
1 
 

Authors: 
Danny H.C. Kim1, Lynne J. Williams1 2, Moises Hernandez-Fernandez3 4, and Bruce H. Bjornson1 2 5 
 
Affiliations: 

1. Brain Mapping, Neuroinformatics and Neurotechnology Laboratory, BC Children’s Hospital, 
Vancouver, British Columbia, Canada 

2. BC Children’s Hospital MRI Research Facility, Vancouver, British Columbia, Canada 
3. Center for Biomedical Image Computing and Analytics (CBICA), Department of Radiology, 

University of Pennsylvania, Philadelphia, USA 
4. Wellcome Centre for Integrative Neuroimaging (WIN) - Centre for Functional Magnetic 

Resonance Imaging of the Brain (FMRIB), University of Oxford, UK 
5. Division of Neurology, Department of Pediatrics, Faculty of Medicine, University of British 

Columbia, Vancouver, British Columbia, Canada 
 
Corresponding Author: 
Danny Kim, 604-875-2345 x 6532, dkim@bcchr.ca 
 
Co-authors: 
Lynne Williams, lwilliams@bcchr.ca 
Moises Hernandez-Fernandez, pemoi1982@gmail.com 
Bruce Bjornson, bruce.bjornson@ubc.ca  
 
Title: Comparison of CPU and GPU Bayesian Estimates of Fibre Orientations from Diffusion MRI 
 
Abstract: 
Background: The correct estimation of fibre orientations is a crucial step for reconstructing human brain 
tracts. A popular and extensively used tool for this estimation is Bayesian Estimation of Diffusion 
Parameters Obtained using Sampling Techniques (bedpostx), which is able to estimate several fibre 
orientations per voxel (i.e. crossing fibres) using Markov Chain Monte Carlo (MCMC). However, for 
fitting a model in a whole diffusion MRI dataset, MCMC can take up to a day to complete on a standard 
CPU. Recently, this algorithm has been ported to run on GPUs, which can accelerate the process, 
completing the analysis in minutes or hours. However, few studies have looked at whether the results 
from the CPU and GPU algorithms differ. In this study, we compared CPU and GPU bedpostx outputs by 
running multiple trials of both algorithms on the same whole brain diffusion data and compared each 
distribution of output using Kolmogorov-Smirnov tests. 
Results: We show that distributions of fibre fraction parameters and principal diffusion direction angles 
from bedpostx and bedpostx_gpu display few statistically significant differences in shape and are 
localized sparsely throughout the whole brain. Average output differences are small in magnitude 
compared to underlying uncertainty. 
Conclusions: Despite small amount of differences in samples created between CPU and GPU bedpostx 
algorithms, results are comparable given the difference in operation order and library usage between 
CPU and GPU bedpostx. 
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Background: 
Brain image analysis is inherently computationally intensive, the speed of which is heavily dependent 
upon processing power. As desktop computations have become faster and more reliable, what used to 
be the domain of supercomputers is now done on a typical desktop central processing unit (CPU). Most 
current generation CPUs consist of a few cores optimized for sequential serial processing,  with high 
clock frequencies and enhanced pipeline designs, including the use of speculative and out-of-order 
instruction execution strategies, as well as memory hierarchies.   By contrast, graphics processing units 
(GPUs) have a massively parallel structure designed with hundreds of smaller cores optimized to exploit 
the data level parallelism (DLP) of certain applications, utilizing simpler instruction sets and distributing 
them over multiple cores (Eklund et al. 2013a; Hernandez-Fernandez et al. 2013).  This parallelization 
accelerates computation, greatly benefiting historically slow to compute processes, such as data 
visualization, stochastic iteration, and Bayesian simulations including probabilistic tractography (Chang 
et al. 2014; Eklund et al. 2013a; Eklund et al. 2013b; Hernandez-Fernandez et al. 2013; Hernandez-
Fernandez et al. 2019; Lee and Kim 2013; McGraw and Nadar 2007; Sotiropoulos et al. 2013). Despite 
the GPU’s advantages in acceleration, few studies have examined whether there are differences in 
computational output from the CPU and GPU. In general, checking for output convergence between CPU 
and GPU results is important for several reasons. First, despite CPUs and GPUs both having double-
precision capabilities, the implementation of them are different (Colberg and Hofling 2011; Whitehead 
and Fit-Florea 2011), which may lead to diverging results. Secondly, there are differences in the CPU and 
GPU random number generators and operation orders in implementing Markov Chain Monte Carlo 
(MCMC) (Hellekalek 1998; Luizi et al. 2010; Park and Miller 1988).  For GPU results to be used 
interchangeably with existing CPU algorithms, the GPU algorithm should produce results that are 
reproducible and convergent with results obtained by the CPU algorithm. For example, Hernandez-
Fernandez et al., compared the mean of a few representative diffusion weighted voxel values in a 
repeated test between CPU and GPU and found almost identical results (Hernandez-Fernandez et al. 
2013). However, their study did not report on CPU/GPU differences in contiguous within-slice voxels or 
multi-slice brain data. The current study aims to extend these findings by comparing sampled 
distribution shapes of CPU and GPU Bayesian estimation of diffusion parameters in a whole brain 
dataset (Behrens et al. 2007; Behrens et al. 2003; Hernandez-Fernandez et al. 2013).  

 
This paper is organized as follows. Brief introductions of DTI and Bayesian estimation of diffusion 

parameters are given. Then, the complete methodology of output comparison technique is described. 

Results of output comparison are presented for each diffusion parameter type, and then, we give our 

conclusions and discussions 

Diffusion MRI and Bayesian Estimation: 

Diffusion MRI (dMRI) is a useful tool in visualizing the white matter connectivity of the brain and is 

widely used in both research and clinical contexts. dMRI is sensitive to molecular diffusion of water and 

enhances the anisotropy—the directional dependence—of neuronal white matter fibre tracts, which can 

be used to create fractional anisotropy maps, mean diffusivity maps and fibre pathways (Beaulieu 2002; 

Johansen-Berg and Rushworth 2009). A commonly used method to estimate the fibre orientations and 

reconstruct the brain tracts in vivo is to use the FMRIB Software Library’s (FSL) “Bayesian estimation of 

diffusion parameters” (bedpostx) and “probabilistic tracking of crossing fibres” (probtrackx) algorithms. 

In brief, bedpostx employs a Markov Chain Monte Carlo sampling technique to estimate the posterior 

probability density functions (PDF) of the diffusion parameters utilizing the “ball-and-stick” model which 
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takes into account multiple fibre orientations in a given voxel where appropriate (Behrens et al. 2007; 

Behrens et al. 2003). This allows the resolving of within-voxel fibre crossings, which is a common hurdle 

during the fibre tracking step, by fitting more than one fibre orientation in a given voxel only when it is 

relevant to do so. This feature is the “automatic relevance determination” (ARD) algorithm in bedpostx 

(Behrens et al. 2007) which initially sets the additional fibre fractions in secondary orientations to zero 

with low variance, and iteratively estimates the variance separately so that when the additional fibre 

orientation is supported by the data, the additional fibre fraction can take a non-zero value with a larger 

variance. bedpostx uses the Levenberg-Marquardt (L-M) fit to initialize parameters by minimizing the 

sum of squared model residuals, similar to fitting a diffusion tensor model, then, it proposes a value for 

each parameter, drawing from Normal proposal distribution, calculates the likelihood term, and accepts 

or rejects the proposed value based on a Metropolis acceptance criterion. When employing the ball-

and-stick model where the isotropic compartment is fitted with a mean value within a voxel (i.e. 

model=1), bedpostx gives the following PDF distributions for each voxel as output: diffusivity value (d), 

baseline signal (S0), weight of each fibre orientation’s contribution to anisotropic diffusion signal (stick), 

also known as fibre fraction values (f1, f2, etc.), and each fibre orientation’s directional angles expressed 

in polar coordinates (1, 1, 2, 2, etc). These PDFs are then randomly sampled by probtrackx to create 

fibre streamlines through stochastic propagation of multiple particles through the diffusion space 

(Behrens et al. 2007; Behrens et al. 2003). Because bedpostx processes each voxel serially in the CPU, an 

extensive amount of computational time (typically 8 to 24 hours for CPU) is required to obtain the  PDFS, 

which makes it impractical for utilization in a clinical medical environment (Lerner et al. 2013; Yamada et 

al. 2009). To alleviate this problem, and to reduce computational time substantially (typically 5 minutes 

to 2 hours for GPU), FSL provides a GPU-based parallelized version of bedpostx, called bedpostx_gpu 

(Hernandez-Fernandez et al. 2013). Here, the L-M initialization and MCMC sampling are parallelized such 

that multiple voxels are processed simultaneously. Difference in operation order exists between 

bedpostx and bedpostx_gpu such that, in the GPU, L-M initialization for the entire brain is done first, 

then MCMC sampling are done for the entire brain, whereas in the CPU, L-M initialization and MCMC 

sampling are done in sequential order  for each voxel. We know of no study to date that has 

quantitatively examined output similarities and differences between the bedpostx and bedpostx_gpu 

algorithms in a whole-brain DTI dataset. Further, because the PDF distributions obtained from bedpostx 

is used in obtaining fibre streamlines in probtrackx and not their mean values, differing distributional 

shapes between the two algorithms can also cause bias in output fibre tracking using probtrackx. This 

study aims to compare the output of bedpostx and bedpostx_gpu and report on output PDF distribution 

(f1, f2, 1, 1, 2, 2) shape difference, magnitude of difference in mean value and underlying uncertainty 

value.  

Methods: 

A. Computational Resources 

bedpostx was used for output comparison with the GPU version bedpostx_gpu, both from FSL 
5.0.8 package running on Ubuntu 10.04 LTS. The CPU version ran on a workstation with a dual 

Intel Xeon X5670 2.93 GHz CPU with 6 x 4-GB DDR3-1333 memory, and 24 threads. The GPU 

version ran on a workstation with one NVIDIA Tesla C2075 with 448 CUDA cores, 6-GB GDDR5 
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dedicated memory, PCIe x16 bus, CUDA 5.5 with driver version 331.75. 
 

B. Data 

Diffusion data from the Human Connectome Project (HCP) database (subject: mgh1005) was 

used for running multiple trials of bedpostx and bedpostx_gpu. The full dMRI data consist of 
directional volumes acquired in multiple shells (b=0,1000,3000,5000,10000) but for our work, a 

single shell from the full set was used for analysis: motion and eddy corrected, b=1000, 64 

directional volumes and 6 non-directional volumes, 1.5mm isotropic, 140x140x96. This was 
chosen because most clinical and research studies have access to a similar single-shell dMRI 

acquisition method and the resulting data can still support multi-fibre modeling of bedpostx  

algorithms. T1-weighted anatomical scan of the same subject was segmented (Zhang et al. 2001) 
to derive binary masks of grey matter, white matter and cerebrospinal fluid, then co-registered 

to the diffusion data (Jenkinson et al. 2002; Jenkinson and Smith 2001). These masks were used 
to quantify how many significantly different distributions were localized in each tissue class.  

 

C. Bedpost PDF creation 

Specified bedpostx and bedpostx_gpu input parameters are: 2250 MCMC iterations, of which 

during the latter 1250 iterations, parameter values were recorded to PDF every 25 iterations, 

resulting in 50 samples per PDF; monoexponential model (i.e. fit with mean diffusivity) with ARD 

fitting 2 fibres per voxel where appropriate. 20 trials of bedpostx and bedpostx_gpu were run 

with different random number generator seeds and output distributions from all trials were 

merged together to form 1000 samples per parameter PDF for bedpostx and for bedpostx_gpu. 

Furthermore, to inspect differences in L-M initialization between bedpostx and bedpostx_gpu, 

20 trials of each algorithm were run again but with 1 iteration to record 1 sample close to the 

initializing value. 

 

D. PDF distribution comparison and statistical analysis 

PDF shape was statistically compared via two-sample Kolmogorov-Smirnov (KS) test to derive 
voxels that have different distributions between CPU and GPU (two-tailed, p < 0.05, 

uncorrected). Family-wise error rate was controlled by the Bonferroni method (Holm 1979). 

Voxels with significantly different distributions were then further categorized by their KS-scores 
(S) in 4 different ranges: 0.1-0.2, 0.2-0.3, 0.3-0.4, > 0.4. S scores illustrate the amount of sample 

deviation (e.g. S = 0.35, 35% of samples differ between two distributions). For f1 and f2, CPU 

mean values along with absolute difference in mean CPU/GPU values were calculated and 
averaged for each S range. For angles, mean, standard deviation and median difference in 

principal diffusion directions (PDD) along with 95th-percentile cones of angular uncertainties 
(CAUs) were calculated in voxels with at least one significantly different angle parameter for 

each pairs (i.e. 1 OR 1, 2 OR 2). Maximum S score between the [,] pair was used when 
categorizing significantly different angle parameters into different S-ranges. 

 
E. Effect of mixed fibre fraction and orientation samples near crossing-fibre areas 
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Fibre fraction parameters (f1, f2, etc.) and their associated orientations (11, 22, etc.) could be 
inconsistently associated with the different underlying sub-fibre populations, especially if the 

fibre fractions are of comparable strength (Jbabdi et al. 2010). This can cause differing 

proportions of fibre fraction and orientation values to be labeled as one group (e.g. f1,11) but 

labeled as another on the next trial (e.g. f2,21). There is no guarantee that the labeling 
happens consistently and because we are merging samples from 20 different bedpostx and 

bedpostx_gpu trials to form the PDF distributions for comparison, it is possible that differences 

between the two platforms occur due to the this inconsistent labeling of sub-fibre populations. 
To investigate this effect of mixed fibre fractions and how much it may contribute to CPU and 

GPU output differences, we swapped f1,11 and f2,22 where f2 > f1 and ran the same statistical 
analysis on the swapped samples and compared the results against statistically different 

unswapped samples. 
 

Results: 

 

A. Difference in L-M initialization 

 L-M initialization difference map is shown in Fig. 1 with difference greater than 0.5% or 1o of 

mean CPU values color coded. Diffusivity and baseline signal (d, S0) have increased difference 

towards the center of the brain, and f2, 2, and 2  have greater amount of different voxels 

compared to f1, 1 and 1. 

 

Figure 1: L-M initialization difference between CPU and GPU. Orange -yellow colors are CPU > GPU regions, and blue-light blue 
colors are GPU > CPU regions. Difference in scalar maps are thresholded at a magnitude of 0.5% with respect to mean CPU 

values and directional maps are thresholded at 1 degrees.  

B. f1 

About 1% of total number of brain voxels (5139 of 436738) had significantly different f1 

distributions. Significantly different voxels were sparsely localized throughout the brain 
bilaterally. Of the significantly difference voxels, 4% were found in cerebrospinal fluid, 29% were 

found in grey matter and 67% were found in white matter. The latter were located in long white 

matter projections, such as corpus callosum, corona radiata, internal capsules and anterior and 
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posterior thalamic radiations (Fig. 2). Number of significant voxels, mean CPU f1, absolute 

average differences in mean f1, and absolute average difference in L-M initialization in each S-
score region are summarized in Table 1.  

 

 

Figure 2: Significantly different f1 overlaid on mean f1 image. S-score ranges are in: 0.1-0.2=blue, 0.2-0.3=light blue, 0.3-

0.4=green, > 0.4=magenta 

 

S score 
(# of 

voxels) 

Average 
Mean f1 

CPU 
(stdev) 

Average 
|Mean f1 CPU - Mean f1 

GPU| 

Average |L-M CPU - L-M GPU| 

0.1 – 0.2 
(4488) 

0.3262 
(0.1613) 

0.0177 
0.0008  

 

0.2 – 0.3 

 (614) 

0.3964 

(0.1505) 

0.0332 
0.0009  

 

0.3 – 0.4 
(35) 

0.4707 
(0.1786) 

0.0638 
0.0206  

 

> 0.4 
(2) 

0.7399 
(0.1245) 

0.1333 0.2416 

All 0.3357 

(0.1623) 

0.0199 0.0010 

TABLE 1: Significantly different f1 distributions: for each S-score range, averaged mean f1 of CPU distributions, averaged absolute difference in 
mean f1 and averaged absolute difference in L-M initialization are tabulated 

 

Majority of voxels had S-scores less than 0.3 (5102 out of 5139). Example PDF distribution 
shapes of CPU and GPU in significant voxels derived from a single slice are shown in Fig 3. The 

largest S-score of 0.503 was found in the body of corpus callosum. Here, both f1 distributions 
have peaks near 0.99.  GPU data had a sharper peak, with almost all samples above 0.9; whereas 

only half of CPU samples are above 0.9, with the remainder between 0.3 and 0.8.  Here, average 

f1 initialization across 20 trials by CPU L-M was 0.52 while average f1 initialization by the GPU L-
M across 20 trials was 0.99. Larger average L-M initialization differences were noted for larger S-

score. After adjusting for f2>f1 samples by swapping, 1513 voxels were no longer significantly 

different. 
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Figure 3: Example PDF distribution shape differences of significantly different f1. Grey arrow denotes non-significant distribution. 

Different ranges of S scores are depicted by following colors of arrows: blue 0.1 -0.2, light blue 0.2-0.3, green 0.3-0.4, magenta 
>0.4 

 

C. f2 

31% of total number of brain voxels (137061 out 436738) had significantly different f2 

distributions. Significantly different distributions were localized in grey matter (44%), 

cerebrospinal fluid (33%) and white matter (23%). For the white matter, they were localized in 

long white matter projections similar to those identified in f1 (Fig. 4).  

 

Figure 4: Significantly different f2 (red) overlaid on mean f2 image. Majority of voxels are located in grey matter and 

cerebrospinal fluid 
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85% of significant voxels had CPU or GPU mean f2 values lower than 0.05, predominantly in 

areas with grey matter and cerebrospinal fluid, likely the effect of ARD estimating f2 to zero in 

both bedpostx and bedpostx_gpu. To focus analysis on areas where f2 is supported by data, we 

reported mean CPU f2, absolute average differences in mean f2, and absolute average difference 

in L-M initialization in each S-score regions only on areas with mean f2 from CPU or GPU greater 

than or equal to 0.05 (Table 2).  

 

S score 

(# of 
voxels) 

Average 

Mean f2 CPU 
(stdev) 

Average 

|Mean f2 CPU - Mean f2 GPU| 

Average |L-M CPU - L-M GPU| 

0.1 – 0.2 
(13039) 

0.1066 
(0.0586) 

0.0204 0.0010 

0.2 – 0.3 

 (6029) 

0.0851 

(0.0482) 

0.0317 0.0011 

0.3 – 0.4 

(1050) 

0.0741 

(0.0454) 

0.0462 0.0016 

> 0.4 
(108) 

0.0757 
(0.0488) 

0.0624 0.0132 

All 0.0984 
(0.0562) 

0.0253 0.0011 

TABLE 2: Significantly different f2 distributions where mean f2 in CPU or GPU > 0.05: for each S-score range, averaged mean f2 of CPU 
distributions, averaged absolute difference in mean f2 and averaged absolute difference in L-M initialization are tabulated 

 

This was the same threshold chosen by (Behrens et al. 2007) when looking for secondary fibre 

orientations supported by ARD (Fig. 5). Here, most significantly different voxels were localized in 

grey/white matter junctions. Some were sparsely found bilaterally within identifiable structures 

such as corpus callosum, corona radiata, internal capsule, anterior and posterior thalamic 

radiations.  

 

 

Figure 5: .  Significantly different f2 with mean f2 in CPU or GPU > 0.05. S-score ranges are in: 0.1-0.2=blue, 0.2-0.3=light-blue, 

0.3-0.4=green, > 0.4=magenta 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/703835doi: bioRxiv preprint 

https://doi.org/10.1101/703835
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

The majority of significant f2 distribution differences had S-scores < 0.3 (19068 out of 20226). 

One example of a voxel exhibiting a large PDF difference in f2 is depicted in Fig. 6, where S-score 

= 0.625 and is the same location where the largest S-score was found for f1 distribution. 

 

Figure 6: Example distribution shape differences in f2. Red squares with dotted line denotes GPU samples and blue circles with 

solid line denotes CPU samples  

Here, the distribution shows a sharp peak with low variance near f2 = 0 in the GPU distribution. 

In the CPU, there is a smaller peak near f2 = 0 with a larger variance that spans from 0 to 0.6. The 

CPU L-M initialization step estimated f2 = 0.48 averaged across 20 trials while GPU L-M 

initialization step had f2 = 0 across 20 trials. Similar to f1, larger average L-M differences were 

found for larger S ranges. After adjusting for f2>f1 samples, 1303 voxels were no longer 

significantly different, and of these voxels, 1096 were in areas with mean f2 from CPU or GPU 

greater than or equal to 0.05. 

  

D. 1 and 1 

196081 out of 436738 total brain voxels had significantly different 1 or 1 distributions. 

Significantly different distributions were localized predominantly in areas of grey matter (43%) 

and cerebrospinal fluid (37%). They were also found in the white matter (20%), with some key 

white matter structures such as corpus callosum, internal capsules, corona radiata and anterior 

and posterior thalamic radiations containing significantly different distributions (Fig. 7).  

 

Figure 7: Significantly different 1 and 1 distributions with S-ranges in 0.1-0.2 (Blue), 0.2-0.3 (light-blue), 0.3-0.4 (green), > 0.4 
(magenta). Maximum S-score between 1 and 1 was used to categorize each location into different range  
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Mean and median angle differences, and average 95th percentile CAUs for each S-score range 

are tabulated in Table 3. 

 

S score 
(# of 

voxels) 

Average 
Δmean 

PDD 

Stdev 
Δmean 

PDD 

Median 
Δmean 

PDD 

Mean 95th-percentile 
CAU 

CPU GPU 

0.1 – 0.2 
(113904) 

2.146° 4.061° 1.047° 50.841° 50.818° 

0.2 – 0.3 
 (68528) 

2.193° 
 

4.122° 1.080° 55.860° 55.845° 

0.3 – 0.4 
(12098) 

2.306° 4.584° 1.086° 58.358° 58.448° 

> 0.4 

(1551) 

2.529° 6.394° 1.008° 57.702° 57.346° 

All 2.175° 4.140° 1.061° 53.113° 53.097° 

Table 3: Significantly different 1, 1: for each S-score range, average of mean PDD difference, standard deviation of mean PDD difference, 
median of mean PDD difference and 95th-percentile cone of angular uncertainty are tabulated.  

 

Again, the majority of these voxels have S < 0.3 (182432 out of 196081). Mean difference in 

angles of principle diffusion directions in all significantly different voxels was 2.175º (stdev = 

4.140º) while the median difference was 1.061º.  In all significantly different 1 and 1 voxels, 

the average angular difference between the 95th percentile CAUs for CPU and GPU is 0.016º 

(CPU 53.113º; GPU 53.097º; see Table 3). Because 1 and 1 parameters are more meaningful in 

white-matter where anisotropy is higher, angular differences and 95th percentile CAUs for each 

S-score range in white-matter only are tabulated in Table 4. 

S score 
(# of 

voxels) 

Average 
Δmean 

PDD 

Stdev 
Δmean 

PDD 

Median 
Δmean 

PDD 

Average 95th-percentile 
CAU 

CPU GPU 

0.1 – 0.2 
(20077) 

2.276° 3.150° 1.300° 38.839°  38.754°  

0.2 – 0.3 
 (9274) 

3.382° 
 

4.884° 1.606° 45.891°  45.950°  

0.3 – 0.4 
(1372) 

4.660° 7.148° 1.672° 49.944° 49.905° 

> 0.4 

(218) 

7.140° 13.658° 1.160° 40.633° 40.171° 

All 2.748° 4.210° 1.394° 41.458° 41.415° 

Table 4: Significantly different 1, 1with in the white-matter: for each S-score range, average of mean PDD difference, standard 

deviation of mean PDD difference, median of mean PDD difference and 95th-percentile cone of angular uncertainty are tabulated 
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Overall, higher average difference in mean PDD and lower CAUs were found in significantly 

different voxels confined to the white-matter. The effect of distribution shape difference on 

diffusion direction is illustrated in Fig 8. The depicted distributions came from a voxel located 

posteriorly in the genu of the right internal capsule with S score = 0.55. 1 distributions had two 

notable peaks but there was a difference in height between CPU and GPU.  1 distributions had 

different number and locations of peak values between CPU and GPU, with the GPU distribution 

having evenly split peaks in two locations. The resulting mean directions from these 

distributions differed as depicted in the 3D-plot of Fig 8.  

 

Figure 8: Distributions of 1 and 1 that are significantly different were derived from one representative voxel with a particularly 

high S-score of 0.55.  The voxel was located within the genu of the right internal capsule, with voxel coordinates 79, 80, 46. Red 

squares denote GPU samples while blue circles denote CPU samples. Blue solid line: CPU 1,1 mean direction, Red solid line: 

GPU 1,1 mean direction. Difference in peak locations and heights result in difference in mean diffusion direction for CPU and 
GPU 

There were no significant differences in f1 and f2 in this location, and mean CPU f1 and f2 values 

were 0.411 and 0.351 respectively, signifying that it was suitable for modeling two different 

fibre orientations with higher anisotropy in this location. Adjusting for f2 > f1, 33133 voxels 

became not significantly different and of these, 11043 were in the white-matter. 

 

E. 2 and 2 

223309 out of 436738 total brain voxels had significantly different 2 or 2 distributions. 

Significantly different distributions were localized in grey matter (45%), cerebrospinal fluid (25%) 

and white matter structures (30%) such as corpus callosum, corona radiata, internal capsule, 

and the anterior and posterior thalamic radiations (Fig 9). Mean and median angle differences 

along with 95th percentile CAUs for each S-score range are tabulated in Table 5. Again, most 

voxels have S-scores < 0.3 (212651 out of 223309). 
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Figure 9: Significantly different and distributions with S-ranges in 0.1-0.2 (Blue), 0.2-0.3 (light-blue), 0.3-0.4 (green), > 0.4 

(magenta). Maximum S-score between and was used to categorize each location into different range 

 

S score 

(# of 
voxels) 

Average 

Δmean 
PDD 

Stdev 

Δmean 
PDD 

Median 

Δmean 
PDD 

Average 95th-percentile 

CAU 

CPU GPU 

0.1 – 0.2 
(139823) 

37.019° 29.345° 34.518° 83.236° 83.229° 

0.2 – 0.3 
 (72828) 

35.912° 
 

29.197° 31.690° 84.095° 84.095° 

0.3 – 0.4 
(9910) 

37.537° 29.008° 35.257° 84.098° 84.151° 

> 0.4 

(748) 

41.154° 29.247° 43.285° 83.276° 83.359° 

All 36.695° 29.288° 33.656° 83.554° 83.553° 

 

 Table 5: Significantly different 2, 2: for each S-score range, average of mean PDD difference, standard deviation of mean PDD difference, 
median of mean PDD difference and 95th-percentile cone of angular uncertainty are tabulated.  

 

Overall mean difference in principle directions is 36.695º with median difference of 29.288º. 

Average angular uncertainty is 83.554º and 83.553º for CPU and GPU, respectively. With 2 and 

2, it is more meaningful to focus on white matter and areas where f2 > 0.05 (i.e. where ARD has 

deemed appropriate to fit a second fibre orientation). Mean PDD difference and 95th-percentile 

CAUs in the white-matter and f2 > 0.05 for each S-score range are tabulated in Table 6. Like 1 

and 1, the CAUs were lower when focusing in on the white matter region. Also, the difference 

in mean PDD was lower for each S-score range. Distribution shapes of 2, 2 samples and the 

resulting distribution of principle directions in the same location as 1, 1 in the genu of the right 

internal capsule are depicted in Fig 10. There was similarity in direction distribution between [1, 

1] and [2, 2] while the latter had more anti-parallel directions included in the distribution. 

Also, mean directions of CPU and GPU were roughly reversed in [2, 2] compared to [1, 1],  
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Figure 10: Example 2,2 distributions from the same voxel depicted in Figure 8, within the genu of the right internal capsule. 

3D-plot depicts the distribution of directions derived from 2,2 samples (Blue circle: CPU 2,2 samples, Red square: GPU 2,2 

samples) and mean directions  (Blue solid line: CPU 2,2 mean direction, Red solid line: GPU 2,2 mean direction, Blue dotted 
line: CPU 1,1 mean direction, Red dotted line: GPU 1,1 mean direction) 

 

S score 
(# of 

voxels) 

Average 
Δmean 

PDD 

Stdev 
Δmean 

PDD 

Median 
Δmean 

PDD 

Average 95th-percentile 
CAU 

CPU GPU 

0.1 – 0.2 

(18733) 

6.500° 10.993° 2.885° 70.508° 70.499°  

0.2 – 0.3 

 (10157) 

8.863° 

 

13.663° 3.376° 75.576° 75.703°  

0.3 – 0.4 

(1321) 

11.488° 16.552° 4.725° 74.772° 74.666°  

> 0.4 
(117) 

16.928° 20.744° 6.855° 71.285° 71.823° 

All 7.549° 12.369° 3.183° 72.394° 72.428° 

 Table 6: Significantly different 2, 2 in the white-matter: for each S-score range, average of mean PDD difference, standard 

deviation of mean PDD difference, median of mean PDD difference and 95 th-percentile cone of angular uncertainty are tabulated 
 

showing the difference in how CPU and GPU labelled the underlying multiple fibre orientations. 

Mean CPU [1, 1] direction and mean GPU [2, 2] direction had a difference of 2.7465º, while 

mean CPU [2, 2] direction and mean GPU [1, 1] direction had a difference of 18.4179º. After 
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swapping the orientation samples with f2 > f1, underlying fibre orientations in this particular 

voxel became better aligned between CPU and GPU (Fig. 11).  

 

 

Figure 11: .  Effect of swapping samples where f2 > f1:  Distribution of directions derived from unswapped 2,2 samples (Left, 

Blue circle: CPU 2,2 samples, Red square: GPU 2,2 samples) and mean directions (Blue solid line: CPU 2,2 mean direction, 

Red solid line: GPU 2,2 mean direction, Blue dotted line: CPU 1,1 mean direction, Red dotted line: GPU 1,1 mean 
direction). Right is swapped samples of directions. Difference in mean principal direction becomes lower when samples are 

swapped. 

 

Discussions and Conclusions: 

A total of 2620428 pairs of distributions were created and compared across the whole brain. 74% of 
those distributions showed no significant difference between CPU and GPU. Of the significantly different 

distributions, 44% were localized in grey matter, 31% in cerebrospinal fluid, and 25% in white matter, 
localized within the corpus callosum in the midline, and bilaterally within the corona radiata, internal 

capsule, and the anterior and posterior thalamic radiations.  

Significantly different f1 and f2 distributions in a prominent white-matter structure, such as the body of 
corpus callosum in the midline as displayed in Fig. 3 and Fig. 6, have been noted with more than half of 

the samples produced by CPU and GPU differing in value. In general, the corpus callosum contains a 

well-defined fibre bundle in the Left-to-Right orientation and thus we expected a higher f1 with lower 

uncertainty while f2 expected be estimated closer to 0. To understand where the differences were 

coming from in this particular voxel, we have looked at synthetic ball-and-stick data generated using 
Dipy 0.16.0 (Garyfallidis et al. 2014), emulating this single-voxel within the corpus callosum, and 

compare the bedpostx and bedpostx_gpu output to synthetic ground-truth. Here, mean values of all 
parameter estimates from CPU and GPU were within 1% of synthetic ground-truth values, but f1, f2 and 

2 distributions between CPU and GPU were found to be with significantly different shapes, albeit with 
lower S-scores. This suggests that when operation order between CPU and GPU are kept identical (i.e. 

single-voxel serial order equals single-voxel parallel order), difference in distribution shape is minimized 

between the CPU and GPU, and both algorithms estimated parameters closer to ground-truth. The small 
difference between CPU and GPU mostly would have come from difference in random number 

generator and implementation difference between CPU and GPU math libraries. Since corpus callosum 

in human brain would generally be found near the centre of the whole brain diffusion data, operation 
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order between the CPU and GPU would have differed greatly and this may explain why significant 

difference was observed even in a prominent structure such as the corpus callosum.   
We also separately examined the initialization stages of L-M fit and noted that the results differed 

between CPU and GPU. It is important to note that the L-M fit algorithm is identical between CPU and 
GPU (i.e. diffusion tensor fitting) other than: 1) operation order (CPU: serially fitted one voxel at a time; 

GPU: multiple voxel fitted simultaneously) and 2) library difference (e.g. CPU math library v.s. GPU CUDA 

math library). We observed that not all voxels with differing L-M initialization ended up having differing 

distribution for f1 and f2, and vice-versa, not all voxels with similar L-M initialization ended up having a 

similar distribution. Our findings suggest that the larger the L-M initialization difference at the start of 

MCMC sampling, the larger the S-score in significantly different distributions. This suggests that 
differences in PDF samples appeared to be stemming from a combination of differing starting points 

after the L-M fit and differing algorithmic attributes in CPU and GPU primarily difference in operation 
order, and to a lesser degree, implementation difference in math libraries and random number 

generators. It is interesting to observe that the L-M initialization difference maps (Fig. 1) spatially 

resemble the inverse of a typical signal-sensitivity map from a multi-channel MR head-coil. Larger 
difference between CPU and GPU may be arising from more noise present near the inner most structure 

of the brain where there is less sensitivity to signal. This could also possibly explain why large difference 

was even noted in prominent white matter such as body of corpus callosum: the scan orientation is such 
that this structure is farther away from the head-coil.  

We found that S-scores of significantly different distributions were no greater than 0.3 for 94% of 
significantly different distributions, i.e. 30% or less samples caused the difference. Distributional shape 

differences were characterized by: a) peak height differences for fibre fractions and b) number of peaks 

and peak value differences for diffusion direction angles. Larger difference in shape resulted in larger 
difference in mean values or principle diffusion direction angles. Mean angular differences in principle 

diffusion directions were 2.175º and 36.695º for significantly different [1,1] and [2,2] respectively. 

Their 95th percentile CAUs were 53.1º and 83.5º respectively. We see the larger CAUs for [2,2] arising 

from angle samples that are antiparallel to each other and mislabeled angle samples that may well be 

representing [1,1] sub-fibre population, thus increasing the average uncertainty in that location. 

Algorithms such as probtrackx does tract streamlining with tract propagation constraints such that 
streamlines will propagate smoothly, and avoid internal looping / sharp turns. This is achieved by 

treating antiparallel angles as the same (i.e., by multiplying antiparallel angles by -1 prior to 
propagation), and sampling from fibre-population that has minimal difference from previous 

propagation direction. These constraints effectively allow consistent tract streamlines to be produced 

from CPUs and GPUs, despite the difference in PDF distributional shapes in the PDD angles.  As described 
by (Jbabdi et al. 2010), we saw in our example in Fig. 10, where CPU produced a mean diffusion 

direction in [1,1] that is similar to GPU’s mean diffusion direction in [2,2] and vice-versa, showing the 
difference in CPU’s and GPU’s degree of inconsistency in labeling the sub-fibre population. We also 

observed that swapping the samples where f2>f1, produced better aligned mean directions between CPU 

and GPU. Recently, it has been qualitatively shown that CPUs and GPUs achieve excellent output  
correlation in probabilistic tractography and connectome matrices while achieving excellent speedup 

using minimal computational resources (Hernandez-Fernandez et al. 2019). We note that one of the 
limitations of this current work is that there was no investigation into effect of using multi-shell models 

while doing the comparisons. It is reasonable to suggest that with higher b-values there will be better 

angular resolutions which might lead to better agreement between CPU and GPU results. The challenge 
in investigating this would be that the CPU bedpostx process will take far too long compared to the GPU 
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as much more data need iterative estimation in a linear fashion, and one would require the use of multi-

core High Power Computing resources to do this type of investigation in a reasonable amount of time. 
Still, b=1000 with a monoexponential model estimation is valuable to investigate between CPU and GPU 

as most clinical MRI can acquire this type of data with conventional MR system setup and speed-up in 
bedpostx in the GPU can be most effective in this type of front-line clinical setting. Another limitation of 

this work is that the random-number generator type is not the same between CPU and GPU and thus 

there is no way of telling how much effect the random number generators have on the differences 
observed between the two algorithms. The authors have looked at preliminary data where the GPU 

bedpostx algorithm was modified to use the linear-congruential random number generator to obtain the 

same amount of samples and when compared against the CPU samples, they appeared to have similar 
amount and magnitude of difference as this current work, which suggests the effect of random number 

generator in producing differing results would be small. This would then lead us to believe that sample 
differences are more attributable to difference in implementation of CPU-GPU precision points, math 

libraries between CPU and GPU-CUDA and more importantly the operation order: L-M initialization then 

MCMC sequentially v.s. L-M parallel then MCMC parallel. As DWI data are collected with greater amount 
of gradient directions, combination of different b-values, higher-resolutions, conventional DWI post-

processing steps will require more computational resources to finish processing in a reasonable amount 

of time, and GPUs can offer qualitatively the same results with minimal quantitative difference 
compared to underlying uncertainty with excellent speed. 

In summary, although significant differences were found between outputs of CPU and GPU bedpostx 
parameter distributions, differences may have limited impact upon stochastic tractography with single-

shell DTI data: a) differences were observed in only 26% of total distributions; b) differences were 

sparsely distributed in major tract areas; c) differences in fibre orientations were small compared to 
background angular uncertainty. The latter appears to arise from antiparallel angles and random 

assignment of principle directions to sub-fibre populations.  
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Abbreviations: 
CPU = central processing unit 
GPU = graphics processing unit 
bedpostx = Bayesian estimation of diffusion parameter obtained using sampling techniques 
dMRI = diffusion MRI, DWI = diffusion weighted imaging, DTI = diffusion tensor imaging 
MCMC = Markov Chain Monte Carlo 
ARD = automatic relevance determination 
L-M = Levenberg-Marquadt  
CAU = cone of angular uncertainty 
PDF = probability density function 
K-S = Kolmogorov-Smirnov 
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