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SUMMARY 
 
Non-genetic transcriptional variability at the single-cell level is a potential mechanism for            
therapy resistance in melanoma. Specifically, rare subpopulations of melanoma cells occupy           
a transient pre-resistant state characterized by coordinated high expression of several           
genes. Importantly, these rare cells are able to survive drug treatment and develop             
resistance. How might these extremely rare states arise and disappear within the            
population? It is unclear whether the canonical stochastic models of probabilistic           
transcriptional pulsing can explain this behavior, or if it requires special, hitherto unidentified             
molecular mechanisms. Here we use mathematical modeling to show that a minimal network             
comprising of transcriptional bursting and interactions between genes can give rise to rare             
coordinated high states. We next show that although these states occur across networks of              
different sizes, they depend strongly on three (out of seven) model parameters and require              
network connectivity to be ≤ 6. Interestingly, we find that while entry into the rare coordinated                
high state is initiated by a long transcriptional burst that also triggers entry of other genes,                
the exit from it occurs through the independent inactivation of individual genes. Finally, our              
model predicts that increased network connectivity can lead to transcriptionally stable states,            
which we verify using network inference analysis of experimental data. In sum, we             
demonstrate that established principles of gene regulation are sufficient to describe this new             
class of rare cell variability and argue for its general existence in other biological contexts. 
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INTRODUCTION 
 
Both natural and synthetic systems exhibit rare and large deviations from their typical             
behavior, ranging from the occurrence of hurricanes to dramatic drops in the stock markets              
(Taleb, 2007)​. Biology is also replete with examples of rare deviations in organismal or              
cellular behavior. The most prototypical example, pertaining to individuals within a           
population, is evolution, where rarely occurring mutations can lead to organisms with            
different traits. Cancer is another such example (at the level of cells within a population), in                
which rare cells acquire mutations that drive uncontrolled cellular proliferation. In the vast             
majority of examples of rare biological behavior examined to date, the driver of the rare               
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behavior is thought to be genetic, i.e. a result of mutation(s) in the DNA. However, recent                
studies have suggested that rare and large deviations in single cells, such as in cancer, can                
also be driven by non-genetic sources, even in clonal, genetically homogeneous cells grown             
in identical conditions ​(Fallahi-Sichani et al., 2017; Gupta et al., 2011; Pisco and Huang,              
2015; Shaffer et al., 2017; Sharma et al., 2018, 2010; Spencer et al., 2009; Su et al., 2017)​.                  
Importantly, cells exhibiting these non-genetic deviations are resistant to anti-cancer drugs           
(e.g., Ras pathway inhibitors) and may lead to relapse in patients.  
 
In the case of melanoma, a small fraction (~1 in 3000) of cells are pre-resistant, meaning                
they are able to survive targeted drug therapy, resulting in their uncontrolled cellular             
proliferation. These rare pre-resistant cells are marked by transient and coordinated high            
expression of several marker genes. Notably, the expression levels of marker genes in             
individual cells are not normally distributed, instead showing a heavy-tailed, subexponential           
distribution. These rare cells in the tails, which transiently arise and disappear in the              
population by switching their gene expression state (​Figure 1A​), are much more likely to              
develop resistance to targeted therapies. Thus, a larger fraction of cells express very high              
levels of multiple marker genes compared to the bulk population than one would expect for a                
normal distribution (​Figure S1A​). Importantly, this type of single cell variability, which is             
characterized by rare and coordinated large deviations in the expression of multiple genes,             
is conceptually distinct from the classical “noise” models of non-genetic single cell variability             
using probabilistic models of gene regulation ​(Antolović et al., 2017; Chen and Larson, 2016;              
Corrigan et al., 2016; Golding et al., 2005; Raj and van Oudenaarden, 2008; So et al., 2011;                 
Symmons and Raj, 2016; Thattai and van Oudenaarden, 2001)​. Specifically, the classical            
models have largely described the variability that results in relatively normally distributed            
counts of mRNAs of a given gene per cell. However, in this classical context, most of the                 
cells in the tail of this distribution are not very different from the bulk of the population, a                  
scenario distinct from that described above for melanoma cells (​Figure S1A​). This presents             
an opportunity to investigate the origins of these rare, transient, and coordinated high gene              
expression states (from now on referred to as “rare coordinated high states”).  
 
Might a stochastic system of interacting genes inside the cell facilitate transition in and out of                
the rare high expression state? Previous efforts using the canonical stochastic models of             
gene regulation to study large deviations have been limited to characterizing the ensuing             
gene expression distributions in isolated, single gene reaction systems (Ham et al., 2019;             
Horowitz and Kulkarni, 2017; Iyer-Biswas et al., 2009; Stinchcombe et al., 2012). It is not               
clear if such models can explain the rare, transient, and coordinated large deviations             
observed in gene expression profiles of multiple genes. One hypothesis is that within the              
canonical modeling framework, only a rare set of unique (and perhaps complex) network             
architectures can facilitate reversible transitions into the rare coordinated high states.           
Alternatively, relatively generic gene regulatory networks may be capable of producing such            
behaviors, suggesting that a large ensemble of such networks may admit rare-cell formation.             
Both of these scenarios have different implications—for instance, the latter hypothesis           
suggests that this behavior could be more common in biological systems than hitherto             
appreciated. The alternatives described above can also be posed in terms of the nature of               
model parameters—whether the set of values that give rise to rare coordinated high states              
are constrained to lie within a narrow window of parameter space or whether such behavior               
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may occur across broad swaths of parameter space. Yet another possibility is that standard              
stochastic gene expression models fail to produce rare coordinated high states entirely, no             
matter what combinations of network architectures and parameters are used. In that case,             
one may argue that this reversible transition into the rare coordinated high state is driven by                
highly specialized processes (e.g. initiated by a master regulator) or other unknown            
mechanisms.  
 
Here we describe a mathematical framework to test the hypotheses proposed above for the              
appearance and disappearance of rare and coordinated high expression cellular states.           
Recent studies from our lab suggest that no particular molecular pathway is solely             
responsible for the formation of these rare cells ​(Shaffer et al., 2018; Torre et al., 2019)​.                
Specifically, in these rare cells, a sequencing and imaging based scheme identified a             
collection of marker genes, which are targets of multiple signaling pathways. This implies             
that instead of a single signaling pathway leading to the observed behavior, a network of               
interacting genes appears to be responsible. Accordingly, our approach used network           
modeling to see whether genes interacting within this framework were capable of producing             
transitions to high expression states. We systematically formulated and simulated networks           
of increasing size and complexity defined by a broad range for all free parameters              
(​Methods ​, section Network architectures & section Parameters).  
 
Our computational screens on more than 96 million simulated cells reveal that many             
networks with stochastic interactions between genes are capable of producing rare           
coordinated high states. Critically, transcriptional bursting, a ubiquitous phenomenon in          
which genes flip between transcriptionally active and inactive state, is necessary for our             
model to produce these rare coordinated high states. Subsequent quantitative analysis           
shows that rare coordinated high states occur across networks of all sizes, but that they (i)                
depend on three (out of seven) model parameters and (ii) require network connectivity to be               
≤ 6. The transition into the rare coordinated high state is initiated by a long transcriptional                
burst, which, in turn, triggers the entry of subsequent genes into the rare coordinated high               
state. In contrast, the transition out of rare coordinated high state is independent of the               
duration of transcriptional burst, rather it happens through the independent inactivation of            
individual genes. We also confirm some model predictions using experimental gene           
expression data taken from melanoma cell lines. Together, this demonstrates that the            
standard model of stochastic gene regulation with transcriptional bursting is capable of            
producing rare, transient, and coordinated high expression states.  
 
RESULTS 
 
Framework selection  

 
Identifying the minimal network model generating rare coordinated high states  
  
We focused on a network-based mathematical framework that models cell-intrinsic          
biochemical interactions and wondered what would be the minimal set of biochemical            
reactions that constitutes it. Since network models without gene activation (i.e. constitutive            
mode of gene expression) were not able to produce rare, transient, and coordinated high              
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expression states (see ​Supplementary information ​; ​Figure S1B-D​; Methods ​, section         
Model 1), we use a telegraph model as the building block of our framework. In this model,                 
we incorporate transcriptional bursting at each node, a phenomenon in which genes flip             
reversibly between transcriptionally active and inactive state regulated by the binding of a             
transcription factor(s) (​Figure 1B​;​ Methods ​, section Model 2). 
 
In terms of chemical reactions, a gene can reversibly switch between an active (r​on​) and               
inactive state (r​off​), where binding of the transcription factor at a gene locus controls the               
effective rate of gene production (​Figure 1B​). Specifically, when inactive (or unbound), the             
gene is transcribed as a Poisson process at a low basal rate (r​prod​); when active, this rate                 
becomes higher (​d x r​prod​, where ​d > 1​). We modeled degradation of the gene product as a                  
Poisson process with degradation rate r​deg​. The inter-node interaction parameter, r​add​, has a             
Hill-function-based dependency on the gene product amount (Hill coefficient n) of the            
respective regulating node to account for the multistep nature of the interaction (​Figure 1B​).              
All chemical reactions, propensities, and model parameters are presented in ​Methods ​. We            
used Gillespie’s Stochastic Simulation Algorithm ​(Gillespie, 1977) to systematically simulate          
networks of various sizes and architectures across a broad range of parameters (​Methods​,             
section Network architectures & section Parameters).  
 
We started with the simplest subset of the millions of possible networks (​Figure S1E​) to see                
if we could find the rare transient and coordinated high gene expression states. We limited               
our study to networks that are symmetric, i.e., networks without a hierarchical structure  
(​Methods ​, section Network Architectures). This simplification is partially supported by the           
experimental observation that there doesn’t seem to be a clear correlation between the             
genes that are highly expressed in the transient rare state in melanoma (​Figure S1F​)              
(Shaffer et al., 2017, 2018)​. Symmetric models also allow for comparisons of parameters             
between networks of different sizes. Additionally, we excluded networks that are           
compositions of independent subnetworks (non weakly-connected networks) and networks         
that can be formed by renaming other networks (isomorphic networks) (​Methods, ​section            
Network Architectures). With these restrictions, we avoid analyzing same network          
architectures several times -- either as independent subnetworks in larger architectures --            
and/or as reordered forms of other architectures. With these operations, we also reduce the              
testable space of unique network architectures by several orders of magnitude (​Figure            
S1E​).  
 
Characterization of the transcriptional bursting network model  
  
When the genes are organized in the system described above and simulated over long              
intervals, our stochastic model produced a range of temporal profiles for gene products             
(​Figure 1C-F ​and Figure S2A ​). Importantly, this model was able to faithfully capture the              
qualitative features of the experimental data, i.e., rare, transient, and coordinated high            
expression states (​Figure 1F​). We defined a set of rules to screen for the occurrence of                
different classes of states (​Figure 1C-F ​and Figure S2A ​); these include stably low             
expression (class I), stably high expression (class II), uncorrelated transient high expression            
(class III), and rare transient coordinated high expression (class IV) (see ​Methods ​, section             
Simulation classes), and used a heuristic approach to distinguish between these different            
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classes. In particular, we defined the rare, transient, and simultaneous production of multiple             
gene products as equivalent to the experimentally observed rare coordinated high state            
when half or more of the genes in a given network are transiently in the high expression                 
state (blue cell in ​Figure 1A​) at the same time. For a detailed description of the rules and                  
quantitative metrics used to define class IV, see ​Figure S3 and ​Methods ​, section Simulation              
classes.  
 
To better compare our computational results with the experimental data from static RNA             
FISH images, we took snapshots of gene products at randomly selected time points in our               
simulations and noted the number of co-occurring gene products as well as their counts for               
each time point (​Figure 2A​). This exercise, justified by ergodic theory, allows us to represent               
the static states of an ensemble of (computational) cells. For example, in a particular 8-node               
network, we found that the distribution qualitatively captures the experimental observations           
where most cells do not exhibit high expression states, while some cells are in a high-state                
for one or more genes ​(Figure 2B)​. Similarly, when we selected a gene and plotted its                
product count for randomly chosen time points, we observe a heavy-tailed distribution            
(​Figure 2C​), similar to the experimental observations ​(Figure 2C)​. Furthermore, these           
observations, while shown for a particular 8-node network, hold true for simulations of other              
8-node network architectures as well as the networks of other sizes (​Figure S2B​). Note that               
the distributions of gene product counts for each gene are qualitatively similar because of              
the symmetric nature of the networks (​Figure S2C​). The experimental data in melanoma             
cells for gene expression counts display different degrees of skewness of the distribution for              
different genes. This can likely be recapitulated by introducing asymmetries in the networks.             
To test this, we randomly introduced asymmetry either in the network architecture or the              
model parameters. The two asymmetric networks we tested were both able to produce rare,              
transient and coordinated high expression states (​Figure S4A-S4F​). Importantly, the          
distributions of gene expression counts for various genes displayed different levels of            
heavy-tails, as also observed in the experimental data (​Figure S4G​). Together, the            
transcriptional bursting-based network model is able to produce states which recapitulate           
key aspects of rare coordinated high states observed in melanoma.  
 
Rare coordinated high states depend on network connectivity and model parameters 
 
What kind of network architectures and model parameters might facilitate the occurrence of             
rare coordinated high states? For the simulations that produced rare coordinated high states,             
we extracted and quantitatively analyzed the corresponding network architectures and          
parameter values. We found that the rare coordinated high states occurred ubiquitously in             
networks with different numbers of nodes (analysed for up to 8 nodes) (​Figure 2D​). This               
suggests that even larger networks (≥ 8 nodes) will also display rare coordinated high states.               
Next, we wondered if the occurrence of rare coordinated high states depend on the network               
connectivity, defined as the number of ingoing edges for any node in the network. Indeed,               
we found that, within a particular network size, the ability to produce rare coordinated high               
states decreases dramatically (and monotonically) with increasing network connectivity         
(​Figure 2E and Figure S2F ​), with a peak frequency for a connectivity of one. The rare                
coordinated high states cease to exist for a network connectivity > 6 (​Figure S2G​). 
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Our model has seven free parameters and we asked whether the occurrence of the rare               
coordinated high states is also controlled by parameter combinations. To test this, we ran              
the simulation for 1000 parameter combinations sampled from a broad range for each             
parameter using a Latin Hypercube Sampling algorithm across networks of different sizes            
and architectures (​Supplementary Information ​ParSetsAnalysis.xlsx​; Methods​, section       
Parameters). Occurence of different classes of temporal gene product profiles (​Figure 1C-F​)            
across different network sizes and connectivities depend on the parameter sets (​Figure 2F​).             
Specifically, if a parameter set gave a specific expression profile (e.g. rare coordinated high              
or stably high) for one network, it displayed a higher propensity to display the same profile                
for other networks as well (​Figure 2F ​and ​Figure S2H ​). This implies that parameters indeed               
play a major role in the occurrence of rare coordinated high states. We therefore measured               
the percentage of simulations per parameter set that gave rise to the rare coordinated high               
states (​Figure 2G ​). Out of the 1000 parameter sets, eight parameter sets clustered together              
at the tail-end of the distribution (orange, ​Figure 2G​), meaning they generated simulations             
with frequent occurrence of rare coordinated high states, at least 20% of all networks tested               
(​Figure 2G​). Furthermore, these 8 parameter sets robustly generated rare behaviors across            
all network sizes and architectures even when we subsampled networks of specific            
properties, e.g. fixed size or connectivity (​Figure S5A ​and Figure S5B​). Intrigued by this              
observation, we wondered if these eight parameter sets have any special or distinguishing             
features compared to the remaining 992 parameter sets. 
 
We used a decision tree algorithm-based ​(Breiman et al., 1984) approach (see Methods ​,             
section Decision tree optimization and generalized linear models) to identify the           
differentiating features of these parameter sets from the rest, and confirmed our results with              
additional simulations. Our analysis revealed that only three (r​on​, r​off​, and r​add​) of the seven               
free parameters showed a strong correlation with the rare coordinated high state producing             
parameter sets (​Figure 2H​). We validated these findings with complementary analysis using            
generalized linear models (​Methods​, section Decision tree optimization and generalized          
linear models) where we found precisely these three specific parameters to be critical to              
produce the rare coordinated high states with high statistical significance (p values: r​on =              
0.003; r​off = 0.005; r​add ​= 0.014) (​Figure S5C​). These observations became readily evident              
when we plotted all the 1000 simulated parameters for r​on​, r​off​, and r​add together and found the                 
rare coordinated high state producing parameters to occupy a narrow region of the             
parameter space (​Figure 2I ​and Figure S5D ​). All of these parameters are related to              
transcriptional bursting and inter-gene(node) regulation. Two of these parameters, r​on and r​off​,            
define the active and inactive state of the gene respectively. The third parameter is the gene                
activation rate, r​add​, which corresponds to the positive regulation of transcriptional bursting            
rate of a gene by the gene product of another interacting gene. Interestingly, too high value                
(> 0.31) of r​add results in the disappearance of rare coordinated high states, as does a                
complete absence (r​add = 0) of this term (​Figure S5E-S5G​). To confirm that these three               
parameters (r​on​, r​off​, and r​add​) and their corresponding range of values are indeed critical to               
producing rare behaviors, we sampled new 1,000 parameter sets from the region            
constrained for these three parameters (​Methods​) and ran simulations for two test networks,             
a 3-node and a 5-node network. We found that the frequency of pre-resistant states for the                
constrained region is ~14-fold and ~21-fold higher than that for the original parameter set for               
the 3-node and the 5-node network, respectively (​Figure 2J​). Together, network connectivity            
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and three model parameters are primarily regulators of the propensity to display rare,             
transient, and coordinated high expression states.  
 
Distinct mechanisms regulate the transition into and out of rare coordinated high            
states  
 
We have identified the network architectures and parameter sets for which our model             
exhibits rare coordinated high states. Next, we wondered if we could dissect the features of               
the model that facilitate this behavior. Specifically, we wanted to know what factors trigger              
the entry into the rare coordinated high states and what factors trigger the escape from it.                
We began by analyzing the length of transcriptional bursts (burst duration), since including             
transcriptional bursting parameters was critical for the model to display the rare coordinated             
high state. Accordingly, we measured transcriptional burst durations in four regions of each             
simulation: low expression state (baseline time-region), entry into the high expression state            
(entry time-point), the high expression state (high time-region), and exit from the high             
expression state (exit time-region) (​Figure 3A, Methods​, section Entry and Exit           
mechanisms).  
 
We found that for any gene in the network, the transcriptional burst duration right before and                
during the entry into a rare coordinated high state was significantly higher than that in the                
baseline time-region (i.e., regular bursting kinetics) (​Figure 3B ​and ​Figure S6A ​). In the             
example shown in ​Figure 3B ​, the average time of transcriptional burst at the entry time-point               
is 84.82 (time units) as compared to only 15.08 (time units) in the baseline time-region. This                
implies that prolonged transcriptional bursts play a role in driving the cell to a coordinated               
high expression state. Conversely, we asked if the opposite is true at the exit time-region,               
such that transcriptional bursts for the exit time-region are shorter than for the high              
time-region. We found no difference in the distributions of burst durations between the high              
and the exit time-regions (​Figure 3C ​and ​Figure S6A ​). This suggests that the exit from high                
expression state occurs independently of the burst durations. Therefore, unlike the entry into             
the high time-region, the exit from it is not dependent on the transcriptional burst duration.  
 
We also wondered if the entry into the high expression state of one gene influences the entry                 
of other genes, or that the genes enter the high expression state independent of each other.                
We reasoned that if the time duration between two successive genes (t​ent​, ​Figure 3A​)              
entering the high expression state is exponentially distributed, it would imply that the genes              
enter the high expression state independent of each other. Instead, we found that the              
distributions of entry time intervals rejected the null-hypothesis of the Lilliefors’ test for most              
of the simulations (84%), meaning they are not exponentially distributed (​Figure 3D​). The             
remaining 16% of cases were found to be largely falsely identified as exponentially             
distributed due to limited data (see a representative example in ​Figure S6B)​. ​This suggests              
that long transcriptional bursts at genes seem to reinforce one another through the             
interactions between network nodes (as defined by parameter r​add​, ​Figure 1B ​) and organize             
into a “super-burst”, resulting in the high expression of multiple genes for a sustained period.               
Similarly, we tested if the exit for successive genes from the high expression state occurs               
independent of each other. Interestingly, contrary to the situation during the entry into the              
high expression state, many distributions of exit time intervals satisfied the null-hypothesis of             
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the Lilliefors’ test, implying they are indistinguishable from exponential distributions (​Figure           
3E​). The simulations that did not satisfy the stringent Lilliefors’ test mainly appear to be               
exponentially distributed nevertheless; a representative example is shown in ​Figure S6C​.           
Together, the entry into and exit from the rare coordinated high state occur through              
fundamentally different mechanisms — the entry of one gene into the high expression state              
affects the entry of next gene, while they exit from it largely independently of each other.  
 
Increasing network connectivity leads to transcriptionally stable states 
 
So far, we have used our model to understand the potential origins of rare pre-resistant               
states in melanoma cells that are not exposed to drug. Upon treatment with anti-cancer              
drugs, the transient pre-resistant drug naive cells reprogram and acquire resistance resulting            
in their uncontrolled proliferation. The resistant cells are characterized by the stabilization of             
the high expression of the marker genes which were transiently high in the drug naive               
pre-resistant cells (​Figure 4A​) ​(Shaffer et al., 2017)​. Studies using network inference of             
gene expression data have suggested that the genetic network architectures undergo           
significant rearrangements upon cellular transitions or reprogramming ​(Moignard et al.,          
2015; Schlauch et al., 2017)​. We wondered if our network model can explain how might the                
transient high expression in drug naive cells become permanent upon treatment with            
anti-cancer drugs. Our modeling framework produces a range of gene expression profiles,            
depending on the network properties and model parameters (​Figure 1C-F​). Increasing the            
network connectivity (for fixed parameter values) is one way to shift from a transient              
coordinated high expression state to stably high expression state (​Figure 4B-E​). In            
particular, the model predicts that in networks with high connectivity, cells can transition into              
the high expression state but lose the ability to come out of it (​Figure S7A ​and S7B​). As an                   
example, for a fixed network size (five) and associated parameters, increasing the network             
connectivity from one to five (amounting to 3.6 fold increase in total connections) resulted in               
a shift from transiently to stably high gene expression states (​Figure 4D ​and Figure 4E ​).               
This is also reflected by the bimodal distribution of the abundances of genes product counts               
for randomly chosen timepoints in the highly connected network (​Figure 4F ​and Figure 4G​),              
where genes stay permanently in the high state once they leave the low expression state.               
These results mimic the experimentally measured gene expression states of the           
drug-induced reprogrammed melanoma cells. 
 
To test if this computational prediction holds true in melanoma, we performed network             
inference using φ-mixing coefficient-based ​(Ibragimov, 1962) Phixer algorithm ​(Singh et al.,           
2012) on the experimental data (​Methods​, section Comparative Network Inference).          
Specifically, we used the Phixer algorithm on the mRNA counts obtained from fluorescent in              
situ hybridization (FISH) imaging data of marker genes in drug naive cells and the resistant               
colonies that emerge post-drug treatment to infer the underlying network architecture.           
Consistent with our model prediction, we found that the number of edge connections (for a               
range of edge weight thresholds) between marker genes increased more than two-fold for             
6/7 resistant colonies compared to the drug-naive cells (​Figure 4H​). To control for biases              
from subsampling of the experimental data and the nature of phixer algorithm itself (see              
Methods ​, section Comparative Network Inference), we ran the entire network inference           
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analysis 1000 times. Again, in all 1000 runs, we saw a higher number of total edges for 6/7                  
resistant colonies compared to the drug-naive cells  (​Figure 4I, Figure S7C ​and ​ Figure S8 ​).  
 
Besides the dependence on network architures, our framework predicts that for a given             
network architecture, stronger interactions between nodes (defined by the interaction          
parameter r​add​) can also result in stable gene expression profiles (​Figure S5E-S5G​). While             
measuring the strength of interactions between molecules is experimentally challenging, it is            
likely that reprogramming results from a combination of increased edge connectivity as well             
as the enhanced interactions (given by parameter r​add​) between existing edges. Biologically,            
this translates into stronger and increased number of interactions between genes and            
associated transcription factors during reprogramming. Together, network inference of our          
experimental data is consistent with model findings about the cellular progression from a             
transient high expression state to a stable state.  
  
DISCUSSION 
  
We developed a computational framework to model rare cell behaviors in the context of              
melanoma where a rare subpopulation of cells displays transient and coordinated high gene             
expression states. We found that a relatively parsimonious model consisting of           
transcriptional bursting and stochastic interactions between genes in a network is capable of             
producing rare behaviors that fully mimic the experimental observations. To systematically           
investigate their origins, we screened networks of increasing sizes and connectivities for a             
broad range of parameter values. Our study revealed that their occurrence is dependent on              
3/7 model parameters and requires the network connectivity to be ≤ 6. Furthermore, we              
showed that the mechanisms that lead to the transition into- and out of- the rare coordinated                
high expression state are fundamentally different from each other. Collectively, our           
framework provides an excellent basis for further mechanistic and quantitative studies of the             
origins of rare, transient, and coordinated high expression states.  
 
Given the relative generality of the scenarios that produce rare behaviors ​(Shaffer et al.,              
2018)​, our model predicts that every cell type is capable of entering the transient and               
coordinated high gene expression state. In the case of melanoma cells, this transient state is               
characterized by an increased ability to survive drug therapy leading to uncontrolled            
proliferation of the resulting resistant cells. It is possible that these rare transient behaviors              
exist across many cell types and have a variety of phenotypic consequences. Our model              
also makes two key predictions regarding transitions into and out of rare coordinated high              
states. The first is that prolonged transcriptional bursts drive entry into the high expression              
state while exit from it is independent of the burst duration. The second is that genes                
entering the high expression state promote the entry of subsequent genes, whereas genes             
exiting the high expression state do so independently of each other. Both these predictions              
can be readily tested experimentally by simultaneous visualization of transcriptional bursting           
and mRNA counts using live cell (e.g. by using RNA-binding fluorescent proteins) or fixed              
cell (intron and exon FISH) imaging approaches ​(Bartman et al., 2016; Rodriguez et al.,              
2019)​.  
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Additionally, we showed that increasing the network connectivity is one way to reach a              
drug-induced reprogrammed state, a prediction we verified by performing network inference           
analysis on the experimental data. Our model proposes that there are many plausible ways              
to transition from networks that produce transient high expression states to stable high             
expression states. For example, this transition could be facilitated by different amounts of             
increases in connectivities between nodes (genes) and/or changes in parameter values of            
the gene expression model. Furthermore, it is possible that these changes may take place              
only for a subset of nodes and edges within the network. These computational scenarios              
suggest that there could be significant heterogeneity in the stable expression levels of             
network genes in the resistant colonies emerging even from clonal population of drug naive              
cells. This possibility can be tested experimentally by isolating individual colonies and            
profiling them for molecular markers to identify the paths. Identification of dominant paths             
has relevance for rational targeted drug therapy design. Therefore, in addition to modeling             
rare-behaviors, our framework can be adapted for investigating the plasticity and           
reprogramming paradigm in cancer.  
 
One limitation of our model is that we have performed quantitative analysis only on              
symmetric networks with positive interactions between nodes. It is likely that our findings             
hold more generally for asymmetric networks, as partially demonstrated for two cases of             
randomly selected asymmetric networks (​Figure S4A-S4G​). Inhibitory interactions between         
nodes is a separate and perhaps more interesting point. In principle, the model can be               
adapted to include inhibitory interactions. These inhibitory interactions may lead to           
non-monotonic effects of network connectivity on the occurrence of rare states, as positive             
and negative interactions can compete in non-linear ways. Inclusion of these interactions            
might also make the exit of genes from the high expression state dependent on one another,                
which occurs independently in our current model. 
 
While we have focused on rare, transient, and coordinated high expression states in             
melanoma, our study provides conceptual insights into other biological contexts such as            
stem cell reprogramming. Particularly, there is increasing evidence to suggest that stem cell             
reprogramming to desired cellular states proceeds ​via non-genetic mechanisms in a very            
rare subset of cells ​(Hanna et al., 2009; Pour et al., 2015; Takahashi and Yamanaka, 2016)​.                
Our model may explain the origins and transient nature of this type of rare cell variability. In                 
sum, we have established the plausibility that a relatively parsimonious model comprising of             
transcriptional bursting and stochastic interactions of genes organized within a network can            
give rise to a new class of biological heterogeneities. In light of this, we believe that                
established principles of transcription and gene expression dynamics may be sufficient to            
explain the extreme heterogeneities that are being reported increasingly in a variety of             
biological contexts.  
 
SUPPLEMENTAL INFORMATION 
 
Supplemental Information includes 9 figures and 2 tables. 
 
ACKNOWLEDGEMENTS 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 18, 2019. ; https://doi.org/10.1101/704247doi: bioRxiv preprint 

https://paperpile.com/c/5oJ9Oa/HQ1J+Kqtm+fNbr
https://doi.org/10.1101/704247
http://creativecommons.org/licenses/by-nc-nd/4.0/


We thank the Raj lab members, especially Ian Mellis and Amy Azaria, for scientific              
discussions and comments on the manuscript. We also thank Ravi Radhakrishnan and Alok             
Ghosh for helpful discussion during the initial stages of this project. We thank Cesar A               
Vargas-Garcia for his help during the initial discussions on network inference. A.R.            
acknowledges NIH/NCI PSOC award number U54 CA193417, NSF CAREER 1350601, P30           
CA016520, SPORE P50 CA174523, NIH U01 CA227550, NIH 4DN U01 HL129998, NIH            
Center for Photogenomics (RM1 HG007743), and the Tara Miller Foundation. C.M.           
acknowledges ​support from the Deutsche Forschungsgemeinschaft DFG through the SFB          
1243. A.S. acknowledges support from the NIH grant 5R01GM124446-02. L.S. would like to             
acknowledge the support of the PROMOS fellowship of the DAAD, Germany. Y.G. would like              
to acknowledge the Schmidt Science Fellows in partnership with the Rhodes Trust. Y.G. is a               
fellow of The Jane Coffin Childs Memorial Fund for Medical Research and this investigation              
has been aided by a grant from The Jane Coffin Childs Memorial Fund for Medical               
Research.  
 
AUTHOR CONTRIBUTIONS 
 
Conceptualization, Y.G. and A.R.; Methodology, L.S., A.R. and Y.G.; Software, L.S. and            
A.R.; Validation, L.S.; Formal Analysis, L.S. and M.S.A.; Resources, A.R. and A.S.;            
Investigation, B.E., E.M.S. and Y.G.; Data Curation, L.S. and Y.G.; Writing - Original Draft,              
Y.G.; Writing - Review & Editing, A.R., L.S., Y.G., C.M., E.M.S., B.E. and M.S.A.;              
Visualization, L.S. and Y.G.; Supervision, Y.G., A.R. and C.M.; Project Administration, Y.G.            
and A.R.; Funding Acquisition, A.R., A.S. and C.M.  
 
DECLARATION OF INTERESTS 
 
A.R. receives royalties related to Stellaris RNA FISH probes. All other authors declare no              
conflict of interests.  
 
MAIN FIGURE CAPTIONS 
 
Figure 1. A transcriptional bursting-based stochastic network model is able to mimic            
the rare coordinated high states observed in melanoma.  
(A) Drug naive melanoma cells exist in low (white cells) as well as rare, transient, and                
coordinated high (blue cells) expression state. Cells in the rare transient coordinated high             
expression state characterize the pre-resistant state observed in melanoma. A schematic of            
the corresponding expression pattern is shown in the panel below. The cells in a high               
expression state are more likely to survive and acquire resistance upon drug administration.  
(B) Schematic of the transcriptional bursting-based stochastic network model for two nodes.            
DNA is either in an inactive (off) or active (on) state. Transitions take place with rates r​on and                  
r​off​, where mRNA is synthesized with rates r​pod and d*r​prod​, respectively. mRNA degrades with              
rate r​deg​. Gene regulation is modeled by a Hill function, where the gene expression of the                
regulating gene A increases the activation of the regulated gene B.  
(C-F) Depending on the network architecture and the parameters of the gene expression             
model, we observe stably low expression (C), stably high expression (D), uncoordinated            
transient high expression (E) and rare transient coordinated high expression (F). 
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See also Figure S1.  
 
Figure 2. Transcriptional bursting-based stochastic network model simulations show         
similar behavior at the population level as the melanoma cells. 
(A) Frame of simulation showing rare coordinated high state (shaded area). The 1000000             
time unit simulation is split into frames of 1000 time units to create a simulated cell                
population (shown for cell N). For a randomly determined time-point t​rand ​, the number of              
highly expressed genes and the gene count per gene per cell are evaluated. 
(B,C) The simulated number of simultaneously highly expressed genes and expression           
distribution are qualitatively similar to experimental data from a drug naive melanoma            
population. (data from ​(Shaffer et al., 2017)​) 
(D) Rare coordinated high states occur ubiquitously across networks of all analyzed network             
sizes. 
(E) Increasing connectivity within all networks of size 5 leads to a decrease in the number of                 
simulations with rare coordinated high states. 
(F) Simulations of a particular parameter set across different network architectures and sizes             
show largely the same class of gene expression profiles. 
(G) The eight rare coordinated high parameter sets give rise to rare coordinated high states               
more frequently than others for all 96 networks and cluster at the tail of the histogram. 
(H) Decision tree optimization of resulting parameters reveal that only three out of seven              
parameters, r​on​, r​off ​, and r​add​, show a strong correlation with the rare coordinated high state                
producing parameter sets.  
(I) Three dimensional representation of all tested 1000 parameter sets for r​on​, r​off ​, and r​add                
show that the rare coordinated high parameters are narrowly constrained in the 3D space              
(orange). 
(J) The constrained subregion defined by the rare coordinated high parameter sets heavily             
favors the formation of rare coordinated high states.  
See also Figure S2, Figure S3, Figure S4, and Figure S5.  
 
Figure 3. Rare coordinated high state is initiated by a long transcriptional burst, while              
its termination is a random process. 
(A) An exemplary high region, with a baseline time-region, entry time-point, high time-region             
and an exit time-region. The time intervals for an additional gene to enter and exit the high                 
region are marked by t​ent​ and t​exit​, respectively.  
(B) The bursts during entry time-points are significantly longer than bursts not in a high               
time-region. 
(C) There is no statistical significant difference between the distributions underlying the            
duration of bursts in the high time-region and the exit time-region. 
(D,E) The time intervals between genes entering and exiting the high time-region are             
distributed differently, as demonstrated by two representative simulations. While the time           
intervals for entering the high time-region are not exponentially distributed (E) (and hence             
not random), the time intervals for exiting the high time-region are exponentially distributed             
(F). 
See also Figure S6.  
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Figure 4. Increased connectivity of a network leads to stable high expression which is              
also observed in emerging resistant colonies post-drug treatment. 
(A) Upon drug treatment, the surviving cells acquire stable resistance. A schematic gene             
expression pattern is shown below. 
(B,C) Network architectures of size 5 with low (B) (1) and high (C) (5) connectivity and                
corresponding (D,E) simulations. 
(F,G) The gene expression distribution underlying the simulation of the highly connected            
network (G) does not exhibit heavy-tails while the simulation of the lowly connected network              
(F) exhibits heavy-tails. 
(H) Network inference analysis shows that 6 out of 7 resistant colonies have higher              
connectivity in comparison to two biological replicates of drug naive cells for many edge              
weight thresholds. 
(I) Distribution of number of edges for the drug naive cells (red) is lower than an exemplary                 
resistant colony (black) when the network inference analysis is run 1000 times on             
bootstrapped data.  
See also Figure S7 and Figure S8. 
 
 
METHODS 
 
Network architectures 
In our framework, the nodes in the network represent genes, where the expression of a               
gene is regulated by the expression of other genes. Gene regulation is represented by              
directed edges in the network, e.g. if the expression of gene Y is regulated by the expression                 
of gene X, then the network contains an edge from node X to node Y. These networks can                  
be defined by adjacency matrices given by: 
 

A​ij ​= 1, if there is an edge from node i to j 
   0, else. 

 
Any node in a network of size N can be connected with up to N-1 other nodes and in the                    
case of self-loops, to N other nodes. Hence, the adjacency matrix A is of size N*N. This                 
means that there are 2 ​NxN possible adjacency matrices for a network of size N - each of the                  
possible N*N matrix entries can take on one of the values of 0 (no edge) and 1 (edge). For                   
example a network of size 3 has 2 ​(3*3)​ = 512 possible network architectures.  
 
For our analysis, we focus on symmetric networks, where we assume a relational identity              
between all nodes in a network. This implies the absence of a hierarchical structure within               
the mechanistic driver genes, and that all driver genes act equally in this respect (​Figure               
S1E​). The structural embedding of a node in its network could increase or decrease its               
ability of being involved in coordinated overexpression. To ensure for a relational identity, we              
define a set of symmetric networks, where the number of in- and outgoing edges within a                
node and across nodes is identical and either all nodes in a network have a self-loop or not.                  
This leads to adjacency matrices of which the rows are cyclic permutations (to the right) with                
offset one of each other. For this, we first compute all possible vectors {0,1}​N​, in total 2 ​N                 
vectors. From each of these resulting vectors, we create an NxN matrix by using the given                
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(row) vector as template, and creating the other N-1 rows by cycling the prior row vector to                 
the right by one step, where the right-most entry in the row vector is added to the (so far                   
empty) left-most entry. By applying this permutation N-1 times, all possible cyclic            
permutations are captured within a matrix, and each node in the given network is completely               
relational identical. We make use of the ​circshift ​function in MATLAB to receive the possible               
cyclic permutations of the initial row vectors.  
 
We further constrain the analysis to weakly-connected networks -- any node in a network              
has to be connected to at least one other node, without taking into account the directionality                
of the edges. In terms of the adjacency matrix, this implies:  
 

∀ i ∈ {1,...,N}: ∑ ​j ∈ {1,...,N},​ ​j ≠ i ​A​ij ​ + A​ji ​ ≥ 1. 
 
This restriction allows us to exclude the consideration of compositions of smaller and             
unconnected networks, which could otherwise lead to double counting. These subnetworks           
of smaller sizes are analyzed in the sets of networks of respective node sizes. To perform                
this operation, we analyze all the previously constructed adjacency matrices using the            
MATLAB function ​conncomp(X,’Type’,’weak’)​, which assigns each node with a bin number           
according to the connected component of its underlying undirected graph. If all nodes of a               
network belong to the same bin number i.e. to the same connected component, the              
adjacency matrix encodes for a weakly-connected graph. Finally, we further restrict our            
analysis to non-isomorphic networks. Two networks are called isomorphic, if there exists a             
bijection from the edge space of one network to the other, such that any edge of one                 
network is projected to a particular edge in the other network. In our case, the labeling of the                  
nodes (gene 1, gene 2, ...) in the networks is arbitrary and hence relabeling of nodes in an                  
adequate fashion leads to identical networks in our analysis. To ensure that all the final               
networks analyzed are of a non-isomorphic set of networks, we test all networks with              
MATLAB’s function ​isisomorphic​. We initiate the final set of networks with one adjacency             
matrix, and then sequentially test all other networks for isomorphism. If the given network is               
non-isomorphic to the current final set, it is added to the final set. Conversely, if the network                 
is isomorphic to one of the networks in the final set, it is discarded.  
 
By reducing the possible set to weakly-connected, non-isomorphic and symmetric networks,           
we greatly reduce the possible number of network architectures. For example, in the             
previous example, we had 512 possible network architectures for 3 nodes. By applying all              
the mentioned constraints (weakly-connected, non-isomorphic and symmetric), 4 network         
architectures remain (​Figure S1E​). We perform our analysis on networks of sizes 2, 3, 5 and                
8 each consisting of 2, 4,10 and 80 network architectures, respectively, adding up to a total                
of 96 network architectures (​Figure S9​). In principle, our model can easily be extended to               
larger network sizes without the loss of generality. 
 
Model 2 - Transcriptional bursting-based stochastic network model  
Our model is an expansion of the telegraph model, where DNA can take on one of the two                  
states, active and inactive, e.g. based on the presence or absence of transcription factors.              
The active and inactive state directly translates into high and low rates of production of gene                
products, respectively. We add interaction terms to this model, where the expression of a              
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gene influences the rate of DNA activation of another gene depending on how they are               
organized in a respective network. Here we use the number of mRNA as a faithful proxy for                 
the number of proteins. In other words, we only model the number of mRNA counts and                
assume that any mRNA is immediately translated into one single functional protein after its              
translation. Therefore, the mRNA count determines the strength of the regulation. Here, we             
model the regulation of one gene by another using the Hill function, given by: 
 

f(mRNA​X​) = mRNA​X​
n​/(k​n​ + mRNA​X​

n​), 
 

where mRNA​X is the mRNA count of gene X, n is the Hill coefficient and k is the dissociation                   
constant, n,k > 0. The Hill coefficient determines the steepness of the Hill function, i.e., the                
extremeness of its switch-like effect. The dissociation constant determines the half-maximal           
value, f(mRNA​X​) = 0.5.  
 
The reversible transitions between the inactive and active states, as well as the mRNA              
synthesis and degradation, are modeled by chemical reactions. For each gene, we have             
three chemical species - the DNA inactive state, the DNA active state and mRNA. These               
three species interact with one another according to the following 5 chemical reactions:  

 
   I →  A 
A →  I 

               I → I + mRNA 
                A →  A + mRNA 
       mRNA →  ∅,  

 
defining the corresponding stoichiometric matrix: 
 

-1  1  0  0  0 
 1 -1  0  0  0 
 0  0  1  1 -1. 

 
The stoichiometric matrix encodes the net change in each chemical species resulting from             
any of the chemical reactions where the chemical reactions are assumed to occur             
stochastically. Under the assumptions of the law of mass action, the probability of a specific               
molecular collision to occur in the infinitesimal time interval [t, t + dt) is proportional to the                 
product of the molecule counts of the educt chemical species. The reaction propensity a ​j ​(x)              
for a given chemical reaction R​j and state x, determines the probability density function such               
that a ​j ​(x)dt gives the probability of the chemical reaction R​j taking place in dt, for small dt.                 
Examples of reaction propensities for so called elementary reactions are given here: 
 

Reaction  Reaction propensity 

∅→ products k 

X​i ​→ products kx​i 
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X​i ​ +X​j ​ → products kx​i ​x​j 
 
where k is called the reaction rate. 
The gene regulation influences the reaction rate of the DNA activating chemical reaction.  
To explain the above-mentioned chemical reactions, we introduce eight rates/parameters: 
 
 

Parameter Description 

r​on The rate at which DNA is activated. 

r​off The rate at which DNA is inactivated. 

r​prod Synthesis rate of mRNA. 

r​deg Degradation rate of mRNA. 

r​add Parameter determining the contribution of 
the additional DNA activation rate upon 

gene regulation. 

d Factor by which the mRNA synthesis rate is 
increased when in an active DNA state (in 
comparison to basal synthesis rate in DNA 

inactive state), >1. 

k Dissociation constant of the Hill function. 

n Hill coefficient.  

 
The full model description for one gene regulated by a single gene X is given below: 
 

Chemical reaction Reaction rate Reaction propensity 

I →  A  r​on​+​r​add​*mRNA​X​
n​/(k​n​+mRNA​X​

n​) (r​on​+​r​add​*mRNA​X​
n​/(k​n​ +mRNA​X​

n​)​) *I 

A →  I r​off r​off​ * A 

I →  I + mRNA    r​prod  r​prod​ * I 

A →  A + mRNA d*r​prod d*r​prod​ * A 

mRNA → ∅ r​deg  r​deg​ * mRNA 

 
where I,A ∈ {0,1}, and I+A = 1, where I = 0 (A = 1) denotes that the DNA is in an active state                        
and I = 1 (A = 0) denotes that the DNA is in an inactive state. mRNA​X is the mRNA count of                      
gene X at the given time, r​on is the basal DNA activation rate, r​add is the additional activation                  
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rate due to gene regulation, r​off is the DNA inactivation rate, r​prod is the basal mRNA synthesis                 
rate in the DNA inactive state, d denotes the increase in the mRNA synthesis rate when the                 
DNA is in the active state, where d > 1, and r​deg is the mRNA degradation rate. The chemical                   
reactions are identical for all N nodes in a given network of size N. The reaction rate of                  
activation (I → A), composed of terms with parameters r​on ​and r​add​, is the only node-specific                
rate. It depends on the underlying network architecture and has to be adapted accordingly              
for each node, where the in-going edges of a node determine which gene regulations are               
active. This also corresponds to the adaptation of the standard telegraph model, highlighted             
in blue in the above rates. We model gene regulation additively: if there is more than one                 
influencing gene, we add the Hill function terms of the respective genes. As an example, if                
the gene of interest is influenced not only by gene X, but by gene X and gene Y, the                   
activation rate from above will expand to: 
 

r​on​ + r​add​ *(mRNA​X​
n​/(k​n​ + mRNA​X​

n​) + mRNA​Y​
n​/(k​n​ + mRNA​Y​

n​)). 
 

Model 1 - Stochastic network model  
Model 1 is a simple gene regulatory expression model, where mRNA can either be              
transcribed or degraded and the mRNA of a regulatory gene influences the transcription rate              
of a regulated gene. Here again, we assume the number of mRNA to be a faithful proxy for                  
the protein number and hence, only model the mRNA expression of a gene. The gene               
regulation is modeled according to the Hill function (see Stochastic model of transcriptional             
bursting including gene regulation). 
The synthesis and degradation are modeled by chemical reactions. For each gene, we have              
one chemical species, its mRNA, described by the following two chemical reactions:  
 

                ∅ →  mRNA 
mRNA →  ∅, 

 
defining the corresponding stoichiometric matrix: 
 

(1 -1). 
 

The full model description for one gene regulated by a single gene X is given below: 
 
 

Chemical reaction  Reaction rate Reaction propensity 

∅ →  mRNA r​prod​+r​add​*mRNA​X​
n​/(k​n​ + mRNA​X​

n​) r​prod​+r​add​*mRNA​X​
n​/(k​n​+mRNA​X​

n​) 

mRNA →  ∅  r​deg  r​deg​ * mRNA 

 
 
where r​prod the basal mRNA synthesis rate, r​deg the mRNA degradation rate, r​add the              
additional synthesis rate due to gene regulation and mRNA​X the mRNA count of gene X at                
the given time. 
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The chemical reactions are identical for all N nodes in a given network of size N. The                 
synthesis rate is a node-specific rate (see Stochastic model of transcriptional bursting            
including gene regulation). We model gene regulation additively (see Stochastic model of            
transcriptional bursting including gene regulation). For k we tested two different definitions:            
one closer and one further away from the low expression taking into account the intrinsic               
stochasticity. We therefore first run a test simulation with a random k for 1,000 time units and                 
determine the standard deviation of the expression of the node denoted as ‘node 1’. K is                
latin hypercube sampled with the rest of the parameters with lower and upper boundary 100               
and 1000. We set k to be: 
 

k = r​prod​/r​deg​+x*std, 
 

where std is the standard deviation of the expression of the node denoted as ‘node 1’ and x                  
∈ {3,5}. We then re-initiate the simulation with the adapted k value. 
 
Parameters 
The goal of this framework is to model the emergence of rare transient coordinated high               
expression of several genes. The theoretical idea behind our model is that each time the               
DNA is in an active state, corresponding to a transcriptional burst, the steady-state of the               
mRNA count is shifted from r​prod​/r​deg to d*r​prod​/r​deg​. Accordingly, the mRNA attempts to reach              
its new steady-state which results in a rapid increase in their counts. Depending on the               
length of the transcriptional burst, which is exponentially distributed with rate parameter r​off​,             
the mRNA count is able to reach the new steady-state. We use this dynamical system               
behavior when modeling the rare coordinated overexpression. In principle, for most           
transcriptional bursts, the sudden mRNA increase should not initiate a DNA activation of its              
regulated genes; only in some rare cases, the transcriptional burst in one gene is long               
enough such that its mRNA count exceeds a certain threshold that may be able to affect the                 
state of another gene locus on DNA. In turn, this can lead to an increased probability of the                  
DNA states of its regulated genes to be activated and hence to an increased mRNA               
synthesis in the respective genes. This may lead to positive feedback loops within the              
network resulting in the transient coordinated overexpression of genes.  
The threshold to be overcome by the mRNA count of a gene to make its gene regulation                 
effective is given by the dissociation constant of the Hill function, k. k determines the               
‘switching point’ from (almost) no gene regulation to (almost) complete gene regulation.            
Therefore, we define k to be a function of r​prod​, r​deg​ and d as follows: 

 
k(r​prod​,r​deg​,d) = 0.95 * d*r​prod​/r​deg​, 

 
where d*r​prod​/r​deg gives the steady-state mRNA count of the respective regulating gene in the              
DNA active state. Here, we arbitrarily determine the threshold k to 0.95 of its high-expression               
steady-state to restrict the emergence of coordinated overexpression to being rare and for             
the system to demonstrate a significant difference between the low and high gene             
expression state. The simulations and the analysis are all performed according to this             
definition of k. We tested the robustness of this definition for a particular network 5.3 (​Figure                
S9​) where we performed the same simulations (for 100 latin hypercube sampled parameter             
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sets (Supplementary Information ParSetsAnalysis.xlsx)) as for the final analysis as before           
using five different definitions of k:  
 

k(r​prod​,r​deg​,d) = x * d*r​prod​/r​deg​, 
 

where x ∈ {0.75, 0.8, 0.85, 0.9, 1} (Supplementary Information ParSetsAnalysis.xlsx). This            
analysis shows that for x = 0.75, none of the 100 simulations show rare coordinated gene                
expression: the threshold leading to an effective gene regulation is exceeded too often: the              
regulated DNA states are activated, the high gene expression state emerges and we lose              
the rareness of the coordinated high gene expression event. The number of simulations             
showing rare behavior increases with increasing x, reaching its maximum for x = 0.95              
(standard, 7 out of the 100 simulations show rare behavior). For x = 1 (high expression                
steady-state), we also see rare behavior in 7 out of 100 simulations, showing overlapping              
results in 6 out of the 7 simulations.  
Together, we are left with a set of seven parameters consisting of: r​on​, r​add​, n, r​off​, r​prod​, d, r​deg​,                   
which may be split into inter-gene (r​on​, r​off​, r​prod​, d, r​deg​) and intra-gene (r​add​, n) parameters and                 
the dependent parameter k. Potentially, these parameter sets are node-dependent resulting           
in a N * 7-dimensional parameter space for a network of size N.  
To emphasize the equality between the nodes, we use the same 7-dimensional parameter             
set for all nodes in a network (​Figure S1E​). Hence, the nodes are relationally and               
parametrically identical. This also allows us to directly compare the simulations of different             
network sizes, otherwise not possible, and to determine the effects of network size and              
architecture on the ability of forming the rare coordinated high-expression state. Therefore,            
we latin-hypercube sample 1000 parameter sets out of the parameter space with upper and              
lower boundaries (chosen arbitrarily, but typically spanning two orders of magnitude):  
 

Parameter  Lower boundary Upper boundary 

r​prod 0.01 1 

r​deg 0.001 0.1 

r​on 0.001 0.1 

r​off 0.01 0.1 

d 2 100 

r​add 0.1 1 

n 0.1 10 

 
by using the MATLAB function ​lhsdesign_modified (​Khaled, N. Latin Hypercube          
(​https://de.mathworks.com/matlabcentral/fileexchange/45793 ​-latin-hypercube), MATLAB  
Central File Exchange. Retrieved May 5, 2018.). The 1000 parameter sets are shown in the               
Supplementary Information (ParSetsAnalysis.xlsx). For some plots, we used a y-axis break           
function in MATLAB (Mike, C.F. Break Y Axis        
(https://www.mathworks.com/matlabcentral/fileexchange/45760- 
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break-y-axis), MATLAB Central File Exchange. Retrieved December 21, 2018.) 
 
 
Simulations 
We simulated model 2 for a total of 96 network architecture (for all weakly-connected,              
non-isomorphic, symmetric networks of sizes 2, 3, 5 and 8 with 2, 4, 10 and 80 network                 
architectures, respectively)(​Figure S9​), each for 1,000 sampled parameter sets. This results           
in a total of 96,000 simulations across four different network sizes. The simulations were              
performed according to Gillespie’s next reaction method and were computed for 1,000,000            
time units, which is critical for capturing rare behaviors. For all simulations, the DNA state               
was initiated (t = 0) to be in its inactive state and the mRNA count was set to 20 for all                     
nodes. This was determined arbitrarily. The mRNA counts quickly reach their low-expression            
steady state, such that we are certain that our analysis is not impaired by the given initial                 
conditions. The simulations were implemented in MATLAB R2017a and R2018a. One single            
simulation of 1,000,000 time units took between 20 minutes and 9 hours depending on the               
parameter set and the network architecture. The complete simulations took over 1.5 months             
to run, where we parallelised all 96 networks and and let each of them run on four cores                  
simultaneously.  
 
Simulation classes 
We analyzed all of the 96,000 simulations, and assign them to the following four classes,               
initially by visual inspection, and subsequently by defined criteria (see below): 

I - stably low gene expression 
II - stably high gene expression  
III - uncoordinated transient high gene expression 
IV- rare, transient coordinated high gene expression 

Therefore we constructed three criteria, for which all the simulations were tested. We             
primarily focus on the rare, transient coordinated high gene expression states, as defined by              
the following criteria:  
 

1) Coordinated high-gene expression state. We call a simulation to show coordinated           
high expression, if at least once within the 1,000,000 time unit simulation more than              
half of the mRNA counts are above a specified threshold (e.g. for 5 nodes, at least                
once three or more mRNA counts have to be above a defined threshold; for 8 nodes,                
at least once 5 or more mRNA counts have to be above a defined threshold). Similar                
to the definition of the dissociation constant k, we set the threshold to 
 

thres = 0.8 * d * r​prod​/r​deg​, 
 

where d * r​prod​/r​deg gives the high-expression steady state. Again, we want to detect              
the rare occurrence of a large mRNA count deviation from the low-steady state and              
hence, set the threshold arbitrarily to 0.8 (see below for details on the choice of this                
value).  
 

To compare our simulated results with the experimental data from a melanoma cell             
population, we split the 1,000,000 time unit simulations into 1,000 time unit sub-simulations,             
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each accounting for a cell. Hence, we receive simulations of 1,000 cells for 1,000 time units.                
This procedure is justified by the ergodic theory. To show that sub-simulations of 1,000 time               
units are uncorrelated, we determine the autocorrelations for all 1,000 parameter sets of             
network architecture 3.2 (​Figure S9​) for up to 1,000 lags with the function ​acf ​(Price, C.                
(2011). Autocorrelation function(ACF)   
(​https://www.mathworks.com/matlabcentral/fileexchange/30540-autocorrelation ​-function-acf), 
MATLAB Central File Exchange. Retrieved June 13, 2019.). For each of these, we             
determine the first lag at which the autocorrelation is below the upper 95% confidence              
bound. For 88.2% of all simulations, the first lag below the upper 95% confidence bound               
occurs before 1,000 lags.  

 
2) Rareness/transience. ​To mimic the results given by RNA-FISH in a melanoma           

population, where we only see a snapshot of the mRNA counts within a melanoma              
cell, we randomly determine a time point t​rand​, where t​rand ​∈ [0,999] (uniformly             
distributed), at which we count the number of mRNA counts above the threshold (for              
each simulation t varies). We summarize the result of all 1,000 cells in a histogram,               
for which we expect a decrease with increasing mRNA count above the threshold.  
 

3) Heavy-tailed gene expression distributions. ​At the population level, the single          
mRNA distributions of marker genes show heavy-tails. We use the same time point t              
as sampled for criterion 2) and consider the mRNA counts of all genes. If we plot                
these in gene-dependent histograms, we expect to find right-skewed and unimodal           
distributions. Here, we use the MATLAB function ​skewness(X) for evaluating the           
right-skewness of the histogram, where skewness(X) > 0, denotes that the data is             
spread out more to the right of the mean. Skewness is defined as 
 

skewness(X) = E[(X-𝜇)​3​/𝝈​3​] 
 

where 𝜇 is the mean of X, 𝝈 is the standard deviation of X and E(.) the expectation.                  
For determining unimodality, we test whether the maximum of the last quarter of             
histogram bins with bin width of one is less than the minimum of the first quarter of                 
histogram bins. Although this definition only characterizes a heavy-tailed distribution,          
we find it to be sufficient for this analysis.  

 
Classes I and III, are both defined by criterion 1 only, where criterion 1 is not met in both                   
cases. For class I, none of the genes in a network ever express above the given threshold.                 
For class III, genes express above the given threshold but not once are more than half of the                  
genes above the given threshold at any given time of the simulation. Only if a simulation is                 
able to fulfill all three criteria, will we call it a simulation of class IV - rare transient                  
coordinated high gene expression. If a simulation fulfills criteria 1, but fails to meet both other                
criteria, we classify it into class II.  
To receive numbers of simulations in class IV - rare transient coordinated high expression -               
per network size, we randomly determine three different t​rand​, where each t​rand ​∈ [0,999]              
(uniformly distributed) and evaluate all 96000 simulations for being in class IV at the              
respective snapshot (​Figure 2A​). Note that all these requirements are tested automatically            
using a script without manual/human intervention. 
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To show that criterion 3) is sufficient for defining heavy-tailed simulations in class IV in our                
analysis, we constrain criterion 3) further aiming to identify sub-exponentially decaying,           
heavy-tailed distributions more directly. We therefore reevaluate all simulations so far           
identified as class IV and compare their 99 ​th percentiles of their gene expression distributions              
with those of fitted exponential distributions (​Figure S2D​). We expect most of the 99th              
percentile of the gene expression distributions to be larger than the 99th percentile of the               
fitted exponentials. Due to the symmetry of the networks and the resulting similarity between              
the gene expression distributions (​Figure S2C​), we only consider node one in this analysis,              
without the loss of generality. To avoid that the fitted exponentials account for the              
heavy-tails, we constrain the fits to have a maximal bin number (bin size of one) within ∓ 1 of                   
the maximal bin number (bin size one) of the expression distributions. We do so by               
sequentially increasing/decreasing the exponential parameter μ by steps of 10, sampling           
1000 times from the resulting exponential distribution with the MATLAB function           
exprnd​(μ,1,1000) and comparing the maximal bin number of the resulting histograms. We            
repeat this until the maximal bin number of the exponential distribution is within the              
predefined range of ∓ 1. As gene expression distributions with a large maximum bin are               
more similar to lognormal distributions with small variances and less to exponentials, we             
restrict this analysis to gene expression distributions with a maximum bin of ≤ 15 (​Figure               
S2E​). The threshold of a maximum bin of 15 was determined by considering the simulations               
and their exponential fits. We additionally discard simulations for which the optimization            
takes more than 1000 iterations or is producing non-positive parameter values.  
Most (82%) of the 99th percentile of the gene expression distributions are above the              
diagonal, hence larger than the 99th percentile of the fitted exponential distributions (​Figure             
S2D​). With this we conclude, that criterion 3) sufficiently selects for sub-exponentially            
decaying heavy-tailed distributions.  
We additionally, perform parts of the analysis again on two different levels of stricter              
stringency for criterion of heavy-tailed distributions (​Figure S3​): 

A) All simulations fulfilling criteria 1) - 3) which additionally comply to the above             
mentioned analysis (maximum bin ≤ 15, 99th percentile of gene expression           
distribution > 99th percentile of fitted exponential, <1000 iterations to reach a ∓ 1 of               
the maximal bin number (bin size one) in the optimization for determining the             
exponential fit and producing non-positive parameter values) (​Figure S3E-H​). 

B) All simulations fulfilling criteria 1) - 3) which additionally comply to the above             
mentioned analysis or have a maximum bin > 15 (​Figure S3A-D​). 

The results are qualitatively very similar to the results we receive if we perform the analysis                
only on criteria 1) - 3) (​Figure S3​). The 6 and 7 rare coordinated high parameter sets                 
identified by the more stringent analyses A) and B), respectively, are subsets of the original               
eight rare coordinated high parameter sets (​Figue 2G, FigureS3C ​and ​S3G​). Although the             
resulting optimized decision trees vary slightly, they still identify all three parameters, r​on​, r​add              
and r​off​, controlling rare transient coordinated states, as in the original analysis.  
Together we conclude that the simple characterization of heavy-tailed distributions is           
sufficient for further analysis.  
 
This analysis is a prerequisite for our further findings and statements. Due to its importance,               
we tested the robustness of this analysis with respect to the definition of the threshold,               
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marking the mRNA count above which a gene is called to be in the high-gene expression                
state, and with respect to the number of mRNA counts required above the threshold to call it                 
a coordinated high-gene expression state  (both determining criterion 1). 
For the test network 5_3, we hence repeated the analysis for thresholds: 
 

thres = x * d * r​prod​/r​deg​, 
 

where x = 0.3 : 0.05 : 1 (here, for 100 latin hypercube sampled parameter sets                
(​Supplementary Information ParSetsAnalysis.xlsx), and we only test for class IV).          
Decreasing the threshold down to 0.6 of the high-expression steady state does not change              
the set of simulations with rare behavior in comparison to the results for x = 0.8. Even a                  
further decrease of the threshold (down to 0.3 of the high-expression steady state) manifests              
in a similar result: half of the simulations identified previously to show rare behavior are still                
classified as such. Hence, we keep x = 0.8 for the rest of this analysis (​Supplementary                
Information ​ ParSetsAnalysis.xlsx). 
Next, for network 5.3 and the 100 parameter sets (​Supplementary Information           
ParSetsAnalysis.xlsx), we repeated the analysis requiring at least 1, 2, 4, and 5 mRNA              
counts to be above the threshold at least once, in order for the simulation to fulfill criterion 1.                  
The lower the required mRNA count, the more simulations fulfill criterion 1 (peaking at a               
required mRNA count of at least 1 with 11 out of the 100 simulations showing rare behavior                 
according to this definition). This set of simulations entails the set of simulations fulfilling              
criterion 1 at our standard required mRNA count of at least 3 (7 out of 100 simulations).                 
Hence, we keep our definition of coordinated overexpression to more than half the nodes              
being above the threshold.  
 
Network connectivity 
We define a measure for the connectivity of the network architectures, where 
 

connectivity = number of ingoing edges for any node of the network, 
 

where a self-loop is also considered to be an ingoing edge. As we constrain our analysis to                 
symmetric networks (same number of in-going edges for all nodes in a network per              
definition), we are able to define one single connectivity per network. This enables us to               
directly evaluate the impact of the connectivity of the network on the ability to form rare                
behavior.  
 
Quantitative Analysis 
For each of the 96,000 simulations showing rare behavior we performed a quantitative             
analysis. First, we define a high expression region as a region which is initiated by the first                 
mRNA count to exceed the threshold, terminated by the last mRNA count to drop below the                
threshold and requires to contain a coordinated high expression state (criterion 1: more than              
half the mRNA counts have to exceed the defined threshold) between the initiation and              
termination time points. Breaks of up to 50 time unit intervals are accepted due to the                
stochastic nature of the simulations. For example, in a 3 node network, where we require at                
least 2 mRNA counts to exceed the threshold for a coordinated high-expression state: the              
first mRNA count exceeds the threshold (initiation), then the second mRNA count exceeds             
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the threshold (initiation of high-expression state) but then drops below the threshold for 50              
time units before exceeding the threshold again, is still counted as one high-expression             
region. The length of 50 time units were defined arbitrarily. Due to the stochasticity of the                
system and the conservative definition of the threshold (located close to the high-expression             
steady state), we observe these temporary violations of criterion 1. In order, to create              
sensible statistics on the quantitative behavior of the simulations, this temporary relaxation of             
criterion 1 is necessary.  
In the quantitative analysis we extract (i) the number of coordinated high-expression regions 
And (ii) the total time spent in a coordinated high-expression region (out of 1,000,000 time 
units) from all simulations showing rare behavior.  
 
Decision tree optimization, generalized linear models and constrained simulations 
We classify all parameter sets into two classes, rare coordinated high parameter sets and              
non-rare coordinated high parameter sets, according to the percentage of total simulations            
per parameter set (96 simulations) in which rare behavior is observed. The threshold above              
which a parameter set is called a rare coordinated high parameter set is at 20%. More than                 
19 of the 96 simulations have to show rare behavior in order for a parameter set to be called                   
a rare coordinated high parameter set. This threshold was set according to a summarizing              
histogram, in which we see a clear distinction between the two groups: the main body of the                 
histogram being located below 20% and the few parameter sets deviating extremely from             
that main group (> 20%). According to this binary classification, we performed a decision              
tree optimization (MATLAB function fitctree). 
To validate the results of the decision tree optimization, we used generalized linear models              
on all seven independent parameters r​on​, r​add​, n, r​off​, r​prod​, d and r​deg with the MATLAB function                 
fitglm(X,Y,’Distribution’,’binomial’). 
To validate that the parameter region determined by the decision tree optimization favors the              
formation of simulations with rare coordinated high states, we generate a new set of              
parameters constrained to values close to the minimal and maximal values of r​on​, r​add and r​off                
for the rare coordinated high parameter sets: 
  

Parameter  Lower boundary Upper boundary 

r​prod 0.01 1 

r​deg 0.001 0.1 

r​on 0.001 0.025 

r​off 0.06 0.1 

d 2 100 

r​add 0.15 0.36 

n 0.1 10 

 
where altered boundaries are indicated in blue. We latin hypercube sample 1000 parameter             
sets from that constrained parameter space. For all 1000 parameter sets we simulate             
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1000000 time units by Gillespie’s next reaction method for networks 3.2 and 5.3 (​Figure S9​).               
Each of these simulations was evaluated for having rare coordinated high states according             
to the three criteria (​Methods​, section Simulation classes).  
 
Entry and Exit mechanisms 
Entering/Exiting of high expression region - Transcriptional bursts 
For all of the simulations in class IV showing rare transient coordinated high gene              
expression - we analyze whether the durations of transcriptional bursts are coordinated with             
the entering and exiting of high expression regions (​Methods​, section Quantitative Analysis).  
Entering high expression regions 
For each of the defined high expression regions, we determine the entering gene - the gene                
corresponding to the gene count exceeding the threshold at the initial time point of the high                
expression region. We then extract all transcriptional bursts which do not start within a high               
expression region, determine their durations and classify them as either an entering burst or              
a non-entering burst. An entering burst is the last burst of a particular entering gene before                
or during its gene count exceeds the threshold. All other bursts are called non-entering              
bursts. We then perform a two-sample Kolmogorov-Smirnov test on the duration of the             
entering and non-entering bursts not in high expression regions with the MATLAB function             
kstest2 ​ at the significance level 0.05 ​. 
Exiting high expression regions 
Transcriptional bursts: ​For each of the determined high gene expression regions we define             
an exiting region - the region between the first gene in the last quarter of the high expression                  
region permanently leaving the high state (permanently having its gene count below the             
threshold for the rest of the high expression region) to the last time point of the high                 
expression region. We again determine all transcriptional bursts - this time within the high              
expression regions. To exclude potentially prolonged entering bursts in this analysis, we only             
consider bursts which start within a high expression region. Also, for bursts exceeding the              
high expression region, we only account for their durations within the high expression region.              
If a burst overlaps with an exiting region for at least one time point we call the burst an                   
exiting burst. All other bursts which are not overlapping with an exiting region are called               
non-exiting bursts. We apply the two-sample Kolmogorov-Smirnov test to the duration of the             
exiting and non-exiting bursts in high expression regions with the MATLAB function ​kstest2             
at the significance level 0.05 ​. 
 
Entering/Exiting of high expression region - Times 
For all of the simulations showing rare transient coordinated high gene expression, we             
analyze the distributions of waiting times between genes entering and exiting the high             
expression region (see Quantitative Analysis).  
Entering high expression regions: ​For all high expression regions, we determine the first time              
points at which the gene counts exceed the threshold (only for genes with a gene count                
exceeding the threshold during a particular high expression region at least once). We then              
consider the waiting times - the time interval between the ascending sorted time points of               
genes entering the high expression region. These distributions - at most N-1 distributions for              
a network of size N, one for each waiting time between the genes - are compared to                 
exponential distributions by the Lilliefors test according to the MATLAB function lillietest(X,            
'Distr', 'exp') ​ at a significance level of 0.05.  
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Exiting high expression regions: ​For all high expression regions we determine the last time              
points at which the gene counts exceed the threshold (again, only for genes with a gene                
count exceeding the threshold during a particular high expression region at least once). We              
consider the waiting times and compare their distributions to exponential distributions by the             
Lilliefors test by applying the MATLAB function lillietest(X, 'Distr', 'exp') at a significance              
level of 0.05.  
 
Comparative Network Inference 
Here we describe the computational techniques we used to infer the gene interaction             
network structure of the pre-drug and post-drug cells. When studying regulatory interactions            
between genes in a network, it can be useful to abstract the problem into a graph theory                 
framework. Let us assume a set of N genes, with the expression level of each gene                
represented by the random variable ​X​i​, with ​i ∈ {​1,...,N ​}. The network of interactions              
between genes can then be represented as a graph of ​N nodes. An edge ​X​i → X​j signifies a                   
regulatory relationship in which X​i either upregulates or downregulates ​X​j ​(Singh et al.,             
2012)​. 
The computational challenge of network inference is to uncover the true edges of the gene               
interaction network from statistical relationships between gene expression levels. Many          
different algorithms, often based on mutual information, conditional probability, or regression           
analysis, have been developed for this purpose ​(Huynh-Thu and Sanguinetti, 2019;           
Saint-Antoine and Singh, 2019; Singh et al., 2012)​. The output of an inference algorithm is a                
matrix of edge weights, which we will call W with dimensions ​NxN​. In this matrix, the element                 
w​ij is a measure of how confident we can be that the edge ​X​i → X​j exists in the network. A                     
final network prediction will typically set a threshold for edge weights, and exclude any edges               
that fall below the threshold. Edges ​X​i → X​i​, called “self-edges”, are typically excluded for the                
final network prediction, except in cases when temporal data is being analyzed. Since we              
are using atemporal expression data in this analysis, self-edges will be excluded from our              
analysis. 
 
It is common to judge a network inference algorithm’s reliability by testing it on a “gold                
standard” dataset, for which the true structure of the network is already known, to see how                
well it can recover the real edges from the expression data ​(Huynh-Thu and Sanguinetti,              
2019)​. For this manuscript, we have chosen to use the Phixer algorithm ​(Singh et al., 2012)​,                
based on its impressive performance when benchmarked on the DREAM5 Challenge gold            
standard datasets  
(weblink: ​http://dreamchallenges.org/project/dream-5-network-inference-challenge/​; last   
accessed: 05/06/2019). 
 
Phixer 
Phixer computes edge weights using the phi-mixing coefficient. For discrete random           
variables X and Y taking values in sets A and B, the phi-mixing coefficient φ(X|Y) is defined                 
as: 
 
φ(​X​i​|X ​j​) =    max    | ​Pr ​{​X​i​ ∈ S|​X ​j​ ∈ T ​} − Pr{​X ​i​ ∈ S ​} | 
(1) 
              ​S⊆A,T⊆B 
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We then assign φ(​X​i​|X ​j​) as the weight of the edge ​X​j → X​i​. The phi-mixing coefficient is an                  
asymmetric measure, so the weight of the edge ​X​i​ → X ​j​ may be different ​(Singh et al., 2012)​. 
The original Phixer algorithm includes a pruning step, which attempts to correct for false              
positives by minimizing redundancy in the network. For every possible triplet of nodes ​X​i​, ​X​j​,               
and ​X​k​, the following inequality is checked: 
 
φ(​X​i​|X ​k​) ≤ min{φ(​X​i​|X ​j​), φ(​X​j​|X ​k​)}                                                                                          (2) 
 
If Equation 2 holds, the edge ​X​k → X​i is eliminated. However, previous work has found that                 
the pruning step, though theoretically sensible, typically reduces accuracy in practice           
(Saint-Antoine and Singh, 2019)​, possibly due to the prevalence of redundant connections,            
such as feed forward loops, in gene regulatory networks. So, we removed this part of the                
algorithm in order to achieve the highest possible level of accuracy. 
The Phixer software is available online at the creator’s Github page:           
https://github.com/nitinksingh/phixer/ (last accessed: 05/06/2019). We used the original C         
code, and kept the default parameter values the same, except for changing “NROW” to 19               
and “TSAMPLE” to 4000, to reflect the dimensions of our input data files. The original Phixer                
code includes, by default, 10 bootstrapping runs, as well as a built-in procedure for binning               
the raw data, which we did not alter. We removed the pruning step from the code, but                 
otherwise left the edge weight calculation process unchanged. 
 
Data description 
The two pre-drug datasets are referred to as NoDrug1 and NoDrug2 in the supplementary              
data files (​Supplementary Information PhixerData.xlsx). The datasets containing clusters         
of resistant cells after four weeks of drug exposure are referred to as Fourweeks1-cluster1,              
Fourweeks1-cluster2, etc. where we differentiate between Fourweeks1 with four clusters and           
Fourweeks2 with three clusters. Details of how these datasets were acquired are presented             
in ​(Shaffer et al., 2017)​. 
 
Bootstrapping controls 
We found that the Phixer algorithm tends to predict more connections for larger sample              
sizes, even when the samples are taken from the same dataset. To correct for this issue and                 
control for the differences in their original sample sizes, we bootstrapped the original             
datasets into 4000-sample datasets before performing the Phixer analysis. The number           
4000 was chosen arbitrarily; bootstrapped sample sizes of 1000, 2000, and 6000 also             
appeared to produce similar results. 
 
Randomized controls 
For each size-controlled dataset to be analyzed, we created a randomized control consisting             
of permutations of each gene column from the original dataset (​Supplementary           
Information PhixerData.xlsx). We then performed the Phixer analysis on these randomized           
controls. The resulting edge weight distributions give us a baseline or control edge weight for               
Phixer that, in principle, reflects potential false positives. We found that in the controls,              
nearly all of the predicted edge weights were below 0.45 (​Figure S7D​). Therefore, we              
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decided to choose 0.45 as a threshold for our non-control analysis, thus eliminating edges              
that could have been predicted by chance alone. 
 
Finally, since our analysis contains two stochastic elements (the bootstrapping to correct for             
the sample size issue and the bootstrapping step in the Phixer algorithm itself) we had to be                 
sure that the observed differences in connectivity were not due to chance. For each dataset,               
we ran the entire analysis (including both the bootstrapping size correction and the Phixer              
algorithm) 1000 times, and provide the distributions of the number of edges with weight              
greater than 0.45  (​Supplementary Information​ PhixerData.xlsx).  
 
Asymmetric network architectures or parameter sets 
To test the generality of our results, we generate asymmetric simulations. We introduce             
asymmetry in both network architectures and the parameter sets.  
Asymmetric network architecture 
We randomly determine a weakly-connected but asymmetric five-node network (​Figure          
S4A​). We simulate this network with 100 parameter sets which are latin hypercube sampled              
out of the same parameter space as the 1000 parameter sets of the main analysis. Out of                 
these 100 simulations, two simulations are classified as showing rare, transient coordinated            
high gene expression (fulfills all three criteria in ​Methods ​, section Simulation classes​, Figure             
S4B ​and ​ S4C​).  
Asymmetric parameter sets 
For the main analysis, we use the same parameter set, consisting of seven independent              
parameters (​Methods​, section Parameters), for all nodes in a network. We introduce            
asymmetry by assigning each node in a network a separate set of parameters. Hence, we               
latin-hypercube sample 100 parameter sets out of a 7 x N parameter space, where N is the                 
number of nodes of the network, with the MATLAB function ​lhsdesign_modified​. Due to the              
high dimensionality, we here confine the parameter space to:  
 

Parameter  Lower boundary Upper boundary 

r_prod 0.01 1 

r_deg 0.001 0.1 

r_on 0.001 0.1 

r_off 0.001 0.1 

d 2 100 

r_add 0.2 0.4 

n 5 10 

 
 
where the changes in the boundaries are highlighted in blue. We confine the parameter              
space according to the clustering of rare coordinated high parameter sets. In total, six              
parameter sets give rise to rare-states more frequently than others for all 96 networks. Only               
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two out of the seven independent parameters, r​add and n, show a strong correlation with the                
rare coordinated high state producing parameter sets as determined by a decision tree             
optimization. The boundaries in the table above are formed according to these decision tree              
boundaries in which five out of the six rare coordinated high state producing parameters lie               
(​Supplementary Information ​ ParSetsAnalysis.xlsx). 
For these 100 parameter sets, we generated simulations for five-node network 5.3 (​Figure             
S4D​). Out of the resulting 100 simulations, we find two showing rare, transient coordinated              
high gene expression (fulfills all three criteria in ​Methods ​, section Simulation classes​, Figure             
S4E ​and ​ S4F​). 
 
 
Supplementary Information 
 
ParSetsAnalysis.xlsx 
PhixerData.xlsx 
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