

# Population genomics and pathotypic evaluation of the bacterial leaf blight pathogen of rice

Jinshui Zheng<sup>a,1</sup>, Zhiwei Song<sup>b,1</sup>, Dehong Zheng<sup>a</sup>, Huifeng Hu<sup>a</sup>, Haoquan Yu<sup>a</sup>,  
Hongxia Liu<sup>c</sup>, Yancun Zhao<sup>b</sup>, Ming Sun<sup>a</sup>, Lifang Ruan<sup>a,2</sup>, Fengquan Liu<sup>b,2</sup>

<sup>a</sup> State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China.

<sup>b</sup> Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.

<sup>c</sup> Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China

<sup>1</sup> These authors contributed equally to this work.

<sup>2</sup> Corresponding authors: Fengquan Liu (fqliu20011@sina.com) and Lifang Ruan (ruanlifang@mail.hzau.edu.cn).

**Keywords:** Plant pathogen, Genomic epidemiology, Large-scale virulence test, Rapid virulence dynamics

20 **Abstract**

21 Knowledge about population structure and virulence dynamics is critical to prevent  
22 outbreaks of bacterial diseases. *Xanthomonas oryzae* pv. *oryzae* (*Xoo*) causes bacterial  
23 blight disease, leading to substantial losses in rice production during the last century in  
24 Asia. For this concern, we used whole-genome sequences and large-scale virulence  
25 tests to explore the diversity and evolution of *Xoo* population during the past 30 years  
26 in the main rice-planting areas of China. Six separate lineages were revealed by  
27 phylogenomic analysis, two of which (CX-5 and CX-6) predominated in the population.  
28 Four and 5 sub-lineages from these two lineages respectively persisted in different areas  
29 for decades. Many recent sporadic outbreaks were caused by *Xoo* derived from the local  
30 sub-populations of these sub-lineages. The lineage and sub-lineage distribution of  
31 isolates strongly correlated to their geographical origin, which was found to be  
32 determined by the planting of the two major rice subspecies. Large-scale virulence tests  
33 indicated rapid dynamics of pathogenicity for *Xoo*. The *Xoo* isolates from lineages and  
34 sub-lineages with stricter geographical distribution showed less compatibility with  
35 resistance genes of rice than the wider distributed ones. Genetic background of *Xoo*,  
36 rice resistance genes and the planting environment of rice contributed to the rapid  
37 dynamics of virulence. This study provided a good model to understand the evolution  
38 and dynamics of plant pathogens in the context of interaction with their hosts which are  
39 influenced by both geographical conditions and farming practices.

40

41 **Significance**

42 *Xanthomonas oryzae* pv. *oryzae* (*Xoo*) which causes bacterial blight disease, was one  
43 of the major serious threats to food security in East Asian countries during last century.  
44 The introduction of several resistance genes into rice tremendously reduced the damage.  
45 Through population genomics and large-scale pathotypic evaluation of more than 240  
46 *Xoo* strains isolated in China during the past 30 years, we found that the genome  
47 evolution and virulence dynamics of *Xoo* are extraordinary rapid, indicating its ability  
48 to overcome the resistance conferred by the current resistance genes and the potential  
49 for large-scale outbreaks in the future. It is therefore prudent to continue surveillance  
50 of disease outbreaks caused by this pathogen, and to develop novel strategies for its  
51 control.

52

53 **Introduction**

54 Population genomics is a powerful tool for understanding the formation and evolution  
55 of bacterial pathogens of human and some important domestic animals (1-6). It has also  
56 provided new strategies for the detection, prevention and control of important human  
57 pathogens (7, 8). Although plant pathogens are serious threat to food security  
58 worldwide, only a few studies have used genome-based methods to study their  
59 population structure, evolution and transmission in the context of interaction between  
60 pathogens and plant hosts (9-13).

61 *Xanthomonas oryzae* pv. *oryzae* (*Xoo*) causes bacterial blight (BB) disease of rice  
62 (*Oryza sativa*) and has been considered one of the top 10 plant bacterial pathogens  
63 based on scientific/economic importance (14). It is a notorious destructive pathogen  
64 which can cause a considerable reduction in rice production in both temperate and  
65 tropical regions, especially in Asia (15). On average, BB can lead to 20%~30% overall  
66 yield reduction with some severe cases even causing up to 50% loss (16). As the world's  
67 largest producer and consumer of rice, China has suffered serious BB outbreaks and  
68 huge food loss since the 1930s (17), with the most serious damage occurring between  
69 1950s and 1980s (18). Breeding resistant cultivars has been proved to be the most  
70 effective method in controlling this pathogen. Since 1980s, BB-resistant rice varieties  
71 have been widely planted in China and have significantly reduced the loss caused by  
72 BB (19-21). However, sporadic outbreaks have occurred in different areas of China  
73 after the year of 2000 (22, 23). It is unknown whether the recent outbreaks relate to  
74 changes in the genetics and virulence of the past *Xoo* populations in China, allowing it

75 to overcome host defenses. Moreover, very little is known about the evolution, spread  
76 and dynamics of this important plant pathogen involved in different outbreaks during  
77 the past decades around the whole country in the context of rapid development of  
78 modern agricultural science and technology.

79 The virulence differentiation among different strains of *Xoo* was studied by defining  
80 different races or pathotypes. Strains of the same race share a common pathogenic  
81 phenotype in a set of tested host cultivars. Rice lines carrying different resistance genes  
82 (R genes) determine the race of strains of *Xoo*. Up to now, more than 100 races of *Xoo*  
83 were identified (24-29). Although the pathogenic diversity of *Xoo* in China have been  
84 studied previously (22, 30, 31), these studies classified *Xoo* isolates only based on their  
85 pathogenic patterns on several rice lines, while the genetic basis for the pathogenicity  
86 of these isolates is still unknown.

87 In this study, a comprehensive population genomic study was combined with a large-  
88 scale determination of virulence of *Xoo* that have been isolated in the past 30 years in  
89 China, to obtain a framework of genetic dynamics and virulence diversity over time  
90 and space. Results from this work shed new light on the evolution of this important  
91 plant pathogen.

92

### 93 **Results**

#### 94 **Population structure *Xoo* from China**

95 To understand the population structure of *Xoo* in China, genomes of the 247 strains  
96 were sequenced, including 237 isolated from China, 4 and 6 representative ones from

97 Japan and Philippines, respectively (Table S1). Reads were mapped to the genome of  
98 PXO99<sup>A</sup>, SNPs were called by Samtools. After the prophage region, repeat sequences  
99 and recombinant regions were filtered; the core SNPs contained 5,271 variable sites.

100 Two methods were used to outline the population structure based on the core SNPs,  
101 Maximum likelihood (ML) phylogenetic analysis and a tree-independent hierarchical  
102 Bayesian clustering (BAPS).

103 All *Xoo* from China were clustered into 6 lineages (CX-1 to CX-6), with more than 70%  
104 strains belonging to CX-5 and CX-6 (Figure 1). The three major rice production areas,  
105 including South China, Yangtze Valley area and North China, were displayed in Figure  
106 2a. We annotated the lineage-specific tree with the time and space information of the  
107 isolated *Xoo* (Figure 1, 2b and 2c). CX-1 and CX-2 were most frequently represented  
108 in South China at the year of 2003, of which most isolates were from Yunnan province.  
109 The *Xoo* belonging to CX-3 were isolated from North China in 1984, 2003 and 2014,  
110 with most of which from Northeast China in 2014. CX-5 and CX-6 were nationally  
111 distributed during the past 30 years; while most members in CX-5 were dominant in  
112 South China and Yangtze Valley, and CX-6 were more frequently from North China  
113 and Yangtze Valley.

#### 114 **Phyogeography of CX-5 and CX-6**

115 To investigate more details about evolution and dynamics of *Xoo* in China, we focused  
116 on the two major lineages, CX-5 and CX-6. Phylogenetic analysis based on core SNP  
117 alignment (Figures 3a and 3b) and pairwise SNP distance between isolates was  
118 performed for both lineages (Figure 3c). Though no correlation between root-to-tip

119 branch lengths and the known years of isolation of the sequenced was observed for both  
120 lineages, it's worth mentioning that some important points about the dynamics of these  
121 population were illuminated, especially those for the recent outbreaks.

122 Four sub-lineages were identified in CX-5, CX-5.1 to CX-5.5 (Figure 3a). CX-5.1, CX-  
123 5.2, and CX-5.5 were restricted in South China, while CX-5.3 and CX-5.4 can be found  
124 in some places of both South China and Yangtze Valley. When time was considered, we  
125 found that all these sub-lineages persisted at these places at least for decades. Then we  
126 focused on the recent sporadic outbreaks being attributed to this lineage. Besides  
127 clustered together on the tree, we considered epidemiologically and genomically linked  
128 outbreak with an average SNP pairwise distance less than 5. In 2003, the outbreak in  
129 Hunan province of Yangtze Valley was caused by CX-5.4 (HN-2003), while the  
130 outbreak in Guangdong province of South China ascribed to two sub-population of CX-  
131 5.5 (GD-2003-1 and GD-2003-2). One cluster of CX-5.3 caused outbreak in Guangxi  
132 province of South China in 2014 (GX-2014).

133 CX-6 was divided into 5 sub-lineages, CX-6.1 to CX-6.5 (Figure 3b). Seven out of 10  
134 isolates in CX-6.1 were from different places of South China. Actually, this sub-lineage  
135 was the most diverse one in CX-6 with long branches. In CX-6.2, *Xoo* from North China  
136 and Yangtze Valley were dominant on different branches, respectively. CX-6.3 and CX-  
137 6.4 were most frequently found in Yangtze Valley, while *Xoo* from North China  
138 predominated in CX-6.5. Similar as CX-5, all these sub-lineages have contributed to  
139 BB on rice for a long time in China. These sub-lineages totally caused at least 4 local  
140 outbreaks in 2003 and 2014. In 2003, the local outbreaks in two provinces of Yangtze

141 Valley (Henan, and Jiangsu) were caused by CX-6.2 (HeN-2003) and CX-6.4 (JS-2003),  
142 respectively, while the one in North China (Jilin province) was ascribed to CX-6.5 (JL-  
143 2003). Outbreak in Jiangsu province (Yangtze Valley) in 2014 was caused by one sub-  
144 population of CX-6.4 (JS-2014).

145 **Chinese *Xoo* diversity and dynamics in the context of rice host**

146 There are two major domesticated rice subspecies *Oryza sativa japonica* and *indica*  
147 existing in different areas of China; and most of rice varieties were derived from these  
148 two subspecies (32, 33). Rice planted in high-altitude areas of Yunnan province from  
149 South China and North China belong to subspecies *japonica* (<http://www.ricedata.cn>).  
150 *Xoo* isolated from these areas were respectively clustered into 3 lineages, CX-1, CX-2,  
151 CX-3 and one sub-lineage of CX-6 (CX-6.5) (Figure 1 and Figure 3b). Lineage CX-5  
152 mainly contained *Xoo* isolated from rice in South China where subspecies *indica* is  
153 planted (Figure 3a). CX-6 also contained *Xoo* isolated from rice of *japonica* from  
154 Yangtze Valley (CX-6.4), *indica* from Yangtze Valley (CX-6.3) and some *indica* from  
155 South China (CX-6.1), indicating the widest adaptation to different rice varieties of *Xoo*  
156 in this lineage (Figure 3b). In CX-6.2, old *Xoo* were dominant on *indica*, while recent  
157 isolated ones were almost from *japonica*, suggesting a putative host switch in this sub-  
158 lineage.

159 Taken together, the distribution of Chinese *Xoo* lineages appeared to be impaired by  
160 both biogeography and rapid dynamics over isolated time, which may be mainly due to  
161 the distribution and dynamics of the two major subspecies of rice, *japonica* and *indica*.

162 **Diversity of *Xoo* from different counties of Asia**

163 To place *Xoo* from China into a global context, phylogenomic analysis was performed  
164 on the core genome SNPs of 109 *Xoo* genomes available in Genbank (including 100  
165 from India, 8 from Philippines and 1 from Japan), and the 247 sequenced ones in this  
166 study. Phylogenetic analysis revealed a similar topological structure of Asian *Xoo* to  
167 that of Chinese *Xoo*, with some small differences in some branches (Figure S1). Eleven  
168 genetic lineages were identified for the *Xoo* population from Asia. *Xoo* from India and  
169 Philippines were respectively assigned into PX-A to PX-C and IX-I to IX-V according  
170 to previous studies (34, 35). Eight lineages displayed strict geographic distribution  
171 features, most of them being specific to one or at least a limited amount of rice-planting  
172 areas. Besides the three Chinese lineages, CX-1, CX-2 and CX-3, PX-B and PX-C were  
173 mainly represented in Philippines, and IX-I to IX-III were from India. CX-4 contained  
174 old *Xoo* from China and some recently isolated ones from India belonging to IX-V. For  
175 CX-5 and CX-6, besides both represented the major *Xoo* from China, they also  
176 contained a few *Xoo* from Japan, India and Philippines, with PX-A of Philippines being  
177 nested within the former one and IX-IV from India being encompassed among the  
178 members of the last one, indicating frequently transmission of these 2 lineages not only  
179 among different places of China but also among different Asian countries.

#### 180 **Rapid virulence dynamics of *Xoo* strains isolated in China during the past 30 years**

181 To determine the pathogenic diversity of *Xoo* strains, virulence assays were conducted  
182 on six rice lines. Based on the interactions between *Xoo* strains and rice lines, most of  
183 the tested *Xoo* were classified into 9 pathogenic races (Table S1 and Figure 4a). The top  
184 two races with most members, R5 and R8, contain 26% and 18% of the isolates,

185 respectively.

186 The three major rice-planting regions had different race compositions (Figure 4b).

187 Yangtze River Valley mainly contained *Xoo* from races R5 and R8, with the respective

188 percentage of the total population being 50% and 30%, respectively. *Xoo* isolates from

189 North China mostly belongs to R7 and R5, together accounts for about two third of the

190 total population. Five of the nine *Xoo* races were well represented in the *Xoo* population

191 from South China, with each of them account for more than 10% of the total population.

192 The virulence dynamics of *Xoo* during the last 30 years was hypothesized by analyzing

193 race distribution in China at different period (Figure 4c). Strains isolated before the year

194 of 2000 were mainly of the races of R5, R4, R8 and R1, while most *Xoo* isolated in

195 2003–2004 were R8, R7, R5 and R6; and about 45% of the isolates in 2014 were R5.

196 We also found different lineages have different race compositions, indicating genetic

197 background playing important roles in the interaction between *Xoo* and rice hosts

198 (Figure 4d). Compared to other lineages, the CX-6 *Xoo* isolates fall mostly within the

199 races of R5, R8 and R4, while have reduced representation in R1, R2 and R6. Moreover,

200 the rapid dynamics of pathogenic features can be inferred by focusing on the races of

201 *Xoo* isolated from the same places at the same time and belonging to the same lineage

202 (Figure 1). For example, most *Xoo* from Yunnan, one province of South China, in 2003

203 were clustered in CX-1 and CX-2. The 19 isolates in CX-1 represented 8 of the 9 races

204 described above, and the 14 strains in CX-2 belonged to 6 races. Even *Xoo* isolates from

205 the same outbreak were allocated into different races, with 16 *Xoo* in JL-2003 belonging

206 to 3 different races and 10 isolates in GD-2003-2 representing 2 races.

207 **Resistance gene of rice contributes to the interaction between *Xoo* and rice**

208 As each of the near-isogenic rice lines used in this study contains one known resistance

209 (R) gene, we studied the interaction between *Xoo* and rice host by focusing on the

210 capacity of *Xoo* to overcome the resistances conferred by these genes (Figure 1, Tables

211 1 and 2). When the time of isolation was considered, we found that *Xoo* from different

212 times have different capacity to overcome different R genes (Table 1). R gene *xa5*

213 showed the most effective resistance against *Xoo* all the time. At different periods, more

214 than 90% *Xoo* could not infect the rice line IRBB5, which contained gene *xa5*. The

215 resistance mediated by R gene *Xa3* was effective during the period of 1990 to 2004.

216 However, rice containing this R gene only showed resistance against 5% of *Xoo* in 2014.

217 Rice cultivars carrying R gene *Xa4* are resistant to more than 60% of *Xoo* isolated from

218 1970s to 2000 and 2014. However, they are only resistant to about 30% of the isolates

219 recovered in 2003 and 2004.

220 To determine whether the *Xoo* genetic background contributes to the interaction

221 between *Xoo* and rice lines, we studied the resistance capacity of R genes against *Xoo*

222 from different lineages (Table 2). We found that resistance provided by R genes against

223 *Xoo* are indeed depended on the genetic background of *Xoo*. R genes *Xa2* and *Xa14*

224 effectively confer resistance against *Xoo* from Lineages CX-1, CX-2 and CX-3,

225 preventing infection by more than 70% of *Xoo* strains from these lineages. Similarly, R

226 gene *Xa3* and *Xa4* showed potential resistance against *Xoo* from CX-1 and CX-2, and

227 CX-2 and CX-3, respectively. No R gene except *xa5* conferred resistance to more than

228 50% of *Xoo* strains from CX-5 and CX-6, which is consistent with the situation that

229 CX-5 and CX-6 had much more extensive distribution across different areas of China  
230 during the past decades, comparing to the other Chinese *Xoo* lineages. Among the sub-  
231 lineages of CX-5 and CX-6, *Xa2* was only effective against *Xoo* of CX-6.5, with  
232 effectiveness of 90%, while *Xa4* could confer the resistance against more than 60% *Xoo*  
233 from these two lineages except for CX-5.1 and CX-6.5; *Xa14* showed potential medium  
234 level of resistance against *Xoo* from CX-6.1 and CX-6.5 (Table S2).

235

## 236 **Discussion**

237 RFLP (Restriction Fragment Length Polymorphism) was one of the successfully used  
238 molecular techniques for diversity studies of plant pathogens before genomic methods  
239 emerging (36-38). It was frequently used for genetic diversity of *Xoo* in several  
240 important rice-planting countries (28, 39-44). These studies had provided some new  
241 insights into the evolution and dynamics of *Xoo* population; however, many crucial  
242 details were overlooked due to the intrinsic low sensitivity and stability of the typing  
243 method. As the *Xoo* population structure were studied overly dependent on the marker  
244 genes chosen, the definite genetic relationships among *Xoo* isolates from the same and  
245 different outbreaks, the particular evolutionary history of the different clusters and  
246 different isolates, and the sophisticated connection between genetic diversity and  
247 virulence dynamics cannot be will well elaborated through these probe-dependent  
248 methods. Genome-based population genetics methods have been proved more powerful  
249 to study the diversity, evolution and dynamics of many pathogens of animals and plants  
250 (1-6, 9-13). Previous report focusing on *Xoo* from India through population genomics

251 defined 5 lineages, with each of them showing a restricted-region distribution (35).

252 Here, we focused on genomic epidemiology of *Xoo* and provided some novel insights

253 into the diversity, evolution and dynamics of this notorious plant pathogen during the

254 past 30 year in the main rice-planting areas of China. We also found that the diversity

255 and dynamics of virulence features of this pathogen population are affected by the

256 population structure, genetic background, environmental factors and human activities.

257 These findings will benefit for development of new strategies and methods for

258 surveillance and controlling this destructive rice pathogen.

259 Some *Xoo* clusters found by traditional molecular typing methods from several Asian

260 countries showed strict geographical distribution, but others were widely distributed in

261 these countries (28, 39, 42). In this study, based on population genomics, we found that

262 there is a general correspondence between the areas of *Xoo* isolated and most Asian

263 lineages and some sub-lineages in CX-5 and CX-6 (Figures 1, 3 and S2). Moreover,

264 Asian *Xoo* was reported to be very different from those of Africa and North America

265 regions (45, 46). This suggests that the geographical factors as affected by climate, soil

266 types, or the choice of different rice cultivars and varieties may influence on the

267 diversity of *Xoo*. Information of the *Xoo* host subspecies in China indicates that variety

268 of rice was one of the major factors forces on the formation and dynamics of Chinese

269 *Xoo* population. Rice varieties planting in different counties and different areas of a

270 country are determined by geographical environment, climate factors and local

271 agricultural policy.

272 Though resistance breeding of rice had effectively prevented the unprecedented

273 outbreak of BB since 1990s, sporadic outbreaks occurred in different areas of China  
274 after the year 2000 (22, 23). Genomic epidemiology analysis indicates that the recent  
275 outbreaks in different places were contributed by different lineages or sub-lineages,  
276 even some outbreaks from the same places caused by different lineages. There was no  
277 special lineage or sub-lineage spreading nationwide, partially because of the great  
278 diversity of rice varieties planting in China (<http://www.ricedata.cn>). All *Xoo* strains  
279 causing the recent epidemic outbreaks except those in CX-1 were derived from the ones  
280 leading to heavy losses in the history. On the other hand, only the minor lineage CX-4  
281 was not represented by the recent outbreaks, so the diversity of the *Xoo* population was  
282 not reduced due to wide planting of BB-resistant rice varieties. For the current practice  
283 of rice production, the major BB threat in the three rice-planting areas of China is still  
284 mainly from CX-5 and CX-6 as they were present in history, which call for different  
285 detection and prevention strategies for different areas and rice varieties.  
286 The virulence diversity of *Xoo* in China against rice was well investigated during the  
287 past 30 years, however, the relationships between population genetic structure and  
288 pathotype of *Xoo* were not explored well (22, 30, 31, 44, 47). All the tested *Xoo* strains  
289 in this study were classified into nine major pathogenic races (Figure 4a). Races of *Xoo*  
290 from South China were more diverse than those from North China and Yangtze Valley  
291 areas. In line with this, phylogenetic analysis revealed that *Xoo* from South China are  
292 more diverse compared to other places of China (Figure 1). Some rice growing regions  
293 in South China, particularly in the Yunnan province, have three harvests per year and  
294 use different rice cultivars for each harvest (48, 49). The greater genetic and virulence

295 diversity of *Xoo* thus could be caused by a greater diversity of rice cultivars in use. Our  
296 result also showed that there were diverse races in the same lineage, for example, 85%  
297 *Xoo* from lineage CX-6 could be assigned to 8 races (Figure 4d), indicating rapid  
298 virulence dynamics in the same lineage. Moreover, the isolates from the same local  
299 outbreak even belonged to different races. Although *Xoo* strains isolated in China were  
300 consistently assigned to one of the 6 Chinese lineages, the dominating population of  
301 *Xoo* races in specific areas displayed rapid dynamics and high level of diversity during  
302 the past 30 years (Tables 1 and 2). Rapid virulence dynamics with relative stability of  
303 the standing genetic variability of *Xoo* population indicates fast adaptation to host  
304 during interaction for this plant pathogen.

305 Earlier isolates were more susceptible to resistances conferred by rice resistance genes  
306 than strains isolated in later years after the resistance genes had been introduced to  
307 control BB (39, 43). In China, since the 1980s, *indica* hybrid rice (especially Shanyou  
308 63) had been planted on a large scale (50). Later, bacterial blight resistant rice varieties,  
309 mainly the *indica* rice carrying *Xa4* and *japonica* rice carrying *Xa3*, were grown on a  
310 large scale for a long time (51). Soon after these rice varieties widely used for rice  
311 production, the effectiveness of these R genes conferring resistance against infection  
312 causing by *Xoo* was significantly compromised (Table 1). Actually, the resistance  
313 abilities of these two R genes were also overcome frequently by *Xoo* population in other  
314 Asian countries (40, 42, 43). Long-term cultivation of rice varieties carrying a single  
315 resistance gene can be overcome by *Xoo*, and breeding rice varieties with multiple  
316 resistance loci can provide prolonged resistance (52-54). R gene *xa5* showed very good

317 resistance (above 95%) to *Xoo* from all lineages. Previously, isolates of *Xoo* having  
318 compatibility with *xa5* were only reported from Indian Lineages IX-I and IX-III, and  
319 some Philipps and Korea isolates (35, 55-57). The only 2 Chinese *Xoo* from Yunnan  
320 province (YN24 and YN04-5) belonging to IX-I and IX-III showed good infection  
321 ability to rice with *xa5*, suggesting putative transmission of *Xoo* from India to South  
322 China. Besides, several isolates from CX-5 and CX-6, especially those obtained  
323 recently, can overcome the resistance contributed by *xa5*, indicating different origins of  
324 these resistance compatibilities (Tables 1 and 2). Since rice variants with gene *xa5* were  
325 less used in China, the development of its compatibility could not be due to a direct  
326 selection pressure of this R gene.

327 The genetic background of *Xoo* is crucial for the interaction between *Xoo* and its host.  
328 Isolates from different lineages and sub-lineages showed distinct capabilities to fight  
329 against the same and different R genes. Overall, lineages and sub-lineages with stricter  
330 geographical distribution can be more easily defeated by R genes than the wider  
331 distributed ones (Tables 2 and S2). The underlying genetic determinations of these  
332 differences call for advanced comparative genomics and wet experiments. However,  
333 there is no lineage or sub-lineage with all isolates incompatible with one of the tested  
334 R genes, which means that *Xoo* with different genetic backgrounds can adapt to  
335 different rice hosts with variable resistances. This suggests that the introduction of new  
336 R genes could reduce the loss causing by *Xoo*, but can't change the genetic diversity of  
337 the *Xoo* population, as no lineage or sub-lineage can be eliminated thoroughly. This  
338 partially because R genes usually restrict the pathogens to the initial infection site, but

339 have no killing abilities (58).

340

341 **Materials and Methods**

342 **Genome sequencing**

343 *Xoo* strains from 3 countries were used in this study (Table S1). The major strains were  
344 isolated from China. And the represented *Xoo* strains for 4 different races from Japan  
345 and 7 different races from Philippines were also sequenced.

346 The bacterial DNA of overnight cultures (30 °C) was extracted and purified using the  
347 Easy-DNA kit (Invitrogen, USA) following the manufacturer's protocol. Total DNA  
348 was sequenced by with Illumina HiSeq 2000, 2500, or 4000 to produce pair-end reads  
349 with lengths of 100, 125 and 150 bp. For each *Xoo*, raw reads were assessed with the  
350 FastQC tool (<https://github.com/s-andrews/FastQC>) and quality filtered using  
351 Trimmomatic (<https://github.com/timflutre/trimmomatic>). The filtered reads were  
352 error-corrected by library with Quake to produce clean reads (59).

353 **Mapping and SNP calling**

354 To study the population structure of *Xoo* from China, reads from each strain sequenced  
355 was mapped onto the reference genome PXO99<sup>A</sup>, which is used as a model strain for  
356 studying the interaction between *Xoo* and rice host and is the first *Xoo* with complete  
357 genome sequence (60), using BWA (61). Variant detection was performed using  
358 Samtools mpileup (<https://github.com/samtools/samtools>) and filtered with a minimum  
359 mapping quality of 30. SNP was excluded if its coverage was less than 10% or more  
360 than 200% of the average coverage, if it was not supported by at least 5 reads on each

361 strand. Phage regions and repetitive sequences of the PXO99<sup>A</sup> genome were predicted  
362 by PHASTER (<http://phaster.ca>) and RepeatScout (<https://bix.ucsd.edu/repeatscout>),  
363 respectively. Snippy (<https://github.com/tseemann/snippy>) was used to generate the  
364 whole genome alignment of all studied *Xoo*, and then the recombination was detected  
365 by Gubbins (<https://sanger-pathogens.github.io/gubbins>) on the core genome alignment  
366 after prophage and repeat regions were filtered. SNPs located within phage regions,  
367 repetitive sequences or recombinant regions were excluded.

368 **Assembly and whole genome alignment**

369 To study the population structure of Asian *Xoo*, genomes from different locations were  
370 downloaded from the Genbank as follows: 100 from India, 9 from Philippines, 1 from  
371 South Korea and 1 from Japan (34, 35). We performed genome assembly from all the  
372 strains sequenced in this study. For each strain, the pair-end clean reads were assembled  
373 using Spades (62). After few evaluations, different sets of k-mer values were chosen  
374 for Spades according to different read lengths. The final assemblies were obtained by  
375 filtering out contigs with few reads supported or with lengths lower than 200 bp (Table  
376 S1). Whole genome alignment was carried out on all the genomes obtained from public  
377 database and assembled here by Parsnp (63) using the genome of PXO99<sup>A</sup> as reference.  
378 Core SNPs were extracted from the core genome alignment by snp-sites  
379 (<https://github.com/sanger-pathogens/snp-sites>). Recombination of the core genome  
380 alignment was inferred by Gubbins. The final SNPs were obtained by filtering out the  
381 prophage region and repeat sequences mentioned above, and the recombined regions  
382 predicted here.

383 **Phylogenetic analysis**

384 The SNPs-based maximum likelihood (ML) phylogenies were built by RAxML with  
385 the generalized time-reversible model and a Gamma distribution to model site-specific  
386 rate variation (64). Bootstrap support values were calculated from 500 replicates. *Xoo*  
387 population structure of China was defined with the hierBAPS module of the BAPS  
388 software, which delineates the population structure by nested clustering (65). Three  
389 independent iterations with upper population sizes of 5, 10, and 15 were used to obtain  
390 optimal clustering of the population. Phylogenetic trees were annotated and visualized  
391 by iTOL (<https://itol.embl.de/>).

392 **Virulence evaluation of *Xoo* strains**

393 Virulence of *Xoo* was assessed by inoculating 6 near-isogenic rice lines, each carrying  
394 a specific R gene, IRBB2 (*Xa2*), IRBB3 (*Xa3*), IRBB4 (*Xa4*), IRBB5 (*xa5*), IRBB14  
395 (*Xa14*) and IR24 (*Xa18*). IR24 was used as a susceptible check. Seeds of all lines in  
396 this study were obtained from the China National Rice Research Institute (CNRRI).

397 Three weeks after sowing on a seedbed, seedlings were uprooted and transplanted into  
398 the field. The management of the rice plants in the field was proceeded as usual.  
399 Bacterial strain was cultivated on NA plates at 28 °C for 48 h. Then the bacterial  
400 colonies were suspended in sterile ddH<sub>2</sub>O with concentration adjusted to 3 × 10<sup>8</sup> cfu/ml  
401 before inoculation. The leaf-clipping method was used to test the virulence of all the  
402 *Xoo* strains (66). Fifteen top fully expanded leaves per rice plant were inoculated with  
403 each strain. The lesions length was measured after 21 days post inoculation. The ratio  
404 of the lesion length compared to the whole leaf length was calculated as described

405 previously (31). When the ratio of the rice line was lower than 1/4, the rice line was  
406 classified as resistant (R); when the ratios were between 1/4 and 1, the rice line was  
407 rated as susceptible (S). The lesion length 14 days following inoculation was also  
408 measured and used to compare with the data obtained 7 days later.

409 **Data access**

410 Sequence data generated for this study have been submitted to the NCBI Sequence Read  
411 Archive under BioProject accession PRJNA350904.

412

413 **Acknowledgments**

414 This work was supported by National Key Research and Development Program of  
415 China (2017YFD0201100), National Natural Science Foundation of China (NSFC)  
416 (31770003, 31571974 and 31801697), Fundamental Research Funds for the Central  
417 University (2662018JC015 and 2662016QD039), Science and Technology Department  
418 of Hubei Province (2017CFB438) and Special Fund for Agro-scientific Research in the  
419 Public Interest (201303015). Michael Gänzle and Jens Walter are acknowledged for  
420 critical feedback on the manuscript.

421

422 **Conflict of Interest**

423 The authors declare no conflict of interest.

424

425 **Reference**

426 1. Didelot X, Walker AS, Peto TE, Crook DW, & Wilson DJ (2016) Within-host evolution of  
427 bacterial pathogens. *Nat. Rev. Microbiol.* 14(3):150-162.

428 2. Baker S, Thomson N, Weill FX, & Holt KE (2018) Genomic insights into the emergence and  
429 spread of antimicrobial-resistant bacterial pathogens. *Science* 360(6390):733-738.

430 3. Feasey NA, *et al.* (2016) Distinct *Salmonella Enteritidis* lineages associated with enterocolitis  
431 in high-income settings and invasive disease in low-income settings. *Nat. Genet.* 48(10):1211-  
432 1217.

433 4. Okoro CK, *et al.* (2012) Intracontinental spread of human invasive *Salmonella Typhimurium*  
434 pathovariants in sub-Saharan Africa. *Nat. Genet.* 44(11):1215-1221.

435 5. Weill FX, *et al.* (2017) Genomic history of the seventh pandemic of cholera in Africa. *Science*  
436 358(6364): 785-789.

437 6. Coll F, *et al.* (2018) Genome-wide analysis of multi- and extensively drug-resistant  
438 *Mycobacterium tuberculosis*. *Nat. Genet.* 50(2):307-316.

439 7. Gardy JL & Loman NJ (2018) Towards a genomics-informed, real-time, global pathogen  
440 surveillance system. *Nat. Rev. Genet.* 19(1):9-20.

441 8. Quainoo S, *et al.* (2017) Whole-Genome Sequencing of Bacterial Pathogens: the Future of  
442 Nosocomial Outbreak Analysis. *Clin. Microbiol. Rev.* 30(4):1015-1063.

443 9. Zhong Z, *et al.* (2018) Population genomic analysis of the rice blast fungus reveals specific  
444 events associated with expansion of three main clades. *ISME J* 12(8):1867-1878.

445 10. Baltrus DA, McCann HC, & Guttman DS (2017) Evolution, genomics and epidemiology of  
446 *Pseudomonas syringae*: Challenges in Bacterial Molecular Plant Pathology. *Mol. Plant Pathol.*  
447 18(1):152-168.

448 11. Brader G, *et al.* (2017) Ecology and Genomic Insights into Plant-Pathogenic and Plant-  
449 Nonpathogenic Endophytes. *Annu. Rev. Phytopathol.* 55:61-83.

450 12. Hartmann FE & Croll D (2017) Distinct Trajectories of Massive Recent Gene Gains and Losses  
451 in Populations of a Microbial Eukaryotic Pathogen. *Mol. Biol. Evol.* 34(11):2808-2822.

452 13. Hartmann FE, Sanchez-Vallet A, McDonald BA, & Croll D (2017) A fungal wheat pathogen  
453 evolved host specialization by extensive chromosomal rearrangements. *ISME J* 11(5):1189-  
454 1204.

455 14. Mansfield J, *et al.* (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. *Mol.*  
456 *Plant Pathol.* 13(6):614-629.

457 15. Mew T, Alvarez A, Leach J, & Swings J (1993) Focus on bacterial blight of rice. *Plant Dis.*  
458 77:5-12.

459 16. Mew T (1987) Current status and future prospects of research on bacterial blight of rice. *Annu.*  
460 *Rev. Phytopathol.* 25:359-382.

461 17. Fang Z (1963) *Rice Bacterial Blight* (Jiangsu People Press).

462 18. Zhang Q (2009) Genetics and Improvement of Bacterial Blight Resistance of Hybrid Rice in  
463 China. *Rice Science* 16(2):83-92.

464 19. Pradhan SK, *et al.* (2015) Pyramiding of three bacterial blight resistance genes for broad-  
465 spectrum resistance in deepwater rice variety, Jalmagna. *Rice (N Y)* 8(1):51.

466 20. Kottapalli KR, Lakshmi Narasu M, & Jena KK (2010) Effective strategy for pyramiding three  
467 bacterial blight resistance genes into fine grain rice cultivar, Samba Mahsuri, using sequence  
468 tagged site markers. *Biotechnol. Lett.* 32(7):989-996.

469 21. Huang N, *et al.* (1999) Pyramiding of bacterial blight resistance genes in rice: marker-assisted  
470 selection using RFLP and PCR. *Theor. Appl. Genet.* 95(3):313-320.

471 22. Liu H, Yang W, Hu B, & Liu F (2007) Virulence analysis and race classification of *Xanthomonas*

472                   *oryzae* pv. *oryzae* in China. *J. Phytopathol.* 155(3):129-135.

473   23. Chen XL, *et al.* (2012) Elevational Variation in Diversity of *Xanthomonas oryzae* pv. *oryzae* in  
474                   South-West China. *J. Phytopathol.* 160(6):261-268.

475   24. NODA T, YAMAMOTO T, KAKU H, & HORINO O (1996) Geographical Distribution of  
476                   Pathogenic Races of *Xanthomonas oryzae* pv. *oryzae* in Japan in 1991 and 1993. *Ann*  
477                   *Phytopathol Soc Jpn* 62:549-553.

478   25. Liu H, Yang W, Hu B, & Liu F (2007) Virulence Analysis and Race Classification of  
479                   *Xanthomonas oryzae* pv. *oryzae* in China. *J Phytopathol* 155(3):129-135.

480   26. Li G, Song C-F, Pang X-M, Yang Y, & Wang J-S (2008) Analysis of Pathotypic and Genotypic  
481                   Diversity of *Xanthomonas oryzae* pv. *oryzae* in China. *J Phytopathol* 154(4):208-218.

482   27. Jeung JU, Heu SG, Shin MS, Vera Cruz CM, & Jena KK (2006) Dynamics of *Xanthomonas*  
483                   *oryzae* pv. *oryzae* Populations in Korea and Their Relationship to Known Bacterial Blight  
484                   Resistance Genes. *Phytopathol.* 96(8):867-875.

485   28. Adhikari TB, Mew TW, & Leach JE (1999) Genotypic and pathotypic diversity in *Xanthomonas*  
486                   *oryzae* pv. *oryzae* in Nepal. *Phytopathol.* 89(8):687-694.

487   29. Mishra D, *et al.* (2013) Pathotype and genetic diversity amongst Indian isolates of *Xanthomonas*  
488                   *oryzae* pv. *oryzae*. *PLoS One* 8(11):e81996.

489   30. Li G, Song CF, Pang XM, Yang Y, & Wang JS (2009) Analysis of Pathotypic and Genotypic  
490                   Diversity of *Xanthomonas oryzae* pv. *oryzae* in China. *J. Phytopathol.* 157(4):208-218.

491   31. Fang Z, *et al.* (1990) Studies on pathotypes of *Xanthomonas campestris* pv. *oryzae* in China.  
492                   *Acta Phytopathol Sin* 20:81-88.

493   32. Huang X, *et al.* (2012) A map of rice genome variation reveals the origin of cultivated rice.  
494                   *Nature* 490(7421):497-501.

495   33. Kovach MJ, Sweeney MT, & McCouch SR (2007) New insights into the history of rice  
496                   domestication. *Trends Genet.* 23(11):578-587.

497   34. Quibod IL, *et al.* (2016) Effector Diversification Contributes to *Xanthomonas oryzae* pv. *oryzae*  
498                   Phenotypic Adaptation in a Semi-Isolated Environment. *Sci. Rep.* 6:34137..

499   35. Midha S, *et al.* (2017) Population genomic insights into variation and evolution of *Xanthomonas*  
500                   *oryzae* pv. *oryzae*. *Sci. Rep.* 7:40694.

501   36. Tzeng TH, Lyngholm LK, Ford CF, & Bronson CR (1992) A Restriction-Fragment-Length-  
502                   Polymorphism Map and Electrophoretic Karyotype of the Fungal Maize Pathogen  
503                   Cochliobolus-Heterostrophus. *Genetics* 130(1):81-96.

504   37. Hulbert SH, *et al.* (1988) Genetic-Analysis of the Fungus, Bremia-Lactucae, Using Restriction  
505                   Fragment Length Polymorphisms. *Genetics* 120(4):947-958.

506   38. Lazo GR, Roffey R, & Gabriel DW (1987) Pathovars of *Xanthomonas-Campestris* Are  
507                   Distinguishable by Restriction-Fragment-Length-Polymorphism. *Int. J. Syst. Bacteriol.*  
508                   37(3):214-221.

509   39. Mishra D, *et al.* (2013) Pathotype and Genetic Diversity amongst Indian Isolates of  
510                   *Xanthomonas oryzae* pv. *oryzae*. *PLoS One* 8(11).

511   40. Leach JE, *et al.* (1992) Assessment of Genetic Diversity and Population-Structure of  
512                   *Xanthomonas-Oryzae* Pv *Oryzae* with a Repetitive DNA Element. *Appl. Environ. Microbiol.*  
513                   58(7):2188-2195.

514   41. George MLC, Bustamam M, Cruz WT, Leach JE, & Nelson RJ (1997) Movement of  
515                   *Xanthomonas oryzae* pv *oryzae* in southeast Asia detected using PCR-based DNA fingerprinting.

516 42. *Phytopathol.* 87(3):302-309.

517 42. Adhikari TB, *et al.* (1995) Genetic Diversity of *Xanthomonas-Oryzae* Pv *Oryzae* in Asia. *Appl. Environ. Microbiol.* 61(3):966-971.

518 43. Nelson RJ, *et al.* (1994) Relationship between Phylogeny and Pathotype for the Bacterial-Blight

519 Pathogen of Rice. *Appl. Environ. Microbiol.* 60(9):3275-3283.

520 44. Zhang Q, Leach JE, Nelson RJ, & Mew TW (1997) Genetic Structure of Rice Bacterial Blight

521 Pathogen Population in China. *Acta Agronomica Sinica* 23(02):150-158.

522 45. Triplett LR, *et al.* (2011) Genomic analysis of *Xanthomonas oryzae* isolates from rice grown in

523 the United States reveals substantial divergence from known *X. oryzae* pathovars. *Appl. Environ.*

524 *Microbiol.* 77(12):3930-3937.

525 46. Gonzalez C, *et al.* (2007) Molecular and pathotypic characterization of new *Xanthomonas*

526 *oryzae* strains from West Africa. *Mol. Plant. Microbe Interact.* 20(5):534-546.

527 47. Yang SQ, *et al.* (2013) Molecular and pathogenic characterization of new *Xanthomonas oryzae*

528 pv. *oryzae* strains from the coastline region of Fangchenggang city in China. *World J. Microbiol.*

529 *Biotechnol.* 29(4):713-720.

530 48. Tu M, Lu BR, Zhu Y, & Wang Y (2007) Abundant within-varietal genetic diversity in rice

531 germplasm from Yunnan Province of China revealed by SSR fingerprints. *Biochem. Genet.*

532 45(11-12):789-801.

533 49. Xiong ZY, *et al.* (2010) Differentiation and distribution of indica and japonica rice varieties

534 along the altitude gradients in Yunnan Province of China as revealed by InDel molecular

535 markers. *Genet. Resour. Crop Evol.* 57(6):891-902.

536 50. Chen S, Lin XH, Xu CG, & Zhang QF (2000) Improvement of bacterial blight resistance of

537 'Minghui 63', an elite restorer line of hybrid rice, by molecular marker-assisted selection. *Crop*

538 *Sci.* 40(1):239-244.

539 51. Xu Z, *et al.* (2004) Race monitoring of rice bacterial blight (*Xanthomonas oryzae* pv. *oryzae*) in

540 China. *Chin J Rice Sci* 18:469-472.

541 52. Joseph M, *et al.* (2004) Combining bacterial blight resistance and Basmati quality

542 characteristics by phenotypic and molecular marker-assisted selection in rice. *Mol. Breed.*

543 13(4):377-387.

544 53. Sundaram RM, *et al.* (2008) Marker assisted introgression of bacterial blight resistance in

545 Samba Mahsuri, an elite indica rice variety. *Euphytica* 160(3):411-422.

546 54. Basavaraj SH, *et al.* (2010) Marker-assisted improvement of bacterial blight resistance in

547 parental lines of Pusa RH10, a superfine grain aromatic rice hybrid. *Mol. Breed.* 26(2):293-305.

548 55. Carpenter SCD, *et al.* (2018) A Strain of an Emerging Indian *Xanthomonas oryzae* pv. *oryzae*

549 Pathotype Defeats the Rice Bacterial Blight Resistance Gene *xa13* Without Inducing a Clade III

550 SWEET Gene and Is Nearly Identical to a Recent Thai Isolate. *Front. Microbiol.* 9:2703.

551 56. Huang S, *et al.* (2016) The broadly effective recessive resistance gene *xa5* of rice is a virulence

552 effector-dependent quantitative trait for bacterial blight. *Plant J.* 86(2):186-194.

553 57. Jeung JU, Heu SG, Shin MS, Cruz CMV, & Jena KK (2006) Dynamics of *Xanthomonas oryzae*

554 pv. *oryzae* populations in Korea and their relationship to known bacterial blight resistance genes.

555 *Phytopathol.* 96(8):867-875.

556 58. Shen YW & Ronald P (2002) Molecular determinants of disease and resistance in interactions

557 of *Xanthomonas oryzae* pv. *oryzae* and rice. *Microb. Infect.* 4(13):1361-1367.

558 59. Kelley DR, Schatz MC, & Salzberg SL (2010) Quake: quality-aware detection and correction

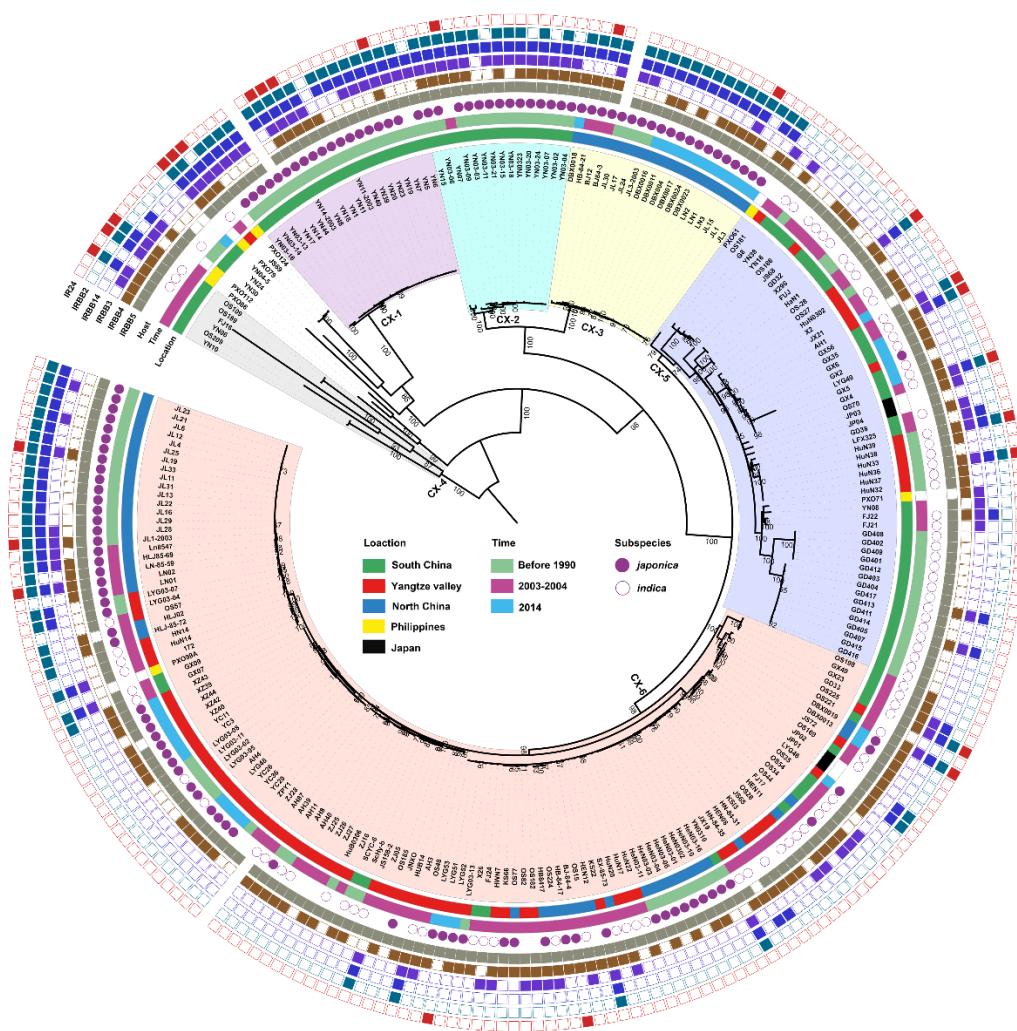
560 of sequencing errors. *Genome Biol.* 11(11):R116.

561 60. Salzberg SL, *et al.* (2008) Genome sequence and rapid evolution of the rice pathogen  
562 *Xanthomonas oryzae* pv. *oryzae* PXO99A. *BMC Genomics* 9:204.

563 61. Li H & Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler  
564 transform. *Bioinformatics* 25(14):1754-1760.

565 62. Bankevich A, *et al.* (2012) SPAdes: A New Genome Assembly Algorithm and Its Applications  
566 to Single-Cell Sequencing. *J. Comput. Biol.* 19(5):455-477.

567 63. Treangen TJ, Ondov BD, Koren S, & Phillippy AM (2014) The Harvest suite for rapid core-  
568 genome alignment and visualization of thousands of intraspecific microbial genomes. *Genome  
569 Biol.* 15(11):524.


570 64. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of  
571 large phylogenies. *Bioinformatics* 30(9):1312-1313.

572 65. Cheng L, Connor TR, Siren J, Aanensen DM, & Corander J (2013) Hierarchical and Spatially  
573 Explicit Clustering of DNA Sequences with BAPS Software. *Mol. Biol. Evol.* 30(5):1224-1228.

574 66. Kauffman H, Reddy A, Hsieh S, & Merca S (1973) An improved technique for evaluating  
575 resistance of rice varieties to *Xanthomonas oryzae*. *Plant Dis Rep* 57:737-741.

576

577



578

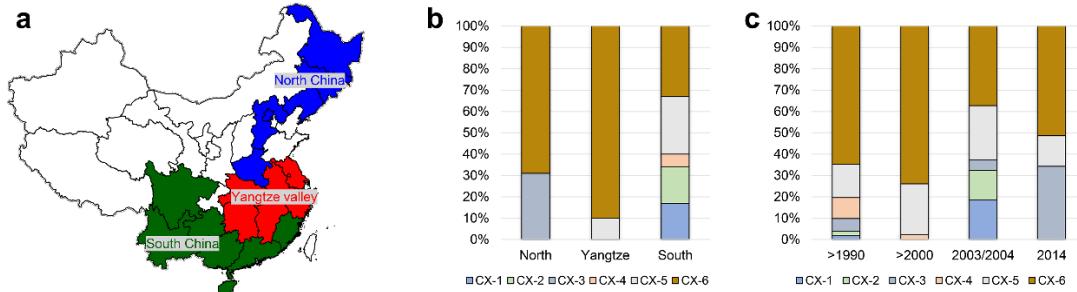
579 **Figure 1 Population structure of *X. oryzae* pv. *oryzae*.** The maximum likelihood tree was inferred

580 by RAxML with the generalized time-reversible model and a Gamma distribution to model site-

581 specific rate variation based on the core SNPs of all the *Xoo* genome sequences. The six lineages

582 were decorated with different colors. From inner to outer, the first circle refers to major rice planting

583 areas, the second one describes isolated times of these strains and the third one represents the rice


584 subspecies which the *Xoo* strain isolates. The outmost 6 squares represent the virulence analysis of

585 these *Xoo* against 6 different rice near-isogenic lines with one known resistance gene in each line,

586 with solid square for resistance and hollow one for sensitivity. Bootstrap support values were

587 calculated from 500 replicates, and only values of > 70% were labelled.

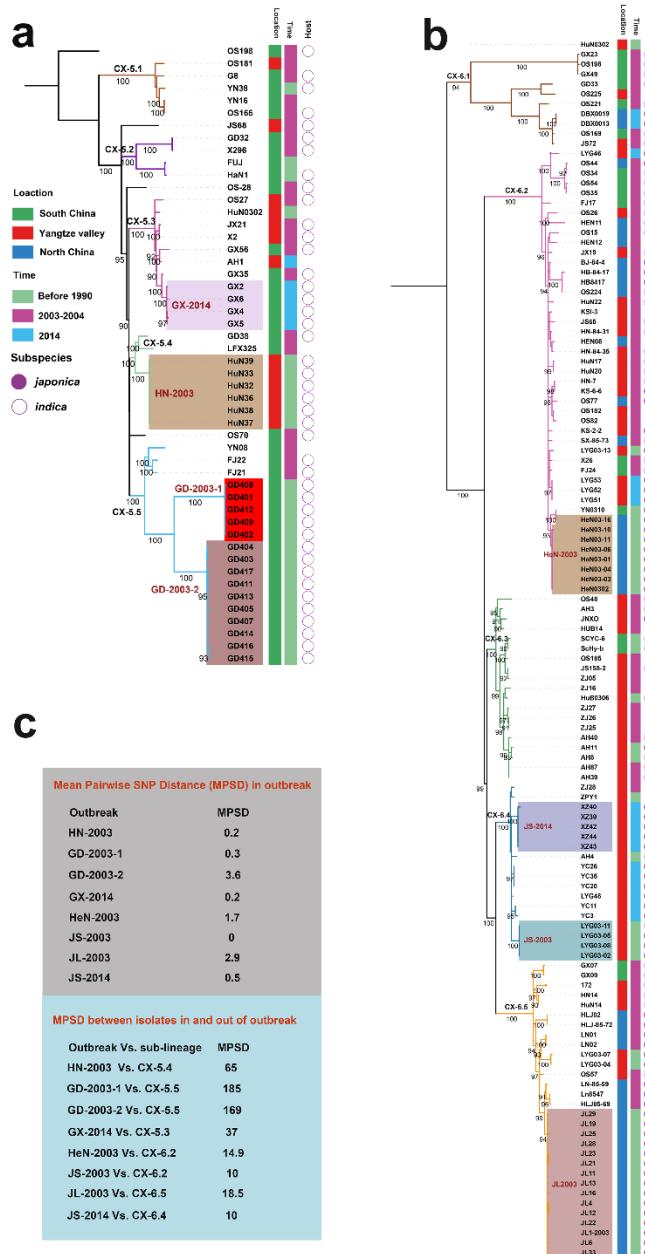
588



589

590 **Figure 2 Distribution of the 6 major Chinese *X. oryzae* pv. *oryzae* lineages. Pathotypes of *Xoo***

591 were determined on the following 13 near-isogenic lines, each carrying a specific R gene, IRBB2

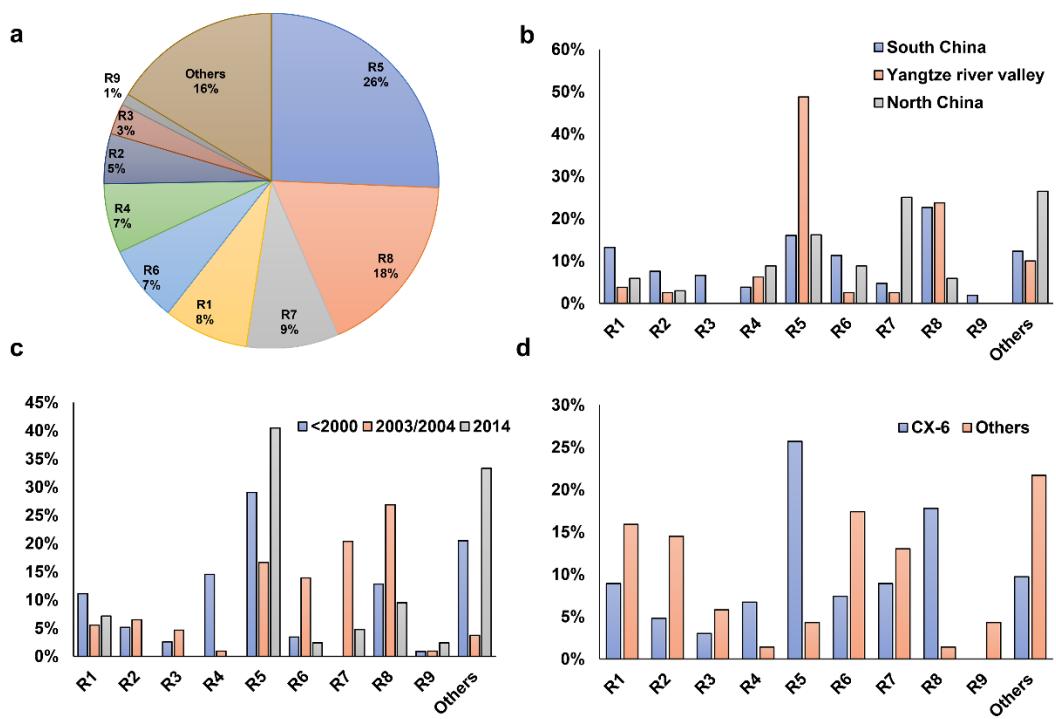

592 (Xa2), IRBB3 (Xa3), IRBB4 (Xa4), IRBB5 (xa5), IRBB14 (Xa14). IR24 was used as a susceptible

593 check. (a) The map of the 3 major rice producing areas in China. (b) Distribution of the 6 *Xoo*

594 lineages among the 3 rice planting areas. (c) Dynamics of the 6 *Xoo* lineages during the past 30

595 years.

596




597

598 **Figure 3 Phylogeography of CX-5 and CX-6.** Maximum likelihood phylogeny of Lineage CX-5

599 (a) and CX-6 (b). Different sub-lineages were displayed by different branch colors. Bootstrap  
600 support values were calculated from 500 replicates. The recent outbreaks are represented by  
601 different backgrounds. Isolated information of *Xoo* including location, time and rice subspecies  
602 were shown in three colored strips. (c) Mean Pairwise SNP Distances (MPSDs) of *Xoo* from the  
603 outbreak, and between one in an outbreak and the other one out of the outbreak but in the same sub-  
604 lineage were displayed by two different boxes beside the tree.

605



606

607 **Figure 4 Virulence analysis and race classification of *X. oryzae* pv. *oryzae* China. Pathogenicity**  
608 profile of each race corresponding to was shown in Table S1. (a) Proportions of the 9 *Xoo* races. (b)  
609 Distribution of the 9 races among the 3 major rice planting areas in China. (c) Dynamics of the 9  
610 *Xoo* races during the past 40 years. (d) Distribution of the 9 races in Lineage CX-6 and others.  
611  
612

613

614 **Table 1 Resistance of different rice lines to *Xoo* strains isolated at different times.**

615 Shown is the percentage of *Xoo* strains isolated at different periods that are unable to  
616 cause disease.

| Time<br>(# of strains) | IRBB2<br>( <i>Xa2</i> ) | IRBB3<br>( <i>Xa3</i> ) | IRBB4<br>( <i>Xa4</i> ) | IRBB5<br>( <i>xa5</i> ) | IRBB14<br>( <i>Xa14</i> ) | IR24<br>( <i>Xa18*</i> ) |
|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------------|--------------------------|
| <1990 (35)             | 37                      | 0                       | 97                      | 94                      | 25                        | 20                       |
| <2000 (69)             | 25                      | 58                      | 64                      | 100                     | 28                        | 12                       |
| 2003/2004 (97)         | 49                      | 35                      | 34                      | 100                     | 56                        | 7                        |
| 2014 (42)              | 36                      | 5                       | 79                      | 90                      | 33                        | 5                        |

617 \*: Recurrent parent *Xa18*

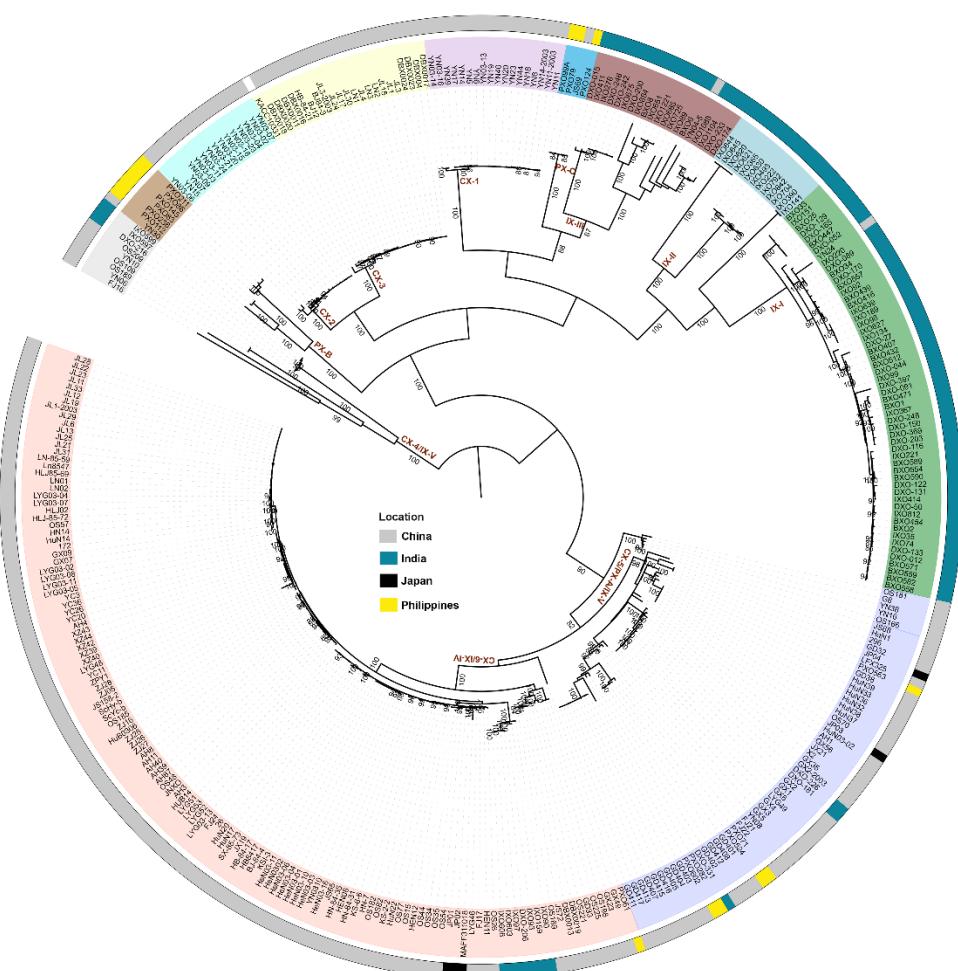
618

619

620 **Table 2 Resistance of different rice lines to *Xoo* strains of different lineages.** Shown  
621 is the percentage of *Xoo* strains of different lineages that are unable to cause disease.

| Lineage<br>(# of strains) | IRBB2<br>( <i>Xa2</i> ) | IRBB3<br>( <i>Xa3</i> ) | IRBB4<br>( <i>Xa4</i> ) | IRBB5<br>( <i>xa5</i> ) | IRBB14<br>( <i>Xa14</i> ) | IR24<br>( <i>Xa18*</i> ) |
|---------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------------|--------------------------|
| CX-1 (19)                 | 89                      | 79                      | 42                      | 100                     | 95                        | 21                       |
| CX-2 (15)                 | 73                      | 93                      | 80                      | 100                     | 100                       | 7                        |
| CX-3 (20)                 | 100                     | 20                      | 70                      | 100                     | 99                        | 10                       |
| CX-5 (53)                 | 11                      | 32                      | 47                      | 96                      | 17                        | 11                       |
| CX-6 (123)                | 29                      | 25                      | 62                      | 98                      | 28                        | 6                        |

622 \*: Recurrent parent *Xa18*. CX-4 was not included because of few isolates it contained.


623

624 **Supplementary Information**

625 Figure S1

626 Tables S1 and S2

627



628

629

630 analysis, parsnp was used to call SNPs, and RAxML was used to build the ML tree. Background  
631 colors of nodes represent different lineages. The outmost circle refers to different countries where  
632 *Xoo* were isolated.

633

634

635

636 **Table S2 Resistance of different rice lines to *Xoo* strains of different sub-lineages**  
637 **of CX-5 and CX-6.** Shown is the percentage of *Xoo* strains of different lineages that  
638 are unable to cause disease.

| Lineage<br>(# of strains) | IRBB2<br>( <i>Xa2</i> ) | IRBB3<br>( <i>Xa3</i> ) | IRBB4<br>( <i>Xa4</i> ) | IRBB5<br>( <i>xa5</i> ) | IRBB14<br>( <i>Xa14</i> ) | IR24<br>( <i>Xa18</i> *) |
|---------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------------|--------------------------|
| CX-5.1 (5)                | 0                       | 20                      | 20                      | 100                     | 0                         | 0                        |
| CX-5.3 (12)               | 25                      | 25                      | 67                      | 92                      | 17                        | 17                       |
| CX-5.4 (8)                | 25                      | 50                      | 75                      | 100                     | 28                        | 25                       |
| CX-5.5 (18)               | 0                       | 28                      | 28                      | 100                     | 28                        | 0                        |
| CX-6.1(10)                | 30                      | 30                      | 90                      | 100                     | 50                        | 20                       |
| CX-6.2 (47)               | 13                      | 38                      | 79                      | 98                      | 23                        | 4                        |
| CX-6.3 (18)               | 10                      | 17                      | 68                      | 100                     | 11                        | 0                        |
| CX-6.4 (18)               | 0                       | 0                       | 61                      | 94                      | 0                         | 0                        |
| CX-6.5(31)                | 90                      | 32                      | 29                      | 97                      | 74                        | 10                       |

639 \*: Recurrent parent *Xa18*. CX-5.2 was not included because of few isolates it contained.

640

641