

Analysis of the Mutant Selection Window and Killing of *Mycoplasma hyopneumoniae* for Doxycycline, Tylosin, Danofloxacin, Tiamulin, and Valnemulin

Running title: Antimicrobial targeting of *Mycoplasma hyopneumoniae*

5

6 Authors and affiliations

Zilong Huang^a, Chunxiao Mao^a, Yanzhe Wei^a, Xiaoyan Gu^a, Qinren Cai^b,
Xiangguang Shen^a and Huanzhong Ding^{a*}

⁹ ^a Guangdong Key Laboratory for Veterinary Drug Development and Safety
10 Evaluation, South China Agricultural University, Guangzhou, China.

¹¹ ^b Technical Center for Inspection and Quarantine, Zhuhai Entry-Exit Inspection and
¹² Quarantine Bureau, Zhuhai, China.

13

14 *Correspondence: Huanzhong Ding, Ph.D.

18 Tel.: +86-020-85282562.

19 E-mail address: hzding@sacu.edu.cn

20 Number of words = 2596

21 Number of tables = 3

22 Number of figures = 4

23 **Abstract**

24 *Mycoplasma hyopneumoniae* is the major pathogenic microorganism causing
25 enzootic pneumonia in pigs. With increasing resistance of *M. hyopneumoniae* to
26 conventional antibiotics, treatment is becoming complicated. Herein, we investigated
27 the mutant selection window (MSW) of doxycycline, tylosin, danofloxacin, tiamulin,
28 and valnemulin for treating *M. hyopneumoniae* strain (ATCC 25934) to determine the
29 likelihood of promoting resistance with continued use of these antibiotics. Minimum
30 inhibitory concentration (MIC) values against *M. hyopneumoniae* were determined for
31 each antimicrobial agent and ranged from 10^5 colony-forming units (CFU)/mL to 10^9
32 CFU/mL based on microdilution broth and agar dilution methods. The minimal
33 concentration inhibiting colony formation by 99% (MIC₉₉) and the mutant prevention
34 concentration (MPC) were determined by the agar dilution method with three
35 inoculum sizes. Antimicrobial killing was determined based on MIC₉₉ and MPC
36 values for all five agents. MIC values ranged from 0.001 to 0.25 μ g/mL based on the
37 microdilution broth method, and from 0.008 to 1.0 μ g/mL based on the agar dilution
38 method. MPC values ranged from 0.0016 to 10.24 μ g/mL. MPC/MIC₉₉ values were
39 ordered tylosin >doxycycline >danofloxacin >tiamulin >valnemulin. MPC
40 achieved better bactericidal action than MIC₉₉. Based on pharmacodynamic analyses,
41 danofloxacin, tylosin, and doxycycline are more likely to select resistant mutants than
42 tiamulin and valnemulin.

43 **Keywords:** *Mycoplasma hyopneumoniae*, mutant selection window, killing activity,
44 antimicrobials, enzootic pneumonia, antibiotic resistance

45

46 **1. Introduction**

47 *Mycoplasma hyopneumoniae* is the primary pathogen causing enzootic
48 pneumonia, an important chronic respiratory disease in pigs resulting in high
49 morbidity, low feed conversion rate, and considerable economic losses in the
50 swine breeding industry [1]. Additionally, the disease makes pigs more susceptible to
51 infection by secondary bacterial pathogens such as *Pasteurella multocida* and
52 *Actinobacillus pleuropneumoniae* [2]. There are several kinds of antimicrobial agents
53 that exhibit *in vitro* activity against *M. hyopneumoniae*, such as pleuromutilins,
54 fluoroquinolones, macrolides, and tetracyclines [3, 4]. However, widespread use of
55 these agents has resulted in acquired resistance of *M. hyopneumoniae* to
56 fluoroquinolones, lincosamides, and macrolides [5-7]. Thus, in order to reduce the
57 risk of drug resistance, it is necessary to develop novel drugs. However, even if new
58 drugs are discovered, re-evaluation of antimicrobial dosing is essential, and is the
59 main method aimed at preventing the emergence and expansion of drug-resistant
60 strains.

61

62 The mutant selection window (MSW) hypothesis postulates that, for each
63 antimicrobial-pathogen combination, an antimicrobial concentration range exists in
64 which selective amplification of single-step, drug-resistant mutants occurs [8]. The
65 upper and lower boundaries of the MSW are the mutant prevention concentration
66 (MPC) and the minimal concentration that inhibits colony formation by 99% (MIC₉₉),

67 respectively. The MPC is the minimum concentration that inhibits colony formation
68 of the least antibacterial drug-susceptible mutant subpopulation. Therefore, when
69 antimicrobial concentrations fall within the range of the MSW, this tends to lead to
70 the enrichment of drug-resistant bacteria. Keeping drug concentrations above the
71 MPC is likely to restrict the emergence of resistance [9]. This hypothesis has been
72 verified by *in vitro* and *in vivo* experiments [10-13].

73

74 Because *M. hyopneumoniae* lacks a cell wall and is small bacterium (0.4 – 1.2
75 μm), culture isolation conditions *in vitro* are a technical challenge. In particular,
76 quantification by the viable count method to determine colony-forming units (CFU) is
77 arduous. Therefore, studies on the pharmacodynamics of *M. hyopneumoniae* are
78 scarce. In the current study we determined for the first time the MPC and identified
79 the MSW for doxycycline, tylosin, danofloxacin, tiamulin and valnemulin against *M.*
80 *hyopneumoniae* *in vitro*. We also used time-kill tests to determine the relative
81 antibacterial effects at the MIC₉₉ and the MPC. MSW and MPC are useful parameters
82 for optimizing dosing regimens, reducing the emergence of resistant mutants, and
83 analyzing treatment failure [14]. In addition, using the CFU counting method, changes
84 in the amount of *M. hyopneumoniae* after antibiotic action can be determined.

85

86 **2. Materials and Methods**

87 *Mycoplasma hyopneumoniae* standard strain ATCC 25934 was obtained as a
88 freeze-dried powder from the China Institute of Veterinary Drug Control (Beijing,

89 China) and stored at -80°C. Broth medium base, cysteine, and NADH were purchased
90 from Qingdao Hope Biological Technology. Sterile swine serum was bought from
91 Guangzhou Ruite Biological Technology. The initial pH of the medium was 7.7 ± 0.1,
92 and 1% agar was added to solid media.

93 Doxycycline (85.8%), danofloxacin (100%), tiamulin (99%), tylosin (82.6%),
94 and valnemulin (98.3%) were obtained from Guangdong Dahuanong Animal Health
95 Products. These five antibacterial agents were dissolved in Milli-Q water and
96 sterilized by filtration. A 1280 µg/mL fresh stock solution of each antibacterial agent
97 was prepared for each experiment.

98

99 **2.1 Determination of minimum inhibitory concentration (MIC)**

100 MIC values were determined as described previously [15]. Briefly, MIC values
101 were calculated for 10⁵, 10⁶, and 10⁷ CFU/mL *M. hyopneumoniae* cultures in the
102 exponential phase. A 100 µL sample of exponential phase culture was added to an
103 equal volume of drug-containing medium culture in a 96-well plate. A growth control
104 (inoculum without antimicrobials), sterility control (sterile broth at pH 7.8), and
105 end-point control (blank medium at pH 6.8) were included. Plates were cultured at
106 37°C with 5% CO₂ in an incubator after being sealed. When the color of the growth
107 control was the same as the end-point control, the MIC was determined as the
108 minimal concentration of antibacterial agent that resulted in no color change.

109

110 MIC values were determined by the agar dilution method as described previously

111 [16]. A 10 μ L sample of *M. hyopneumoniae* culture (10^5 – 10^7 CFU) was placed on the
112 surface of a plate in which wells contained 1.25–20 μ g/mL danofloxacin, 2–32 μ g/mL
113 tiamulin, 4–64 μ g/mL tylosin, 5–80 μ g/mL doxycycline, or 0.16–2.56 μ g/mL for
114 two-fold agar dilution analysis. All plates were incubated for at least 8 days.
115 Meanwhile, growth control plates without antimicrobials were set up for each test,
116 and all experiments were repeated three times. The lowest concentration without *M.*
117 *hyopneumoniae* growth on agar plates was taken as the MIC value. Each test was
118 repeated three times.

119

120 **2.2 Measurement of MIC_{99} and mutant prevention concentration (MPC)**

121 MIC_{99} values were measured as reported previously [17] with modifications.
122 MIC_{99} drug concentrations were based on linear decreasing dilutions of MIC values.
123 The antibiotic concentration ranged from $1 \times MIC$ to $0.5 \times MIC$ in sequential 10%
124 dilution decreases. The quantity of bacteria in the logarithmic growth phase reached
125 10^7 CFU/mL. Three 10 μ L drops of each diluted suspension were inoculated onto agar
126 plates and cultured for at least 8 days as described above. Colony numbers between
127 30 and 300 were counted.

128

129 The MPC is defined as the lowest drug concentration that prevents bacterial
130 colony formation from a culture containing $\geq 10^9$ CFU/mL bacteria [18]. We
131 attempted different centrifugal methods for enriching *M. hyopneumoniae*. Ultimately,
132 an 800 mL stationary growth phase culture was transferred into 20 tubes (each 50 mL),

133 tubes were centrifuged ($5000 \times g$ for 20 min), and each bacteria solution was
134 resuspended in 1 mL fresh medium. All 20 enriched cultures were combined into two
135 15 mL tubes, centrifuged ($5000 \times g$ for 20 min), and resuspended in 1 mL fresh
136 medium for counting. The final concentration of *M. hyopneumoniae* was 8.8×10^9
137 CFU/mL.

138

139 MPC values were measured by the agar method as described previously [19].
140 Briefly, 200 μ L samples of each enriched culture were inoculated onto agar plates
141 containing various concentrations of antibiotic (six parallel solid plates per antibiotic
142 concentration). These plates were incubated at 37°C with 5% CO₂ in a humidified
143 incubator for 8–10 days. The lowest antibiotic concentration that resulted in no
144 colony formation was considered the primary MPC (MPC_{pr}). After a 20% linear drug
145 concentration decrease in MPC_{pr}, the MPC was tested again, and recorded as the
146 lowest drug concentration preventing bacterial growth. Each test was repeated three
147 times.

148

149 **2.3 Time-kill tests**

150 *In vitro* time-killing assays were performed as described previously [20]. Briefly,
151 MIC₉₉ and MPC values for all five agents were tested. After adding 3.5 mL blank
152 medium and 0.1 mL drug solution (40 times the target concentration) to each
153 penicillin bottle, 0.4 mL exponential *M. hyopneumoniae* suspension with an inoculum
154 size between 10^5 CFU/mL and 10^9 CFU/mL was added. Cultures were incubated at

155 37°C with 5% CO₂ for 48 h. Aliquots of 100 µL were collected from each culture at 0,
156 3, 6, 9, 12, 24, 36, and 48 h. The viable cell number was determined via 10-fold serial
157 dilutions and plating 10 µL of each diluted culture on drug-free agar. Growth controls
158 (*M. hyopneumoniae* cultures without drugs) and sterility controls (5 mL medium at
159 pH 7.8) were also included. Plates were incubated for at least 8 days at 37°C with 5%
160 CO₂ in a humidified incubator. Each test was repeated three times.

161

162 **3. Results**

163 **3.1 MIC determination**

164 MICs of danofloxacin, tiamulin, tylosin, doxycycline, and valnemulin against *M.*
165 *hyopneumoniae* determined by the microdilution and agar dilution methods are shown
166 in **Figure 1**. Values determined using the solid MIC method were 8-fold higher
167 (tylosin), 4-fold higher (danofloxacin, doxycycline, and valnemulin), and 2-fold
168 higher (tiamulin) than those determined by the liquid method at an identical inoculum
169 size of 10⁵ CFU/mL. In addition, as the inoculum size used in these assays was
170 increased, the MIC values also increased. *M. hyopneumoniae* displayed its greatest
171 sensitivity to valnemulin and its least to doxycycline

172

173 **3.2 Determination of MIC₉₉, MPC, and selection index (SI)**

174 MIC₉₉, MPC, and SI values are shown in **Table 1**. The SI, the ratio of MPC to
175 MIC₉₉, reflects the ability of an antibacterial agent to induce resistant mutants. MIC₉₉
176 values for all antibacterial agents ranged from 0.0122 to 0.343 µg/mL, and MPC

177 values ranged from 0.016 to 10.24 $\mu\text{g}/\text{mL}$. SI values ranged from 1.31 to 10.24, and
178 were ranked valnemulin <tiamulin <danofloxacin <doxycycline <tylosin (low to high).
179 Thus, valnemulin displayed the lowest SI value, while tylosin exhibited the highest SI
180 value.

181

182 **3.3 In vitro killing analysis**

183 Time-kill curves of compounds against *M. hyopneumoniae* were obtained using
184 three different inoculum sizes. Reductions in *M. hyopneumoniae* count with different
185 inoculum sizes for MIC₉₉ and MPC are listed in **Table 2 and Table 3**. Danofloxacin,
186 tiamulin, tylosin, and valnemulin achieved bactericidal activity against 10⁵ CFU/mL
187 *M. hyopneumoniae* with MIC₉₉ dosage, while doxycycline achieved bacteriostatic
188 activity only. Colony count reductions recorded at the 48h time point 3.63, 3.68, 3.75,
189 and 3.61 log₁₀ CFU/mL for danofloxacin, tiamulin, tylosin, and valnemulin,
190 respectively, but only 1.4 log₁₀ CFU/mL for doxycycline. All five compounds
191 achieved bactericidal activity against 10⁵ CFU/mL *M. hyopneumoniae* with MPC
192 dosage (**Figure 2**).

193 At a greater inoculum size (10⁷ CFU/mL), danofloxacin, tiamulin, tylosin and
194 valnemulin were bactericidal at the MIC₉₉ while doxycycline was bacteriostatic only.
195 Colony count reductions recorded at the 48h time point were 5.15 log₁₀ CFU/mL for
196 danofloxacin, 5.09 log₁₀ CFU/mL for valnemulin, 3.51 log₁₀ CFU/mL for tiamulin,
197 4.13 log₁₀ CFU/mL for tylosin, and 1.16 log₁₀ CFU/mL for doxycycline. All five
198 compounds achieved bactericidal activity against 10⁷ CFU/mL *M. hyopneumoniae*

199 with MPC dosage (**Figure 3**).

200 Danofloxacin and valnemulin both achieved bactericidal activity against 10^9
201 CFU/mL of *M. hyopneumoniae* cells at the MIC₉₉ concentrations while the other three
202 were bacteriostatic only. Colony count reductions recorded at 48 h were danofloxacin
203 $5.61 \log_{10}$ CFU/mL, valnemulin $4.81 \log_{10}$ CFU/mL, tiamulin $2.23 \log_{10}$ CFU/mL,
204 tylosin $2.39 \log_{10}$ CFU/mL and doxycycline $2.43 \log_{10}$ CFU/mL. All compounds
205 achieved bactericidal activity against 10^9 CFU/mL of *M. hyopneumoniae* at the MPC
206 concentrations. Overall, the rank order of antibacterial agents for colony count
207 reduction was danofloxacin >valnemulin >tylosin >tiamulin >doxycycline (**Figure 4**).

208

209 **4. Discussion**

210 *M. hyopneumoniae* is a major respiratory disease-causing pathogen in modern
211 intensive pig farming worldwide. Although vaccine-based immunization is an
212 important preventive measure for enzootic pneumonia, treatment with antibacterial
213 agents is known to accelerate disease recovery and reduce disease-related
214 complications. However, strains resistant to enrofloxacin and tylosin have appeared
215 among clinically isolated strains [6, 7]. In particular, many fluoroquinolones are
216 important antibiotics for the treatment of human infections, and are more likely to
217 lead to cross-resistance. Due to the difficulties associated with *in vitro* culturing and
218 viability counting (CFU measurements) for *M. hyopneumoniae*, systematic *in vitro*
219 pharmacodynamic evaluation of antibacterial agents against *M. hyopneumoniae* is
220 scarce. Thus, in the present study, *in vitro* pharmacodynamic indices of several

221 representative antimicrobial agents against *M. hyopneumoniae* were determined, and
222 killing curves were plotted. To the best of our knowledge, this is the first study to
223 explore the risk of *M. hyopneumoniae* resistance using MPC and MSW parameters.

224 MIC values determined by the liquid method were similar to those measured in
225 previous studies [4, 5]. Using both liquid and solid agar methods, MIC values
226 increased with increasing inoculum size; values obtained with a large inoculum were
227 two to four times higher than those obtained with small inoculum. It has been reported
228 previously that MIC values increase with increasing bacterial load [21, 22]. Among
229 the five antibiotics tested, danofloxacin and tylosin were more sensitive to inoculum
230 size for MIC determination. In an earlier report [23], a larger inoculum of
231 *Staphylococcus aureus* had a more significant effect on the antibacterial activity of
232 nafcillin and vancomycin than a smaller inoculum. Therefore, in cases of
233 high bacterial inoculation, more careful consideration is required when selecting the
234 MIC reference value for the relevant experiment. In clinical treatment, the MIC value
235 should be determined for different bacterial counts according to the severity of animal
236 infection to establish a better treatment plan.

237 The MPC is defined as the concentration of antibacterial drug that prevents the
238 growth of large quantities of resistant sub-populations. Because culturing of *M.*
239 *hyopneumoniae* is difficult *in vitro*, determination of MPC values is challenging; after
240 much effort, *M. hyopneumoniae* was cultured to a cell density of 10^7 – 10^8 CFU/mL.
241 We tried a variety of enrichment methods to generate quantities of bacteria sufficient
242 for determining MPCs, and eventually managed to measure MPCs for all five

243 antibiotics. Relationships between antimicrobial exposure, MPC/MSW values and
244 antimicrobial resistance selection have been explored previously. For example, in
245 *Staphylococcus aureus*, cefquinome concentrations below the MIC₉₉,
246 intermediate between the MIC₉₉ and MPC, and above the MPC resulted in the
247 selection of mutants that differed in terms of the proportion of resistant and
248 susceptible bacteria [11]. When the concentration of levofloxacin fell within the
249 MSW, the sensitivity of *S. aureus* decreased and mutant subpopulations emerged [24].
250 For *M. hyopneumoniae*, the reported danofloxacin, tylosin, and doxycycline
251 concentrations in pigs fell within the MSW completely after an intramuscular dose of
252 2.5 or 10 mg/kg (body weight); after oral administration at a dose of 20 mg/kg, C_{max}
253 values for danofloxacin, tylosin, and doxycycline were 0.45 ± 0.09, 2.71 ± 1.09, and
254 2.44 ± 0.51 µg/mL [25-27]. Correlative MIC₉₉ and MPC values were 0.101 and 1.0,
255 0.34 and 10.24, and 0.343 and 4.0 µg/mL, respectively. The reported tiamulin and
256 valnemulin concentrations were comfortably above the MSW values only after oral
257 administration at a dose of 10 or 25 mg/kg [28, 29]. Consequently, by combining the
258 *in vivo* pharmacokinetic parameters and the *in vitro* pharmacodynamic results, we
259 speculate that danofloxacin, tylosin, and doxycycline are more likely to select
260 resistant mutants than tiamulin and valnemulin. Continued use of first-line
261 antibacterial agents against *M. hyopneumoniae* according to current dosing regimens
262 may therefore promote drug resistance selection, and hence limit their long-term
263 efficacy in the treatment of endemic pneumonia in pigs.
264 We determined the bactericidal effects of danofloxacin, tylosin, doxycycline,

265 tiamulin, and valnemulin against *M. hyopneumoniae* at various bacterial densities and
266 drug concentrations. At three different inoculation amounts, doxycycline
267 displayed bacteriostatic activity at MIC₉₉ dosage and bactericidal action at MPC
268 dosage. At the highest inoculation amount, tiamulin and valnemulin acted
269 as bacteriostatic agents at MIC₉₉ dosage and as bactericidal agents at MPC dosage.
270 Danofloxacin exhibited the fastest sterilization rate. Moreover, valnemulin was highly
271 sensitive to *M. hyopneumoniae*, and exerted an obvious bactericidal effect. These
272 results showed that when the concentration of antibiotic equaled or exceeded the MPC,
273 *M. hyopneumoniae* was rapidly killed. Drug concentrations at the MPC also reduced
274 the chances of bacteria re-growing during drug exposure. These results are similar to
275 those of an earlier report [30]. In this previous study, the bactericidal effect at MIC
276 was slow and incomplete. However, at MPC and maximum serum or tissue drug
277 concentrations, killing was more pronounced than at MIC, and increased with
278 increasing duration of drug exposure.

279 The main limitation of the present study was that the *in vitro* pharmacodynamic
280 determination of *M. hyopneumoniae* was only carried for the standard strain, and
281 clinical isolates should be assessed to confirm our findings. Nevertheless, the present
282 work represents a meaningful pilot study in this area. A second limitation is that all
283 experiments were performed under ideal conditions *in vitro*, without considering the
284 complexity of factors *in vivo*. Thus, *in vivo* experiments are currently being explored.

285 In conclusion, the present study was the first to establish pharmacodynamic
286 analyses of five antimicrobial agents against *M. hyopneumoniae*. And we determined

287 MPC and MSW parameters to explore the risk of *M. hyopneumoniae* resistance. The
288 results showed that the bactericidal action of MPC was better than MIC₉₉, and the
289 antibacterial effects of these drugs against *M. hyopneumoniae* are significantly
290 different. These pharmacodynamic results are meaningful in choosing antimicrobials
291 for therapy. And danofloxacin, tylosin, and doxycycline are more likely to select
292 resistant mutants than tiamulin and valnemulin.

293 **Acknowledgments**

294 This work was supported by the National Key Research and Development
295 Program of China (grant numbers 2016YFD0501300 and 2016YFD0501310).

296

297 **Author Contributions**

298 Methodology, software, validation, formal analysis, data curation, manuscript
299 preparation, manuscript reviewing and editing, visualization, and project
300 administration were performed by ZH. ZH, CM, ZZ, and LZ contributed to
301 investigations. Resources were provided by XG, QC, XS, and HD. Supervision was
302 provided by HD, and funding was acquired by HD.

303

304 **Conflict of Interest Statement**

305 The authors declare that the research was conducted in the absence of any
306 commercial or financial relationships that could be construed as a potential conflict of
307 interest.

308

309 **References**

310 1. Maes D, Segales J, Meyns T, Sibila M, Pieters M, Haesebrouck F. Control of
311 Mycoplasma hyopneumoniae infections in pigs. *Veterinary Microbiology*.
312 2009;126(4):297-309.

313 2. Marois C, Gottschalk M, Morvan H, Fablet C, Madec F, Kobisch M.
314 Experimental infection of SPF pigs with *Actinobacillus pleuropneumoniae* serotype 9
315 alone or in association with *Mycoplasma hyopneumoniae*. *Veterinary Microbiology*.
316 2010;135(3):283-91.

317 3. Williams PP. In vitro susceptibility of *Mycoplasma hyopneumoniae* and
318 *Mycoplasma hyorhinis* to fifty-one antimicrobial agents. *Antimicrob Agents
319 Chemother*. 1978;14(2):210-3.

320 4. Hannan PCT, Windsor HM, Ripley PH. In vitro susceptibilities of recent field
321 isolates of *Mycoplasma hyopneumoniae* and *Mycoplasma hyosynoviae* to valnemulin
322 (Econor®), tiamulin and enrofloxacin and the in vitro development of resistance to
323 certain antimicrobial agents in *Mycoplasma hyopneu*. *Research in Veterinary Science*.
324 1997;63(2):157-60.

325 5. Thongkamkoon P, Narongsak W, Kobayashi H, Pathanasophon P, Kishima M,
326 Yamamoto K. In vitro susceptibility of *Mycoplasma hyopneumoniae* field isolates
327 and occurrence of fluoroquinolone, macrolides and lincomycin resistance. *Journal of
328 Veterinary Medical Science*. 2013;75(8):1067.

329 6. Vicca J, Maes D, Stakenborg T, Butaye P, Minion F, Peeters J, et al. Resistance
330 mechanism against fluoroquinolones in *Mycoplasma hyopneumoniae* field isolates.
331 *Microbial Drug Resistance*. 2007;13(3):166-70.

332 7. Stakenborg T, Vicca J, Butaye P, Maes D, Minion FC, Peeters J, et al.
333 Characterization of In Vivo acquired resistance of *Mycoplasma hyopneumoniae* to
334 macrolides and lincosamides. *Microbial Drug Resistance*. 2005;11(3):290.

335 8. Drlica K, Zhao X. Mutant Selection Window Hypothesis Updated. *Clinical
336 Infectious Diseases*. 2007;44(5):681-8. doi: 10.1086/511642.

337 9. Dong Y, Zhao X, Domagala J, Drlica K. Effect of Fluoroquinolone Concentration
338 on Selection of Resistant Mutants of Mycobacterium bovis BCG
339 andStaphylococcus aureus. *Antimicrobial Agents and Chemotherapy*.
340 1999;43(7):1756-8. doi: 10.1128/aac.43.7.1756.

341 10. Bordallo-Cardona MÁ, Marcos-Zambrano LJ, Sánchez-Carrillo C, Egg DLP,
342 Cantón R, Bouza E, et al. Mutant prevention concentration and mutant selection
343 window of micafungin and anidulafungin in clinical *Candida glabrata* isolates.
344 *Antimicrobial Agents & Chemotherapy*. 2018;62(3):AAC.01982-17.

345 11. Xiong M, Wu X, Ye X, Zhang L, Zeng S, Huang Z, et al. Relationship between
346 Cefquinome PK/PD Parameters and Emergence of Resistance of *Staphylococcus*
347 *aureus* in Rabbit Tissue-Cage Infection Model. *Frontiers in Microbiology*.
348 2016;7(297):874.

349 12. Nakai H, Sato T, Uno T, Furukawa E, Kawamura M, Takahashi H, et al. Mutant
350 selection window of four quinolone antibiotics against clinical isolates of
351 *Streptococcus pneumoniae*, *Haemophilus influenzae* and *Moraxella catarrhalis*.
352 *Journal of Infection & Chemotherapy*. 2018;24(2):83-7.

353 13. Zhu YL, Hu LF, Mei Q, Cheng J, Liu YY, Ye Y, et al. Testing the mutant

354 selection window in rabbits infected with methicillin-resistant *Staphylococcus aureus*
355 exposed to vancomycin. *J Antimicrob Chemother.* 2012;67(11):2700-6.

356 14. K D. The mutant selection window and antimicrobial resistance. *Journal of*
357 *Antimicrobial Chemotherapy.* 2003;52(1):11-7.

358 15. Tanner AC, Erickson BZ, Ross RF. Adaptation of the Sensititre broth
359 microdilution technique to antimicrobial susceptibility testing of *Mycoplasma*
360 *hyopneumoniae*. *Vet Microbiol.* 1993;36(3-4):301-6. PubMed PMID: 8273275.

361 16. Hannan PC, O'Hanlon PJ, Rogers NH. In vitro evaluation of various quinolone
362 antibacterial agents against veterinary mycoplasmas and porcine respiratory bacterial
363 pathogens. *Research in Veterinary Science.* 1989;46(2):202.

364 17. Zhao X, Drlica K. Restricting the selection of antibiotic-resistant mutant bacteria:
365 measurement and potential use of the mutant selection window. *Journal of Infectious*
366 *Diseases.* 2002;185(4):561-5.

367 18. Blondeau JM, Deboer DJ, Affolter VK, Hill PB. New concepts in antimicrobial
368 susceptibility testing: the mutant prevention concentration and mutant selection
369 window approach. *Veterinary Dermatology.* 2009;20(5-6):383-96.

370 19. Nan Z, Ye X, Wu Y, Huang Z, Gu X, Cai Q, et al. Determination of the Mutant
371 Selection Window and Evaluation of the Killing of *Mycoplasma gallisepticum* by
372 Danofloxacin, Doxycycline, Tilmicosin, Tylvalosin and Valnemulin. *Plos One.*
373 2017;12(1):e0169134.

374 20. Nan Z, Gu X, Ye X, Xun W, Zhang B, Zhang L, et al. The PK/PD Interactions of
375 Doxycycline against *Mycoplasma gallisepticum*. *Frontiers in Microbiology.*
376 2016;7(e44158).

377 21. Harada Y, Morinaga Y, Kaku N, Nakamura S, Uno N, Hasegawa H, et al. In vitro
378 and in vivo activities of piperacillin-tazobactam and meropenem at different inoculum
379 sizes of ESBL-producing *Klebsiella pneumoniae*. *Clinical Microbiology & Infection.*
380 2014;20(11):O831-O9.

381 22. Quinn B, Hussain S, Malik M, Drlica K, Zhao X. Daptomycin inoculum effects
382 and mutant prevention concentration with *Staphylococcus aureus*. *J Antimicrob*
383 *Chemother.* 2007;60(6):1380-3.

384 23. Laplante KL, Rybak MJ. Impact of High-Inoculum *Staphylococcus aureus* on the
385 Activities of Nafcillin, Vancomycin, Linezolid, and Daptomycin, Alone and in
386 Combination with Gentamicin, in an In Vitro Pharmacodynamic Model.
387 *Antimicrobial Agents & Chemotherapy.* 2004;48(12):4665-72.

388 24. Firsov AA, Vostrov SN, Lubenko IY, Drlica K, Portnoy YA, Zinner SH. In vitro
389 pharmacodynamic evaluation of the mutant selection window hypothesis using four
390 fluoroquinolones against *Staphylococcus aureus*. *Antimicrobial Agents &*
391 *Chemotherapy.* 2003;47(5):1604.

392 25. Wang C, Ai D, Chen C, Lin H, Li J, Shen H, et al. Preparation and evaluation of
393 danofloxacin mesylate microspheres and its pharmacokinetics in pigs. *Veterinary*
394 *Research Communications.* 2009;33(8):1013-22.

395 26. Kim MH, Gebru E, Chang ZQ, Choi JY, Hwang MH, Kang EH, et al.
396 Comparative pharmacokinetics of tylosin or florfenicol after a single intramuscular
397 administration at two different doses of tylosin-florfenicol combination in pigs.

398 Journal of Veterinary Medical Science. 2008;70(1):99.

399 27. Gutiérrez L, Ocampo L, Espinosa F, Sumano H. Pharmacokinetics of an
400 injectable long-acting parenteral formulation of doxycycline hydrate in pigs. Journal
401 of Veterinary Pharmacology and Therapeutics. 2014;37(1):83-9. doi:
402 doi:10.1111/jvp.12066.

403 28. Dimitrova D, Katsarov V, Dimitrov D, Tsoneva D. Pharmacokinetics of tiamulin
404 and chlortetracycline after application of Tetramulin-premix in pigs. Agricultural
405 Science & Technology. 2011;229-34.

406 29. Zhang Z, Zhang CY, Guo JP, Zhu LX, Luo XY, Wang R, et al. Pharmacokinetics
407 and Lung Tissue Concentration of Valnemulin in Swine. Journal of Animal &
408 Veterinary Advances. 2011;10(14):1824-8.

409 30. Blondeau JM, Shebelski SD, Hesje CK. Bactericidal effects of various
410 concentrations of enrofloxacin, florfenicol, tilmicosin phosphate, and tulathromycin
411 on clinical isolates of *Mannheimia haemolytica*. American Journal of Veterinary
412 Research. 2015;76(10):860-8.

413

415 **Figure legends**

416

417 Figure 1. Minimum inhibitory concentration (MIC) determination for danofloxacin,
418 tiamulin, tylosin, doxycycline, and valnemulin against *M. hyopneumoniae* in artificial
419 medium using liquid and solid agar methods with inoculum sizes of 10^5 , 10^6 , and 10^7
420 CFU/mL.

421

422 Figure 2. *M. hyopneumoniae* killing curves at the minimal concentration inhibiting
423 colony formation by 99% (MIC₉₉) and at the mutant prevention concentration (MPC)
424 with an inoculum of 10^5 CFU/mL.

425

426 Figure 3. *M. hyopneumoniae* killing curves at the minimal concentration inhibiting
427 colony formation by 99% (MIC₉₉) and at the mutant prevention concentration (MPC)
428 with an inoculum of 10^7 CFU/mL.

429

430 Figure 4. *M. hyopneumoniae* killing curves at the minimal concentration inhibiting
431 colony formation by 99% (MIC₉₉) and at the mutant prevention concentration (MPC)
432 with an inoculum of 10^9 CFU/mL.

434 **Table 1. Comparison of MIC₉₉, MIC, MPC, and SI values for five antimicrobial**
435 **agents tested against *M. hyopneumoniae***

	MIC ₉₉ (µg/mL)	MIC (µg/mL)	MPC (µg/mL)	SI
Danofloxacin	0.101	0.125	1.0	9.90
Tiamulin	0.144	0.16	1.024	7.11
Tylosin	0.34	0.40	10.24	30.12
Doxycycline	0.343	0.50	4.0	11.66
Valnemulin	0.0122	0.016	0.016	1.31

436 MIC₉₉, minimal concentration inhibiting colony formation by 99%.

437 MIC, minimum inhibitory concentration.

438 MPC, mutant prevention concentration.

439 SI, selection index (the ratio of MPC to MIC₉₉).

440

441 **Table 2. Reduction in *M. hyopneumoniae* growth for three different inoculum**
442 **sizes based on measured MIC₉₉ concentrations**

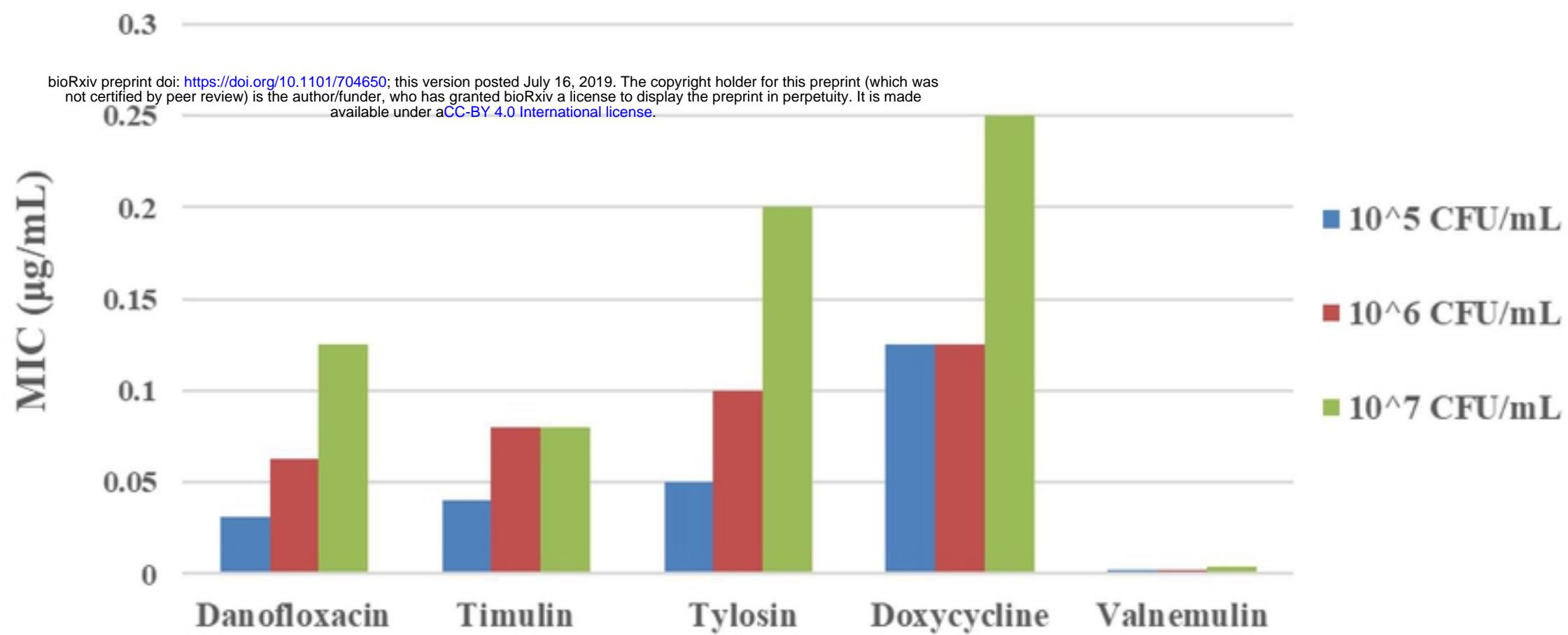
Inoculum Size (CFU/mL)	Time (h)	Danofloxacin (log ₁₀ CFU/mL)	Tiamulin (log ₁₀ CFU/mL)	Tylosin (log ₁₀ CFU/mL)	Doxycycline (log ₁₀ CFU/mL)	Valnemulin (log ₁₀ CFU/mL)
10 ⁵	24	3.38	0.52	1.88	0.77	1.96
	48	3.63	3.68	3.75	1.40	3.61
10 ⁷	24	3.74	1.01	0.56	1.38	2.27
	48	5.15	3.51	4.13	1.16	5.09
10 ⁹	24	3.52	1.29	1.48	1.84	2.34
	48	5.61	2.23	2.39	2.43	4.81

443 *M. hyopneumoniae* cultures at cell densities of 10⁵, 10⁷, and 10⁹ CFU/mL were
444 exposed to agents at MIC₉₉ dosage, and colonies were counted on drug-free plates.

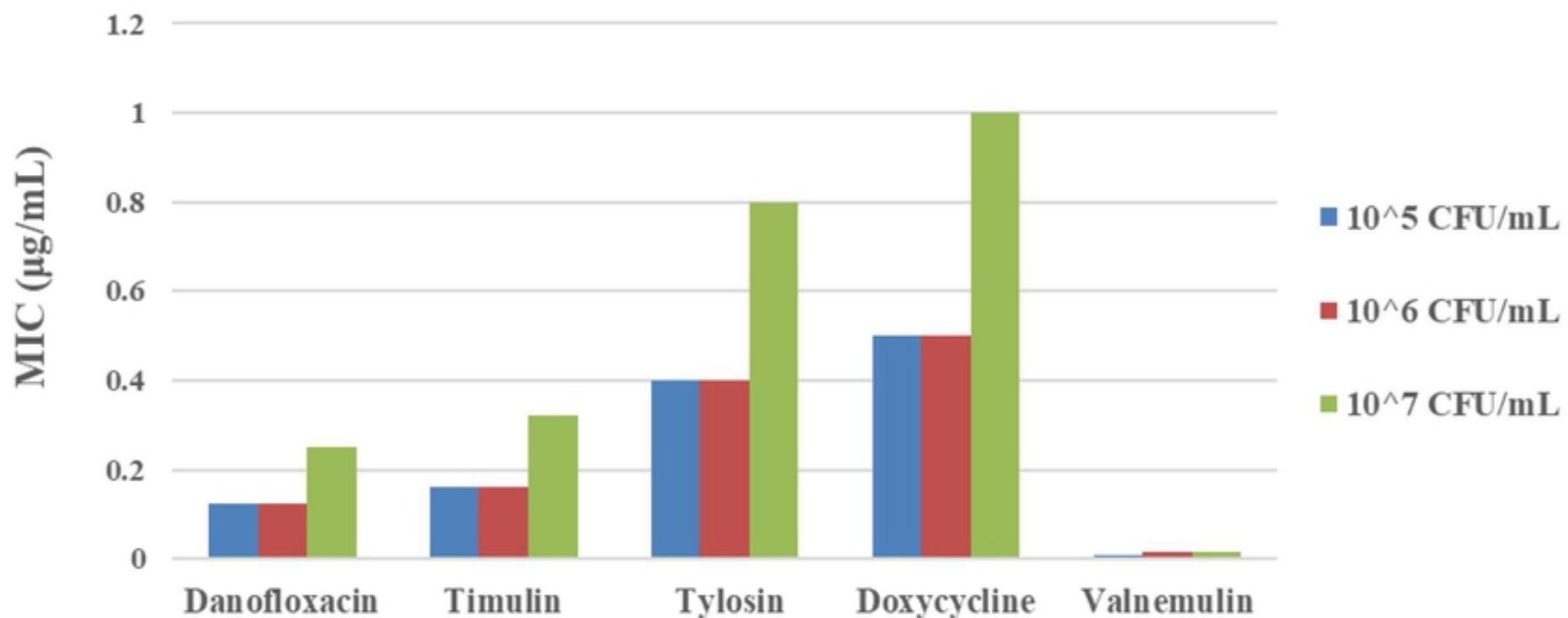
445 Log₁₀ CFU/mL reductions in *M. hyopneumoniae* count from 24 to 48 h are expressed
446 as positive values, and data are presented as means of triplicate experiments.

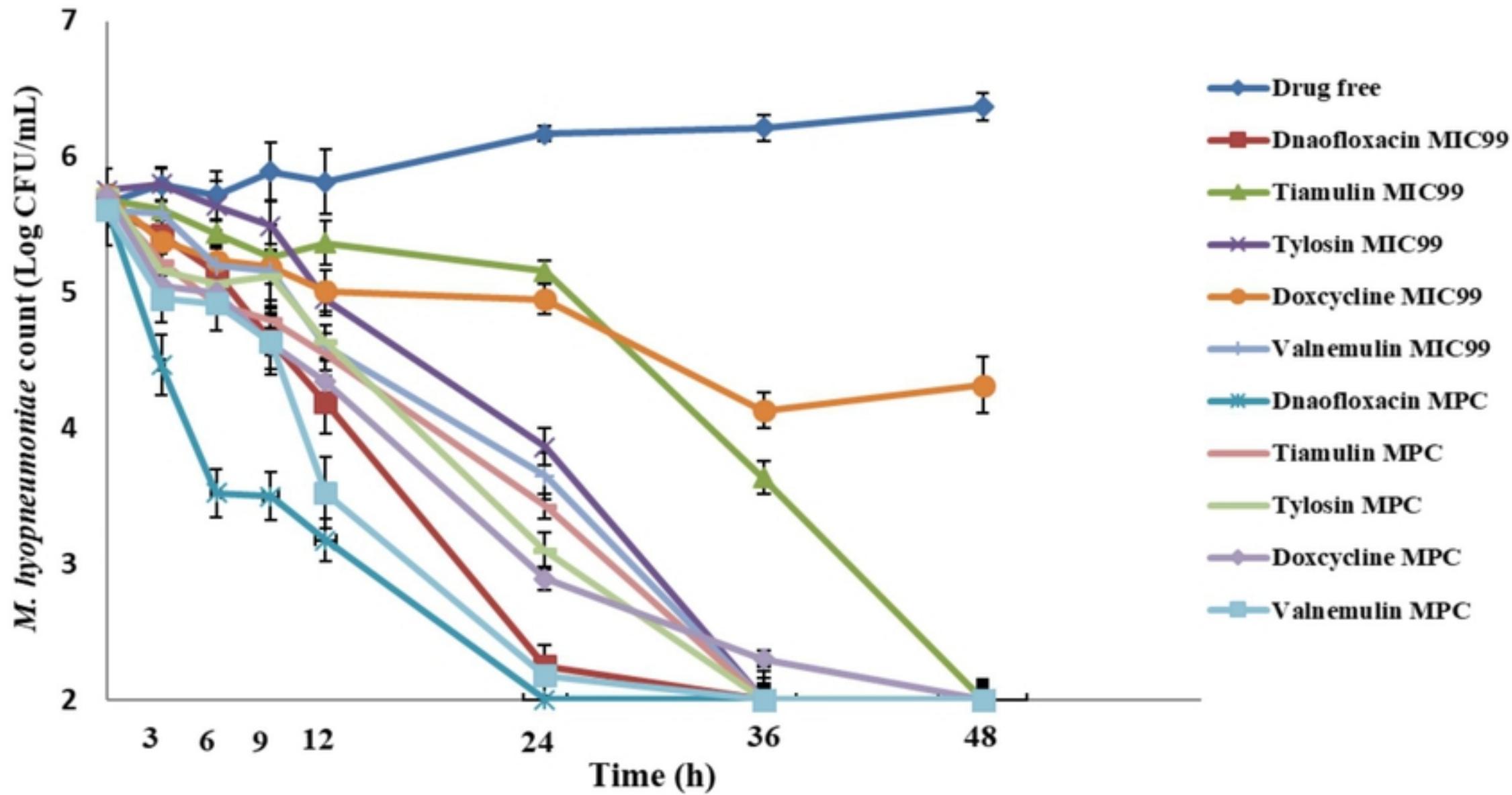
447

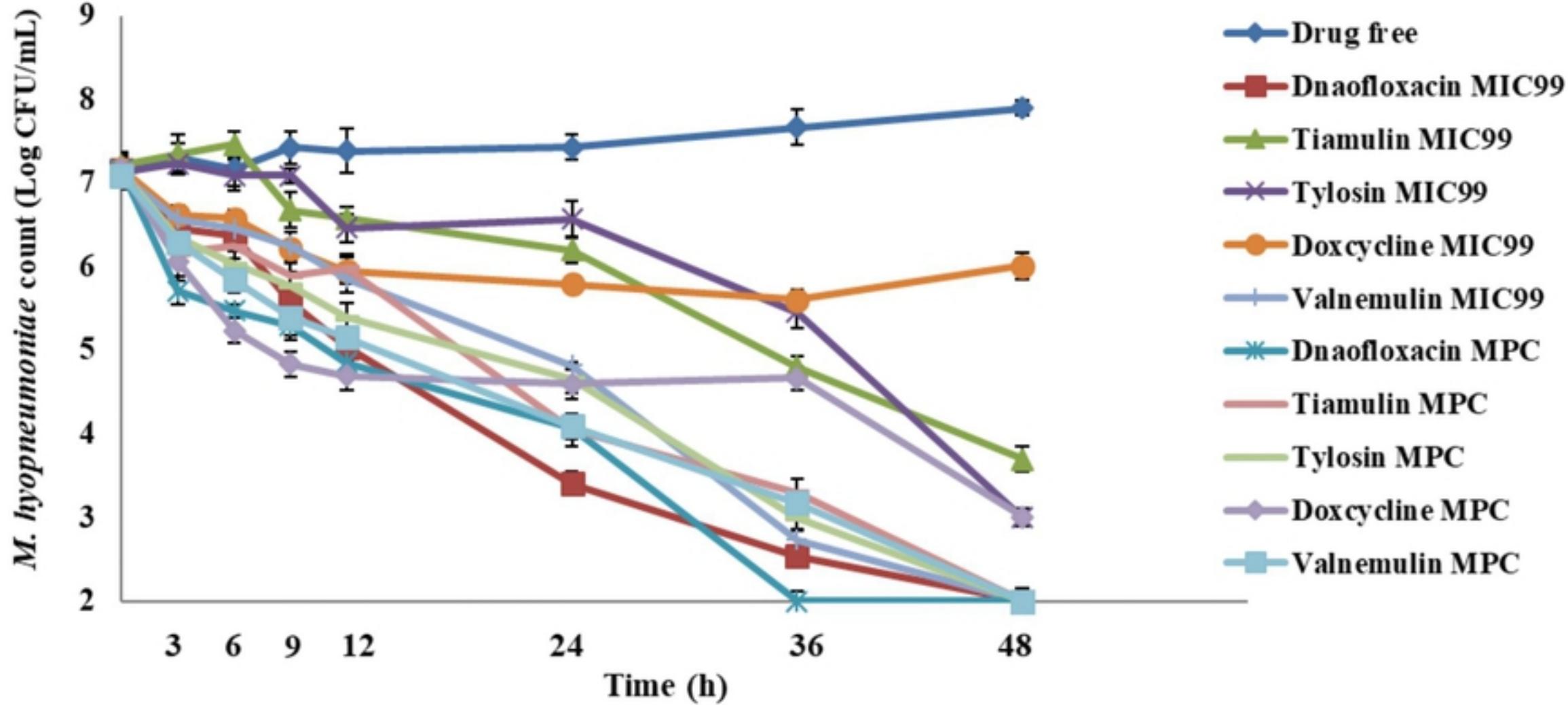
448 **Table 3. Reduction in *M. hyopneumoniae* growth for three different inoculum**
449 **sizes based on measured MPC concentrations**

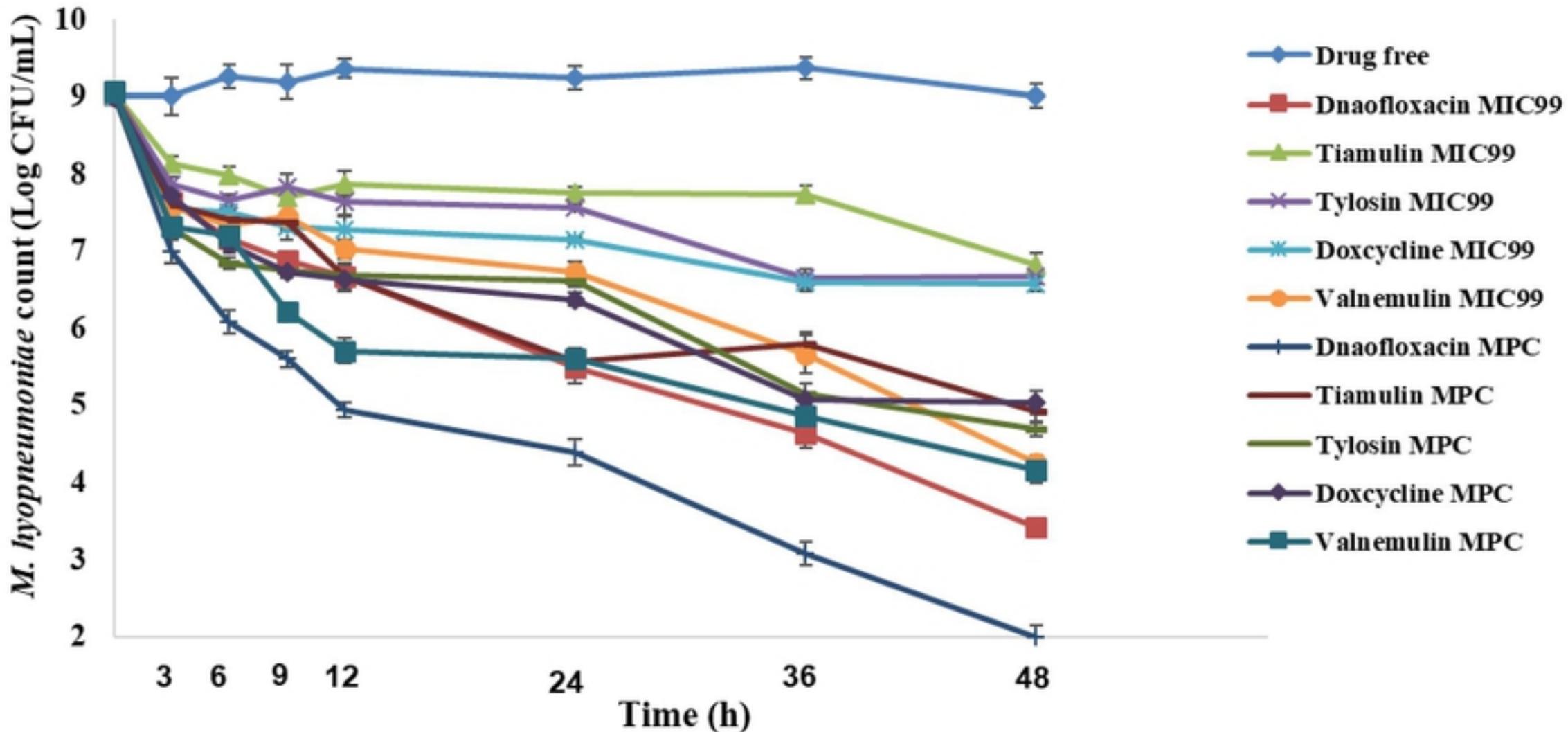

Inoculum size (CFU/mL)	Time (h)	Danofloxacin (log ₁₀ CFU/mL)	Tiamulin (log ₁₀ CFU/mL)	Tylosin (log ₁₀ CFU/mL)	Doxycycline (log ₁₀ CFU/mL)	Valnemulin (log ₁₀ CFU/mL)
10 ⁵	24	3.63	2.25	2.65	2.83	3.43
	48	3.63	3.68	3.75	3.72	3.61
10 ⁷	24	3.08	3.16	2.47	2.57	2.99
	48	5.15	5.21	5.13	4.16	5.09
10 ⁹	24	4.63	3.48	2.43	2.62	3.47
	48	7.03	4.13	4.36	3.96	4.90

450 *M. hyopneumoniae* cultures at cell densities of 10⁵, 10⁷, and 10⁹ CFU/mL were
451 exposed to agents at MIC₉₉ dosage, and colonies were counted on drug-free plates.


452 Log₁₀ CFU/mL reductions in *M. hyopneumoniae* count from 24 to 48 h are expressed
453 as positive values, and data are presented as means of triplicate experiments.


454


Liquid method



Solid method

