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22  Abstract

23  The neural mechanisms that support naturalistic learning via effective pedagogical
24  approaches remain elusive. Here we use functional near-infrared spectroscopy to
25 measure brain activity from instructor-learner dyads simultaneously during dynamic
26 conceptual learning. We report that brain-to-brain coupling is correlated with learning
27  outcomes, and, crucially, appears to be driven by specific scaffolding behaviors on the
28 part of the instructors (e.g., asking guiding questions or providing hints).
29  Brain-to-brain coupling enhancement is absent when instructors use an explanation
30 approach (e.g., providing definitions or clarifications). Finally, we find that
31 machinelearning techniques are more successful when decoding instructional
32  approaches (scaffolding vs. explanation) from brain-to-brain coupling data than when
33 using a single-brain method. These findings suggest that brain-to-brain coupling as a
34 pedagogicaly relevant measure tracks the naturalistic instructional process during
35 ingtructor-learner interaction throughout constructive engagement, but not information

36 clarification.

37 Keywords: instruction, socia interactive learning, brain-to-brain coupling, fNIRS

38  hyperscanning, decoding
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39 1. Introduction

40 Humans have evolved the ability to learn through social interaction with others (e.g.,
41 an ingtructor), an important skill that serves us throughout our lifespan (Verga and
42  Kotz, 2019; Pan et al., 2018). Such interactive learning is thought to be facilitated by
43  instructional tools (Driscoll and Driscoll, 2005), like demonstrating rules or providing
44  examples for practice. Verba instruction has been shown to play an enabling and
45 modulatory role in learning at multiple levels, ranging from functional brain
46  re-organization (e.g., Hartstra et al., 2011; Olsson and Phelps, 2007; Ruge and
47 Wolfensteller, 2009) to learning performance optimization (e.g., Clark and Mayer,
48  2016; Wolfson et a., 2014). However, despite the dynamic and interactive nature of
49  instruction-based learning, neurobiological research investigating learning through
50 instruction has been mostly limited to controlled laboratory studies — stripped from
51 any real-time interaction between the learner and the instructor (e.g., Ruge and
52  Wolfensteller, 2009) - and have often ignored the role of different instruction
53  approaches (e.g., Holper et a., 2013). As a result, the brain mechanisms that support
54  dynamic interactive learning remain understudied, and thus poorly understood.

55 Recent methodological advances (Brockington et al., 2018; for a review, see
56 Hasson et a., 2012) have allowed researchers to begin investigating the neural basis
57  of naturalistic instruction-based learning (Bevilacqua et al., 2019; Dikker et a., 2017,
58 Liu et a., 2019; Pan et a., 2018). These studies have suggested that the interaction
59  between instructor and learner is reflected in the extent to which brain activity
60 becomes ‘coupled’ between them (Bevilacqua et al., 2019; Holper et a., 2013; Pan et
61 al., 2018; Zheng et al., 2018). For example, brain-to-brain coupling has been reported
62 to reliably predict the success of social interactive learning (Pan et al., 2018).
63  However, while some studies have shown such a relationship between brain-to-brain
64  coupling and learning outcomes (e.g., Holper et al., 2013; Liu et a., 2019; Pan et al.,
65 2018; Zheng et a., 2018), others did not in fact observe a correlation between
66  teacher-student brain-to-brain coupling and content retention (e.g., Bevilacqua et al.,

67 2019). One potential limitation of most prior studies on learning concerns that they
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68  only focused on the average brain-to-brain coupling across the entire teaching session
69 and its relation with learning outcomes (Davidesco et al., 2019). It is possible that
70  linking specific moments of brain-to-brain coupling (such as those associated with
71  certain instructional behavior) to learning might yield complementary useful
72 information (Pan et al., 2018).

73 Here, we further investigated the functiona significance of brain-to-brain
74 coupling in learning and instruction. In addition to examining whether brain-to-brain
75  coupling between instructors and learners can predict learning outcomes, we asked
76  whether brain-to-brain coupling can be used to classify instructional dynamics during
77  interactive learning. Such a finding would suggest that brain-to-brain coupling may be
78  apedagogically informative implicit measure that tracks learning throughout ongoing
79  dynamic instructor-learner interactions.

80 We distinguished two instructional strategies (explanation vs. scaffolding),
81 derived from two distinct pedagogical approaches to the role of instruction in
82 ingtructor-learning interactions. First, the “explanation-based” approach assumes that
83 learning emerges as a result of information clarification, which serves to enhance
84 learners comprehension (Chi, 2013; Duffy et a., 1986). In this framework,
85 instructional modulation of learning is driven by meaningful explanatory information.
86 A second line of instructional approaches emphasizes the importance of supportive
87  scaffoldings provided by the instructor. Scaffolding behaviors include asking key
88  guestions (e.g., asking learners their understanding of a core concept) and providing
89  hints (e.g., giving an analogy of the learning content) that are aimed at redirecting
90 learners actions and understanding (Van de Pol et al., 2010). Scaffolding foregrounds
91  bidirectiona communication and information sharing — both instructors and learners
92 areinvolved in atwo-way dynamic process of receiving and sending out information.
93 In addition to instructional strategy, adaptive behavior on the part of the instructor
94  has also been shown critical for interactive learning (Chi, 2013; Chi and Roy, 2010).
95 That is, the instructor provides personalized guidance based on the learner’s current
96 level of knowledge (Wass and Golding, 2014). We therefore added a second
97 dimension to our study design where half of the instructors were informed of the
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98 learner’'s knowledge level based on their performance on a pre-test (personalized

99 instruction) and half of them were not informed (non-personalized instruction).
100 Twenty-four instructor-learner dyads participated in a concept learning task,
101  during which their brain activity was recorded simultaneously with functional
102  near-infrared spectroscopy (fNIRS; Cheng et a., 2015; Pan et al., 2017; Zheng et al.,
103  2018). Brain-to-brain coupling between instructors and learners was first estimated
104 using Wavelet Transform Coherence (Grinsted et al., 2004), and then correlated with
105 learning outcomes. A video coding anaysis alowed us to parse whether the
106  brain-to-brain coupling in instructor-learner dyads was specifically driven by certain
107 ingructional behavior. Finaly, to identify to what extent scaffolding strategies can be
108  distinguished from explanation strategies in the neural data, we used a decoding
109 analysis. We employed the same decoding approach on both brain-to-brain coupling
110 and individual brain data to explore the possible added value of a two-brain vs.

111  single-brain analysis.

112 2. Methods

113  2.1. Participants

114  Twenty-four dyads (n = 48, al females, mean age = 21.46 = 2.75 years) were
115  recruited to participate in the study. Each dyad consisted of one learner and one
116 ingtructor. Each instructor taught the learner in a one-to-one way. The instructors
117  (mean age = 22.58 = 2.75 years) had al received graduate training in psychology, had
118  at least 1-year of instructional experience, and were familiar with the learning content,
119  whereas the learners (mean age = 20.33 = 2.30 years) in our sample majored in
120  non-psychology related fields and had not been exposed to the content. All
121  participants were healthy and right-handed and were recruited through advertisements.
122 Each participant gave informed consent prior to the experiment and was pad for
123  participation. The study was approved by the University Committee of Human
124  Research Protection (HR 044-2017), East China Normal University.
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125  2.2. Tasks and materials

126  The task used in the present fNIRS-based hyperscanning study was a conceptual
127  learning task, which involved mastering two sets of materials, each explaining four
128  psychological terms pertaining to an overarching concept. The material was chosen to
129 be novel and attractive to non-psychology majors and teachable within 10 — 20
130 minutes. The sets centered around the concepts of reinforcement and transfer. These
131  concepts were chosen from a classic national standard textbook (Educational
132 Psychology: A Book for Teachers, Wu & Hu, 2003). These two concepts belong to the
133  similar topic (i.e., learning psychology) and occupy a similar instructional period (i.e.,
134 1~2 sessions). The reinforcement set consisted of teaching positive reinforcement,
135 negative reinforcement, punishment, and retreat (Set 1), and transfer consisted of
136  near-transfer, far-transfer, lateral-transfer, and vertical-transfer (Set 2). This design
137 alowed us to provide different learning content for the two within-participant
138 ingtructional strategies (i.e., scaffolding vs. explanation), without repeating any
139  content. Learning outcomes did not differ between the two sets of concepts, and were
140  thus pooled together in the results reported below.

141 All instructors were informed and trained by experimenters two days prior to the
142  experiment. Training examples were selected from the textbook’s training section.
143 Each example consisted of instructional goals, instructiona difficulties, genera
144  ingtructional processes, and detailed instructional scripts. Such instructional scripts
145  were composed and adapted with the help of two psychological experts with at |east
146 20 years of instructional experience at the university level. Instructors were required
147  to prepare instruction at home for 2 days. They then practiced with each other in the
148 lab until they were satisfied with their own instructional performance in both the
149  scaffolding and explanation conditions (they spent approximately the same amount of
150 time training for both types of instructions). Then they demonstrated instruction to the
151  experimenter in aone-to-one way until their performance met the established standard
152  requirements. the length of teaching, the speed of speech, and consistency with the

153  instructional processes and scripts (Liu et al., 2019).
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154  2.3. Experimental factors

155  We manipulated one within-participant variable and one between-participant variable.
156  The within-participant variable was the Instructional Strategy (scaffolding vs.
157  explanation). Following the scripts, the instructor using a scaffolding strategy would
158 guide the learner in a Q&A manner along the following lines (one representative

159  example, translated from Chinese):

160 - Instructor: How can one provide positive reinforcement?

161 - Learner: ...... By rewarding positive behavior?

162 - Instructor: Bingo! Could you please give an example?

163 - Learner: My sister gave me some candies after | cleaned my room.

164 ...

165 For the explanation strategy, the instructor would explain each concept to the

166 learner and provide examples. The following interaction provides a representative

167  example of explanatory behavior:

168 - Instructor: Positive reinforcement refers to rewarding goal-directed behavior
169 to increase its frequency. Do you see what | mean?

170 - Learner: | am not sure whether | understand it correctly. Could you please
171 explain it a bit more?

172 - Instructor: For example, my mom cooks my favorite food for me when | pass
173 exans.

174 - Learner: That clarifiesit.

175 L

176 The between-participant variable was Instructional Personalization (personalized

177  vs. non-personalized; i.e., whether the instructor customizes their instructions to the
178 learner’s aptitudeand ability as established via a pre-test). Instructions might be
179 intrinsically personalized: for example, instructors often monitor learners
180 comprehension and guide their understanding during face-to-face interactions. For
181  instructors to be able to customize their instructions, learners have to inform them

182 about their lack of understanding. Therefore, we exogenously manipulated
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183  Instructiona Personalization. For half of the participants (n = 12 dyads), the learner’s
184  pre-test results (i.e., prior knowledge level) of the eight concepts (4 from Set 1 and 4
185  from Set 2) were provided to the instructor. The instructor was then asked to adapt
186  their instruction to suit the needs of each learner (e.g., alocate more time to the
187 teaching of a concept if the learner had difficulty learning it). For the
188  non-personalized group (n = 12 dyads), the instructor was provided no information

189  about the learner.

190 2.4.Procedures

191  The task included two blocks, each split into a resting-state phase and an interactive
192  learning phase (Fig. 1A). The inter-block interval was approximately 1 minute.
193  During the initial resting-state phase (3 min), both participants (sitting face-to-face,
194 0.8 meters apart) were asked to relax and to remain still. This 3-min resting phase
195  served asthe baseline.

196 The resting-state phase was immediately followed by the interactive-learning
197  phase (8 min), where the learner and instructor engaged in interactive learning either
198 inapersonalized (n =12 dyads) or non-personalized (n = 12 dyads) way (Instructional
199  Personalization, Fig. 1B). For each group, the experimental procedure consisted of
200 one of the following combinations of learning content and Instructional Strategy: (i)
201  reinforcement with scaffolding (block 1) + transfer with explanation (block 2), (ii)
202  reinforcement with explanation (block 1) + transfer with scaffolding (block 2). Block
203  order was counterbalanced.

204 During the experiment, learners’ and instructors’ brain activity was recorded
205 simultaneously via fNIRS-based hyperscanning at prefrontal and left temporoparietal
206  regions (Fig. 1C). A digital video camera (Sony, HDR-XR100, Sony Corporation,
207  Tokyo, Japan) was used to record the behaviora interactions between participant
208 dyads. The acquisition of video data and fNIRS data was synchronized with a
209 real-time audio-video cable connecting the camera to the ETG-7100 equipment. The

210 camerarecordings were used to classify (following the experiment) behavior as either
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211  scaffolding or explanatory behaviors.
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215 Figure 1. Experimental protocol, probe location, and brain-to-brain coupling analysis. (A)
216 Experimental procedure. Before and after scanning, learners’ knowledge of the psychological concepts
217  was evaluated. Brain activity from the instructor and the learner were acquired simultaneously using
218  fNIRS, in two blocks, each starting with a 3-min rest (resting-state phase/baseline), followed by the
219 instructor teaching concepts to the learner (interactive-learning phase/task). (B) Ingructional
220 Persondization and Instructional Strategies. Participants were randomly allocated to either
221 personalized or non-personalized groups (Instructional Personalization). Within each instructor-learner
222 dyad, scaffolding and explanation strategies were compared. (C) Optode probe set. The set was placed
223 over prefrontal and left temporoparietal regions. (D) Overview of the brain-to-brain coupling analysis.

224  Channel-wise raw time courses were extracted from both the instructor and the learner. After a battery
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225 of preprocessing, brain-to-brain coupling was estimated by Wavelet Transform Coherence between the

226  twocleantime courses. i, j, fNIRS signals of two participants of adyad; t, time.

227  2.5. Learning tests and outcome analysis

228 Learners knowledge of psychological concepts was tested immediately before the
229 onset of the resting-state phase and after the end of the interactive-learning phase.
230 Relevant to Reinforcement and Transfer, 8 definitions, 16 true-false items and 4 short
231 answer guestions were selected from textbooks to compose a testing bank. These
232 items were randomly split into two halves, one for the pre-test and the other for the
233  post-test. Results from 9 participants who were not involved in the fNIRS study
234  showed that the difficulty levels did not differ between the pre- and post-tests (ts =
235 0.01, p=0.99). The learners had atime limitation of 20 min to finish each of the tests
236  (Zhenget d., 2018).

237 The performance of learners in the pre- and post- tests was scored by two separate
238  other raters who were blind to the group assignment. Three question types (i.e.,
239  definitions, true-false items, simple answer questions) were evaluated. For each
240 learner, inter-coder reliability was calculated by the intra-class correlation on scores
241  for definitions and simple answer questions (ranging from 0.77 to 0.91). Rating scores
242  were averaged across the two raters. The sum of the judgments made on all three
243  question types (for a given learner) was considered as the index of overall learning
244  performance [maximum score: 4 (for 4 definitions) + 16 (for 8 true-false items) + 10
245  (for 2 simple answer questions) = 30 points). Pre-test scores did not differ between
246 any of the conditions (Fs < 1.60, ps > 0.17). For al subsequent analyses, learning
247  outcomes were quantified as the difference pre-learning scores and post-learning
248  scores. A mixed-design repeated measures ANOVA was conducted on the learning
249  outcomes, with Instructional Personalization (personalized vs. non-personalized) as a
250  between-subject variable and Instructional Strategy (scaffolding vs. explanation) as a

251  within-subject variable.

252  2.6. Image acquisition

10
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253  An ETG-7100 optical topography system (Hitachi Medical Corporation, Japan) was
254 used for brain data acquisition. The absorption of near-infrared light (two wavelengths:
255 695 and 830 nm) was measured with a sampling rate of 10 Hz. The oxyhemoglobin
256 (HbO) and deoxyhemoglobin (HbR) were obtained through the modified
257  Beer-Lambert law. We focused our analyses on the HbO concentration, for which the
258  signal-to-noise ratio is better than HbR (Mahmoudzadeh et a., 2013). A number of
259  fNIRS-based hyperscanning reports have used this indicator to compute of
260  brain-to-brain coupling (e.g., Cheng et a., 2015; Dai et al., 2018; Jiang et a., 2012,
261  2015; Pan et d., 2017; Tang et a., 2015).

262 Two optode probe sets were used to cover each participant’s prefrontal and left
263 temporoparietal regions (Fig. 1C), which have been previously associated with
264 information exchanges between instructors and learners during interactive learning
265  (Holper et a., 2013; Pan et a., 2018; Takeuchi et al., 2017; Zheng et al., 2018). One 3
266 x5 optode probe set (eight emitters and seven detectors forming 22 measurement
267  points with 3 cm optode separation) was placed over the prefrontal area. The middle
268  optode of the lowest probe row of the patch was placed at Fpz (Fig. 1C), following
269 theinternational 10-20 system (Okamoto et al., 2004). The middle probe set columns
270 were placed aong the sagittal reference curve. The other 4 x 4 probe set (eight
271  emitters and eight detectors forming 24 measurement points with 3 cm optode
272  separation) was placed over the left temporoparietal regions (reference optode was
273  placed at P5, Fig. 1C). The correspondence between the NIRS channels (CHs) and the
274  measured points on the cerebral cortex was determined using a virtual registration

275  approach (Singh et a., 2005; Tsuzuki et al., 2007).

276  2.7.Imaging-data analyses

277 2.7.1. Analysisstep A: Brain-to-brain coupling

278  Data collected during the resting-state phase (3 min, served as the baseline) and the
279  interactive-learning phase (8 min, served as the task) in each block were entered into
280 the brain-to-brain coupling analysis (Fig. 1D). A principal component spatial filter

11
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281 agorithm was used to remove systemic components such as blood pressure,
282  respiratory and blood flow variation from the fNIRS data (Zhang et al., 2016). To
283 remove head motion artifacts, we used a “Correlation Based Signal Improvement”
284  approach (Cui et al., 2010).

285 We then employed a wavelet transform coherence (WTC) analysis to estimate
286  brain-to-brain coupling. The WTC of signalsi(t) and j(t) was defined by:

(s~ W (6,5))2
(Wi )R~ WiEs)IZ

287 WTC(t,s) =

288  where t denotes the time, s indicates the wavelet scale, () represents a smoothing
289  operation in time and scale, and W is the continuous wavelet transform (see Grinsted
290 et a., 2004 for details). Our brain-to-brain coupling analysis was conducted in a
291  data-driven manner and entailed three sub-steps:

292 Sep 1. Does interactive learning lead to enhanced brain-to-brain coupling
293  compared to baseline?

294 As a first step, we estimated whether brain-to-brain coupling was enhanced
295 during the interactive learning task (estimated by WTC) compared to baseline.
296  Time-averaged brain-to-brain coupling (also averaged across channels in each dyad)
297  was compared between the resting phase (i.e. baseline session) and the interactive
298 learning phase (i.e. task session) using a series of paired sample t-tests, one for each
299  frequency band (frequency range: 0.01 — 1 Hz, Nozawa et a., 2016). This analysis
300 yielded a series of p-values that were FDR corrected (p < 0.05). This analysis enables
301 theidentification of frequency characteristic, which help us determine the frequency
302  of interest (FOI) for subsequent analyses.

303 To verify if the enhanced brain-to-brain coupling was dyad-specific, data from all
304 48 participants were reshuffled in a pseudo-random way so that 24 new dyads were
305 created (e.g., time series from instructor #1 were paired with those from learner #3)
306 (Fig. 3E). Then, the above brain-to-brain coupling analysis was performed again to
307  obtain brain-to-brain coupling for pseudo-pairs.

308 Sep 2: Does task-related brain-to-brain coupling enhancement differ across the

309 experimental conditions?

12
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310 We averaged brain-to-brain coupling within each identified FOI and compared all
311  conditions. We computed an index of task-related brain-to-brain coupling by
312  subtracting the averaged coupling during the resting phase from that during the
313 interactive learning phase. Fisher z transformation was applied to the task-related
314  coupling values to generate a normal distribution. The resulting values for each
315 channel were then submitted into an Instructional Strategy (scaffolding vs.
316  explanation) X Instructional Personalization (personalized vs. non-personalized)
317  mixed-design ANOVA. Parallel analyses were conducted separately in each FOI. The
318  resulting p values were FDR-corrected for multiple comparisons. The results yielded

319  F mapsfor each FOI. These F maps were visualized using BrainNet Viewer (Xiaet al.,

320 2013).
321 Sep 3: Is condition-specific brain-to-brain coupling predictive of learning?
322 Finally, we assessed behavior-brain relationships. Pearson correlational analyses

323  were employed to test the relationship between task-related brain-to-brain coupling

324  from significant channels and learning outcomes.

325  2.7.2. Analysis step B: Brain-to-brain coupling segmentation

326  Following the brain-to-brain coupling analyses, we grouped and averaged the adjacent
327  CHsthat showed significant brain-to-brain coupling as channels of interest. The time
328  course of brain-to-brain coupling in the channels of interest was down-sampled to 1
329 Hz to obtain point-to-frame correspondence between the time series and video
330 recordings (Figs. SA&B).

331 Two graduate students were recruited to independently code instructional
332  behaviors in the interactive-learning phase using the video-recording data. The two
333  coders underwent a weeklong training program by an educational expert (with 28
334 years of instructional experience in the field of education) to correctly identify
335 instructional behaviors. Two types of instructional behaviors were categorized for
336 each Instructional Strategy: for the scaffolding condition, there were (i) scaffolding
337  behaviors, such as asking key questions, providing feedback and hints, prompting,
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338  simplifying problems, and (ii) other non-scaffolding instructional behaviors, i.e., those
339  segmentsin the videos where scaffolding did not occur; for the explanation condition,
340 there were (i) explanatory behaviors, such as giving detailed definitions, providing
341  prefabricated materials, and information clarification, and (ii) other non-explanatory
342 instructional behaviors, i.e., those segments in the videos where explanation did not
343  occur.

344 Each one-second (s) video fragment (from the 8 minutes during the
345  interactive-learning phase) was coded as either containing scaffolding behaviors or
346  non-scaffolding instructional behaviors in the scaffolding condition; and as either
347  consisting of explanatory behaviors or non-explanatory instructional behaviors in the
348  explanation condition. For all coding activities, inter-coder reliability was calculated
349 by the intra-class correlation (Werts et a., 1974). Inter-coder reliability was 0.87 for
350 the scaffolding behaviors (vs. non-scaffolding instructional behaviors) in the
351 scaffolding condition, and 0.81 for the explanatory behaviors (vs. non-explanatory
352 insgtructiona behaviors) in the explanation condition. If there was an inconsistency,
353  thetwo coders discussed it and came to an agreement.

354 Based on the results of the coding procedures mentioned above, we categorized
355 the segments of brain-to-brain coupling associated with different video-coded
356 instructional behaviors (Figs. 5A&B). We subtracted brain-to-brain coupling during
357  therest session (baseline) from these segments of brain-to-brain coupling to obtain the
358 task-related coupling. Contrasts between task-related brain-to-brain coupling
359  associated with different video-coded instructional behaviors were obtained using a

360  seriesof paired-samplet-tests.

361  2.7.3. Analysisstep C: Brain-to-brain coupling prediction

362  Finaly, we explored whether brain-to-brain coupling alowed us to predict if an
363 instructor employed the scaffolding or explanation strategy, using a decoding analysis
364 (Da et d., 2018; Jiang et a., 2015). The analysis details and strategies can be

365  described asfollows.
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366 Classification features and labels. The time-averaged brain-to-brain coupling
367 values at channels of interest were used as classification features. We first averaged
368 the brain-to-brain coupling across the whole time series, resulting in time-averaged
369  coupling for each channel. We focused on the channel(s) that exhibited significant
370 task-related coupling (task vs. baseline; Goldstein et al., 2018). Instructional
371  Strategies (i.e., scaffolding or explanation) were used as class |abels.

372 Classification algorithm. Brain-to-brain coupling features were incorporated into
373 alogistic regression agorithm. Logistic regression is a supervised machine-learning
374  dgorithm that has been previously used to predict behavioral measures with
375 neuroimaging data (e.g., Ryai et a., 2010). The am of logistic regression-based
376  machine learning is to find the best fitting model that describes the relationship
377 between the dichotomous features of the dependent variable and independent
378 variables (Yan et a., 2004).

379 Classification performance. Classification performance was assessed using the
380 standard metric of area under the receiver operating characteristic curve (AUC). The
381 AUC is one of the most common quantitative indexes (Faraggi and Reiser, 2002;
382 Hanley and McNeil, 1982), which illustrates the sensitivity and specificity for the
383 classifier output. It has been successfully used to quantify the accuracy of the
384  prediction in many neuroimaging studies (e.g., Cohen et al., 2018; Ki et al., 2016).

385 A permutation test was used to determine whether the obtained AUC was
386  significantly larger than that generated by chance. Chance level of the AUC was
387 determined by randomly shuffling the labels (scaffolding or explanation) for the
388  brain-to-brain coupling values. Significant levels (p < 0.05) were calculated by
389  comparing the correct AUC from the real labels with 10000 renditions of randomized
390 labels.

391 Additional analyses. Finally, we tested whether decoding based on brain-to-brain
392  coupling generated a better classification of instructional behavior than decoding
393  based on individual brain activation. The raw fNIRS data were first preprocessed
394 following the same procedure described in Analysis Sep A. Clean (task-related)
395 signals were then converted into z-scores using the mean and the standard deviation of
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396 the signals recorded during rest (baseline). Normalized intra-brain activity values at
397  channels of interest in both instructors and learners were extracted as classification

398 features. The parallel decoding analyses were then repeated as described above.
399 3. Results
400  3.1. Behavioral performance

401 A repeated measures ANOVA on learning outcomes with Instructiona Strategy
402  (Scaffolding vs. Explanation) as a within-dyad factor and Instructional
403  Personaization (Personalized vs. Non-personalized) as a between-dyad factor
404  revealed amain effect of Instructional Strategy (F(1, 249 = 5.10, p = 0.03, I7partialz =0.19),
405  with the scaffolding strategy showing better learning outcomes than the explanation
406  strategy (Fig. 2). There was no effect of Instructional Personalization on learning (F,
407 .9 = 082, p = 038) and there was no interaction between Instructional
408  Personadlization and Instructional Strategy (F1,24) = 0.07, p = 0.79). In sum, learners
409 who were taught using scaffolding retained more content from the instruction than

410 learners who were taught using an explanation-based instructional strategy.
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413 Figure 2. Learning outcomes in all conditions. (A) Group levels. in both personalized and
414 non-personalized groups, learning outcomes for the scaffolding condition was significantly higher than
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415  the explanation condition. Learning outcomes are indexed by the change score (post-test score minus
416 pre-test score). Error bars represent standard errors of the mean. (B) Corresponding graph for

417 individua levels. *p < 0.05. **p < 0.01.

418  3.2. Brain imaging results

419 3.2.1. Interactive learning induces frequency-specific widespread brain-to-brain

420  coupling

421 In a first-pass data-driven analysis, we calculated brain-to-brain coupling in all
422  conditions across the whole sample of 24 participant dyads to test whether interactive
423  learning (i.e., task) was associated with enhanced brain-to-brain coupling compared to
424  theresting-state session (i.e., baseline).

425 In terms of frequency characteristics, brain-to-brain coupling was significantly
426  higher during the interactive learning phase than during rest for frequencies ranging
427  between 0.45 — 0.57 Hz and 0.17 — 0.27 Hz (all FDR-corrected, Fig. 3). These two
428  ranges were then chosen as frequencies of interest (FOIs) for subsequent analyses.
429  These FOIs are out of the range of physiological responses associated with cardiac
430 pulsation activity (~ 0.8 — 2.5 Hz) and spontaneous blood flow oscillations (i.e.,
431  Mayer waves, ~ 0.1 Hz).

432 Regarding spatia characteristics, task-related coupling enhancement was highest
433  inthe orbitofrontal cortex, frontopolar cortex, and inferior frontal cortex at 0.45—0.57
434  Hz (Fig. 3C), and along superior temporal cortex, temporoparietal junction, and
435  superior parietal lobule at 0.17 — 0.27 Hz (Fig. 3D). We also observed widespread
436  brain-to-brain coupling in adjacent regions, including prefrontal, temporal, and
437  parietal areas. These results replicate previous research showing that social interactive
438 learning (through instruction) induces brain-to-brain coupling in high-order brain
439  regions (Holper et a., 2013; Pan et al., 2018; Zheng et a., 2018).

440 A control analysis confirmed that the patterns of brain-to-brain coupling (higher
441  coupling associated with interactive learning compared to rest) were specific to the
442  interaction between rea instructor-learner dyads: pseudo dyads did not show higher
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443  brain-to-brain coupling during learning than rest (ps > 0.05, FDR controlled, Fig. 3E).
444  Together, our first-pass results suggest that social interactive learning induces
445  widespread brain-to-brain coupling. This coupling is concentrated in specific

446  frequencies and only emergesin ‘read’ dyads (who are actually interacting).
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449 Figure 3. Interactive learning evokes frequency-specific widespread brain-to-brain coupling across all
450 conditions. (A) Brain-to-brain coupling associated with the instruction session and the rest session for
451  freguencies ranging between 0.01 and 1 Hz (all participants and channels data were averaged). Grey
452 horizontal lines on the top indicate which frequencies show satistical differences (FDR controlled). (B)
453  An FDR-corrected P-value map resulting from comparisons between ingtruction and rest (for each
454  channel) across frequencies between 0.01 and 1 Hz. Interactive learning evokes frequency-specific
455  widespread brain-to-brain coupling in al conditions across all dyads at 0.45 — 0.57 Hz (C) and 0.17 —
456  0.27 Hz (D). (E) Control analyses confirmed that the enhanced brain-to-brain coupling shown in (C)
457 and (D) was dyad-specific: no significant task-related coupling was detected in pseudo-dyads in either

458  freguency band of interest (all real dyads were shuffled, resulting in 24 new pseudo dyads).

459  3.2.2. Instruction modulates brain-to-brain coupling within instructor-lear ner

460 dyads
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461 Having established that social interactive learning is associated with a significant
462  increase in brain-to-brain coupling between instructor and learner, we next sought to
463 determine whether such coupling enhancement was modulated by Instructional
464  Strategy and Instructional Personalization. First, results showed a main effect of
465 Instructiona Strategy in prefrontal regions (i.e., CHs 5, 6, 10, 12) at 0.45 — 0.57 Hz
466  (Fs > 9.50, FDR corrected ps < 0.05, 5°s > 0.65). Further analyses revealed that the
467  scaffolding strategy exhibited higher brain-to-brain coupling than the explanation
468  strategy in al significant CHs (Fig. 4A). There were no effects of Instructional
469  Strategy for other CHs and other frequency bands (ps > 0.05, FDR corrected). There
470  was no significant main effect of Instructional Personalization in any CHs and at any
471 frequency bands (ps > 0.05, FDR corrected).

472 We did, however, observe an interaction between Instructional Strategy and
473  Instructional Personalization in the superior temporal cortex (i.e., CH 25) at 0.17 —
474  0.27 Hz (F@, 29 = 13.49, FDR corrected p < 0.05). Post hoc comparisons indicated
475  that brain-to-brain coupling was significantly larger for the scaffolding condition than
476  the explanation condition in the personaized group (p < 0.05), but not in the
477  non-personalized group (p > 0.05, Fig. 4B). No significant main effects or interactions
478  where observed in any other CHs or frequency bands of interest (ps > 0.05, FDR
479  corrected).

480 Average brain-to-brain coupling in prefrontal regions was positively correlated
481  with learning outcomes in the scaffolding condition (r = 0.65, p = 0.001; Fig. 4A,
482  right panel) but not in the explanation condition (r = -0.24, p = 0.27), indicating that
483  better learning was associated with stronger brain-to-brain coupling in the scaffolding
484  condition aone. Mirroring the ANOVA results reported above, we saw that
485  brain-to-brain coupling in superior temporal cortex only predicted learning outcomes
486  in the personalized scaffolding condition (r = 0.66, p = 0.02; all other conditions: rs <
487  -0.18, ps> 0.27; Fig. 4B, right).

488
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490 Figure 4. Indruction modulates brain-to-brain coupling during social interactive learning. Central:
491 F-test maps of brain-to-brain coupling generated based on frequency-specific ANOVAs with
492 Instructional Strategy and Instructional Personalization as independent variables. (A) The scaffolding
493 condition showed higher brain-to-brain coupling in prefrontal regions than the explanation condition.
494  Such brain-to-brain coupling predicted learning outcomes in the scaffolding condition, but not in the
495 explanation condition (right panel). (B) The scaffolding condition also led to significantly larger
496 brain-to-brain coupling in superior temporal cortex than the explanation condition, but only in the
497 personalized ingtruction dyads. Brain-to-brain coupling predicted learning outcomes in the personalized
498  scaffolding condition but not in other conditions (right panel). *p < 0.05. Error bars indicate standard

499 errors of the mean.
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500 3.2.3.Linking instructional behaviorswith brain-to-brain coupling

501 To investigate how instructional behaviors contributed to brain-to-brain coupling, we
502  conducted avideo coding analysis for each participant dyad. Two raters independently
503 coded videos for scaffolding behaviors vs. non-scaffolding instructional behaviors (or
504  explanatory behaviors vs. non-explanatory instructional behaviors). For analysis, time
505 courses of brain-to-brain coupling during the task session were first matched with
506 video-coded instructional behaviors (Figs. 5A-C). Brain-to-brain coupling was then
507  extracted for segments of each type of instructional behavior and averaged for each
508 condition. Task-related coupling was then obtained by subtracting time-averaged
509 brain-to-brain coupling during the rest session from the averaged coupling segments
510  duringthetask session (Figs. 5D& E).

511 First, we examined whether task-related brain-to-brain coupling in prefrontal
512 cortex detected in the scaffolding condition could be explained by scaffolding
513  behaviors. Indeed, scaffolding behaviors induced significantly higher brain-to-brain
514  coupling compared to the non-scaffolding instructional behaviors (tes = 2.72, p =
515 0.01, Cohen'sd =0.78; Fig. 5D, upper panel). Crucially, we also compared. However,
516  no significant differences in brain-to-brain coupling were seen between explanatory
517  behaviors and non-explanatory instructional behaviors in the explanation condition
518  (trzs =1.58, p=0.13; Fig. 5D, lower panel).

519 Second, we compared brain-to-brain coupling for scaffolding vs. non-scaffolding
520 instructional behaviors to test whether scaffolding behavior indeed drove the
521 task-related brain-to-brain coupling observed in superior temporal cortex for the
522  personalized scaffolding condition. As expected, scaffolding behaviors exhibited
523  larger brain-to-brain coupling than non-scaffolding instructional behaviors (t11y = 3.19,
524 p=0.01, Cohen’sd = 1.18; Fig. 5E, upper panel). In contrast, just like in prefrontal
525  cortex, brain-to-brain coupling did not differ between explanatory behaviors and
526  non-explanatory behaviors in the personalized explanation condition (t1) = 0.91, p =
527  0.38 (Fig. 5E, lower panel). Moreover, there was no significant difference between

528 instructional behaviors in either non-personalized scaffolding (Fig. 5F, upper panel)
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529  or non-personalized explanation conditions (Fig. 5F, lower panel, ts < 1.36, ps >
530  0.20).

531 Importantly, the effects reported here cannot be attributed to differences between
532  conditions in terms of the mere quantity of instructional behaviors or the number of
533 turn-takings, as evidenced by two control analyses. First, we calculated the duration
534 ratio of instructional behaviors by quantifying the proportions of time (out of 8
535 minutes) when instructiona behaviors occurred (Jiang et a., 2015; Pan et al., 2018).
536 For example, if scaffolding behaviors occurred for a total of 3 minutes in an
537 instructor-learner dyad, then the duration ratio of scaffolding behaviors should be 3/8
538 = 0.375. Results revealed that the duration ratio was comparable between scaffolding
539  behaviors (0.56 + 0.18) and non-scaffolding instructional behaviors (0.44 = 0.18) in
540 the scaffolding condition (ts) = 1.22, p = 0.25). Second, we compared the cumulative
541  number of sequential turn-takings during interactive learning (for example, one
542  turn-taking event could be that the instructor asks one question, followed by the
543 answer from the learner). Results showed that the scaffolding strategy involved
544  marginally more turn-takings than the explanation strategy (16.67 + 6.54 vs. 12.08 +
545  3.15; tps = 211, p = 0.06). No significant correlation between the number of
546  turn-takings and brain-to-brain coupling was detected (rs < 0.42, ps > 0.18).

547 In sum, brain-to-brain coupling could be explained by dynamic scaffolding
548 behavior implemented in the instructor-learner interaction. Our complementary
549  analyses ruled out frequency of instructional behaviors or turn-taking behavior as

550  possible contributors to the observed brain-to-brain coupling effects.
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552 Figure 5. Video coding analysis reveals that brain-to-brain coupling is driven by specific ingtructional
553 behaviors. (A) Time course of brain-to-brain coupling in the learning phase for one randomly selected
554  dyad fromthe scaffolding and explanation conditions. Vertical panels denote the instructional behaviors:
555 red panels indicate scaffolding behaviors; blue ones indicate explanatory behaviors. (B) Examples of
556 each instructional behavior as coded from the video frames. (C) Example sentences from the video
557 coding analysis for scaffolding behaviors (asking key questions and providing hints) and explanation
558 behaviors (definition and clarification). Box plots of task-related brain-to-brain coupling (task minus

559 rest) across the instructional behaviors in the scaffolding and explanation conditions (D), in the
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560 personalized scaffolding and personalized explanation conditions (E), and in the non-personalized
561  scaffolding and non-personalized explanation conditions (F). Crosses indicate the average
562 brain-to-brain coupling across participant dyads. Error bars range from the min to the max value

563 observed. *p < 0.05.

564 3.2.4. Decodinginstructional strategy from brain-to-brain coupling

565 Finally, we tested the extent to which one can identify the Instructional Strategy
566 employed by an ingtructor (i.e., scaffolding or explanation) based on task-related
567  brain-to-brain coupling alone. Brain-to-brain coupling was extracted from all channel
568 combinations that showed significantly higher brain-to-brain coupling for task vs.
569 baseline to train the classifiers. The classifier successfully distinguished instructors
570 who employed the scaffolding or explanation strategy with an Area Under the Curve
571  (AUC) of 0.90, i.e, significantly exceeding chance (p < 0.0001, Fig. 6A). The
572  decoding analysis based on task-related brain-to-brain coupling further showed that
573 the classifier was able to distinguish instructors who employed the scaffolding or
574  explanation strategy for the personalized condition (AUC = 0.84; p = 0.005, Fig. 6B),
575  but not in the non-personalized condition (AUC = 0.66; p = 0.17, Fig. 6C).

576 Importantly, when using individual brain activation from either instructors’ or
577 learners as classification features, classification performance to discriminate between
578 the scaffolding and explanation strategies was low (AUCs < 0.66, ps > 0.05). The
579 decoding analysis based on the individual brain activation was aso insufficient to
580  distinguish the scaffolding and explanation strategies for both personalized (AUCs <
581  0.57, ps > 0.35) and non-personalized conditions (AUCs < 0.56, ps > 0.20).

582 Taken together, these results indicate that brain-to-brain coupling, as a novel yet
583  promising neural-classification feature (Jiang et a., 2015), was suitable for decoding
584 instructional strategy with a reasonable classification performance, particularly when
585 the instruction was tailored to the learner (i.e., personalized vs. non-personalized).
586  Brain-to-brain coupling further served as a better classification feature compared to

587 individual brain activation during instructor-learner interactions.
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590 Figure 6. Decoding performance. The receiver operating characteristic (ROC) curve for classification
591 distinguishing the scaffolding or explanation strategy in general (A), in the personalized (B), and
592 non-personalized conditions (C). Area under the curve (AUC) was calculated. Significant levels were
593 calculated by comparing the correct AUC from the real labels with 10000 renditions of randomized

594  labels

595 4. Discussion

596  Thisstudy investigated how verbal instruction modulates interactive learning using an
597  fNIRS-based hyperscanning approach, which allowed us to record brain activity from
598 both instructors and learners during an instruction exchange. Twenty-four
599 instructor-learner dyads performed a conceptua learning task in a naturalistic
600 instruction situation where a well-trained instructor taught a learner a set of
601  psychological concepts. We found that interactive learning induced task-related
602  brain-to-brain coupling. Brain-to-brain coupling co-varied with learners’ subsequent
603 learning outcomes and was significantly higher when instructors employed
604  scaffolding tactics (e.g., asking key questions and hinting) than when they used an
605  explanation-based teaching approach. This brain-to-brain coupling associated with
606  scaffolding was especially prominent if instructors were informed of the learner’s
607 knowledge level in advance. Finaly, different instructional strategies could
608  successfully be decoded based on brain-to-brain coupling aone, but, crucialy, not
609  based onindividual brain activation.

610 Importantly, our findings were specific to the interacting instructor-learner dyads
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611  (control analysis #1) and they did not reflect the mere quantity of instructional
612  behaviors (control analysis #2), nor the amount of turn-takings between instructor and

613 learner (control analysis#3).

614 4.1. Using two brainsto study learning and instruction

615 Educators have long debated which method of instruction is most conducive to
616 learning. Severa researchers have sought an answer to this question by studying
617 learners’ neural activity during both information encoding and retrieval. However,
618  previous studies have primarily focused on isolated individuas (e.g., Hartstra et al.,
619 2011; Olsson and Phelps, 2007, Ruge and Wolfensteller, 2009). This poses a
620 limitation to obtaining full insight into the learner process, especially for
621 instruction-based learning, which relies on the dynamic instructiona interaction
622  between instructor and learner. A “second-person approach” (also termed as
623  “hyperscanning”, i.e., measuring two brains simultaneously, Redcay and Schilbach,
624  2019) provides a possible way to fill this knowledge gap.

625 The second-person approach allowed us to quantify brain-to-brain coupling
626 between the instructor and the learner, and possibly capture the continuous,
627  meaningful alignment of interpersonal neural processes. It has been proposed that
628  such neural alignment facilitates the matching of the temporal structure of inputs and
629  optimizes the learning process (Leong et al., 2017). Our findings suggest that
630 brain-to-brain synchrony is pedagogically relevant. First, brain-to-brain coupling was
631  correlated with learning outcomes, strongly indicating its functional significance.
632  Second, brain-to-brain coupling was successfully used to decode instructional
633  approaches with a good classification performance.

634 To our knowledge, we are the first to use activity from two brains as opposed to
635 oneto decode instructional strategies. We found that brain-to-brain coupling served as
636  a better neural-classification feature in contrast with individual brain activity. This
637 finding was in line with recent advances; for example, a recent study found that

638  brain-to-brain coupling yielded higher predictive power for learning outcomes
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639 compared to single-brain measures (Davidesco et al., 2019). A possible explanation
640  for thisisthat non-neuronal artifacts are systematic in individual brain activity (Zhang
641 et a., 2016), while such artifacts are not consistent across brains. Indeed,
642  brain-to-brain coupling has been reported to have higher signal-to-noise than
643  single-brain measures (Parkinson et al., 2018). Moreover, measuring coupling across
644 brains can provide complementary information that cannot be revealed by
645  conventional individual brain measures (Balconi et al., 2017; Smony et al., 2016).
646  Compared to single-brain activity, brain-to-brain coupling could be more sensitive
647  when tracking ongoing social interactions because it considers the neural dynamics
648 from al interacting agents smultaneously. In sum, there are severa benefits of

649  recording activity from two brains (versus one brain) to study learning and instruction.

650 4.2. Theroleof prefrontal and temporal corticesin brain-to-brain coupling

651  The modulatory effects of instruction on brain-to-brain coupling were concentrated in
652  prefrontal and superior tempora cortices. This is in line with prior fNIRS-based
653  hyperscanning studies that found that brain-to-brain coupling in prefrontal cortices
654  (PFC; Holper et a., 2013; Pan et al., 2018; Takeuchi et al., 2017) and temporoparietal
655  regions (Zheng et a., 2018) predicted learning outcomes following instruction. PFC
656 has been associated with a wide range of human cognitive functions. Specific to
657  hyperscanning, PFC has been implicated in cooperation (Cheng et al., 2015),
658 competition (Liu et al., 2015), and emotion regulation (Reindl et a., 2018). In this
659  study, the scaffolding process might require constant collaborative interaction between
660 instructor and learner, a process for which prefrontal areas are heavily recruited.

661 Superior temporal cortex (STC), like PFC, has been associated with many
662  cognitive functions that are relevant for learning, and social cognition more broadly.
663  For example, STC isakey areafor theory of mind or mentalizing (Baker et a., 2016),
664 and has been implicated in social perception and action observation (Thompson and
665  Parasuraman, 2012). While the exact role of STC in brain-to-brain coupling during

666 learning cannot be inferred based on the present findings, it is possible that
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667  brain-to-brain coupling in this area reflects the shared intentionality or mental state
668  between instructor and learner, or a process whereby instructors need to infer the
669 understanding of the learner such that instruction can be adapted or personalized
670 accordingly (Zheng et al., 2018).

671 Another possibility is that the correlation between brain-to-brain synchrony and
672 learning outcomes in STC and PFC can be accounted for in terms of the ability of the
673  instructor and learner to predict each other’s mental states and utterances throughout
674 the interaction. Prior fMRI studies investigating speaker-listener brain-to-brain
675  coupling found that brain activity was more correlated between speakers and listeners
676 in STC for more predictable speech (Dikker et a., 2014) and PFC brain-to-brain
677  coupling has been associated with information retention (Stephens et al., 2010). Both
678 PFC and STC have been found crucia for temporal predictive encoding and
679 integration of behavior (Amoruso et al., 2018; Yang et al., 2015) and recent models
680  attribute alarge role to predictive coding in explaining interpersonal alignment at both
681  theneural and the behavioral level (Garrod and Pickering, 2010; Shamay-Tsoory et al.,
682  2019).

683  4.3. Linking brain imaging findings to pedagogical practice

684  As the Chinese educator Confucius suggested, appropriate instruction matters during
685 instructor-learner interactive learning (Chen, 2007). Several theoretical models have
686 been proposed aming a improving pedagogy. These models include
687  explanation-based and constructivism-based theories, both of which have been shown
688  demonstrated to support learning (Chi, 2013).

689 As laid out in the introduction, an explanation-based approach puts emphasis on
690 information clarification and aims at providing prefabricated explanatory information
691 to the learner. Explanation is a conventional strategy used in classroom instruction
692 (Leinhardt and Steele, 2005), human tutoring (Chi et al., 2004), cooperative learning
693 (Webb et a. 2006), and skill acquisition (Renkl et a. 2007). In a

694  constructivism-based approach, in contrast, the instructor is encouraged to provide

28


https://doi.org/10.1101/704239
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/704239; this version posted August 11, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

695  support (i.e., scaffolding) tailored to the needs of the learner (Kleickmann et al., 2016).
696 In this framework, instructional modulation of learning arises from exogenous
697  constructivist instruction (Jumaat and Tasir, 2016). Arguably, our findings favor a
698  constructivism-based model: brain-to-brain coupling during interactive learning was
699 primarily driven by the moments of scaffolding behaviors, a central feature of a
700  constructivist approach to instruction-based learning. It is important to note that our
701  results do not warrant the conclusion that explanation-based instruction is not useful:
702  This would go against decades of research showing that people do learn from
703  explanations (Chi et al., 2004; Leinhardt and Steele, 2005; Renkl et al., 2007; Webb et
704  a., 2006).

705 Our findings can aso be interpreted within the context of the
706 Interactive-Constructive-Active-Passive (ICAP, Chi and Wylie, 2014) framework. The
707  ICAP framework defines a set of cognitive engagement activities, which can be
708  categorized into Interactive, Constructive, Active, and Passive modes, based on
709 learners’ behaviors. The four modes correspond to different cognitive processes (Lam
710 and Muldner, 2017): Interactive engagement corresponds to the cognitive process of
711  co-creating knowledge (e.g., dialogues); Constructive engagement involves creating
712 knowledge (e.g., explaining in one's own words); Active engagement involves
713 emphasizing or selecting knowledge (e.g., copying notes); Passive engagement
714  involves storing knowledge (e.g., watching and listening to the instructor). The ICAP
715  hypothesis proposes that the learning increase from Passive to Active to Constructive
716  to Interactive. In the current study, although both strategies involved interactive
717 engagement, the scaffolding strategy could additionally invoke constructive
718 engagement whereas the explanation strategy could invoke relatively passive
719  engagement in the learners (as summarized in Fig. 7). Consistent with the ICAP,
720 learning outcomes were better in the scaffolding than the explanation strategies, i.e.,
721 (Interactive + Constructive) > (Interactive + Passive). What's more, one can argue
722  that our results extend the theoretical framework of ICAP by showing that the four
723  components proposed should not be treated in isolation: real-life instruction is a
724  complex activity and generally engages several cognitive components. Our findings
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725  suggest that instructors should consider including and combining more interactive and

726  constructive engagements.

727
ICAP framework for the scaffolding and explanation instructions
Scaffolding Explanation
Interactive | Constructive Interactive | Constructive
Active Passive Active Passive
Low 1 T High
Cognitive engagement
728

729 Figure 7. Interactive-Constructive-Active-Passive (ICAP) framework for the scaffolding and
730 explanation instructions. The scaffolding instruction elicits more interactive and constructive responses,

731  whereasthe explanation instruction elicits more interactive and passive regponses.

732  4.4. Conclusions

733  Recording brain activity from multiple participants simultaneously in ecologicaly
734  valid settings is a nascent but promising field of research. We investigated interactive
735 learning using fNIRS hyperscanning in a naturalistic learning situation, and found that
736  verbal instruction modulates learning via brain-to-brain coupling between instructors
737  and learners, which was driven by dynamic scaffolding representations. Importantly,
738  brain-to-brain coupling was effective to discriminate between different instructional
739  approaches and predict learning outcomes. Together, our findings suggest that
740  brain-to-brain coupling may be a pedagogically informative implicit measure that

741 trackslearning throughout ongoing dynamic instructor-learner interactions.
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