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Abstract 17 

Background: Multiple myeloma (MM) is a hematological malignancy characterized by the 18 

clonal expansion of malignant plasma cells. Though durable remissions are possible, MM is 19 

considered incurable, with relapse occurring in almost all patients. There has been limited 20 

data reported on the lipid metabolism changes in plasma cells during MM progression. Here, 21 

we evaluated the feasibility of concurrent lipidomics and proteomics analyses from patient 22 

plasma cells, and report these data on a limited number of patient samples, demonstrating the 23 

feasibility of the method, and establishing hypotheses to be evaluated in the future.  24 

Methods: Plasma cells were purified from fresh bone marrow aspirates using CD138 25 

microbeads. Proteins and lipids were extracted using a bi-phasic solvent system with 26 

methanol, methyl tert-butyl ether, and water. Untargeted proteomics, untargeted and targeted 27 

lipidomics were performed on 7 patient samples using liquid chromatography-mass 28 

spectrometry. Two comparisons were conducted: high versus low risk; relapse versus newly 29 

diagnosed. Proteins and pathways enriched in the relapsed group was compared to a public 30 

transcriptomic dataset from Multiple Myeloma Research Consortium reference collection 31 

(n=222) at gene and pathways level. 32 

Results: From one million purified plasma cells, we were able to extract material and 33 

complete untargeted (~6000 and ~3600 features in positive and negative mode respectively) 34 

and targeted lipidomics (313 lipids), as well as untargeted proteomics analysis (~4100 35 

reviewed proteins). Comparative analyses revealed limited differences between high and low 36 

risk groups (according to the standard clinical criteria), hence we focused on drawing 37 

comparisons between the relapsed and newly diagnosed patients. Untargeted and targeted 38 

lipidomics indicated significant down-regulation of phosphatidylcholines (PCs) in relapsed 39 

MM. Although there was limited overlap of the differential proteins/transcripts, 76 40 
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significantly enriched pathways in relapsed MM were common between proteomics and 41 

transcriptomics data. Further evaluation of transcriptomics data for lipid metabolism network 42 

revealed enriched correlation of PC, ceramide, cardiolipin, arachidonic acid and cholesterol 43 

metabolism pathways to be exclusively correlated among relapsed but not in newly-44 

diagnosed patients.  45 

Conclusions: This study establishes the feasibility and workflow to conduct integrated 46 

lipidomics and proteomics analyses on patient-derived plasma cells. Potential lipid 47 

metabolism changes associated with MM relapse warrant further investigation.  48 

Keywords: proteomics, lipidomics, multiple myeloma, relapse, resistance, multi-omics 49 
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Introduction 52 

Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by plasma cell 53 

infiltration of the bone marrow, and/or the presence of extramedullary plasmacytomas [2]. 54 

With an increasing number of treatment options available, median survival for MM has 55 

improved, and now approaches six years [5]. Despite advances in therapeutic strategies and 56 

an increasing number of pharmacological agents to choose from, MM eventually relapses for 57 

the majority of patients, hence there is a need to understand the mechanisms of relapse and 58 

identify potential new therapeutic approaches.  59 

The Revised International Staging System (R-ISS) for MM incorporates serum biomarkers 60 

(lactate dehydrogenase, beta-2-microglobulin and albumin) and cytogenetic abnormalities of 61 

known prognostic significance to predict disease behavior [4]. It is imprecise however, with 62 

different patients in the same risk group exhibiting heterogeneous behavior and prognoses. 63 

MM treatment strategies predominantly use regimens built around immunomodulatory drugs 64 

such as thalidomide or its analogues, or proteasome inhibitors including bortezomib or 65 

carfilzomib.  These treatments may be followed by autologous stem cell transplantation. With 66 

an increasing number of treatment options available, median survival has improved in the last 67 

decade, now approaching six years [5], but despite these advances, myeloma eventually 68 

relapses for the majority of patients. 69 

Perturbations in lipid metabolism are emerging as potential drivers and therapeutic targets in 70 

cancer development and progression [7]. This is of particular relevance because obesity is a 71 

risk factor for a number of cancer types, including multiple myeloma (MM) [1]. A pooled 72 

analysis of 1.5 million participants from 20 unique prospective cohorts found a 1.2 to 1.5 fold 73 

increased risk of MM mortality with increasing body mass index [3]. In addition to the 74 
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systemic chronic inflammation associated with obesity, increased bone marrow adiposity of 75 

the MM microenvironment may directly fuel MM progression [6].  76 

 77 

In MM, initial lipidomic studies comparing malignant plasma cells to healthy plasma cells 78 

have reported decreased levels of phosphatidylcholines [8], and differing fatty acid 79 

composition of cellular membranes [8, 9]. There are limited studies on the metabolic changes 80 

that occur during MM relapse, with most studies focusing at the genomic level [10]. Using 81 

Raman spectroscopy to compare between drug resistant and sensitive MM cell lines, Franco 82 

et al. suggested differences in nuclear structure, as reflected by altered DNA:RNA ratio as 83 

well as cholesterol and phosphatidylethanolamine content [11]. Metabolic reprogramming, 84 

elevated oxidative stress response and up-regulated prostaglandin synthesis were reported by 85 

Zub et al. who compared the proteome and transcriptome of melphalan sensitive and resistant 86 

RPMI8226 cell lines [12].  87 

 88 

Advances in omics technologies herald the potential of multi-omics systems analysis, where 89 

regulatory networks could be evaluated, for example, by combining proteomics and 90 

transcriptomics data. One challenge of performing multi-omics analysis on clinical samples is 91 

the limited patient-derived material. In this study, we investigated the feasibility of 92 

conducting lipidomic and proteomic analyses from the same patient-derived plasma cell 93 

sample. To validate the omics results from our pilot cohort, we compared the proteomics data 94 

with a larger public transcriptomic dataset from Multiple Myeloma Research Consortium 95 

reference collection, and interpreted the lipidomics data against a combined transcriptomics-96 

proteomics lipid metabolism network for relapsed MM.  97 

 98 
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Materials and Methods 99 

Study design and setting 100 

A single-center, prospective pilot study was performed at the Princess Alexandra Hospital, 101 

Brisbane, Australia. We identified patients as possible candidates (on the basis of clinical 102 

features) prior to bone marrow aspiration and biopsy, and informed consent was sought prior 103 

to the aspiration and biopsy procedure. Bone marrow biopsies were all performed in the 104 

outpatient setting. Participant details are in Table S1.   105 

Plasma cell isolation from bone marrow 106 

Plasma cells were isolated from fresh bone marrow aspirate samples using CD138 107 

microbeads (Miltenyi). Purity was verified by flow cytometry (on the basis of CD38 and 108 

CD138 expression) and was >80% for all samples. Purified plasma cells were stored in 109 

aliquots of 106 cells at -80°C until analysis.   110 

Lipid and protein extraction  111 

Samples were selected based on laboratory confirmation of the diagnosis of myeloma with 112 

>10% plasma cells in the marrow aspirate sample, and >80% of CD138+ plasma cells post-113 

purification. Extraction of lipids and proteins from 106 isolated plasma cells was carried out 114 

using a bi-phasic solvent system of cold methanol, methyl tert-butyl ether (MTBE) and water 115 

[13]. Briefly, each sample was suspended in 20 µL of cold Milli-Q water and homogenized 116 

with a pipette tip, followed by addition of 20 µL of a 20 µM solution of zidovudine (AZT) in 117 

methanol as internal standard. Cold methanol (205 µL) was then added. The sample was 118 

vortexed briefly, frozen in liquid nitrogen for 2 min, thawed, and sonicated for 10 min. The 119 

freeze-thaw-sonication cycle was repeated twice. After incubating at -30 °C for 1 h, the 120 

sample was extracted by 750 µL cold MTBE with shaking at 4 °C for 15 min. Phase 121 
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separation was induced by addition of 188 µL Milli-Q water, vortexing and centrifugation at 122 

14000 g for 15 min at 4 °C. The upper phase was collected (700 µL) as the lipid-rich extract 123 

fraction, and protein was recovered as the pellet. The lipid extract was evaporated to dryness 124 

under vacuum and then reconstituted in 100 µL of a methanol/toluene (9:1) mixture for LC-125 

MS analysis.  126 

 127 

Untargeted lipidomics  128 

Untargeted lipidomics using LC-MS was performed as previously described [14], using 129 

Agilent 1290 Infinity II UHPLC with 6550 iFunnel Q-TOF mass spectrometer and Dual 130 

Agilent Jet Stream (AJS) source. Agilent Zorbax Eclipse Plus RRHD C18 column (2.1 × 50 131 

mm, 1.8 µm) was used at a flow rate of 0.5 mL/min. Mobile phases for positive mode LC-MS 132 

consisted of A: acetonitrile/water (60:40) and B: isopropanol/acetonitrile (90:10). Both A and 133 

B contained 10 mM ammonium formate and 0.1% formic acid. In negative mode, ammonium 134 

formate and formic acid was replaced with 10 mM ammonium acetate in both eluents. LC 135 

gradient is described in Supplementary File S2. 136 

Full scan MS spectra were acquired for samples at a mass range of m/z 100-1700. The TOF 137 

component was tuned using reference masses 118.09, 322.05, 622.03, 922.00, 1221.99 and 138 

1521.97 in positive ionization mode, and the masses 112.99, 302.00, 601.98, 1033.99, 139 

1333.97 and 1633.95 in negative mode. Source capillary voltages were set to 4000 V for 140 

positive ionization mode and 3500 V for negative ionization mode whilst the nozzle voltage 141 

was set to 0 V, fragmentor was set to 365 and octopoleRFPeak to 750. Nitrogen gas 142 

temperature was set to 250°C at a flow of 15 L/min and a sheath gas temperature of 400°C at 143 

a flow of 12 L/min. During the experiment reference masses were enabled for positive 144 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 15, 2019. ; https://doi.org/10.1101/702993doi: bioRxiv preprint 

https://doi.org/10.1101/702993
http://creativecommons.org/licenses/by/4.0/


Page 8 of 29 
 

(121.05 and 922.01 Da) and negative modes (68.99, 112.98 and 1033.99 Da) to enable auto-145 

recalibration of compounds with known masses. 146 

The MS1 untargeted LC-MS data were subjected to batch Molecular Feature Extraction 147 

(MFE) with Agilent Profinder (B.08.00, Agilent Technologies Inc., Santa Clara, CA, USA). 148 

Data were then imported into R statistical framework for analysis. Data were first filtered to 149 

retained only features that in at least 75% of samples of one or more comparison groups. 150 

Remaining missing values were imputed with the minimum value. After quantile 151 

normalization and log2 transformation, differential analysis was carried out using limma 152 

package [15] to identify significant features (p value < 0.05, logFC > 1.5). 153 

To assign the molecular identity to candidate features, LC-MS/MS was performed using 154 

nitrogen as the CID collision gas. MS/MS acquisition was performed in targeted mode. The 155 

HPLC, column and source parameters were identical to those used in the MS acquisition. A 156 

fixed collision energy of 20 eV was used to induce fragmentation for all targets in positive 157 

and negative mode. MS/MS data was acquired between 70-1500 m/z with MS and MS/MS 158 

scan rates of 3 spectra per second, with a maximum of 5 seconds between MS scans. The 159 

isolation width for all targets was set to medium (~4 amu) and a delta retention time of 0.3 160 

minutes. The LC-MS/MS data were submitted to the open source software MS-DIAL [16] 161 

with LipidBlast in-silico LC-MS/MS library [17] for identification of lipids. 162 

Targeted lipidomics  163 

Targeted lipidomics experiments were performed using an Agilent Technologies 1290 Infinity 164 

II UHPLC system with an Agilent HILIC Plus RRHD 2.1×100 mm 1.8-micron column, 165 

coupled online to an Agilent 6490A Triple Quadrupole Mass spectrometer with iFunnel and 166 

AJS source. The mass spectrometer was operated in dynamic MRM mode. Each sample was 167 

analyzed in three separate dynamic MRM runs for the following lipid classes: Cer, PC and SM 168 
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in method F1; PC-O, PC-P, HexCer, LPE, LPC in method F2; PE, PE-O, PE-P, PI, PG in 169 

method A1. MRM lipid transitions are shown in Supplementary File S2. 170 

The source nitrogen gas temperature was set to 250°C at a flow of 15 L/min. The sheath gas 171 

temperature was 400°C with a flow of 12 L/min. The capillary voltage was set to 4000 V for 172 

positive mode and 5000 V for negative mode and the nebulizer operated at 30 psi. Ion funnel 173 

low and high pressure in positive mode were 150 and 60, and in negative mode 150 and 120 174 

respectively. The autosampler was operated at 4°C and the column compartment was operated 175 

at 30°C for the duration of the experiment. A solution of 95% acetonitrile was used to perform 176 

the needle wash with a duration of 15 seconds. An injection volume of 8µL was used for all 177 

samples. Pooled quality control (QC) samples were injected multiple times to condition the 178 

HPLC column prior to analyzing the biological samples. Chromatographic separation of lipids 179 

was performed using 2 different HILIC buffer systems; 25 mM ammonium formate (pH4.6) or 180 

10 mM ammonium acetate (pH7.6). The acetonitrile gradient was from 50% to 95% as 181 

described in Supplementary File S2.  182 

Raw LC-MS data was imported into Skyline [18], where peak integration was automated but 183 

manually confirmed and adjusted if required. Retention time for internal standard of each 184 

lipid class was used to confirm correct peak integration of lipids belonging to the same class. 185 

Peak areas were exported from Skyline for further analysis in R. Data were then normalized 186 

using probabilistic quotient normalization [19] to correct for injection variations, and then 187 

log2 transformed. Differential analysis was carried out using limma package identify 188 

significant lipids (p value < 0.05, logFC > 1.5). 189 

To perform enrichment analysis, lipid sets were generated based on class, total chain length 190 

and total chain unsaturation. Lipid set enrichment analysis was performed in R using the 191 

fgsea package [20]. 192 
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 193 

Proteomics 194 

Proteins pellets were thawed on ice then centrifuged. Any excess liquid was removed and 195 

samples dried under N2 for 10 min. Protein pellets were resuspended in 15 uL of buffer (70 196 

mM Tris pH8, 1% sodium deoxycholate, 10 mM tris(2-carboxyethyl)phosphine and 40 mM 197 

2-chloroacetamide), and sonicated in the Bioruptor (Diagenode) for 15 minutes. Protein 198 

concentration was measured using DirectDetect® infrared spectrometer (Merck). A 10 µg 199 

aliquot of 1 mg/mL protein extract was denatured by heating at 95°C for 5 minutes. After 200 

cooling to room temperature, 0.2 µg trypsin (Promega) was added and incubated at 37C 201 

overnight. Digest was stopped by acidification to 0.5 % TFA, and peptides were isolated 202 

using OMIX C18 tips (Agilent). NanoLC-MS/MS was performed using a Waters 203 

nanoACQUITY UPLC system interfaced to an LTQ-Orbitrap Elite hybrid mass spectrometer 204 

as described in [21]. 205 

Acquired data was searched using MaxQuant [22] version 1.5.8.3 against SwissProt human 206 

proteome downloaded on 25/10/2017, and later exported to R for analysis. Proteins were 207 

filtered according to unique peptides (≥2) and Score (>5), and then according to missing 208 

values, where proteins were only kept if they were detected in at least 75% of samples of one 209 

or more comparison groups. Data was then quantile normalized and remaining missing values 210 

imputed using two techniques: i) proteins missing in < 25% of all samples were considered 211 

missing at random, and were imputed using localized least square regression as described in 212 

[23], ii) proteins missing in > 25% were imputed from a normal distribution centred at 213 

minimum intensity. Log2 transformed data was analyzed using limma package to identify 214 

significant proteins (p value < 0.05, logFC > 1.5). Pathway enrichment analysis was carried 215 

out using the fgsea package and pathways from Reactome database [24]. 216 
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 217 

Transcriptomics data set  218 

Gene expression profiles of the Multiple Myeloma Research Consortium (MMRC) reference 219 

collection were downloaded from the Multiple Myeloma Genomics Portal 220 

(http://portals.broadinstitute.org/mmgp/) as a GCT file. Expression signals were obtained as 221 

median centered and log2 transformed, and imported into R. Patient samples were filtered to 222 

include only those diagnosed with Multiple myeloma and reported treatment status. 223 

Microarray probes were first mapped to UniProt IDs, followed by differential analysis and 224 

pathway enrichment using limma and fgsea packages, respectively. 225 

 226 

Network analysis 227 

Biopax level 3 file of the “Metabolism of Lipids” pathway was downloaded from the 228 

Reactome database, imported and analyzed in R using NetPathMiner package [25]. 229 

Transcriptomic data was used to weight network based on adjacent pairwise correlation. Top 230 

50 correlated paths, with a minimum path length of 6 reactions, were then extracted for 231 

relapsed and newly-diagnosed patients. Association of extracted paths with disease status was 232 

assessed by a path classification model. A subnetwork of top paths was then exported to 233 

Cytoscape [26] for interactive visualization and analysis. 234 

 235 

  236 
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Results 237 

Following clinical diagnosis, plasma cell isolation and quality control, a total of 7 participant 238 

samples were available for inclusion (Table S1). For each participant, 1×106 plasma cells 239 

were extracted for proteomics and lipidomics analyses. Lipidomics was performed using both 240 

untargeted and targeted approaches. Two comparisons were conducted based on clinical 241 

information, with the caveat that the sample sizes were small in this study. Firstly, high risk 242 

MM (n=3) were compared to low risk MM (n=4) according to R-ISS staging. Secondly, 243 

relapsed/refractory MM (RRMM, n=2) versus newly diagnosed MM (NDMM, n=7). Table 1 244 

summarizes the number of detected, filtered, and significant features for each analysis.  245 

 246 

Table 1 Overview of lipidomics and proteomics LC-MS analyses. 247 

 Untargeted lipidomics Targeted lipidomics Proteomics 

Positive Negative 

Detected features 6069 3617 313 4169 

Filtered features 3015 2080 219 2569 

Risk groups     

P < 0.05 62 88 12 28 

Up-regulated* 19 24 4 20 

Down-regulated* 16 8 4 8 

RRMM vs NDMM     

P < 0.05 467 454 16 182 

Up-regulated* 58 36 6 45 

Down-regulated* 128 61 7 123 

* logFC > 1.5 248 
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Abbreviations: NDMM, newly diagnosed multiple myeloma; RRMM, relapsed/refractory 249 

multiple myeloma. 250 

 251 

Untargeted lipidomics profiling of plasma cells 252 

For untargeted lipidomics profiling, 6069 and 3617 features were detected in the positive and 253 

negative mode, respectively. Filtering missing and low intensity features retained 3015 and 254 

2080 features. Differential analysis between risk groups identified 62 and 88 significant 255 

features in positive and negative mode (Supplementary File 3). The number of significant 256 

features was much higher (>400 features) in RRMM/NDMM comparison, indicating higher 257 

variation compared to different risk groups. Differential features with logFC > 1.5 were 258 

selected for identification via MS/MS fragmentation and database matching using MS-DIAL. 259 

Out of ~400 features, MS-DIAL matched 17 features to their lipid composition, in which 260 

several PCs were diminished in RRMM as well as in high risk patients (Table 2). 261 

 262 

Table 2. Untargeted lipid features identified via MS/MS fragmentation. 263 

Lipid Molecule ESI Mode Comparison* logFC 

Cer[NS] 34:1; Cer[NS](d18:1/16:0); [M+H]+ + high.low 1.58 

Cer[NS] 34:2; Cer[NS](d18:1/16:1); [M+H]+ + RRMM.NDMM -2.90 

PC 30:0; [M+H]+ + high.low -1.75 

PC 30:0; [M+H]+ + RRMM.NDMM -1.66 

PC 31:1; [M+H]+ + high.low -1.87 

PC 31:1; [M+H]+ + RRMM.NDMM -1.56 

PC 32:2; [M+H]+ + RRMM.NDMM -1.56 

PC 34:4; [M+H]+ + high.low -2.39 
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PC 34:4; [M+H]+ + RRMM.NDMM -2.10 

PC 35:4; [M+H]+ + RRMM.NDMM -1.67 

PC 40:4; [M+H]+ + RRMM.NDMM -3.82 

PC 40:7; [M+H]+ + RRMM.NDMM -1.55 

Plasmenyl-PC 30:0; [M+H]+ + RRMM.NDMM -3.83 

Plasmenyl-PC 36:1; [M+H]+ + RRMM.NDMM -2.55 

Plasmenyl-PC 38:5; [M+H]+ + RRMM.NDMM -4.12 

Plasmenyl-PE 40:6; [M-H]- - RRMM.NDMM -1.76 

PS 36:4; [M+H]+ + RRMM.NDMM -2.24 

*Comparison between high and low risk group (high.low) or between relapse and newly-diagnosed 264 

(RRMM.NDMM) 265 

Abbreviations: ESI, electrospray; logFC, log fold change 266 

 267 

Targeted lipidomics profiling of plasma cells 268 

The targeted lipidomics method included 313 lipids, from which 219 lipids were retained 269 

after manual inspection and filtering through Skyline (Supplementary File 4). Differential 270 

analysis confirmed untargeted profiling results with several PCs diminished in both high risk 271 

and RRMM (Table 3). To investigate if the observed differences are specific to particular 272 

lipid class, we performed Lipid set enrichment analysis (Figure 1, Supplementary File 4), 273 

which revealed significant down-regulation trend in PCs in both high risk and RRMM. 274 

Ceramides and lyso-PEs were significantly enriched for upregulation in high risk patients, 275 

while down-regulated in RRMM. Elevated levels of phosphatidylethanolamines (PEs), 276 

sphingomyelins and sphingosines resulted in significant enrichment of these classes in 277 

RRMM.  278 
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 279 

Table 3. Reduced abundance of phosphatidylcholines (PC) in high risk and RRMM, measured 280 

by targeted lipidomics 281 

Lipid Molecule Comparison* logFC 

PC 30:0 high.low -1.57819 

PC 30:1 high.low -1.37218 

PC 34:4 high.low -1.7996 

PC 34:4 RRMM.NDMM -1.14782 

PC 34:5 high.low -2.19233 

PC 38:0 RRMM.NDMM -3.03733 

PC 38:1 RRMM.NDMM -1.99746 

PC 40:0 RRMM.NDMM -2.39816 

PC 40:1 RRMM.NDMM -1.7426 

PC 40:2 RRMM.NDMM -1.13424 

PC(O-38:6) / PC(P-38:5) RRMM.NDMM -1.93524 

PC(O-40:7) / PC(P-40:6) RRMM.NDMM -1.77034 

*Comparison between high and low risk group (high.low) or between relapse and newly-diagnosed 282 

(RRMM.NDMM) 283 

Abbreviations: logFC, log fold change 284 

 285 

Untargeted proteomics of plasma cells 286 

In the untargeted proteomic analysis, 4169 proteins were identified, of which 2569 were 287 

subjected to differential analysis after filtering. Difference between risk groups was limited to 288 

28 significant proteins, while RRMM vs NDMM comparison reported 182 differential 289 

proteins, the majority of which are down-regulated (Supplementary File 5). Enrichment 290 
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analysis using Reactome pathways identified ~ 150 significant pathways in RRMM 291 

(Supplementary File 6). In contrast, risk groups had only ~25 enriched pathways, mostly 292 

related to extracellular matrix. 293 

 294 

Comparison of RRMM proteomics dataset with gene expression data  295 

In both lipidomics and proteomics measurements, the differences between RRMM and 296 

NDMM were larger than those observed between risk groups. We followed up on these 297 

observations in RRMM by integrative analysis with the publicly available MMRC reference 298 

collection which contains gene expression profiles for plasma cells from a total of 222 299 

patients, with 107 being NDMM (termed untreated) and 115 RRMM (termed treated). 300 

Mapping microarray probes to their corresponding UniProt IDs obtained expression levels for 301 

~ 17,000 genes. Differential expression analysis followed by pathway enrichment identified 302 

430 significant pathways (Supplementary File 6). 303 

 304 

There was significant overlap between the proteomics results from our cohort and the 305 

independent transcriptomics results at the pathway level but not at the gene level 306 

(hypergeometric test, Figure 2). Out of 6900 significantly expressed genes, 62 genes were 307 

also found significant at the protein level, only 20 of which were regulated in the same 308 

direction (p = 0.99) (Supplementary File 5). Interestingly, out of the 430 significantly 309 

enriched pathways in the transcriptomics dataset, 76 pathways were also enriched at the 310 

protein level, 67 of which in the same direction (p < 1e-16). Overlapped pathways included 311 

TCR, NF-kß signalling and protein synthesis pathways (Supplementary File 6). 312 

 313 

Network analysis 314 
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Next, we focused on the lipid related pathways in RRMM. Reactome pathway group 315 

“Metabolism of lipids” was converted into a single connected network using NetPathMiner R 316 

package. Following the package instructions, small ubiquitous compounds, such as water and 317 

co-factors, were removed to prevent over-connectivity of the network, resulting in a network 318 

with 1130 nodes and 1571 edges. Metabolite nodes were then removed to obtain a reaction 319 

network, subsequently weighting the edges using transcriptomics datasets (see Methods). Top 320 

correlated paths showed strong association with their corresponding conditions. This was 321 

demonstrated by the ability of pathClassifier function to correctly predict path condition. 322 

Receiver Operating Characteristic (ROC) curve showed area under the curve (AUC) of 0.995, 323 

indicating high sensitivity and specificity of the path classifier (Figure ). 324 

Subnetworks constructed from correlated paths resulted in substantially smaller networks. In 325 

RRMM, a subnetwork of 101 nodes and 125 edges was obtained, with paths related to PCs, 326 

ceramides, cardiolipin metabolism, production of leukotrienes, exotoxins from arachidonic 327 

acid (AA), and production of dihydroxycholestanoic acid from cholesterol (Figure 4, red 328 

edges). On the other hand, the subnetwork correlated amongst NDMM consisted of 87 nodes 329 

and 96 edges, and incorporated FA and PE metabolism, production of prostaglandins and 330 

thromboxanes from AA, and production of phosphoserine from cholesterol. Subnetworks 331 

from both conditions showed a small overlap, with only 32 nodes and 23 edges (Figure 4, 332 

grey edges). 333 

Exploring the proteomics data in the context of correlated subnetwork for RRMM revealed a 334 

low detection rate (Figure 5). Notably, PLBD1, a phospholipase B implicated in sn1 and sn2 335 

hydrolysis PCs, was up-regulated in RRMM proteomics and transcriptomics. This up-336 

regulation of PLBD1, along with the correlation of PC metabolic subnetwork in RRMM, 337 

propose a possible explanation for the reduced levels of PCs observed in lipidomics data. 338 
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Discussion 339 

This study confirmed the feasibility of conducting concurrent lipidomics and proteomics 340 

profiling of freshly isolated plasma cells from patients with MM. We observed more 341 

lipidomic and proteomic differences between RRMM and NDMM, than between high and 342 

low risk MM based on the current R-ISS staging system. As an initial cross-validation, the 343 

proteomics data from our small pilot cohort was compared to a larger transcriptomics dataset 344 

for RRMM versus NDMM cases. This comparison revealed limited overlap at the 345 

transcript/gene level, likely due to the lower proteomics depth compared to transcriptomics. 346 

However, significant correlation was observed in the differential pathways at the transcript 347 

and proteome level, indicating agreement of our pilot cohort data with the larger 348 

transcriptome data. Together, these results confirm the feasibility of concurrent lipidomics 349 

and proteomics analyses from a single aliquot of one million plasma cells prepared from 350 

freshly collected bone marrow.  351 

From both targeted and untargeted lipidomics, we observed significantly lower level of PC in 352 

RRMM compared to NDMM, and in high risk compared to low risk patients. Decreased PC 353 

was previously observed in MM cells compared to normal plasma cells [8]. Recently, Steiner 354 

et al. reported significantly lower circulating plasma levels of several PCs, and elevated lyso-355 

PCs in RRMM compared to NDMM [27]. Hydrolysis of PCs by phospholipases generate 356 

lyso-PCs and a free fatty acid which could be further processed to generate lipid second 357 

messengers such as arachidonic acid, prostaglandins and leukotrienes [28]. These bioactive 358 

lipids play multiple roles in promoting cancer development and metastasis [29]. Interestingly, 359 

our transcriptomics network analysis of the larger independent cohort revealed high 360 

correlation of PC, arachidonic acid, prostaglandin metabolic pathways among RRMM. 361 

Furthermore, although the proteomic coverage of lipid metabolic enzymes was overall very 362 

limited, we found phospholipase B-like 1 gene product PLBD1 to be elevated in RRMM. The 363 
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major cellular phospholipases that participate in signal transduction are PLA, PLC and PLD 364 

[28]. PLBD1 was recent identified from neutrophils as a phospholipase which removes fatty 365 

acids from either sn-1 or sn-2 positions [30]. Coupled with observed high level of transcripts 366 

in the arachidonic pathway, it is tempting to suggest that elevated PLBD1 levels contributes 367 

to MM progression and relapse by increasing arachidonic acids levels. Future studies in 368 

larger cohorts should examine this pathway.  369 

 370 

We acknowledge that the small patient numbers in our study limit the broader applicability of 371 

the work, but in our small dataset, plasma cells from patients with RRMM appear to have a 372 

different lipidomic and proteomic profile when we compare with samples from NDMM. This 373 

is potentially clinically relevant, as patients who have relapsed disease experience poorer 374 

outcomes, with shorter periods of disease control than patients receiving front-line therapy at 375 

first diagnosis. The altered lipidomic and proteomic profile observed may reflect the clonal 376 

evolution that occurs in the malignant cells over time following serial chemotherapeutic 377 

challenges. To this end, it is interesting to note that PC is an important lipid in maintaining 378 

endoplasmic reticulum (ER) function, and that ER stress response pathways is implicated in 379 

the development of resistance to proteasome inhibitors in MM [31]. Further studies, with 380 

larger groups of patients will be beneficial in establishing the relationship between clonal 381 

evolution, subsequent lipidomic and proteomic changes. These results may enable 382 

personalized therapy selection, thereby improving patient outcomes.  383 

 384 

In summary, we report the feasible concurrent lipidomic and proteomic analyses of purified 385 

plasma cells collected from a small cohort of multiple myeloma patients. As the goal was to 386 

determine the methodological feasibility and develop a suitable workflow, interpretation of 387 
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the biological data from this study is limited by the small cohort size and possible 388 

confounders which were not considered. Nonetheless, in alignment with previous reports of 389 

reduced levels of PCs in MM (compared with healthy plasma cells), we observed reduced 390 

levels of several PCs in high risk MM and in RRMM. Furthermore, independent 391 

transcriptome data from a larger cohort corroborates altered PC metabolism in RRMM, and 392 

further suggest altered arachidonic acid and eicosanoid metabolism. We believe these 393 

preliminary observations warrants further exploration in a larger cohort, as these approaches 394 

are likely to provide valuable clinical insights into disease biology, as well as perhaps offer 395 

novel biomarkers for the prediction of disease kinetics. 396 

 397 

List of abbreviations 398 

AA, arachidonic acid 399 

FA, fatty acid 400 

logFC, log fold change 401 

MM, multiple myeloma 402 

MTBE, methyl tert-butyl ether 403 

NDMM, newly diagnosed multiple myeloma 404 

PC, phosphatidylcholine 405 

PE, phosphatidylethanolamines 406 

R-ISS, Revised International Staging System 407 

RRMM, relapsed/refractory multiple myeloma 408 

SM, sphingomyelin 409 
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Figures 536 

 537 

 538 

Figure 1. Targeted lipidomics measurements per lipid class, with significantly enriched classes 539 

marked with red. Targeted lipidomics data were grouped by lipid class and then evaluated for 540 

significance for high versus low risk MM (left) and RRMM versus NDMM (right) using enrichment 541 

analysis of fgsea R package. Lipid classes with adjusted P value < 0.05 are considered significantly 542 

different between the two groups (labelled red). LogFC, log fold change. 543 

 544 
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 545 

Figure 2. Overlap between proteomics and transcriptomics data at the gene and pathway levels. 546 

Proteomic level changes in RRMM compared to NDMM were evaluated against independent 547 

transcriptome data from the Multiple Myeloma Research Consortium reference collection. The graph 548 

shows the number of genes/proteins (left) or pathways (right) that are significantly different in the 549 

proteomics data (red bar), which also was significantly different in the transcriptome data (green bar), 550 

in the same direction (blue bar).   551 

 552 
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 553 

Figure 3.  Receiver Operating Characteristic (ROC) curve for correlated path classification 554 

model of lipid metabolic pathways based on transcriptome data for RRMM. Diagnostic plot of 555 

the result from the path classification model for RRMM transcriptome data. ROC curves are shown 556 

for each component (M1, M2), which represent a path structure pattern. This gives information about 557 

which components is associated with RRMM and NDMM. A ROC curve with an AUC < 0.5 relates 558 

to RRMM. Conversely, ROC curve with AUC > 0.5 relates NDMM. Complete ROC represents the 559 

performance of the classifier using both components.  560 
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 561 

Figure 4. Extracted correlated lipid metabolism path network for RRMM and NDMM patients. 562 

A sub-network comprised of top 50 correlated paths based on gene expression in RRMM and NDMM 563 

was extracted from the lipid metabolism path network. Red and blue edges indicate exclusive 564 

correlation in RRMM and NDMM patients, respectively. Grey edges indicate correlation in both 565 

conditions. 566 
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 567 

Figure 5. Proteomics results shown in the context of extracted lipid metabolism path network 568 

for RRMM and NDMM patients. Proteomic data were projected on to the same network shown in 569 

Figure 4. Red nodes indicate up-regulation at protein level in RRMM compared to NDMM. 570 

Conversely, blue nodes indicated down-regulated proteins. Inset: PC metabolism pathways, showing 571 

expression correlation and proteomics up-regulation suggest active PC degradation in RRMM. 572 

 573 
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