

1 **Title:** Standardizing the determination and interpretation of P_{crit} in fishes

2 **Running title:** Critical oxygen tension in fish

3

4 Jessica E. Reemeyer and Bernard B. Rees

5 Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148

6

7 **Corresponding author:** brees@uno.edu

8

9 **Key words:** critical oxygen tension, oxygen consumption, aerobic metabolism, *Fundulus*

10 *grandis*, killifish, hypoxia

11

12 **Summary statement:** Methods to determine the oxygen level that limits aerobic metabolism by

13 fishes were evaluated resulting in specific recommendations for future research.

14 **Abstract:** For most fishes, there is an oxygen level, the critical oxygen tension (P_{crit}), below
15 which oxygen consumption (M_{O_2}) becomes dependent upon ambient oxygen partial pressure
16 (P_{O_2}). We compare multiple curve-fitting approaches to estimate P_{crit} of the Gulf killifish,
17 *Fundulus grandis*, during closed and intermittent-flow respirometry. The traditional approach
18 fitting two line segments of M_{O_2} versus P_{O_2} produced high and variable estimates of P_{crit} .
19 Nonlinear regression using hyperbolic or Weibull functions resulted in either variable P_{crit}
20 estimates or, in some cases, failed to converge upon meaningful solutions. P_{crit} determined as the
21 P_{O_2} when M_{O_2} equals standard metabolic rate (SMR) based upon a linear relationship of M_{O_2} and
22 P_{O_2} at low P_{O_2} were consistent across fish and experimental trials. Therefore, we recommend
23 that P_{crit} specifically refer to the P_{O_2} below which SMR cannot be maintained. Its determination,
24 therefore, requires accurate measurement of SMR.

25 **INTRODUCTION**

26 There is considerable interest in describing the oxygen dependence of aerobic metabolism of
27 animals, especially for animals from aquatic habitats where the oxygen concentration is much
28 lower and more variable than in terrestrial habitats. Determination of this oxygen dependence is
29 particularly relevant in the current context of human-induced environmental change, where
30 increased nutrient input, warmer temperatures, and changes in hydrology have increased the
31 geographic scope and severity of aquatic hypoxia (Diaz and Rosenberg 2008, Rabalais et al.,
32 2010).

33 Perhaps the most common metric of the oxygen dependence of aerobic metabolism is the
34 critical oxygen tension, P_{crit} . For an animal that is capable of regulating its metabolism over a
35 broad range of oxygen levels (an oxy-regulator), P_{crit} represents the P_{O_2} where oxygen
36 consumption (M_{O_2}) switches from being independent to being dependent on P_{O_2} with further
37 decreases in ambient oxygen (Ultsch et al., 1981; Rogers et al., 2016; Wood, 2018).

38 Alternatively, P_{crit} has been defined as the P_{O_2} below which an animal's basic metabolic needs,
39 i.e. standard metabolic rate (SMR) in fishes, can no longer be sustained aerobically (Claireaux
40 and Chabot, 2016; Thuy et al., 2010; Pan et al., 2016; Snyder et al., 2016; Wong et al., 2017).
41 This level of oxygen was originally described by Fry and Hart (1948) as the "level of no excess
42 activity". Although related, these two concepts of P_{crit} differ because the former depends upon
43 the intensity of metabolism, whereas the latter applies to the level of oxygen that limits a specific
44 metabolic state (Claireaux and Chabot, 2016).

45 Recently, Wood (2018) questioned the usefulness of the P_{crit} concept based on two main
46 concerns: uncertainty of its biological meaning and lack of standardization in its determination.
47 The purpose of this study is not to argue the biological relevance of P_{crit} , as this concern has been

48 addressed (Regan et al., 2019): rather, the purpose of this study is to evaluate analytical methods
49 used to determine P_{crit} from respirometric data. Traditionally, P_{crit} has been estimated the
50 intersection of two straight lines, one fit to a region where M_{O_2} is relatively independent of P_{O_2}
51 and a second line describing the decrease in M_{O_2} at low P_{O_2} (Yeager and Ultsch 1989; Rogers et
52 al., 2016). Because respirometric data rarely conform neatly to two straight lines across a broad
53 range of P_{O_2} , alternative linear or nonlinear regression solutions to determine P_{crit} have been
54 proposed (Marshall et al., 2013; Claireaux and Chabot, 2016; Cobbs and Alexander, 2018). Here,
55 we measured M_{O_2} as a function of P_{O_2} in closed and intermittent respirometry with the Gulf
56 killifish, *Fundulus grandis*, and applied multiple curve-fitting methods to estimate P_{crit} . Based
57 upon our results, we recommend that P_{crit} be determined as the P_{O_2} at which M_{O_2} equals SMR,
58 which can be done with simple linear regression of M_{O_2} versus P_{O_2} at low P_{O_2} (Claireaux and
59 Chabot, 2016). For this method to be general and reproducible, it is imperative that SMR be
60 accurately determined (Chabot et al., 2016).

61

62 MATERIALS AND METHODS

63 Animals

64 Adult male *F. grandis* (n=11) were purchased from local bait shops in the summer of 2018 and
65 housed at the University New Orleans under a 12:12 (light:dark) photoperiod in aerated, filtered
66 1/3 strength seawater (salinity \approx 10) at \sim 27 °C. Fish were fed an amount of flake fish food equal
67 to 1 – 1.5% of their body mass once per day. Fish were identified by unique PIT tags (Reemeyer
68 et al., 2019) or housed individually. Fish were maintained under these conditions for at least one
69 month before experiments. All procedures were approved by the University of New Orleans
70 Institutional Animal Care and Use Committee (Protocol # 18-006).

71 **Respirometry**

72 Each fish was used in a sequence of three respirometry trials. Trials 1 and 2 employed
73 intermittent respirometry to estimate SMR and RMR (Svendsen et al., 2016), followed by closed
74 respirometry to estimate P_{crit} . In Trial 3, neither SMR nor RMR was determined, and P_{crit} was
75 determined by intermittent respirometry. Trials were separated by approximately one week and
76 they were performed at $27.0 \pm 0.5^\circ\text{C}$ in 1/3 strength seawater. Oxygen consumption (M_{O_2}) by
77 fish was determined as previously described (Reemeyer et al., 2019) and outlined below. Fish
78 were starved for 24 h prior to respirometry.

79 For Trials 1 and 2, fish were weighed (to the nearest 0.01 g) and placed into respirometry
80 chambers between 14:00-15:00. For the first hour, the following intermittent respirometry
81 protocol was used: 60 s flush; 30 s wait; and 120 s M_{O_2} measurement. At that point, the protocol
82 was adjusted to 300 s flush, 60 s wait, and 240 s M_{O_2} measurement, which was continued for
83 approximately 14 h. Throughout the combined ~ 15 h period, P_{O_2} was maintained at $>85\%$ of the
84 air-saturated value. At 06:00 the following morning, the flush pumps were turned off. At that
85 point, the chambers, recirculating pumps, and oxygen sensors formed closed systems, and the
86 P_{O_2} declined due to M_{O_2} by the fish. During the closed period, M_{O_2} was measured over
87 consecutive 60 s intervals until the fish were unable to maintain equilibrium for ≥ 3 s. At that
88 point, the flush pumps were turned on to reoxygenate the chambers. The total time the chambers
89 remained closed ranged from 45 and 108 min. All fish recovered upon reoxygenation,
90 whereupon they were returned to their holding tank.

91 For Trial 3, fish were weighed (to the nearest 0.01 g) and placed in respirometry
92 chambers between 15:00 and 16:00. Chambers were flushed continuously with well aerated
93 water ($> 95\%$ air-saturation) until 21:00. At that time, the P_{O_2} was stepped down at 1 h intervals

94 by introducing nitrogen gas via a computer-controlled solenoid valve. Target values of P_{O_2} were
95 20.75 kPa, 13.07 kPa, 8.30 kPa, 5.19 kPa, 3.32 kPa, 2.07 kPa. Over the last 30 min at each P_{O_2} ,
96 M_{O_2} was measured in three cycles of 300 s flush, 60 s wait, 240 s measurement. Trials ended
97 around 03:00, after which the water was reoxygenated with air. After 30 min recovery, fish were
98 returned to their holding tanks. Importantly, all P_{crit} determinations were done during the dark
99 phase of the photoperiod. The only illumination was that required to operate the computer (e.g.,
100 to start a closed respirometry trial or to activate nitrogen gassing in the intermittent trials), from
101 which fish chambers were shielded.

102 M_{O_2} due to microbial respiration was measured before and after each trial and the M_{O_2} by
103 each fish was corrected by subtracting a time-weighted background respiration (Reemeyer et al.,
104 2019; Rosewarne et al., 2016). After background correction, M_{O_2} by fish was determined as
105 $\mu\text{mol min}^{-1} \text{ g}^{-1}$ using standard equations for intermittent respirometry (Svendsen et al., 2016). All
106 oxygen concentrations were corrected for salinity, barometric pressure, and temperature.

107 **SMR and RMR determination**

108 We evaluated seven methods of estimating SMR (Chabot et al., 2016) using M_{O_2} data collected
109 between 20:00 and 06:00 in Trials 1 and 2, corresponding to 60 M_{O_2} measurements per fish per
110 trial: the mean of the lowest 10 data points (low10); the mean of the lowest 10% of the data, after
111 removing the five lowest values (low10pc); quantiles that place SMR above the lowest 10-25%
112 of the observations ($q_{0.1}$, $q_{0.15}$, $q_{0.2}$, $q_{0.25}$); and the mean of the lowest normal distribution
113 (MLND). SMR estimated by low10 was lowest, although not statistically different from
114 low10pc, $q_{0.1}$, $q_{0.15}$, or $q_{0.2}$ (Table S1). In addition to providing a low value for SMR, the
115 calculated value ought to agree with visual inspection of the raw data (Chabot et al., 2016). SMR
116 values estimated by $q_{0.2}$ and $q_{0.25}$ best agreed with the distribution of M_{O_2} from more trials than

117 any other estimate. The analytical method also should be reproducible when applied to data
118 generated from multiple trials with the same fish. SMR determined as $low10pc$, $q_{0.15}$, and $q_{0.2}$
119 were more highly correlated between Trial 1 and 2 (Pearson's $r > 0.80$) than SMR determined by
120 other methods (Pearson's $r < 0.80$). As a final test of the robustness of SMR determination, we
121 pooled all the data from 22 trials on 11 fish to generate a frequency distribution of 1320 M_{O_2}
122 values and then randomly sampled from this distribution to generate 1000 sets of 60 M_{O_2} data
123 points (as in the experimental trials). When SMR was calculated from these randomly generated
124 datasets, $q_{0.2}$ and $q_{0.25}$ produced the fewest statistical outliers (Fig. S1). Only the $q_{0.2}$ approach
125 satisfied all of the criteria—it generated a low estimate of SMR; it agreed with the distribution of
126 raw M_{O_2} data; it was reproducible in repeated trials with the same fish; and it produced consistent
127 values when applied to randomly generated datasets. Therefore, SMR determined by this
128 approach was used for the remainder of these analyses. We also calculated routine metabolic rate
129 (RMR), which includes spontaneous, uncontrolled activity in an otherwise quiet, post-absorptive
130 fish, by taking the average of all 60 M_{O_2} values collected between 20:00 and 06:00. Neither SMR
131 nor RMR were determined for Trial 3 due to a limited number of M_{O_2} measurements at normal
132 air saturation. Hence, for P_{crit} determination in Trial 3 (see below), SMR or RMR for each fish
133 was determined as its mean SMR or RMR from Trials 1 and 2.

134 **P_{crit} determination**

135 We compared the following curve-fitting methods to describe M_{O_2} as a function of P_{O_2} : broken-
136 stick regression (BSR); nonlinear regression fit to a hyperbolic function, analogous to the
137 Michalis Menten equation (MM); nonlinear regression fit to the Weibull function (W); and a
138 linear function of M_{O_2} measured at low P_{O_2} (LLO). BSR was done using the Segmented package

139 in R (Muggeo 2003). The `nls()` function of the base R package (R Core Team, 2017) was used to
140 fit data to the MM and W functions. The MM function has the general form:

141

$$MO_2 = \frac{aPO_2}{b + PO_2}$$

142 where MO_2 is metabolic rate, PO_2 is oxygen tension, and a and b are constants (V_{max} and K_M ,
143 respectively, when applied to enzyme kinetics). The W function is:

144

$$MO_2 = a \left(1 - e^{-\left(\frac{PO_2}{b}\right)^c} \right) + d$$

145 where MO_2 is metabolic rate, PO_2 is oxygen tension, and a , b , c , and d are constants. Because
146 neither function has a parameter strictly equivalent to P_{crit} , we report the value of b for the MM
147 function (i.e., the PO_2 when MO_2 is 50% of the maximum MO_2 extrapolated from that trial), and
148 for both the MM and W functions, we determined the PO_2 at which MO_2 equals SMR or RMR.
149 The last method (LLO) used the `lm()` function of the R base package (R Core Team, 2017) to fit
150 a linear relationship between MO_2 and PO_2 to data collected after MO_2 fell below that individual's
151 SMR. From this relationship, we determined the PO_2 where MO_2 equals SMR or RMR.

152 Importantly, SMR and RMR were determined during a previous overnight (~10 h)
153 intermittent respirometry experiment, rather than from MO_2 determined during the P_{crit} trial,
154 when fish might become agitated and display increased MO_2 . In addition, BSR, M, and W used
155 all the MO_2 data collected during a given trial without subjective data elimination; LLO used only
156 a subset of data (6-12 values) determined below the PO_2 when MO_2 fell below SMR. For all
157 methods, the PO_2 for a given MO_2 was calculated as the mean PO_2 over the measurement period (1
158 min for closed respirometry; 4 min for intermittent respirometry). Data for a representative fish,
159 along with the methods for determining P_{crit} , are shown in Figure 1.

160

161 **Statistics**

162 All statistical analyses were done in R v3.3.3 (R Core Team, 2017). The effects of analytical
163 method (i.e., method used to calculate SMR or P_{crit}) were determined within a given trial using
164 linear mixed models (LMM) with analytical method as a fixed factor and fish as a random factor.
165 All LMMs were fit using the lmer() function of the lme4 package (Bates et al., 2014) with p -
166 values generated by the lmerTest package (Kuznetsova et al., 2017). All possible *post hoc*
167 pairwise comparisons were made with *t*-tests on model fit means and employed p -values
168 adjusted for false discovery using the emmeans package in R (Benjamini and Hochberg, 1995;
169 Lenth 2018). Paired *t*-tests were used to compare of P_{crit} values based upon SMR and RMR
170 within the MM, W, and LLO methods. The effects of respirometry method (closed versus
171 intermittent) on the value of P_{crit} determined by a given analytical method were evaluated with
172 LMM with respirometry method as a fixed factor and fish as a random factor. Correlation among
173 values determined by a single analytical method across respirometry trials were evaluated with
174 Pearson's correlation coefficient (r).

175

176 **RESULTS AND DISCUSSION**

177 **Models used to estimate P_{crit}**

178 The pattern of M_{O_2} versus P_{O_2} among fishes and other aquatic vertebrates has
179 traditionally been modelled by the intersection of two straight lines (Yeager and Ultsch, 1989).
180 In the present study, P_{crit} values estimated by BSR were among the highest and most variable
181 estimates, including several that were >10 kPa (Fig. 2 and Table 1). In addition, P_{crit} values
182 estimated by BSR were poorly reproducible between respirometry trials conducted with the same
183 individuals under identical (closed respirometry) conditions (Table S2). These results are likely

184 due to the variability of M_{O_2} at levels of P_{O_2} that do not limit oxygen uptake (i.e., at $P_{O_2} > P_{crit}$),
185 as well as the tendency in some individuals for M_{O_2} to increase as P_{O_2} decreased from 20 to 5
186 kPa, resulting in a poor linear fit of M_{O_2} data at high P_{O_2} and influencing the intersection of two
187 line segments. This variability occurred even though P_{crit} trials were conducted after > 24 h
188 fasting, after 8-12 h since transferring fish to the respirometer, and during the dark phase of the
189 photoperiod, when this species is less active. Owing to the variability of M_{O_2} at high P_{O_2} , the use
190 of BSR is frequently coupled with removal of M_{O_2} data points that fail to meet certain criteria
191 (see Claireaux and Chabot, 2016 and Wood, 2018 for examples). This practice has raised
192 concern over the rationale and validity of applying data selection criteria (Claireaux and Chabot,
193 2016; Wood, 2018). In addition, direct comparisons of BSR with various non-linear regression
194 approaches have shown that BSR is seldom the best model to fit M_{O_2} data across a range of P_{O_2}
195 (Marshall et al., 2013; Cobbs and Alexander, 2018). Indeed, in a recent meta-analysis, BSR was
196 the best model in only one out of 68 datasets fit with various statistical models (Cobbs and
197 Alexander, 2018).

198 With the advent and accessibility of nonlinear regression methods, it is possible to fit a
199 variety of nonlinear functions to M_{O_2} data. Here, we focussed on two nonlinear models, a
200 hyperbolic function, analogous to the Michaelis-Menton equation for enzyme kinetics, and the
201 Weibull function. Although the relationship between M_{O_2} and P_{O_2} in biological material as
202 diverse as mitochondria to fishes can be hyperbolic (Tang, 1933; Gnaiger, 1993; Marshall et al.,
203 2013), M_{O_2} by *F. grandis* was poorly described by a hyperbolic function (Fig. 1). In addition,
204 there is no consensus on what parameter of the MM function best describes the oxygen
205 dependence of M_{O_2} . The parameter b is the P_{O_2} when M_{O_2} is half of the extrapolated maximum
206 M_{O_2} in that particular trial. Using b as an estimate of P_{crit} for closed respirometry yielded values

207 that were reproducible among individuals (Fig. 2A,B), as well as between trials (Table S2), but
208 were highly variable for intermittent respirometry (Fig. 2C). Also, it is not clear that this
209 parameter has any particular meaning when applied to whole animal M_{O_2} , unlike its meaning in
210 enzyme kinetics (Regan et al., 2019). In addition, the use of the parameter b assumes that the
211 model fits the data well and that the upper asymptote of the MM function represents a definite,
212 physiological maximum, neither of which were true in this study. Thus, we also used the
213 equation of the hyperbolic function to estimate the P_{O_2} when M_{O_2} equals SMR, which resulted in
214 high and variable estimates of P_{crit} (Fig. 2 and Table 1). Finally, the MM function also returned
215 values which were either negative or above air-saturation in 10-20% of the datasets.

216 In their meta-analysis, Marshall et al. (2013) found that the Weibull function fit
217 respirometric data better than other nonlinear functions, including the MM function. In the
218 current study, the W function fit data from closed respirometry quite well, especially at low P_{O_2}
219 (Fig. 1). Like the MM function, though, there is no parameter of the W function that is analogous
220 to P_{crit} . Marshall et al. (2013) suggested that P_{crit} of a nonlinear function be estimated as the P_{O_2}
221 were the slope of the function approaches zero. In their analysis, the value of 0.065 was chosen
222 as the slope giving a P_{O_2} that “best approximates P_{crit} ”. This is a circular argument and requires
223 prior knowledge of P_{crit} , presumably based upon BSR. Rather than estimate an inflection point,
224 we used the derived equation to determine the P_{O_2} at which M_{O_2} equalled SMR for each
225 individual. For closed respirometry, this approach yielded highly reproducible values of P_{crit}
226 similar to those determined by other methods in this study (Table S2). In contrast, for nearly half
227 of the intermittent respirometry trials the W function failed to converge, severely limiting the
228 usefulness of this approach. In addition, some software packages do not include nonlinear
229 regression or they arrive at different solutions for the same dataset (personal observations).

230 For many fishes, the decline in M_{O_2} at low P_{O_2} is well described as a linear function of
231 ambient oxygen, despite the variable and nonlinear relationship at higher P_{O_2} (e.g., Claireaux and
232 Chabot, 2016; Snyder et al., 2016). This was also the case in *F. grandis*, during both closed and
233 intermittent respirometry (Fig. 1). Using the linear relationship between M_{O_2} and P_{O_2} at low P_{O_2} ,
234 P_{crit} was determined as the value of P_{O_2} when M_{O_2} equals SMR. This approach (LLO) yielded
235 values similar to the MM method (based upon b), the W method, and previously published
236 values for *F. grandis* (Virani and Rees, 2000). However, unlike the nonlinear methods, the LLO
237 method successfully estimated P_{crit} values for all fish in all trials. In addition, this method is
238 straight-forward and easy to implement, as long as SMR is accurately determined.

239 **An alternative to inflection point to determine P_{crit}**

240 With an equation for the relationship between M_{O_2} on P_{O_2} , whether it be linear or
241 nonlinear, it is possible to determine the value of P_{O_2} for a specific value of M_{O_2} rather than
242 estimate an inflection point. In this approach, two critical issues must be addressed: the function
243 must adequately describe the data and one must select the value of M_{O_2} to interpolate. For many
244 species, the relationship between M_{O_2} and P_{O_2} at low P_{O_2} values is well described by a straight
245 line (current study; Affonso and Rantin 2005; Pan et al., 2016; Snyder et al., 2016; Thuy et al.,
246 2010; Wong et al., 2017). With respect to the value of M_{O_2} to use to solve for P_{crit} , we and others
247 advocate the use of SMR (Claireaux and Chabot, 2016). If oxygen drops below this level, the
248 fish cannot sustain its minimal metabolic requirements via aerobic metabolism, thus representing
249 a clear physiological limitation. Among fishes, RMR is more commonly used to determine P_{crit}
250 (Rogers et al., 2016). This metabolic state includes routine, spontaneous activity, which may be
251 more ecologically relevant than SMR (Fry and Hart, 1948; Rogers et al., 2016; Wood, 2018). For
252 comparison, we also determined P_{crit} based upon RMR using the MM, W, and LLO functions

253 (Fig. 1 and Table 1). Because RMR includes an undetermined level of activity, these estimates
254 were significantly higher and generally more variable than P_{crit} based upon SMR. In addition,
255 use of RMR complicates the interpretation of P_{crit} variation among individuals, experimental
256 trials, or species: because this variation reflects differences in activity, comparisons of P_{crit} based
257 upon RMR could obscure fundamental differences in oxygen extraction capacity. Indeed, Wong
258 et al. (2017) found significant differences in P_{crit} among multiple species of Triggerfishes when
259 using SMR to calculate P_{crit} , but not when using RMR to estimate P_{crit} .

260 **Recommendations**

261 Based upon our results with *F. grandis* and the foregoing discussion, we propose that P_{crit}
262 be defined as the P_{O_2} where M_{O_2} equals SMR. This recommendation requires that SMR be
263 determined with high accuracy and using robust analytical techniques that yields a low value but
264 is insensitive to occasional low outliers, agrees with the distribution of raw M_{O_2} data, and is
265 reproducible across multiple trials (Chabot et al., 2016). In the current experiments, the $q_{0.2}$
266 method satisfied these criteria. Once SMR is determined, P_{crit} may then be determined in a
267 continuation of the same experiment or in a different experiment if SMR is repeatable over time
268 (Reemeyer et al., 2019). We recommend that P_{crit} be estimated as the P_{O_2} where M_{O_2} equals
269 SMR based upon a linear relationship of M_{O_2} and P_{O_2} at low P_{O_2} (i.e., the LLO method). The
270 trial to determine P_{crit} can employ either closed or intermittent respirometry, as long as the
271 experiment includes enough data points below SMR to provide a good linear fit. In the current
272 study, P_{crit} deduced by the LLO method was lower, but not statistically so, when determined by
273 closed respirometry compared to intermittent respirometry. Interestingly, although P_{crit} values
274 were highly correlated between replicate trials of closed respirometry, they were not correlated
275 between either trial of closed respirometry and the single trial of intermittent respirometry (Table

276 S2). Both observations support the idea that respirometry method may influence P_{crit} (Regan and
277 Richards, 2017; Snyder et al., 2016). Notwithstanding, the current study shows that method used
278 to calculate P_{crit} is as important as respirometry format, highlighting the need to standardize
279 analytical as well as experimental approaches in assessing the oxygen dependence of
280 metabolism.

281

282 **Acknowledgements**

283 We thank Mohammad Hamed for help with animal care.

284

285 **Competing interests**

286 The authors have no competing interests.

287

288 **Funding**

289 This work was supported by the Greater New Orleans Foundation.

290

291 **Data availability**

292 Data and associated R script have been deposited at figshare.com

293 (<https://doi.org/10.6084/m9.figshare.8869253.v1>).

294

295 **REFERENCES**

296 **Affonso, E. G. and Rantin, F. T.** (2005). Respiratory responses of the air-breathing fish
297 *Hoplosternum littorale* to hypoxia and hydrogen sulfide. *Comp. Biochem. Physiol. Part C*
298 *Toxicol. Pharmacol.* **141**, 275–280.

299 **Bates, D., Mächler, M., Bolker, B. and Walker, S.** (2014). Fitting Linear Mixed-Effects
300 Models using lme4. *J. Stat. Softw.* **67**.

301 **Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N. and Golani, I.** (2001). Controlling the false
302 discovery rate in behavior genetics research. *Behav. Brain Res.* **125**, 279–84.

303 **Chabot, D., Steffensen, J. F. and Farrell, A. P.** (2016). The determination of standard
304 metabolic rate in fishes. *J. Fish Biol.* **88**, 81–121.

305 **Claireaux, G. and Chabot, D.** (2016). Responses by fishes to environmental hypoxia:
306 integration through Fry's concept of aerobic metabolic scope. *J. Fish Biol.* **88**, 232–251.

307 **Cobbs, G. A. and Alexander, J. E.** (2018). Assessment of oxygen consumption in response to
308 progressive hypoxia. *PLoS One* **13**, e0208836.

309 **Diaz, R. J. and Rosenberg, R.** (2008). Spreading dead zones and consequences for marine
310 ecosystems. *Science* **321**, 926–929.

311 **Gnaiger, E.** (1993). Adaptations to winter hypoxia in a shallow alpine lake. Ecophysiological
312 energetics of *Cyclops abyssorum* and rainbow trout. *Verh. Dtsch. Zool. Ges.* **86**, 43–65.

313 **Hart, F. E. J. and Fry, T. S.** (1948). The relation of temperature to oxygen consumption in the
314 goldfish. *Biol. Bull.* **94**, 66–77.

315 **Kuznetsova, A., Brockhoff, P. B. and Christensen, R. H. B.** (2017). lmerTest package: tests in
316 linear mixed effects models. *J. Stat. Softw.* **82**.

317 **Lenth, R.** (2019). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package
318 version 1.3.3. <https://CRAN.R-project.org/package=emmeans>

319 **Marshall, D. J., Bode, M. and White, C. R.** (2013). Estimating physiological tolerances - a
320 comparison of traditional approaches to nonlinear regression techniques. *J. Exp. Biol.* **216**,
321 2176–2182.

322 **Muggeo, V. M. R.** (2003). Estimating regression models with unknown break-points. *Stat. Med.*
323 **22**, 3055–3071.

324 **Pan, Y. K., Ern, R. and Esbaugh, A. J.** (2016). Hypoxia tolerance decreases with body size in
325 red drum *Sciaenops ocellatus*. *J. Fish Biol.* **89**, 1488–1493.

326 **Rabalais, N. N., Diaz, R. J., Levin, L. A., Turner, R. E., Gilbert, D. and Zhang, J.** (2010).
327 Dynamics and distribution of natural and human-caused hypoxia. *Biogeosciences* **7**, 585–
328 619.

329 **Reemeyer, J. E., Harris, J. C., Hernandez, A. M. and Rees, B. B.** (2019). Effects of passive
330 integrated transponder tagging on cortisol release, aerobic metabolism and growth of the
331 Gulf killifish *Fundulus grandis*. *J. Fish Biol.* **94**, 422–433.

332 **Regan, M. D., Mandic, M., Dhillon, R. S., Lau, G. Y., Farrell, A. P., Schulte, P. M., Seibel,
333 B. A., Speers-Roesch, B., Ultsch, G. R. and Richards, J. G.** (2019). Don't throw the fish
334 out with the respirometry water. *J. Exp. Biol.* **222**, jeb200253.

335 **Regan, M. D. and Richards, J. G.** (2017). Rates of hypoxia induction alter mechanisms of O₂
336 uptake and the critical O₂ tension of goldfish. *J. Exp. Biol.* **220**, 2536–2544.

337 **Rogers, N. J., Urbina, M. A., Reardon, E. E., McKenzie, D. J. and Wilson, R. W.** (2016). A
338 new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (P_{crit}).
339 *Conserv. Physiol.* **4**, cow012.

340 **Rosewarne, P. J., Wilson, J. M. and Svendsen, J. C.** (2016). Measuring maximum and
341 standard metabolic rates using intermittent-flow respirometry: a student laboratory
342 investigation of aerobic metabolic scope and environmental hypoxia in aquatic breathers. *J.
343 Fish Biol.* **88**, 265–283.

344 **Snyder, S., Nadler, L. E., Bayley, J. S., Svendsen, M. B. S., Johansen, J. L., Domenici, P.
345 and Steffensen, J. F.** (2016). Effect of closed v. intermittent-flow respirometry on hypoxia
346 tolerance in the shiner perch *Cymatogaster aggregata*. *J. Fish Biol.* **88**, 252–264.

347 **Svendsen, M. B. S., Bushnell, P. G., Christensen, E. A. F. and Steffensen, J. F.** (2016).
348 Sources of variation in oxygen consumption of aquatic animals demonstrated by simulated
349 constant oxygen consumption and respirometers of different sizes. *J. Fish Biol.* **88**, 51–64.

350 **Tang, P.-S.** (1933). On the rate of oxygen consumption by tissues and lower organisms as a
351 function of oxygen tension. *Q. Rev. Biol.* **8**, 260–274.

352 **Thuy, N. H., Tien, L. A., Tuyet, P. N., Huong, D. T. T., Cong, N. V., Bayley, M., Wang, T.
353 and Lefevre, S.** (2010). Critical oxygen tension increases during digestion in the perch
354 *Perca fluviatilis*. *J. Fish Biol.* **76**, 1025–1031.

355 **Ultsch, G.R., Jackson, D.C. and Moalli, R.J.** (1981) Metabolic oxygen conformity among
356 lower vertebrates—the toadfish revisited. *J. Comp. Physiol.* **142**, 439-443.

357 **Virani, N. A. and Rees, B. B.** (2000). Oxygen consumption, blood lactate and inter-individual
358 variation in the gulf killifish, *Fundulus grandis*, during hypoxia and recovery. *Comp.
359 Biochem. Physiol. - A Mol. Integr. Physiol.* **126**, 397–405.

360 **Wong, C. C., Drazen, J. C., Callan, C. K. and Korsmeyer, K. E.** (2018). Hypoxia tolerance in
361 coral-reef triggerfishes (*Balistidae*). *Coral Reefs* **37**, 215–225.

362 **Wood, C. M.** (2018). The fallacy of the P_{crit} – are there more useful alternatives? *J. Exp. Biol.*
363 **221**, jeb163717.

364 **Yeager, D. P. and Ultsch, G. R.** (1989). Physiological regulation and conformation: a BASIC
365 program for the determination of critical points. *Physiol. Zool.* **62**, 888–907.

366 Table 1. Comparison of analytical method and respirometry format on the determination of P_{crit}
367 (kPa; means \pm SD) of the Gulf killifish, *Fundulus grandis*. Sample sizes (n) were 11, except
368 where noted in parentheses.

369

	Trial 1 (closed)	Trial 2 (closed)	Trial 3 (intermittent)
BSR	5.8 ± 2.7^a	5.5 ± 2.6^a	6.6 ± 6.4
MM (b)	2.7 ± 0.7^b	3.1 ± 1.3^b	$7.9 \pm 3.5^{**}(10)$
MM (SMR)	4.9 ± 2.3^a	$4.5 \pm 2.1^{a,b}$	$4.0 \pm 2.5(9)$
W (SMR)	3.2 ± 0.5^b	3.2 ± 0.7^b	$3.1 \pm 0.8(6)$
LLO (SMR)	3.3 ± 0.6^b	3.3 ± 0.7^b	4.0 ± 1.9
MM (RMR)	$8.5 \pm 4.6^*$	$9.9 \pm 5.4^*$	$5.2 \pm 3.1^*(8)$
W (RMR)	$3.7 \pm 0.7^*$	$3.8 \pm 0.6^*$	$3.3 \pm 0.7^*(6)$
LLO (RMR)	$3.6 \pm 0.7^*$	$3.8 \pm 0.7^*$	$4.7 \pm 2.3^*$

370

371 Means with different superscript letters are significantly different within a trial (t -test, $p < 0.05$,
372 false discovery corrected).

373 *Significantly different from value estimated based upon SMR for the same analytical method
374 within that trial (paired t -test, $p < 0.05$).

375 **Significantly higher than values determined by MM (b) method during closed respirometry
376 (linear mixed model, $p < 0.05$).

377 **Figure Legends**

378 **Fig. 1. Model fits of each P_{crit} calculation method for a single *Fundulus grandis* used in**
379 **three respirometry trials.** Each row represents one experimental Trial: Fig. 1A-D, Trial 1
380 (closed respirometry); Fig. 1E-H, Trial 2 (closed respirometry); Fig. 1I-L, Trial 3 (intermittent
381 respirometry). Each column represents one P_{crit} calculation methods: Fig. 1A, E, I, BSR where
382 two linear segments were fit to the data (solid orange lines) and P_{crit} is the P_{O_2} at their
383 intersection (dashed orange line); Fig. 1B,F,J, nonlinear regression using the M function (solid
384 red line) and P_{crit} is the P_{O_2} equal to b (analogous to K_{M} in enzyme kinetics), or P_{O_2} when M_{O_2}
385 equals SMR or RMR; Fig. 1C,G,K, nonlinear regression using the W function (solid blue line)
386 and P_{crit} is the P_{O_2} when M_{O_2} equals SMR or RMR; Fig. 1D,H,L, linear regression of M_{O_2} versus
387 P_{O_2} at $M_{\text{O}_2} \leq \text{SMR}$ (LLO method, solid purple line) and P_{crit} is the P_{O_2} when M_{O_2} equals SMR or
388 RMR. For M, W, and LLO methods, SMR and RMR for this individual are shown by horizontal
389 dashed and dotted lines, respectively. P_{crit} estimates are shown in the respective panels.

390

391 **Fig. 2. P_{crit} estimated by different analytical methods for *Fundulus grandis* in closed (Fig.**
392 **2A,B) and intermittent (2C) respirometry.** Median values are indicated by the center line,
393 upper and lower quartiles are upper and lower box boundaries, and the full data range are the
394 whiskers (after removal of outliers, solid circles). P_{crit} estimates with different letters are
395 significantly different within a trial (t-test, $p < 0.05$, false discovery corrected). Sample sizes (n)
396 are 11 for each method in Fig. 2A, B, but varied among methods in Fig. 2C: BSR, n=11; MM(b),
397 n=10; MM(SMR), n=9; W(SMR), n=6; LLO, n=11.

398

399 **Supplementary Material**

400 Table S1. Standard metabolic rate ($\mu\text{mol O}_2 \text{ min}^{-1} \text{ g}^{-1}$; means \pm SD) of the Gulf killifish,
401 *Fundulus grandis*, estimated by multiple calculation methods (see Materials and Methods and
402 Chabot et al., 2016) from two respirometry trials using the same fish. For comparison, routine
403 metabolic rate (RMR) was determined as the mean M_{O_2} during each trial. Sample size = 11.

404

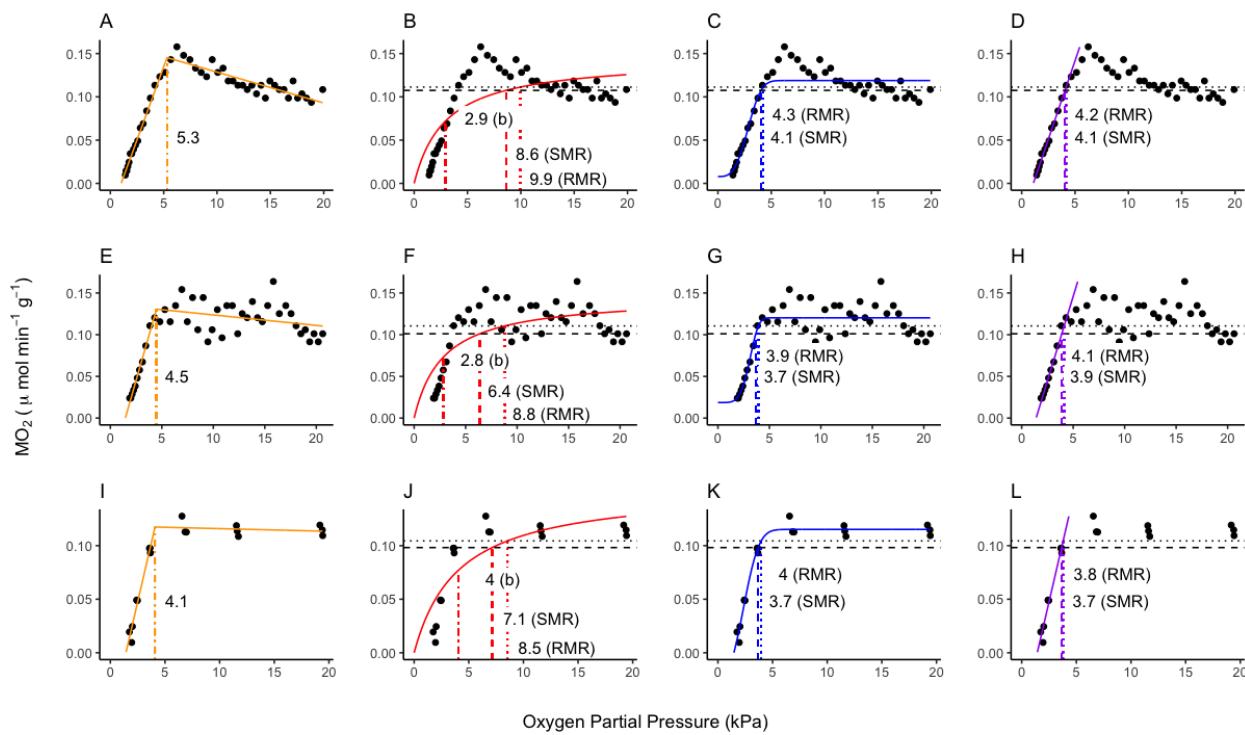
	Trial 1	Trial 2
low10	$0.092 \pm 0.012^{\text{a}}$	$0.090 \pm 0.011^{\text{a}}$
low10pc	$0.093 \pm 0.013^{\text{a,b,c}}$	$0.092 \pm 0.012^{\text{a,b}}$
q _{0.1}	$0.093 \pm 0.013^{\text{a,b}}$	$0.091 \pm 0.011^{\text{a,b}}$
q _{0.15}	$0.094 \pm 0.013^{\text{a,b,c}}$	$0.093 \pm 0.012^{\text{a,b,c}}$
q _{0.2}	$0.096 \pm 0.014^{\text{a,b,c}}$	$0.096 \pm 0.012^{\text{a,b,c}}$
q _{0.25}	$0.097 \pm 0.013^{\text{b,c}}$	$0.096 \pm 0.012^{\text{b,c}}$
MLND	$0.098 \pm 0.014^{\text{c}}$	$0.099 \pm 0.014^{\text{c}}$
RMR	$0.110 \pm 0.021^{\text{d}}$	$0.116 \pm 0.021^{\text{d}}$

405

406 Means with different superscript letters are significantly different within a trial (*t*-tests on linear
407 mixed model means, $p < 0.05$ false discovery corrected).

408 Table S2: Pearson's correlation coefficients, r , comparing P_{crit} determined by various analytical
409 techniques using data from multiple respirometry trials performed on the same individuals.
410 Sample size are shown in parentheses (n).

411

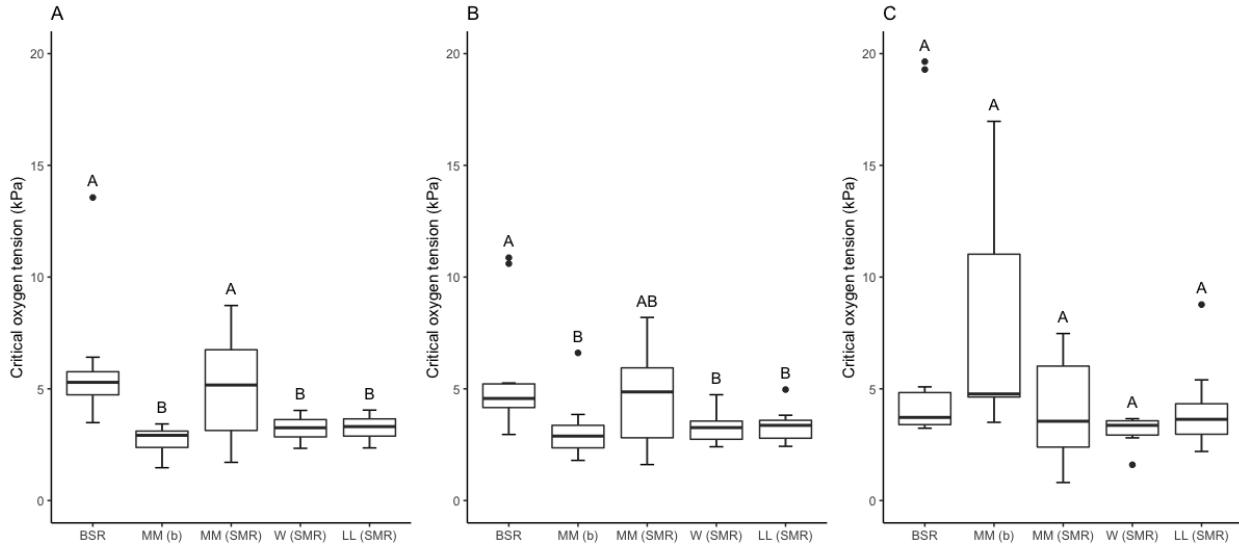

	Trials 1 vs 2	Trials 1 vs 3	Trials 2 vs 3
BSR	0.18 (11)	-0.10 (11)	0.34 (11)
MM (b)	0.73* (11)	0.54 (10)	0.43 (10)
MM (SMR)	0.83* (11)	-0.10 (9)	-0.35 (9)
W (SMR)	0.75* (11)	0.85* (6)	0.82* (6)
LLO (SMR)	0.74* (11)	-0.12 (11)	-0.29 (11)
MM (RMR)	0.39 (11)	0.57 (9)	0.32 (8)
W (RMR)	0.62* (11)	-0.09 (6)	-0.62 (6)
LLO (RMR)	0.73* (11)	0.14 (11)	-0.13 (11)

412

413 * $p < 0.05$

414 **Fig. S1. Standard metabolic rate (SMR) of *Fundulus grandis* calculated by different**
415 **analytical methods from 1000 randomly generated datasets.** All M_{O_2} data from closed
416 respirometry (1320 M_{O_2} values measured across a range of P_{O_2}) were pooled and randomly
417 sampled to generate 1000 sets of 60 M_{O_2} values each. SMR was then calculated with the
418 following methods: the mean of the lowest 10 data points (low10); the mean of the lowest 10%
419 of the data after removing the 5 lowest points (low10pc); the 10 – 25% quantiles ($q_{0.1}$, $q_{0.15}$, $q_{0.2}$,
420 $q_{0.25}$); and the mean of the lowest normal distribution (MLND) after fitting multiple normal
421 distributions to the data (Chabot et al., 2016). For comparison, routine metabolic rate (RMR) was
422 also calculated as the mean of all 60 M_{O_2} values for each dataset. The whisker and box plots
423 show the median (center line), upper and lower quartiles (upper and lower box boundaries), and
424 full data range (whiskers) after removal of outliers (solid circles).

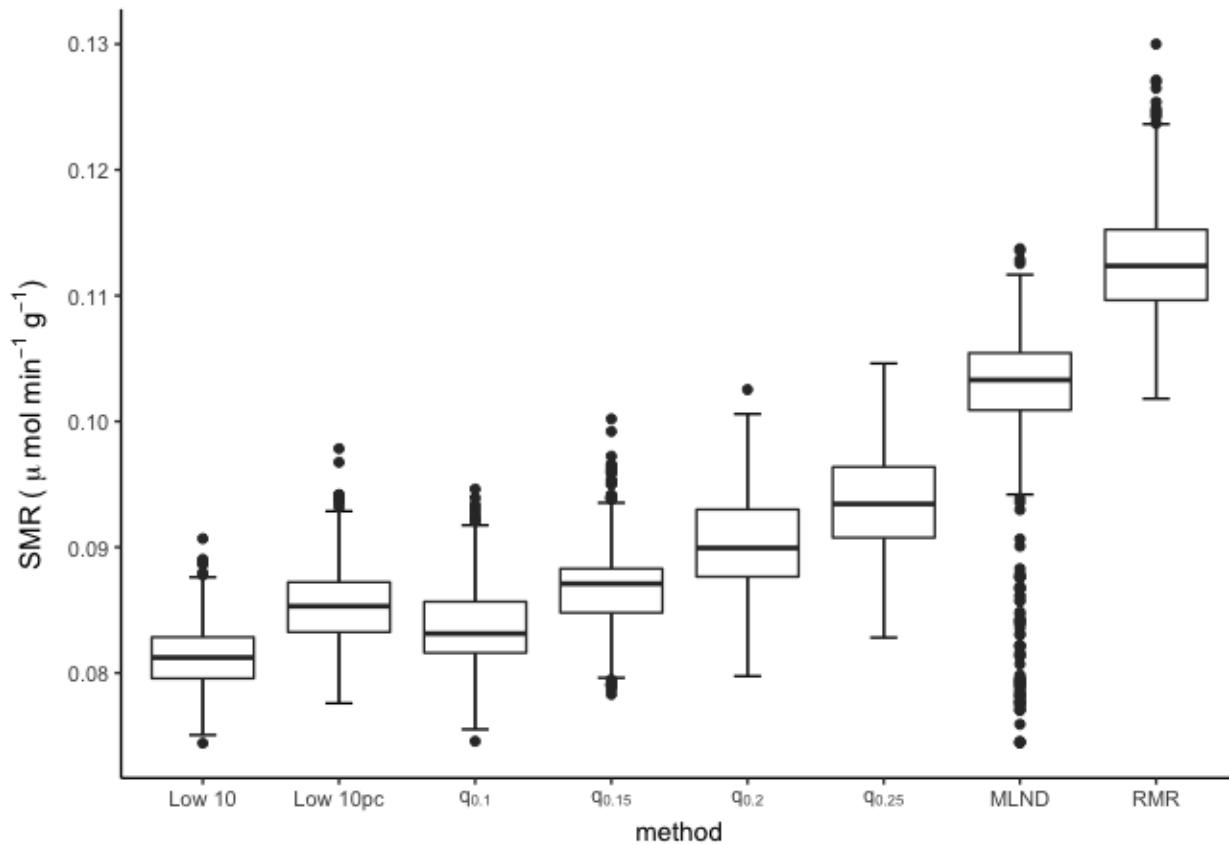
425



426

Oxygen Partial Pressure (kPa)

427 **Fig. 1. Model fits of each P_{crit} calculation method for a single *Fundulus grandis* used in**
428 **three respirometry trials.** Each row represents one experimental Trial: Fig. 1A-D, Trial 1
429 (closed respirometry); Fig. 1E-H, Trial 2 (closed respirometry); Fig. 1I-L, Trial 3 (intermittent
430 respirometry). Each column represents one P_{crit} calculation methods: Fig. 1A, E, I, BSR where
431 two linear segments were fit to the data (solid orange lines) and P_{crit} is the P_{O_2} at their
432 intersection (dashed orange line); Fig. 1B,F,J, nonlinear regression using the M function (solid
433 red line) and P_{crit} is the P_{O_2} equal to b (analogous to K_M in enzyme kinetics), or P_{O_2} when M_{O_2}
434 equals SMR or RMR; Fig. 1C,G,K, nonlinear regression using the W function (solid blue line)
435 and P_{crit} is the P_{O_2} when M_{O_2} equals SMR or RMR; Fig. 1D,H,L, linear regression of M_{O_2} versus
436 P_{O_2} at $M_{O_2} \leq$ SMR (LLO method, solid purple line) and P_{crit} is the P_{O_2} when M_{O_2} equals SMR or
437 RMR. For M, W, and LLO methods, SMR and RMR for this individual are shown by horizontal
438 dashed and dotted lines, respectively. P_{crit} estimates are shown in the respective panels.


439

440

441 **Fig. 2. P_{crit} estimated by different analytical methods for *Fundulus grandis* in closed (Fig.**
442 **2A,B) and intermittent (2C) respirometry.** Median values are indicated by the center line,
443 upper and lower quartiles are upper and lower box boundaries, and the full data range are the
444 whiskers (after removal of outliers, solid circles). P_{crit} estimates with different letters are
445 significantly different within a trial (t-test, $p < 0.05$, false discovery corrected). Sample sizes (n)
446 are 11 for each method in Fig. 2A, B, but varied among methods in Fig. 2C: BSR, n=11; MM(b),
447 n=10; MM(SMR), n=9; W(SMR), n=6; LLO, n=11.

448

449

450 **Fig. S1. Standard metabolic rate (SMR) of *Fundulus grandis* calculated by different**
451 **analytical methods from 1000 randomly generated datasets.** All M_{O_2} data from closed
452 respirometry (1320 M_{O_2} values measured across a range of P_{O_2}) were pooled and randomly
453 sampled to generate 1000 sets of 60 M_{O_2} values each. SMR was then calculated with the
454 following methods: the mean of the lowest 10 data points (low10); the mean of the lowest 10%
455 of the data after removing the 5 lowest points (low10pc); the 10 – 25% quantiles (q_{0.1}, q_{0.15}, q_{0.2},
456 q_{0.25}); and the mean of the lowest normal distribution (MLND) after fitting multiple normal
457 distributions to the data (Chabot et al., 2016). For comparison, routine metabolic rate (RMR) was
458 also calculated as the mean of all 60 M_{O_2} values for each dataset. The whisker and box plots
459 show the median (center line), upper and lower quartiles (upper and lower box boundaries), and
460 full data range (whiskers) after removal of outliers (solid circles).