23}. Rodents that were subjected
406 to α -syn^{PFF} injections into the *striatum*, for instance, developed neurodegeneration in the
407 *substantia nigra*^{57, 58}. These results suggested that physiologically relevant amyloid modifiers,
408 such as polyP, which are present in the extracellular space in the brain³⁷, and protect against
409 amyloid-induced cytotoxicity in cell culture models, might be involved in the spreading of the
410 disease. We now revealed that binding of polyP to extracellular α -syn^{PFF} decreased the
411 membrane association of α -syn^{PFF} and significantly reduced the internalization of α -synuclein
412 fibrils (Fig. 5), likely explaining the reason for polyP's cytoprotective effects. We found this effect
413 to be highly specific for amyloid fibrils since neither the uptake of α -synuclein monomers nor of
414 TAT-TAMRA, which, like α -syn^{PFF} is internalized via micropinocytosis^{49, 50}, was affected by the

415 presence of polyP. Moreover, shorter polyP-chain lengths, which are much less effective in
416 interacting with α -syn^{PFF} compared to longer chains, were found to be also much less effective
417 in preventing the uptake of the fibrils. Finally, we found that intracellular enrichment with polyP
418 had no effect on the amount of internalized α -synuclein fibrils, indicating that polyP blocks the
419 uptake and not the intracellular turnover rate of α -syn^{PFF}. These results suggested that the direct
420 interaction between polyP and α -syn^{PFF}, through alterations in fibril conformations and/or the
421 abundance of negative charges associated with α -syn^{PFF}, prevents the interactions of α -syn^{PFF}
422 fibrils with the negatively charged lipids on the cell membrane and leads to its dissociation from
423 the membrane⁴⁷. Given that the toxicity of α -synuclein amyloids is attributed to their ability to
424 bind, penetrate and damage the membrane^{59, 60}, our finding that a physiologically relevant
425 compound affects this process, suggests that polyP might play an important role in the
426 development and/or progression of this disease. Tools need to be developed to quantify,
427 monitor and manipulate extra- and intracellular polyP levels and test the exciting idea that
428 prevention of the reported age-associated polyP decline in mammalian brains⁶¹ might serve to
429 delay the onset and/or extent of this devastating disease.

430
431 **Figure 5. Model for the influence of polyP on fibril formation, morphology and uptake**
432 PolyP accelerates amyloid fibril formation by nucleating pre-fibrillar oligomers. PolyP-associated fibrils
433 have significantly altered fibril morphology. The interaction of polyP with amyloidogenic α -synuclein
434 interferes with their membrane association and there prevents cellular uptake.
435

436

437

438 **MATERIAL AND METHODS**

439 **PolyP preparation** - Defined chain length polyP was a kind gift from Dr. Toshikazu Shiba
440 (Regenetiss, Japan). PolyP was labeled with Alexa Fluor-647 as described⁶². In brief, 125 μ M
441 of polyP₃₀₀ chain was incubated with 2.5 mM Alexa Fluor 647 cadaverine (Life Technologies)
442 and 200 mM 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDAC) (Invitrogen) in water for 1
443 hour at 60°C. The reaction was stopped on ice and labeled polyP_{300-AF647} was separated from
444 free dye and unlabeled polyP via a NAP-5 column (GE Healthcare) that was equilibrated with 40
445 mM KPi, pH 7.5. The concentration of polyP was determined via a toluidine blue (TBO) assay
446⁶³. In this assay, polyP was mixed with 6 mg/l TBO and the absorbance was measured at 530
447 and 630 nm. The 530 nm / 630 nm absorbance ratio was determined and the concentration was
448 calculated based on a polyP₃₀₀ standard curve.

449 **Protein purification and labeling of α -synuclein** - Alpha-synuclein WT or α -synuclein A90C
450 mutant was purified as described^{30, 64} with slight modifications. In brief, *E. coli* strain BL21
451 (DE3) containing the α -synuclein-expressing vector pT7-7 was grown in Luria Broth,
452 supplemented with 200 μ g/mL ampicillin until OD₆₀₀ of 0.8-1.0 was reached. The protein
453 expression was induced with 0.8 mM Isopropyl β -D-1-thiogalactopyranoside for 4 h. Then,
454 bacteria were harvested at 4,500 \times g for 20 minutes and 4°C. The pellet was resuspended in 50
455 ml lysis buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA, Roche Complete protease inhibitor
456 cocktail) and the lysate was boiled for 15-20 minutes. The aggregated proteins were removed
457 by centrifugation at 13,500 \times g for 30 minutes. Next, 136 μ l/ml of a 10% w/v solution
458 streptomycin sulfate solution and 228 μ l/ml glacial acetic acid were added to the supernatant.
459 After another centrifugation step at 13,500 \times g for 30 minutes, the supernatant was removed
460 and mixed in a 1:1 ratio with saturated ammonium sulfate and incubated stirring at 4°C for 1 h.
461 The mixture was spun down at 13,500 \times g for 30 minutes and the pellet was resuspended in 10
462 mM Tris-HCl, pH 7.5. Concentrated NaOH was used to adjust the pH of the suspension to pH
463 7.5. Afterwards, the protein was dialyzed against 10 mM Tris-HCl pH 7.5, 50 mM NaCl, filtered
464 and loaded onto three connected 5 ml HiTrap Q HP columns (GE Healthcare). Washing steps
465 were performed with 10 mM Tris-HCl pH 7.5, 50 mM NaCl and the protein was eluted with a
466 linear gradient from 50 mM to 500 mM NaCl. The protein-containing fractions were combined
467 and dialyzed against 50 mM ammonium bicarbonate, pH 7.8. Oligomeric α -synuclein species
468 were removed by filtering the protein through a 50-kDa cut-off column (Amicon, Millipore).
469 Aliquots of the protein were prepared, lyophilized and stored at -80°C. For crosslinking of α -

470 synuclein-A90C with Alexa Fluor 488 – maleimide (Invitrogen), 100 μ M of the protein was
471 incubated with 1 mM tris(2-carboxyethyl)phosphine (Invitrogen) for 30 min at RT protected from
472 light. Alexa Fluor 488 – maleimide was added in 3-fold excess and the mixture was incubated
473 over night at 4°C. The reaction was stopped by adding 2 mM Dithiothreitol. The free dye was
474 removed using a NAP column (GE Healthcare). The concentration of dye and protein were
475 determined by measuring absorbance at 488 and 280 nm, respectively. *Saccharomyces*
476 *cerevisiae* exopolyphosphate (ScPPX) was purified according to Pokhrel et al ⁶⁵ with slight
477 modifications. In brief, MJG317 (BL21 / pScPPX2 = *S. cereviseae* PPX1 in pET-15b) was
478 incubated overnight at 37°C without shaking in LB containing 100 μ g mL-1 ampicillin. The next
479 day the cultures were shaken for about 30 min at 180 rpm at 37°C until they reach an
480 absorbance of 0.4 - 0.5. Additional 100 μ g mL-1 ampicillin and isopropyl β -D-1-
481 thiogalactopyranoside (IPTG) to a final concentration of 1 mM were added and protein was
482 expressed by incubating the cells for 4 h at 37 °C with shaking at 180 rpm. The cells were
483 harvested by centrifuging for 20 min at 4000 rpm at 4°C. The pellet was resuspended in 50 mM
484 sodium phosphate buffer, 500 mM NaCl, 10 mM imidazole (pH 8) and 1 mg / mL lysozyme, 2
485 mM MgCl₂, and 50 U / mL Benzonase was added. The solution was incubated for 30 min on ice
486 to digest nucleotides. Cell lyses was performed via sonication with two cycles of 50% power
487 pulsing 5s on and 5 s off for 2 min with 2 min rest between cycles. The protein lysate was
488 centrifuged to remove cell debris for 20 min at 20,000 g at 4°C and loaded onto a nickel-
489 charged chelating column. After washing with 50 mM sodium phosphate buffer, 0.5 M NaCl, 10
490 mM imidazole (pH 8) and 50 mM sodium phosphate buffer, 0.5 M NaCl, 20 mM imidazole (pH 8)
491 samples were eluted with 50 mM sodium phosphate buffer, 0.5 M NaCl, 0.5 M imidazole (pH 8).
492 Fractions containing ScPPX were pooled and dialyzed twice against 2L of 20 mM Tris-HCl (pH
493 7.5), 50 mM KCl, 30% (v/v) glycerol. Precipitated protein was removed via centrifugation for 20
494 min at 20,000 g at 4°C, 50% glycerol was added and the protein was stored at -80°C.

495 **Preparation of fluorescently labeled α -syn^{PFF} –** To generate α -syn^{PFF-AF488}, 760 μ M freshly
496 purified α -synuclein monomers were incubated with 40 μ M labeled α -synuclein-AF488 in 40 mM
497 KPi, 50 mM KCl, pH 7.5 for 24 hours at 37°C under continuous shaking using two 2 mm
498 borosilicate glass beads (Aldrich) in clear 96-well polystyrene microplates (Corning) ⁶⁶. Samples
499 from the 96 well plate were combined in Eppendorf tubes and collected via centrifugation at
500 20,000 x g, 20 min, RT and the pellets were washed twice with 40 mM KPi, 50 mM KCl, pH 7.5
501 to remove smaller oligomers. After the final spin, the pellets were resuspended in 40 mM KPi,
502 50 mM KCl, pH 7.5 and sonicated 3 x 5 seconds on ice with an amplitude of 50%. The
503 concentration of fibrils was determined by incubating a small aliquot of α -syn^{PFF-AF488} in 8 M

504 urea, 20 mM Tris pH 7.5, measuring the absorbance at 280 nm and calculating the
505 concentration with the extinction coefficient of 5960 L mol⁻¹ cm⁻¹. Aliquots were taken and
506 stored at – 80°C.

507 **Thioflavin T fluorescence and fluorescence polarization (FP) measurements** – Freshly
508 purified α -synuclein monomers (concentrations provided in the respective figure legends) were
509 incubated with 10 μ M thioflavin T (ThT; Sigma) in 40 mM KPi, 50 mM KCl, pH 7.5 at 37°C and
510 two 2 mm borosilicate glass beads (Aldrich) in the absence or presence of polyP₁₄ or polyP₃₀₀
511 (given in P_i units). For ThT-measurements, samples were pipetted into black 96-well polystyrene
512 microplates with clear bottoms (Greiners). ThT fluorescence was detected in 10 min intervals
513 using a Synergy HTX MultiMode Microplate Reader (Biotec) using an excitation of 440 nm,
514 emission of 485 nm and a gain of 35. To monitor the binding of polyP to α -synuclein during fibril
515 formation, samples were pipetted into 96-well polystyrene microplates with clear bottoms
516 (Greiners). Fluorescence polarization was measured in a Tecan Infinite M1000 Microplate
517 reader, using an excitation of 635 nm and an emission of 675 nm. Measurements were taken in
518 10-min intervals.

519 **PolyP binding and competition assays using anisotropy measurements** – Anisotropy
520 measurements were conducted in the Varian Cary eclipse Fluorescence Spectrophotometer,
521 using an excitation of 640 nm and an emission of 675 nm (PMT value set between 50 and 100).
522 Samples containing 50 μ M polyP-AF647 in 40 mM KPi, 50 mM KCl, pH 7.5 at 37°C. At the
523 indicated time points, 30 μ M of α -synuclein monomers or α -synuclein fibrils were added and
524 anisotropy was further monitored over time. For competition experiments, α -synuclein fibrils
525 were formed in the presence of polyP_{300-AF647} as before. At defined time points, unlabeled
526 polyP₁₄ or polyP₃₀₀ was added, and the anisotropy signal was monitored over time.

527 **Negative stain of fibrils and transmission electron microscopy (TEM) analysis** – To form
528 fibrils for TEM analysis, 300 μ M freshly prepared α -synuclein monomers were incubated either
529 in the absence of polyP (i.e., α -syn^{alone}), or in presence of 7.5 mM (per P_i) polyP₃₀₀ (i.e., α -
530 syn^{polyP}) for 24 hours at 37°C with 2 mm borosilicate glass beads under continuous shaking.
531 Alpha-syn^{alone} fibrils were then either left untreated or were incubated with 7.5 mM polyP₃₀₀ for
532 20 min (i.e. α -syn^{alone} \rightarrow polyP). Samples were negatively stained with 0.75% uranyl formate (pH
533 5.5-6.0) on thin amorphous carbon layered 400-mesh copper grids (Pelco) in a procedure
534 according to ⁶⁷. Briefly, 5 μ l of the sample was applied onto the grid and left for 3 min before
535 removing it with Whatman paper. The grid was washed twice with 5 μ l ddH₂O followed by three
536 applications of 5 μ L uranyl formate. The liquid was removed using a vacuum. Grids were
537 imaged at room temperature using a Fei Tecnai 12 microscope operating at 120kV. Images

538 were acquired on a US 4000 CCD camera at 66873x resulting in a sampling of 2.21 Å/pixel.
539 About 45 individual α -synuclein filaments were selected across 10 micrographs of each sample
540 and the filament widths were determined using the micrograph dimensions as a reference. Pixel
541 widths were converted into angstroms using the program imageJ.

542 **X-Ray Fiber Diffraction** – Alpha-synuclein fibrils were grown with and without polyP as
543 described above. Prior orientation for diffraction, 1-2 ml of a solution containing 100 μ M α -
544 synuclein fibrils were washed 3 times with 10 mM Tris pH 7. Then, fibrils were pelleted by
545 centrifugation (15,000xg, 5min). The supernatant was removed, and the pellet was resuspended
546 in 5-10 μ l 10 mM Tris pH 7.0. Then, 5 μ l of the fibril pellet was placed between two fire-polished
547 silanized glass capillaries and oriented by air-drying. The glass capillaries with the aligned
548 fibrils were mounted on a brass pin. Diffraction patterns were recorded using 1.13 Å X-rays
549 produced by a 21-ID-D beamline, Argonne Photon Source (APS). All patterns were collected
550 at a distance of 200 mm and analyzed using the Adxv software package ⁶⁸.

551 **PolyP concentration determination using the molybdate assay** - 40 μ M of α -synuclein
552 monomers or fibrils, prepared in 40 mM Hepes, pH 7.5 and 50 mM KCl, were incubated with the
553 indicated concentrations of polyP₃₀₀ for 10 min at RT in a clear 96-well plate (Corning). The
554 samples were either used directly or spun down at 20,000 x g for 20 minutes at RT to remove
555 any unbound polyP. The pellets were resuspended in 40 mM Hepes (pH 7.5), 50 mM KCl. Next,
556 8 μ g/ml *Saccharomyces cerevisiae* exopolyphosphate (ScPPX) and 1 mM MgCl₂ was added to
557 each sample and the incubation was continued for 105 min (for spin down) or 120 min (for
558 titration) at RT. To stop the reaction and detect P_i, 25 μ l of a detection solution containing 600
559 mM H₂SO₄, 88 mM ascorbic acid, 0.6 mM potassium antimony tartrate, and 2.4 mM ammonium
560 heptamolybdate was added ^{40, 65}. The reactions were developed for 30 min. Then, the
561 precipitated proteins were re-solubilized with 100 μ l of 1 M NaOH, and the absorbance was
562 measured at 882 nm using a Tecan M1000 plate reader. The free phosphate concentration was
563 determined with a standard curve of sodium phosphate, which was prepared in parallel with
564 each experiment. After the spun down the phosphate measured in the supernatant was
565 considered free, and the phosphate measured in the pellet was considered bound and
566 unprotected. The bound and protected fraction of phosphate was calculated as total
567 polyphosphate (measured in parallel) minus supernatant phosphate minus pellet phosphate.

568 **Cell culture experiments and microscopy**- Human neuroblastoma cells SH-SY5Y cells
569 (ATCC CRL-2266) were cultured in Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12
570 (Thermo Fisher) medium supplemented with 10% (v/v) heat inactivated fetal bovine serum
571 (Sigma-Aldrich), 1% (w/v) penicillin/streptomycin (Life Technologies) at 37°C and 5% CO₂. The

572 media was changed every 2–3 days and cells were split 1–2 times per week. For microscopy
573 experiments, 60 000 cells/ml were seeded in 8-well Nunc™ Lab-Tek™ II Chambered
574 Coverglass (Thermo Fisher) and differentiated for 5-7 days by adding 10 μ M all-trans retinoic
575 acid (Sigma-Aldrich) every other day. The differentiated cells were incubated with 3 μ M α -
576 syn^{PFF-AF488} in the presence or absence of the indicated concentrations of polyP at either 37°C or
577 4°C for the indicated times. Before the imaging, the media was exchanged to DMEM/F12
578 without phenol red (Thermo Fisher), supplemented with 10% (v/v) heat inactivated fetal bovine
579 serum (Sigma-Aldrich), 1% (w/v) penicillin/streptomycin (Life Technologies). Cells were imaged
580 using a Leica SP8 high resolution microscope. To distinguish between the inside and outside
581 signals, the cells were treated the same way but 0.05% of the membrane impermeable dye
582 Trypan blue was used for 15 sec prior to the imaging to quench extracellular fluorescence ⁴³. To
583 enrich for endogenous polyP, SH-SY5Y cells were seeded and differentiated as described
584 above. Once differentiated, cells were either left untreated or incubated with 250 μ M polyP-
585 AF647 (per Pi) for 24 hours. Subsequently, fresh media was added to the cells for 6 hours.
586 Afterwards, cells were incubated with 3 μ M α -syn^{PFF-AF488} for 24 hours. As before, the media was
587 changed before imaging and cells were imaged using Leica SP8 high resolution microscope. To
588 test the influence of polyP during the α -syn^{PFF-AF488} uptake, differentiated SH-SY5Y cells were
589 incubated with 3 μ M α -syn^{PFF-AF488} at 37°C. After 2, 4 or 6 hours, 250 μ M polyP-AF647 was
590 added to the cells. Cells were imaged at time points 1, 2.5, 5, 7 and 24 hours. To test for co-
591 localization of α -syn^{PFF-AF488} and polyP-AF647, cells were incubated with 3 μ M α -syn^{PFF-AF488} at
592 37°C. After 6 h 250 μ M polyP-AF647 was added and cells were imaged after 7 h. To monitor
593 the influence of polyP on the uptake of TAT, differentiated SH-SY5Y cells were incubated with 5
594 μ M TAT-TAMRA (AnaSpec) and 3 μ M α -syn^{PFF-AF488} either in the presence or in the absence of
595 250 μ M polyP. After 3 hours of incubation, the cells were imaged with a Leica SP8 high
596 resolution microscope.

597 **Statistics** - Two-tailed Students t-tests were performed when two groups were compared. One-
598 way ANOVA was performed when comparing more than two groups. P-values under 0.05 were
599 considered significant. All data in bar charts are displayed as mean +/- SD. Replicate numbers
600 (n) are listed in each figure legend. Prism 7.04 (GraphPad) was used to perform statistical
601 analysis. Anova analysis in figure 2 b shows an F value of 8.435 and a degree of freedom of 3.
602

603 **Acknowledgments**

604 Defined length polyP chains were kindly provided by T. Shiba (Regenetiss, Japan) and the
605 Morrissey lab. We thank the ATCC for providing us with SH-SY5Y cells. This work was funded

606 by the NIH grants GM122506 to U.J. and a grant from the American Parkinson Disease
607 Association to M.I.I. and A.S. Ju.L. was funded by a scholarship from the Boehringer Ingelheim
608 Foundation.

609

610 **Data availability statement:**

611 The datasets generated are available from the corresponding author upon request.

612

613 **Author contribution:**

614 JL: Designed and performed research, analyzed data, wrote the paper

615 ET: Performed research, analyzed data

616 DS: Designed and directed research

617 JAL: Performed research

618 MII: Designed and performed research, analyzed data

619 AS: Designed and performed research, analyzed data

620 NY: Designed and performed research, analyzed data

621 PH: Performed research

622 UJ: Designed and directed the project, analyzed data, wrote paper

623

624

625

626

627

628

629 **REFERENCES**

- 630 1. de Lau, L.M. *et al.* Incidence of parkinsonism and Parkinson disease in a general
631 population: the Rotterdam Study. *Neurology* **63**, 1240-1244 (2004).
- 632 2. Damier, P., Hirsch, E.C., Agid, Y. & Graybiel, A.M. The substantia nigra of the human
633 brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. *Brain*
634 **122 (Pt 8)**, 1437-1448 (1999).
- 635 3. Rinne, J.O., Rummukainen, J., Paljarvi, L. & Rinne, U.K. Dementia in Parkinson's
636 disease is related to neuronal loss in the medial substantia nigra. *Ann Neurol* **26**, 47-50
637 (1989).
- 638 4. Goedert, M. Alpha-synuclein and neurodegenerative diseases. *Nat Rev Neurosci* **2**, 492-
639 501 (2001).
- 640 5. Shults, C.W. Lewy bodies. *Proc Natl Acad Sci U S A* **103**, 1661-1668 (2006).
- 641 6. Winner, B. *et al.* In vivo demonstration that alpha-synuclein oligomers are toxic. *Proc
642 Natl Acad Sci U S A* **108**, 4194-4199 (2011).
- 643 7. Fakhree, M.A.A., Nolten, I.S., Blum, C. & Claessens, M. Different Conformational
644 Subensembles of the Intrinsically Disordered Protein alpha-Synuclein in Cells. *J Phys
645 Chem Lett* **9**, 1249-1253 (2018).
- 646 8. Conway, K.A. *et al.* Acceleration of oligomerization, not fibrillization, is a shared property
647 of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications
648 for pathogenesis and therapy. *Proc Natl Acad Sci U S A* **97**, 571-576 (2000).

- 649 9. Wood, S.J. *et al.* alpha-synuclein fibrillogenesis is nucleation-dependent. Implications for
650 the pathogenesis of Parkinson's disease. *J Biol Chem* **274**, 19509-19512 (1999).
- 651 10. Conway, K.A., Harper, J.D. & Lansbury, P.T., Jr. Fibrils formed in vitro from alpha-
652 synuclein and two mutant forms linked to Parkinson's disease are typical amyloid.
653 *Biochemistry* **39**, 2552-2563 (2000).
- 654 11. Cohlberg, J.A., Li, J., Uversky, V.N. & Fink, A.L. Heparin and other glycosaminoglycans
655 stimulate the formation of amyloid fibrils from alpha-synuclein in vitro. *Biochemistry* **41**,
656 1502-1511 (2002).
- 657 12. Munishkina, L.A., Fink, A.L. & Uversky, V.N. Accelerated fibrillation of alpha-synuclein
658 induced by the combined action of macromolecular crowding and factors inducing partial
659 folding. *Curr Alzheimer Res* **6**, 252-260 (2009).
- 660 13. Zhu, M., Li, J. & Fink, A.L. The association of alpha-synuclein with membranes affects
661 bilayer structure, stability, and fibril formation. *J Biol Chem* **278**, 40186-40197 (2003).
- 662 14. Chen, S.W. *et al.* Structural characterization of toxic oligomers that are kinetically
663 trapped during alpha-synuclein fibril formation. *Proc Natl Acad Sci U S A* **112**, E1994-
664 2003 (2015).
- 665 15. Luth, E.S., Stavrovskaia, I.G., Bartels, T., Kristal, B.S. & Selkoe, D.J. Soluble, prefibrillar
666 alpha-synuclein oligomers promote complex I-dependent, Ca²⁺-induced mitochondrial
667 dysfunction. *J Biol Chem* **289**, 21490-21507 (2014).
- 668 16. Lashuel, H.A. *et al.* Alpha-synuclein, especially the Parkinson's disease-associated
669 mutants, forms pore-like annular and tubular protofibrils. *J Mol Biol* **322**, 1089-1102
670 (2002).
- 671 17. Tsigelny, I.F. *et al.* Role of alpha-synuclein penetration into the membrane in the
672 mechanisms of oligomer pore formation. *FEBS J* **279**, 1000-1013 (2012).
- 673 18. Roberts, H.L. & Brown, D.R. Seeking a mechanism for the toxicity of oligomeric alpha-
674 synuclein. *Biomolecules* **5**, 282-305 (2015).
- 675 19. Lee, H.J. *et al.* Direct transfer of alpha-synuclein from neuron to astroglia causes
676 inflammatory responses in synucleinopathies. *J Biol Chem* **285**, 9262-9272 (2010).
- 677 20. Danzer, K.M., Krebs, S.K., Wolff, M., Birk, G. & Hengerer, B. Seeding induced by alpha-
678 synuclein oligomers provides evidence for spreading of alpha-synuclein pathology. *J
679 Neurochem* **111**, 192-203 (2009).
- 680 21. Danzer, K.M. *et al.* Exosomal cell-to-cell transmission of alpha synuclein oligomers. *Mol
681 Neurodegener* **7**, 42 (2012).
- 682 22. Li, J.Y. *et al.* Lewy bodies in grafted neurons in subjects with Parkinson's disease
683 suggest host-to-graft disease propagation. *Nat Med* **14**, 501-503 (2008).
- 684 23. Desplats, P. *et al.* Inclusion formation and neuronal cell death through neuron-to-neuron
685 transmission of alpha-synuclein. *Proc Natl Acad Sci U S A* **106**, 13010-13015 (2009).
- 686 24. Holmes, B.B. *et al.* Heparan sulfate proteoglycans mediate internalization and
687 propagation of specific proteopathic seeds. *Proc Natl Acad Sci U S A* **110**, E3138-3147
688 (2013).
- 689 25. Reyes, J.F. *et al.* A cell culture model for monitoring alpha-synuclein cell-to-cell transfer.
690 *Neurobiol Dis* **77**, 266-275 (2015).
- 691 26. Gustafsson, G. *et al.* Secretion and Uptake of alpha-Synuclein Via Extracellular Vesicles
692 in Cultured Cells. *Cell Mol Neurobiol* **38**, 1539-1550 (2018).
- 693 27. Domert, J. *et al.* Aggregated Alpha-Synuclein Transfer Efficiently between Cultured
694 Human Neuron-Like Cells and Localize to Lysosomes. *PLoS One* **11**, e0168700 (2016).
- 695 28. Hansen, C. *et al.* alpha-Synuclein propagates from mouse brain to grafted dopaminergic
696 neurons and seeds aggregation in cultured human cells. *J Clin Invest* **121**, 715-725
697 (2011).
- 698 29. Rostami, J. *et al.* Human Astrocytes Transfer Aggregated Alpha-Synuclein via Tunneling
699 Nanotubes. *J Neurosci* **37**, 11835-11853 (2017).

- 700 30. Cremers, C.M. *et al.* Polyphosphate: A Conserved Modifier of Amyloidogenic Processes. *Mol Cell* **63**, 768-780 (2016).
- 701 31. Muller, W.E.G. *et al.* Rebalancing beta-Amyloid-Induced Decrease of ATP Level by
703 Amorphous Nano/Micro Polyphosphate: Suppression of the Neurotoxic Effect of Amyloid
704 beta-Protein Fragment 25-35. *Int J Mol Sci* **18** (2017).
- 705 32. Angelova, P.R. *et al.* Signal transduction in astrocytes: Localization and release of
706 inorganic polyphosphate. *Glia* **66**, 2126-2136 (2018).
- 707 33. LeVine, H., 3rd Quantification of beta-sheet amyloid fibril structures with thioflavin T.
708 *Methods Enzymol* **309**, 274-284 (1999).
- 709 34. Shoffner, S.K. & Schnell, S. Estimation of the lag time in a subsequent monomer
710 addition model for fibril elongation. *Phys Chem Chem Phys* **18**, 21259-21268 (2016).
- 711 35. Rossi, A.M. & Taylor, C.W. Analysis of protein-ligand interactions by fluorescence
712 polarization. *Nat Protoc* **6**, 365-387 (2011).
- 713 36. Kumble, K.D. & Kornberg, A. Inorganic polyphosphate in mammalian cells and tissues. *J
714 Biol Chem* **270**, 5818-5822 (1995).
- 715 37. Holmstrom, K.M. *et al.* Signalling properties of inorganic polyphosphate in the
716 mammalian brain. *Nat Commun* **4**, 1362 (2013).
- 717 38. Krishnan, S. *et al.* Oxidative dimer formation is the critical rate-limiting step for
718 Parkinson's disease alpha-synuclein fibrillogenesis. *Biochemistry* **42**, 829-837 (2003).
- 719 39. Wurst, H. & Kornberg, A. A soluble exopolyphosphatase of *Saccharomyces cerevisiae*.
720 Purification and characterization. *J Biol Chem* **269**, 10996-11001 (1994).
- 721 40. Christ, J.J. & Blank, L.M. Enzymatic quantification and length determination of
722 polyphosphate down to a chain length of two. *Anal Biochem* **548**, 82-90 (2018).
- 723 41. Grey, M., Linse, S., Nilsson, H., Brundin, P. & Sparr, E. Membrane interaction of alpha-
724 synuclein in different aggregation states. *J Parkinsons Dis* **1**, 359-371 (2011).
- 725 42. van Rooijen, B.D., Claessens, M.M. & Subramaniam, V. Membrane binding of oligomeric
726 alpha-synuclein depends on bilayer charge and packing. *FEBS Lett* **582**, 3788-3792
727 (2008).
- 728 43. Karpowicz, R.J., Jr. *et al.* Selective imaging of internalized proteopathic alpha-synuclein
729 seeds in primary neurons reveals mechanistic insight into transmission of
730 synucleinopathies. *J Biol Chem* **292**, 13482-13497 (2017).
- 731 44. Luk, K.C. *et al.* Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like
732 intracellular inclusions in cultured cells. *Proc Natl Acad Sci U S A* **106**, 20051-20056
733 (2009).
- 734 45. Volpicelli-Daley, L.A. *et al.* Exogenous alpha-synuclein fibrils induce Lewy body
735 pathology leading to synaptic dysfunction and neuron death. *Neuron* **72**, 57-71 (2011).
- 736 46. Rodriguez, L., Marano, M.M. & Tandon, A. Import and Export of Misfolded alpha-
737 Synuclein. *Front Neurosci* **12**, 344 (2018).
- 738 47. Ihse, E. *et al.* Cellular internalization of alpha-synuclein aggregates by cell surface
739 heparan sulfate depends on aggregate conformation and cell type. *Sci Rep* **7**, 9008
740 (2017).
- 741 48. Nakase, I. *et al.* Cellular uptake of arginine-rich peptides: roles for macropinocytosis and
742 actin rearrangement. *Mol Ther* **10**, 1011-1022 (2004).
- 743 49. Kaplan, I.M., Wadia, J.S. & Dowdy, S.F. Cationic TAT peptide transduction domain
744 enters cells by macropinocytosis. *J Control Release* **102**, 247-253 (2005).
- 745 50. Wadia, J.S., Stan, R.V. & Dowdy, S.F. Transducible TAT-HA fusogenic peptide
746 enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. *Nat Med* **10**,
747 310-315 (2004).
- 748 51. Yoo, N.G. *et al.* Polyphosphate Stabilizes Protein Unfolding Intermediates as Soluble
749 Amyloid-like Oligomers. *J Mol Biol* (2018).

- 750 52. Mehra, S. *et al.* Glycosaminoglycans have variable effects on alpha-synuclein
751 aggregation and differentially affect the activities of the resulting amyloid fibrils. *J Biol
752 Chem* **293**, 12975-12991 (2018).
- 753 53. Guerrero-Ferreira, R. *et al.* Cryo-EM structure of alpha-synuclein fibrils. *Elife* **7** (2018).
- 754 54. Sidhu, A., Segers-Nolten, I., Raussens, V., Claessens, M.M. & Subramaniam, V. Distinct
755 Mechanisms Determine alpha-Synuclein Fibril Morphology during Growth and
756 Maturation. *ACS Chem Neurosci* **8**, 538-547 (2017).
- 757 55. Goldberg, M.S. & Lansbury Jr, P.T. Is there a cause-and-effect relationship between α -
758 synuclein fibrillization and Parkinson's disease? *Nature Cell Biology* **2**, E115-E119
759 (2000).
- 760 56. El-Agnaf, O.M.A. & Irvine, G.B. Review: Formation and Properties of Amyloid-like Fibrils
761 Derived from α -Synuclein and Related Proteins. *Journal of Structural Biology* **130**, 300-
762 309 (2000).
- 763 57. Paumier, K.L. *et al.* Intrastratal injection of pre-formed mouse alpha-synuclein fibrils into
764 rats triggers alpha-synuclein pathology and bilateral nigrostriatal degeneration. *Neurobiol
765 Dis* **82**, 185-199 (2015).
- 766 58. Luk, K.C. *et al.* Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly
767 progressive neurodegenerative alpha-synucleinopathy in mice. *J Exp Med* **209**, 975-986
768 (2012).
- 769 59. Reynolds, N.P. *et al.* Mechanism of membrane interaction and disruption by alpha-
770 synuclein. *J Am Chem Soc* **133**, 19366-19375 (2011).
- 771 60. van Rooijen, B.D., Claessens, M.M. & Subramaniam, V. Lipid bilayer disruption by
772 oligomeric alpha-synuclein depends on bilayer charge and accessibility of the
773 hydrophobic core. *Biochim Biophys Acta* **1788**, 1271-1278 (2009).
- 774 61. Lorenz, B. *et al.* Changes in metabolism of inorganic polyphosphate in rat tissues and
775 human cells during development and apoptosis. *Biochim Biophys Acta* **1335**, 51-60
776 (1997).
- 777 62. Choi, S.H. *et al.* Phosphoramidate end labeling of inorganic polyphosphates: facile
778 manipulation of polyphosphate for investigating and modulating its biological activities.
779 *Biochemistry* **49**, 9935-9941 (2010).
- 780 63. Mullan, A., Quinn, J.P. & McGrath, J.W. A nonradioactive method for the assay of
781 polyphosphate kinase activity and its application in the study of polyphosphate
782 metabolism in *Burkholderia cepacia*. *Anal Biochem* **308**, 294-299 (2002).
- 783 64. Jain, N., Bhasne, K., Hemaswasthi, M. & Mukhopadhyay, S. Structural and dynamical
784 insights into the membrane-bound alpha-synuclein. *PLoS One* **8**, e83752 (2013).
- 785 65. Pokhrel, A., Lingo, J.C., Wolschendorf, F. & Gray, M.J. Assaying for Inorganic
786 Polyphosphate in Bacteria. *J Vis Exp* (2019).
- 787 66. Giehm, L. & Otzen, D.E. Strategies to increase the reproducibility of protein fibrillization
788 in plate reader assays. *Anal Biochem* **400**, 270-281 (2010).
- 789 67. Ohi, M., Li, Y., Cheng, Y. & Walz, T. Negative Staining and Image Classification -
790 Powerful Tools in Modern Electron Microscopy. *Biol Proced Online* **6**, 23-34 (2004).
- 791 68. Arvai, A. (2015).
- 792