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Abstract:

Background: The correct estimation of fibre orientations is a crucial step for reconstructing human brain
tracts. A popular and extensively used tool for this estimation is Bayesian Estimation of Diffusion
Parameters Obtained using Sampling Techniques (bedpostx), which is able to estimate several fibre
orientations per voxel (i.e. crossing fibres) using Markov Chain Monte Carlo (MCMC). However, for
fitting a model in a whole diffusion MRI dataset, MCMC can take up to a day to complete on a standard
CPU. Recently, this algorithm has been ported to run on GPUs, which canaccelerate the process,
completing the analysis in minutes or hours. However, few studies have looked at whether the results
from the CPU and GPU algorithms differ. In this study, we compared CPU and GPU bedpostx outputs by
running multiple trials of both algorithmson the same whole brain diffusion dataand compared each
distribution of output using Kolmogorov-Smirnov tests.

Results: We show that distributions of fibre fraction parametersand principal diffusion direction angles
from bedpostx and bedpostx_gpu display few statistically significant differences in shape and are
localized sparsely throughout the whole brain. Average output differences are small in magnitude
compared to underlying uncertainty.

Conclusions: Despite smallamount of differences in samples created between CPU and GPU bedpostx
algorithms, results are comparable given the difference in operation order and library usage between
CPU and GPU bedpostx.
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Background:

Brainimage analysis is inherently computationally intensive, the speed of which is heavily dependent
upon processing power. As desktop computations have become faster and more reliable, what used to
be the domain of supercomputers is now done on a typical desktop central processing unit (CPU). Most
current generation CPUs consist of a few cores optimized for sequential serial processing, with high
clock frequencies and enhanced pipeline designs, including the use of speculative and out-of-order
instruction execution strategies, aswell as memory hierarchies. By contrast, graphics processing units
(GPUs) have a massively parallel structure designed with hundreds of smaller cores optimized to exploit
the data level parallelism (DLP) of certain applications, utilizing simpler instruction sets and distributing
them over multiple cores (Eklund et al. 2013a; Hernandez-Fernandez et al. 2013). This parallelization
acceleratescomputation, greatly benefiting historically slow to compute processes, such as data
visualization, stochastic iteration, and Bayesian simulations including probabilistic tractography (Chang
et al. 2014; Eklund et al. 2013a; Eklund et al. 2013b; Hernandez-Fernandez et al. 2013; Hernandez-
Fernandez et al. 2019; Lee and Kim 2013; McGraw and Nadar 2007; Sotiropoulos et al. 2013). Despite
the GPU’sadvantagesin acceleration, few studies have examined whether there are differences in
computational output from the CPU and GPU. In general, checking for output convergence between CPU
and GPU results is important for several reasons. First, despite CPUs and GPUs both having double-
precision capabilities, the implementation of them are different (Colberg and Hofling 2011; Whitehead
and Fit-Florea 2011), which may lead to diverging results. Secondly, there are differences in the CPU and
GPU random number generatorsand operation orders in implementing Markov Chain Monte Carlo
(MCMC) (Hellekalek 1998; Luizi et al. 2010; Parkand Miller 1988). For GPU results to be used
interchangeably with existing CPU algorithms, the GPU algorithm should produce results that are
reproducible and convergent with results obtained by the CPU algorithm. For example, Hernandez-
Fernandez et al., compared the mean of a few representative diffusion weighted voxel values in a
repeated test between CPU and GPU and found almost identical results (Hernandez-Fernandez et al.
2013). However, their study did not report on CPU/GPU differences in contiguous within-slice voxels or
multi-slice brain data. The current study aims to extend these findings by comparing sampled
distribution shapes of CPU and GPU Bayesian estimation of diffusion parametersin a whole brain
dataset (Behrens et al. 2007; Behrenset al. 2003; Hernandez-Fernandez et al. 2013).

This paperis organized as follows. Brief introductions of DTl and Bayesian estimation of diffusion
parametersare given. Then, the complete methodology of output comparison technique is described.

Results of output comparison are presented for each diffusion parameter type, and then, we give our
conclusions and discussions

Diffusion MRI and Bayesian Estimation:

Diffusion MRI (dMRI) is a useful tool in visualizing the white matter connectivity of the brain and is
widely used in both research and clinical contexts. dMRI is sensitive to molecular diffusion of waterand
enhances the anisotropy—the directional dependence—of neuronal white matter fibre tracts, which can
be used to create fractional anisotropy maps, mean diffusivity maps and fibre pathways (Beaulieu2002;
Johansen-Berg and Rushworth 2009). A commonly used method to estimate the fibre orientations and
reconstruct the brain tractsin vivo is to use the FMRIB Software Library’s (FSL) “Bayesian estimation of
diffusion parameters” (bedpostx) and “probabilistic tracking of crossing fibres” (probtrackx) algorithms.
In brief, bedpostx employs a Markov Chain Monte Carlo sampling technique to estimate the posterior
probability density functions (PDF) of the diffusion parameters utilizing the “ball-and-stick” model which
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takes into account multiple fibre orientations in a given voxel where appropriate (Behrens et al. 2007;
Behrens et al. 2003). This allows the resolving of within-voxel fibre crossings, which is a common hurdle
during the fibre tracking step, by fitting more than one fibre orientation in a given voxel only when it is
relevant to do so. This featureis the “automatic relevance determination” (ARD) algorithmin bedpostx
(Behrens et al. 2007) which initially sets the additional fibre fractions in secondary orientations to zero
with low variance, and iteratively estimates the variance separately so that when the additional fibre
orientation is supported by the data, the additional fibre fraction can take a non-zero value with a larger
variance. bedpostx uses the Levenberg-Marquardt (L-M) fit to initialize parameters by minimizing the
sum of squared model residuals, similar to fitting a diffusion tensor model, then, it proposes a value for
each parameter, drawing from Normal proposal distribution, calculates the likelihood term, and accepts
or rejects the proposed value based on a Metropolis acceptance criterion. When employing the ball-
and-stick model where the isotropic compartment is fitted with a mean value within a voxel (i.e.
model=1), bedpostx gives the following PDF distributions for each voxel as output: diffusivity value (d),
baseline signal (S0), weight of each fibre orientation’s contribution to anisotropic diffusion signal (stick),
also known as fibre fractionvalues (fi, f,, etc.), and each fibre orientation’s directional angles expressed

in polar coordinates (¢4, 01, ¢, 0,, etc). These PDFs are then randomly sampled by probtrackxto create
fibre streamlines through stochastic propagation of multiple particlesthrough the diffusion space
(Behrens et al. 2007; Behrenset al. 2003). Because bedpostx processes each voxel serially in the CPU, an
extensive amount of computationaltime (typically 8 to 24 hours for CPU) is required to obtain the PDFs,
which makes it impracticalfor utilizationin a clinical medical environment (Lerner et al. 2013; Yamada et
al. 2009). To alleviate this problem, and to reduce computational time substantially (typically 5 minutes
to 2 hours for GPU), FSL provides a GPU-based parallelized version of bedpostx, called bedpostx_gpu
(Hernandez-Fernandez et al. 2013). Here, the L-M initialization and MCMC sampling are parallelized such
that multiple voxels are processed simultaneously. Differencein operation order exists between
bedpostx and bedpostx_gpu such that, in the GPU, L-M initialization for the entire brain is done first,
then MCMC sampling are done for the entire brain, whereasin the CPU, L-M initialization and MCMC
sampling are done in sequential order for eachvoxel. We know of no study to date that has
guantitatively examined output similarities and differences betweenthe bedpostx and bedpostx_gpu
algorithms in a whole-brain DTI dataset. Further, because the PDF distributions obtained from bedpostx
is used in obtaining fibre streamlines in probtrackxand not their mean values, differing distributional
shapes betweenthe two algorithms canalso cause bias in output fibre tracking using probtrackx. This
study aims to compare the output of bedpostx and bedpostx_gpu and report on output PDF distribution
(fi, fo, 01, 64, 02, 6,) shape difference, magnitude of difference in meanvalue and underlying uncertainty
value.

Methods:
A. Computational Resources

bedpostx was used for output comparison with the GPU version bedpostx_gpu, both from FSL
5.0.8 package running on Ubuntu 10.04 LTS. The CPU version ran on a workstation with a dual
Intel Xeon X5670 2.93 GHz CPU with 6 x 4-GB DDR3-1333 memory, and 24 threads. The GPU
version ran on a workstation with one NVIDIA Tesla C2075 with 448 CUDA cores, 6-GB GDDR5
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dedicated memory, PCle x16 bus, CUDA 5.5 with driver version 331.75.

B. Data

Diffusion data from the Human Connectome Project (HCP) database (subject: mgh1005) was
used for running multiple trials of bedpostx and bedpostx_gpu. The full dMRI data consist of
directional volumes acquired in multiple shells (b=0,1000,3000,5000,10000) but for our work, a
single shell from the full set was used for analysis: motion and eddy corrected, b=1000, 64
directional volumes and 6 non-directional volumes, 1.5mm isotropic, 140x140x96. This was
chosen because most clinical and research studies have access to a similar single-shell dMRI
acquisition method and the resulting data can still support multi-fibre modeling of bedpostx
algorithms. T1-weighted anatomical scan of the same subject was segmented (Zhang et al. 2001)
to derive binary masks of grey matter, white matter and cerebrospinal fluid, then co-registered
to the diffusion data (Jenkinson et al. 2002; Jenkinson and Smith 2001). These masks were used
to quantify how many significantly different distributions were localized in each tissue class.

C. Bedpost PDF creation
Specified bedpostx and bedpostx_gpu input parametersare: 2250 MCMC iterations, of which
during the latter 1250 iterations, parameter values were recorded to PDF every 25 iterations,
resulting in 50 samples per PDF; monoexponential model (i.e. fit with mean diffusivity) with ARD
fitting 2 fibres per voxel where appropriate. 20 trials of bedpostx and bedpostx _gpu were run
with different random number generator seeds and output distributions from all trials were
mergedtogether to form 1000 samples per parameter PDFfor bedpostx and for bedpostx_gpu.
Furthermore, to inspect differences in L-M initialization between bedpostx and bedpostx_gpu,
20 trials of each algorithm were run again but with 1 iteration to record 1 sample close to the
initializing value.

D. PDF distribution comparison and statistical analysis

PDF shape was statistically compared via two-sample Kolmogorov-Smirnov (KS) test to derive
voxels that have different distributions between CPU and GPU (two-tailed, p < 0.05,
uncorrected). Family-wise error rate was controlled by the Bonferroni method (Holm 1979).
Voxels with significantly different distributions were then further categorized by their KS-scores
(S) in 4 different ranges: 0.1-0.2, 0.2-0.3, 0.3-0.4, > 0.4. S scores illustrate the amount of sample
deviation (e.g. S = 0.35, 35% of samples differ between two distributions). For f; and f,, CPU
mean values along with absolute difference in mean CPU/GPU values were calculated and
averaged for each S range. For angles, mean, standard deviation and median difference in
principal diffusion directions (PDD) along with 95"-percentile cones of angular uncertainties
(CAUs) were calculated in voxels with at least one significantly different angle parameter for
each pairs (i.e. ¢; OR 64, ¢, OR 6,). Maximum S score between the [¢,0] pair was used when
categorizing significantly different angle parametersinto different S-ranges.

E. Effect of mixed fibre fractionand orientation samples near crossing-fibre areas
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Fibre fraction parameters (f;, f;, etc.) and their associated orientations (¢;6,, ¢,0, etc.) could be
inconsistently associated with the different underlying sub-fibre populations, especially if the
fibre fractions are of comparable strength (Jbabdi et al. 2010). This can cause differing
proportions of fibre fraction and orientation values to be labeled as one group (e.g. f;,0:6,) but
labeled as another on the next trial (e.g. f,4,0:). There is no guarantee that the labeling
happens consistently and because we are merging samples from 20 different bedpostx and
bedpostx_gpu trials to form the PDF distributions for comparison, it is possible that differences
between the two platforms occur due to the this inconsistent labeling of sub-fibre populations.
To investigate this effect of mixed fibre fractions and how much it may contribute to CPU and
GPU output differences, we swapped f;,016; and f,,¢,0, where f,> f; and ran the same statistical
analysis on the swapped samples and compared the results against statistically different
unswapped samples.

Results:

A. Differencein L-M initialization

L-M initialization difference map is shown in Fig. 1 with difference greaterthan 0.5% or 1° of
mean CPU values color coded. Diffusivity and baseline signal (d, SO) have increased difference

towards the center of the brain, and f;, ¢,, and 6, have greater amount of different voxels
compared to f;, ¢, and 0;.

Figure 1:L-M initialization difference between CPU and GPU. Orange-yellow colorsare CPU >GPU regions, and blue-light blue
colors are GPU >CPU regions. Difference in scalarmaps are thresholded ata magnitude of 0.5% with respect to mean CPU
values and directional mapsarethresholded at 1 degrees.

B. f1

About 1% of total number of brain voxels (5139 of 436738) had significantly different f;
distributions. Significantly different voxels were sparsely localized throughout the brain
bilaterally. Of the significantly difference voxels, 4% were found in cerebrospinal fluid, 29% were
found in grey matter and 67% were found in white matter. The latter were located in long white
matter projections, such as corpus callosum, corona radiata, internal capsules and anterior and

5
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posterior thalamic radiations (Fig. 2). Number of significant voxels, mean CPU f;, absolute
average differences in mean f;, and absolute average difference in L-M initialization in each S-
score region are summarized in Table 1.

Figure 2: Significantly different f; overlaid on mean f; image. Sscore ranges are in: 0.1-0.2=blue, 0.2-0.3=light blue, 0.3-
0.4=green, > 0.4=magenta

S score Average Average Average |L-M CPU- L-M GPU|
(#of Mean f; |Mean f1 CPU - Mean f1
voxels) CPU GPU|
(stdev)
0.1-0.2 0.3262 0.0177
(4488) (0.1613) 0.0008
0.2-0.3 0.3964 0.0332
(614) (0.1505) 0.0009
0.3-0.4 0.4707 0.0638
(35) (0.1786) 0.0206
> 0.4 0.7399 0.1333 0.2416
(2) (0.1245)
All 0.3357 0.0199 0.0010
(0.1623)

TABLE 1: Significantly different f; distributions: for each S-score range, averaged mean f, of CPU distributions, averaged absolute diference in
mean f, and averaged absolute difference in L-M initialization are tabulated

Majority of voxels had S-scores less than 0.3 (5102 out of 5139). Example PDF distribution
shapes of CPU and GPU in significant voxels derived from a single slice are shown in Fig 3. The
largest S-score of 0.503 was found in the body of corpus callosum. Here, both f; distributions
have peaks near 0.99. GPU data had a sharper peak, with almost all samples above 0.9; whereas
only half of CPU samples are above 0.9, with the remainder between 0.3 and 0.8. Here, average
f1 initialization across 20 trials by CPU L-M was 0.52 while average f; initialization by the GPU L-
M across 20 trials was 0.99. Larger average L-M initialization differences were noted for larger S-
score. After adjusting for f,>f; samples by swapping, 1513 voxels were no longer significantly
different.
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Figure 3: Example PDF distribution shape differences of significantly different f;. Grey arrow denotes non-significant distribution.

Different ranges of S scores are depicted by following colors of arrows: blue 0.1-0.2, light blue 0.2-0.3, green 0.3-0.4, magenta
>0.4

C f
31% of total number of brain voxels (137061 out 436738) had significantly different f,
distributions. Significantly different distributions were localized in grey matter (44%),
cerebrospinal fluid (33%) and white matter (23%). For the white matter, they were localized in
long white matter projections similar to those identified in f; (Fig. 4).

Figure 4: Significantly different f, (red) overlaid on mean f, image. Majority of voxels are located in grey matter and
cerebrospinalfluid
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85% of significant voxels had CPU or GPU mean f, values lower than 0.05, predominantly in
areaswith grey matter and cerebrospinal fluid, likely the effect of ARD estimating f2 to zero in
both bedpostx and bedpostx_gpu. To focus analysis on areas where f, is supported by data, we
reported mean CPU f,, absolute average differences in mean f,, and absolute average difference
in L-M initialization in each S-score regions only on areas with mean f, from CPU or GPU greater
than or equal to 0.05 (Table 2).

S score Average Average Average |L-M CPU - L-M GPU|
(#of Mean f; CPU |Mean f2 CPU - Mean f2 GPU)|

voxels) (stdev)

0.1-0.2 0.1066 0.0204 0.0010
(13039) (0.0586)

0.2-0.3 0.0851 0.0317 0.0011
(6029) (0.0482)

0.3-0.4 0.0741 0.0462 0.0016
(1050) (0.0454)

> (0.4 0.0757 0.0624 0.0132
(108) (0.0488)

All 0.0984 0.0253 0.0011

(0.0562)

TABLE 2: Significantly different £, distributions where mean f, in CPU or GPU > 0.05: for each S-score range, averaged mean f, of CPU
distributions, averaged absolute difference in mean f, and averaged absolute diference in L-M initialization are tabulated

This wasthe same threshold chosen by (Behrens et al. 2007) when looking for secondary fibre
orientations supported by ARD (Fig. 5). Here, most significantly different voxels were localized in
grey/white matter junctions. Some were sparsely found bilaterally within identifiable structures
such as corpus callosum, corona radiata, internal capsule, anterior and posterior thalamic
radiations.

Figure 5:. Significantly different f, with mean f, in CPU or GPU > 0.05. S-score ranges are in: 0.1-0.2=blue, 0.2-0.3=light-blue,
0.3-0.4=green, >0.4=magenta
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The majority of significant f, distribution differences had S-scores < 0.3 (19068 out of 20226).
One example of a voxel exhibiting a large PDF difference in f; is depicted in Fig. 6, where S-score
= 0.625and is the same location where the largest S-score was found for f; distribution.

CPU
GPU

Figure 6: Example distribution shapedifferencesin f,. Red squares with dotted line denotes GPU samplesand blue circles with
solid line denotes CPU samples

Here, the distribution shows a sharp peak with low variance near f, =0 in the GPU distribution.
In the CPU, there is a smaller peak near f, = 0 with a larger variance that spans from 0to 0.6. The
CPU L-M initialization step estimated f, = 0.48 averaged across 20 trials while GPU L-M
initialization step had f, = 0 across 20 trials. Similar to f;, larger average L-M differences were
found for larger S ranges. After adjusting for f,>f; samples, 1303 voxels were no longer
significantly different, and of these voxels, 1096 were in areaswith mean f, from CPU or GPU
greater thanor equal to 0.05.

D. ¢ and6;
196081 out of 436738 total brain voxels had significantly different ¢, or 6, distributions.
Significantly different distributions were localized predominantly in areas of grey matter (43%)
and cerebrospinal fluid (37%). They were also found in the white matter (20%), with some key
white matter structuressuch as corpus callosum, internal capsules, corona radiata and anterior
and posterior thalamic radiations containing significantly different distributions (Fig. 7).

Figure 7: Significantly different ¢; and 6, distributions with S-ranges in 0.1-0.2 (Blue), 0.2-0.3 (light-blue), 0.3-0.4 (green), >0.4
(magenta). Maximum S-score between ¢; and 01 was used to categorize each location into different range
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Mean and median angle differences, and average 95" percentile CAUs for each S-score range
aretabulatedin Table 3.

S score Average Stdev Median Mean 95"-percentile
(#of Amean Amean Amean CAU

voxels) PDD PDD PDD

CPU GPU

0.1-0.2 2.146° 4.061° 1.047° 50.841° 50.818°
(113904)

0.2-0.3 2.193° 4.122° 1.080° 55.860° 55.845°
(68528)

0.3-04 2.306° 4.584° 1.086° 58.358° 58.448°
(12098)

> 0.4 2.529° 6.394° 1.008° 57.702° 57.346°
(1551)
All 2.175° 4.140° 1.061° 53.113° 53.097°

Table 3: Significantly different ¢, 6,: for each S-score range, average of mean PDD difference, standard deviation of mean PDD difference,
median of mean PDD diference and 95™-percentile cone of angular uncertainty are tabulated.

Again, the majority of these voxels have S < 0.3 (182432 out of 196081). Mean difference in
angles of principle diffusion directions in all significantly different voxels was 2.1752 (stdev =
4.1409) while the median difference was 1.0612. Inall significantly different ¢; and 6, voxels,
the average angular difference between the 95 percentile CAUs for CPU and GPU is 0.0162
(CPU 53.1132; GPU 53.0979; see Table 3). Because ¢, and 8; parametersare more meaningful in
white-matter where anisotropy is higher, angular differences and 95" percentile CAUs for each
S-score range in white-matter only are tabulatedin Table 4.

S score Average Stdev Median Average 95"-percentile
(#of Amean Amean Amean CAU

voxels) PDD PDD PDD

CPU GPU

0.1-0.2 2.276° 3.150° 1.300° 38.839° 38.754°
(20077)

0.2-0.3 3.382° 4.884° 1.606° 45.891° 45.950°
(9274)

0.3-04 4.660° 7.148° 1.672° 49.944° 49.905°
(1372)

> 0.4 7.140° 13.658° 1.160° 40.633° 40.171°
(218)
All 2.748° 4.210° 1.394° 41.458° 41.415°

Table 4: Significantly diferent ¢, 8;with in the white-matter: for each S-score range, average of mean PDD difference, standard
deviation of mean PDD diference, median of mean PDD diference and 95™-percentile cone of angular uncertainty are tabulated
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Overall, higher average difference in mean PDD and lower CAUs were found in significantly
different voxels confined to the white-matter. The effect of distribution shape difference on
diffusion direction is illustrated in Fig 8. The depicted distributions came from a voxel located
posteriorly in the genu of the right internal capsule with S score = 0.55. ¢, distributions had two
notable peaks but there was a difference in height between CPU and GPU. 6, distributions had
different number and locations of peak values between CPU and GPU, with the GPU distribution
having evenly split peaks in two locations. The resulting mean directions from these
distributions differed as depicted in the 3D-plot of Fig 8.

GPU
CPU |4

)
GPU 2 S‘L
CPU

Figure 8: Distributions of ¢; and 6; that are significantly different were derived from one representative voxel with a particularly
high S-score of 0.55. The voxel was located within the genu oftheright internal capsule, with voxel coordinates 79, 80, 46. Red
squares denote GPU samples while blue circles denote CPU samples. Blue solid line: CPU ¢, 6; mean direction, Red solid line:

GPU ¢, 0; mean direction. Difference in peak locations and heights result in difference in mean diffusion direction for CPU and
GPU

There were no significant differences in f; and f; in this location, and mean CPU f; and f, values
were 0.411 and 0.351 respectively, signifying that it was suitable for modeling two different
fibre orientations with higher anisotropy in this location. Adjusting for f, > f;, 33133 voxels
became not significantly different and of these, 11043 were in the white-matter.

E. ¢,and6,
223309 out of 436738 total brain voxels had significantly different ¢, or 0, distributions.
Significantly different distributions were localized in grey matter (45%), cerebrospinal fluid (25%)
and white matter structures (30%) such as corpus callosum, corona radiata, internal capsule,
and the anterior and posterior thalamic radiations (Fig 9). Mean and median angle differences

along with 95 percentile CAUs for each S-score range are tabulated in Table 5. Again, most
voxels have S-scores < 0.3(212651 out of 223309).
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Figure 9: Significantly different B2 and B2 distributions with S-rangesin 0.1-0.2 (Blue), 0.2-0.3 (light-blue), 0.3-0.4 (green), >0.4
(magenta). Maximum S-score between B2 and B2 was used to categorize each location into different range

S score Average Stdev Median Average 95"-percentile
(#of Amean Amean Amean CAU
voxels) PDD PDD PDD

CPU GPU
0.1-0.2 37.019° 29.345° 34.518° 83.236° 83.229°
(139823)
0.2-0.3 35.912° 29.197° 31.690° 84.095° 84.095°
(72828)
0.3-0.4 37.537° 29.008° 35.257° 84.098° 84.151°
(9910)
> 0.4 41.154° 29.247° 43.285° 83.276° 83.359°
(748)
All 36.695° 29.288° 33.656° 83.554° 83.553°

Table 5: Significantly different ¢», 6,: for each S-score range, average of mean PDD difference, standard deviation of mean PDD difference,
median of mean PDD difference and 95"-percentile cone of angular uncertainty are tabulated.

Overall mean difference in principle directions is 36.6952 with median difference of 29.288¢.
Average angular uncertaintyis 83.5542 and 83.553¢ for CPU and GPU, respectively. With ¢, and
0,, it is more meaningful to focus on white matter and areaswhere f,> 0.05 (i.e. where ARD has
deemed appropriate to fit a second fibre orientation). Mean PDD difference and 95"-percentile
CAUs in the white-matterandf, > 0.05 for each S-score range are tabulatedin Table 6. Like ¢,
and 0,, the CAUs were lower when focusing in on the white matter region. Also, the difference
in mean PDD was lower for each S-score range. Distribution shapes of ¢,, 6, samples and the
resulting distribution of principle directions in the same location as ¢;, 6, in the genu of the right
internal capsule are depicted in Fig 10. There was similarity in direction distribution between [¢,,
0:] and [¢,, 6;] while the latter had more anti-parallel directions included in the distribution.
Also, mean directions of CPU and GPU were roughly reversed in [¢,, 6,] compared to [¢, 01],
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Figure 10: Example ¢,,0, distributions from the same voxel depicted in Figure 8, withinthe genu ofthe right internal capsule.
3D-plot depicts the distribution of directions derived from ¢,,0, samples (Blue circle: CPU ¢,,0, samples, Red square: GPU ¢,,0,
samples)and mean directions (Blue solid line: CPU ¢,,0, mean direction, Red solid line: GPU ¢,,0, mean direction, Blue dotted

line: CPU ¢4,0; mean direction, Red dotted line: GPU ¢,,0; mean direction)

S score Average Stdev Median Average 95"-percentile
(#of Amean Amean Amean CAU

voxels) PDD PDD PDD

CPU GPU

0.1-0.2 6.500° 10.993° 2.885° 70.508° 70.499°
(18733)

0.2-0.3 8.863° 13.663° 3.376° 75.576° 75.703°
(10157)

0.3-04 11.488° 16.552° 4.725° 74.772° 74.666°
(1321)

> 0.4 16.928° 20.744° 6.855° 71.285° 71.823°
(117)
All 7.549° 12.369° 3.183° 72.394° 72.428°

Table 6: Significantly different ¢, 0 in the white-matter: for each S-score range, average of mean PDD difference, standard
deviation of mean PDD difference, median of mean PDD difference and 95"-percentile cone of angular uncertainty are tabulated

showing the difference in how CPU and GPU labelled the underlying multiple fibre orientations.
Mean CPU [¢4, 6] direction and mean GPU [¢,, 6,] direction had a difference of 2.74652, while
mean CPU [¢,, 6,] direction and mean GPU [¢4, 6,] direction had a difference of 18.41799. After
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swapping the orientation samples with f, > f;, underlying fibre orientations in this particular
voxel became better aligned between CPU and GPU (Fig. 11).

* Yl oo

Figure 11: . Effect of swapping samples where f, > f;: Distribution of directions derived from unswapped ¢,,0, samples (Left,
Blue circle: CPU ¢,,0, samples, Red square: GPU ¢,,0, samples) and mean directions (Blue solid line: CPU ¢,,0, mean direction,

Red solid line: GPU ¢,,0, mean direction, Blue dotted line: CPU ¢,,0;, mean direction, Red dotted line: GPU ¢4,0; mean
direction). Right is swapped samples of directions. Difference in mean principal direction becomes lower when samples are
swapped.

Discussions and Conclusions:

A total of 2620428 pairs of distributions were created and compared across the whole brain. 74% of
those distributions showed no significant difference between CPU and GPU. Of the significantly different
distributions, 44% were localized in grey matter, 31% in cerebrospinal fluid, and 25% in white matter,
localized within the corpus callosum in the midline, and bilaterally within the corona radiata, internal
capsule, and the anterior and posterior thalamic radiations.

Significantly different f; and f; distributions in a prominent white-matter structure, such as the body of
corpus callosum in the midline as displayed in Fig. 3 and Fig. 6, have been noted with more than half of
the samples produced by CPU and GPU differing in value. In general, the corpus callosum contains a
well-defined fibre bundle in the Left-to-Right orientation and thus we expected a higher f; with lower
uncertainty while f, expected be estimated closer to 0. To understand where the differences were
coming from in this particular voxel, we have looked at synthetic ball-and-stick data generated using
Dipy 0.16.0 (Garyfallidis et al. 2014), emulating this single-voxel within the corpus callosum, and
compare the bedpostx and bedpostx _gpu output to synthetic ground-truth. Here, mean values of all
parameter estimates from CPU and GPU were within 1% of synthetic ground-truth values, but f;, f, and
¢, distributions between CPU and GPU were found to be with significantly different shapes, albeit with
lower S-scores. This suggests that when operation order between CPU and GPU are kept identical (i.e.
single-voxel serial order equals single-voxel parallel order), difference in distribution shape is minimized
between the CPU and GPU, and both algorithms estimated parameters closer to ground-truth. The small
difference between CPU and GPU mostly would have come from difference in random number
generator and implementation difference between CPU and GPU math libraries. Since corpus callosum
in human brain would generally be found near the centre of the whole brain diffusion data, operation
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order between the CPU and GPU would have differed greatly and this may explain why significant
difference was observed even in a prominent structure such as the corpus callosum.

We also separately examined the initialization stages of L-M fit and noted that the results differed
between CPU and GPU. It is important to note that the L-M fit algorithm is identical between CPU and
GPU (i.e. diffusion tensor fitting) other than: 1) operation order (CPU: serially fitted one voxel at a time;
GPU: multiple voxel fitted simultaneously) and 2) library difference (e.g. CPU math library v.s. GPU CUDA
math library). We observed that not all voxels with differing L-M initialization ended up having differing
distribution for f; and f,, and vice-versa, not all voxels with similar L-M initialization ended up having a
similar distribution. Our findings suggest that the larger the L-M initialization difference at the start of
MCMC sampling, the larger the S-score in significantly different distributions. This suggests that
differences in PDF samples appeared to be stemming from a combination of differing starting points
after the L-M fit and differing algorithmic attributes in CPU and GPU primarily difference in operation
order, and to a lesser degree, implementation difference in math libraries and random number
generators. It is interesting to observe that the L-M initialization difference maps (Fig. 1) spatially
resemble the inverse of a typical signal-sensitivity map from a multi-channel MR head-coil. Larger
difference between CPU and GPU may be arising from more noise present near the inner most structure
of the brain where there is less sensitivity to signal. This could also possibly explain why large difference
was even noted in prominent white matter such as body of corpus callosum: the scan orientation is such
that this structure is farther away from the head-coil.

We found that S-scores of significantly different distributions were no greater than 0.3 for 94% of
significantly different distributions, i.e. 30% or less samples caused the difference. Distributional shape
differences were characterized by: a) peak height differences for fibre fractions and b) number of peaks
and peak value differences for diffusion direction angles. Larger difference in shape resulted in larger
difference in mean values or principle diffusion direction angles. Mean angular differences in principle
diffusion directions were 2.1752 and 36.6952 for significantly different [¢,,6,] and [9,,0,] respectively.
Their 95" percentile CAUs were 53.12 and 83.52 respectively. We see the larger CAUs for [$,,6,] arising
from angle samples that are antiparallel to each other and mislabeled angle samples that may well be
representing [$,,0,] sub-fibre population, thus increasing the average uncertainty in that location.
Algorithms such as probtrackx does tract streamlining with tract propagation constraints such that
streamlines will propagate smoothly, and avoid internal looping / sharp turns. This is achieved by
treating antiparallel angles as the same (i.e., by multiplying antiparallel angles by -1 prior to
propagation), and sampling from fibre-population that has minimal difference from previous
propagation direction. These constraints effectively allow consistent tract streamlines to be produced
from CPUs and GPUs, despite the difference in PDF distributional shapes in the PDD angles. As described
by (Jbabdi et al. 2010), we saw in our example in Fig. 10, where CPU produced a mean diffusion
direction in [¢1,0,] that is similar to GPU’s mean diffusion direction in [¢,,0,] and vice-versa, showing the
difference in CPU’s and GPU’s degree of inconsistency in labeling the sub-fibre population. We also
observed that swapping the samples where f,>f;, produced better aligned mean directions between CPU
and GPU. Recently, it has been qualitatively shown that CPUs and GPUs achieve excellent output
correlation in probabilistic tractography and connectome matrices while achieving excellent speedup
using minimal computational resources (Hernandez-Fernandez et al. 2019). We note that one of the
limitations of this current work is that there was no investigation into effect of using multi-shell models
while doing the comparisons. It is reasonable to suggest that with higher b-values there will be better
angular resolutions which might lead to better agreement between CPU and GPU results. The challenge
in investigating this would be that the CPU bedpostx process will take far too long compared to the GPU
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as much more data need iterative estimation in a linear fashion, and one would require the use of multi-
core High Power Computing resources to do this type of investigation in a reasonable amount of time.
Still, b=1000 with a monoexponential model estimation is valuable to investigate between CPU and GPU
as most clinical MRI can acquire this type of data with conventional MR system setup and speed-up in
bedpostx in the GPU can be most effective in this type of front-line clinical setting. Another limitation of
this work is that the random-number generator type is not the same between CPU and GPU and thus
there is no way of telling how much effect the random number generators have on the differences
observed between the two algorithms. The authors have looked at preliminary data where the GPU
bedpostx algorithm was modified to use the linear-congruential random number generator to obtain the
same amount of samples and when compared against the CPU samples, they appeared to have similar
amount and magnitude of difference as this current work, which suggests the effect of random number
generator in producing differing results would be small. This would then lead us to believe that sample
differences are more attributable to difference in implementation of CPU-GPU precision points, math
libraries between CPU and GPU-CUDA and more importantly the operation order: L-M initialization then
MCMC sequentially v.s. L-M parallel then MCMC parallel. As DWI data are collected with greater amount
of gradient directions, combination of different b-values, higher-resolutions, conventional DW!I post-
processing steps will require more computational resources to finish processing in a reasonable amount
of time, and GPUs can offer qualitatively the same results with minimal quantitative difference
compared to underlying uncertainty with excellent speed.

In summary, although significant differences were found between outputs of CPU and GPU bedpostx
parameter distributions, differences may have limited impact upon stochastic tractography with single-
shell DTI data: a) differences were observed in only 26% of total distributions; b) differences were
sparsely distributed in major tract areas; c) differences in fibre orientations were small compared to
background angular uncertainty. The latter appears to arise from antiparallel angles and random
assignment of principle directions to sub-fibre populations.
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Abbreviations:

CPU = central processing unit

GPU = graphics processing unit

bedpostx = Bayesian estimation of diffusion parameter obtained using sampling techniques
dMRI = diffusion MRI, DWI = diffusion weightedimaging, DTI = diffusion tensor imaging
MCMC = Markov Chain Monte Carlo

ARD = automatic relevance determination

L-M = Levenberg-Marquadt

CAU = cone of angular uncertainty

PDF = probability density function

K-S = Kolmogorov-Smirnov

Declarations:

Ethics approval, consent to participate and consent for publication:

Human MRI data used for this study is from a public repository of The Human Connectome Project. The
Human Connectome Project (Principal Investigators: Bruce Rosen, M.D., Ph.D., Martinos Center at
Massachusetts General Hospital; Arthur W. Toga, Ph.D., University of California, Los Angeles, Van J.
Weeden, MD, Martinos Center at Massachusetts General Hospital) is supported by the National Institute
of Dental and Craniofacial Research (NIDCR), the National Institute of Mental Health (NIMH) and the
National Institute of Neurological Disorders and Stroke (NINDS). Collectively, the HCP is the result of
efforts of co-investigators from the University of California, Los Angeles, Martinos Center for Biomedical
Imaging at Massachusetts General Hospital (MGH), Washington University, and the University of
Minnesota.

Competing Interest:
The authors declare that they have no conflict of interest.

Funding:
Canadian Foundation for Innovation (Project number: 20494)

Author’s contribution:

DHK: data analysis, compilation of results, drafting of manuscript
LIW: drafting of manuscript

MHF: data analysis, drafting of manuscript

BHB: drafting of manuscript

Availability of data and material:

Diffusion and 3D T1-weightedanatomical scans are available through the MGH-USC Human
Connectome Project Image & Data Archive portal (https://ida.loni.usc.edu/). Subject mgh1005 was used
for analysis.

Software used for this work is available through FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). The specific
version of FSL can be obtained through the “fsI-5.0” package in Neurodebian repository
(http://neuro.debian.net/pkgs/fsl-complete.html)

17


https://doi.org/10.1101/703835
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/703835; this version posted July 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Acknowledgment:

DHK, LW, and BHB would like to acknowledge the support of the Pediatric Neurosciences Program, a
joint program of the Divisions of Neurology and Neurosurgery at British Columbia Children's Hospital
and the BC Children’s Hospital Research Institute, University of British Columbia. We would like to thank
Mr. Kevin Fitzpatrick, Dr. Jonathan Nakane and Dr. Qing-San Xiang for comments on previous drafts of
this manuscript.

References:

Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous system - a technical review.
NMR Biomed, 15(7-8), 435-455, doi:10.1002/nbm.782.

Behrens, T. E., Berg, H. J., Jbabdi, S., Rushworth, M. F., & Woolrich, M. W. (2007). Probabilistic diffusion
tractography with multiple fibre orientations: What canwe gain? Neuroimage, 34(1), 144-155,
doi:51053-8119(06)00936-0 [pii], doi:10.1016/j.neuroimage.2006.09.018.

Behrens, T. E., Woolrich, M. W., Jenkinson, M., Johansen-Berg, H., Nunes, R. G., Clare, S., et al. (2003).
Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson
Med, 50(5), 1077-1088, doi:10.1002/mrm.10609.

Chang, L.-C., El-Araby, E., Dang, V. Q., & Dao, L. H. (2014). GPU acceleration of nonlinear diffusion tensor
estimation using CUDA and MPI. Neurocomputing, 135, 328-338.

Colberg, P. H., & Hofling, F. (2011). Highly accelerated simulations of glassy dynamics using GPUs:
Caveats on limited floating-point precision. Computer Physics Communications, 182(5), 1120-
1129.

Eklund, A., Dufort, P., Forsberg, D., & LaConte, S. M. (2013a). Medical image processing on the
GPU,AiPast, present and future. Medical image analysis, 17(8), 1073-1094.

Eklund, A., Villani, M., & LaConte, S. M. (2013b). Harnessing graphics processing units for improved
neuroimaging statistics. Cognitive, Affective, & Behavioral Neuroscience, 13(3), 587-597.
Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S., Descoteaux, M., & Nimmo-Smith,

l. (2014). Dipy, a library for the analysis of diffusion MRI data. Frontiers in neuroinformatics, 8, 8.

Hellekalek, P. (1998). Good random number generatorsare (not so) easy to find. Mathematics and
Computers in Simulation, 46(5-6), 485-505.

Hernandez-Fernandez, M., Guerrero, G. D., Cecilia, J. M., Garcia, J. M., Inuggi, A., Jbabdi, S., et al. (2013).
Accelerating fibre orientation estimation from diffusion weighted magnetic resonance imaging
using GPUs. PLoS One, 8(4), 61892, doi:10.1371/journal.pone.0061892, PONE-D-12-40109 [pii].

Hernandez-Fernandez, M., Reguly, I., Jbabdi, S., Giles, M., Smith, S., & Sotiropoulos, S. N. (2019). Using
GPUs to accelerate computational diffusion MRI: From microstructure estimation to
tractographyand connectomes. Neuroimage, 188, 598-615.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian journal of
statistics, 65-70.

Jbabdi, S., Behrens, T. E., & Smith, S. M. (2010). Crossing fibres in tract-based spatial statistics.
Neuroimage, 49(1), 249-256.

Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and
accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825-841,
doi:$1053811902911328 [pii].

Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain
images. Med Image Anal, 5(2), 143-156, doi:S1361841501000366 [pii].

18


https://doi.org/10.1101/703835
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/703835; this version posted July 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Johansen-Berg, H., & Rushworth, M. F. (2009). Using diffusion imaging to study human connectional
anatomy. Annu Rev Neurosci, 32, 75-94, doi:10.1146/annurev.neuro.051508.135735.

Lee, J., & Kim, D.-S. (2013). Divide et impera: Acceleration of DTI tractography using multi-GPU parallel
processing. International Journal of Imaging Systems and Technology, 23(3), 256-264,
doi:10.1002/ima.22059.

Lerner, A., Mogensen, M. A., Kim, P. E., Shiroishi, M. S., Hwang, D. H., & Law, M. (2013). Clinical
Applications of Diffusion Tensor Imaging. World Neurosurg, doi:S1878-8750(13)00897-8 [pii],
doi: 10.1016/j.wneu.2013.07.083.

Luizi, P., Cruz, F., & van de Graaf, J. (2010). Assessing the quality of pseudo-random number generators.
Computational Economics, 36(1), 57-67.

McGraw, T., & Nadar, M. (2007). Stochastic DT-MRI connectivity mapping on the GPU. IEEE transactions
on visualization and computer graphics, 13(6), 1504-1511.

Park, S. K., & Miller, K. W. (1988). Random number generators: good ones are hard to find.
Communications of the ACM, 31(10), 1192-1201.

Sotiropoulos, S. N., Jbabdi, S., Xu, J., Andersson, J. L., Moeller, S., Auerbach, E. J., et al. (2013). Advances
in diffusion MRIacquisition and processing in the Human Connectome Project. Neuroimage, 80,
125-143.

Whitehead, N., & Fit-Florea, A. (2011). Precision & performance: Floating point and IEEE 754 compliance
for NVIDIAGPUs. rn (A+ B), 21(1), 18749-19424.

Yamada, K., Sakai, K., Akazawa, K., Yuen, S., & Nishimura, T. (2009). MR tractography: a review of its
clinical applications. Magn Reson Med Sci, 8(4), 165-174, doi:JST.JSTAGE/mrms/8.165 [pii].

Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov
random field model and the expectation-maximizationalgorithm. IEEE Trans Med Imaging,
20(1), 45-57.

19


https://doi.org/10.1101/703835
http://creativecommons.org/licenses/by-nc-nd/4.0/

