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Abstract

Background: Multiple myeloma (MM) is a hematological malignancy characterized by the
clonal expansion of malignant plasma cells. Though durable remissions are possible, MM is
considered incurable, with relapse occurring in almost all patients. There has been limited
data reported on the lipid metabolism changes in plasma cells during MM progression. Here,
we evaluated the feasibility of concurrent lipidomics and proteomics analyses from patient
plasma cells, and report these data on a limited number of patient samples, demonstrating the

feasibility of the method, and establishing hypotheses to be evaluated in the future.

Methods: Plasma cells were purified from fresh bone marrow aspirates using CD138
microbeads. Proteins and lipids were extracted using a bi-phasic solvent system with
methanol, methyl tert-butyl ether, and water. Untargeted proteomics, untargeted and targeted
lipidomics were performed on 7 patient samples using liquid chromatography-mass
spectrometry. Two comparisons were conducted: high versus low risk; relapse versus newly
diagnosed. Proteins and pathways enriched in the relapsed group was compared to a public
transcriptomic dataset from Multiple Myeloma Research Consortium reference collection

(n=222) at gene and pathways level.

Results: From one million purified plasma cells, we were able to extract material and
complete untargeted (~6000 and ~3600 features in positive and negative mode respectively)
and targeted lipidomics (313 lipids), as well as untargeted proteomics analysis (~4100
reviewed proteins). Comparative analyses revealed limited differences between high and low
risk groups (according to the standard clinical criteria), hence we focused on drawing
comparisons between the relapsed and newly diagnosed patients. Untargeted and targeted
lipidomics indicated significant down-regulation of phosphatidylcholines (PCs) in relapsed

MM. Although there was limited overlap of the differential proteins/transcripts, 76
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significantly enriched pathways in relapsed MM were common between proteomics and
transcriptomics data. Further evaluation of transcriptomics data for lipid metabolism network
revealed enriched correlation of PC, ceramide, cardiolipin, arachidonic acid and cholesterol
metabolism pathways to be exclusively correlated among relapsed but not in newly-

diagnosed patients.

Conclusions: This study establishes the feasibility and workflow to conduct integrated
lipidomics and proteomics analyses on patient-derived plasma cells. Potential lipid

metabolism changes associated with MM relapse warrant further investigation.

Keywords: proteomics, lipidomics, multiple myeloma, relapse, resistance, multi-omics
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Introduction

Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by plasma cell
infiltration of the bone marrow, and/or the presence of extramedullary plasmacytomas [2].
With an increasing number of treatment options available, median survival for MM has
improved, and now approaches six years [5]. Despite advances in therapeutic strategies and
an increasing number of pharmacological agents to choose from, MM eventually relapses for
the majority of patients, hence there is a need to understand the mechanisms of relapse and

identify potential new therapeutic approaches.

The Revised International Staging System (R-ISS) for MM incorporates serum biomarkers
(lactate dehydrogenase, beta-2-microglobulin and albumin) and cytogenetic abnormalities of
known prognostic significance to predict disease behavior [4]. It is imprecise however, with
different patients in the same risk group exhibiting heterogeneous behavior and prognoses.
MM treatment strategies predominantly use regimens built around immunomodulatory drugs
such as thalidomide or its analogues, or proteasome inhibitors including bortezomib or
carfilzomib. These treatments may be followed by autologous stem cell transplantation. With
an increasing number of treatment options available, median survival has improved in the last
decade, now approaching six years [5], but despite these advances, myeloma eventually

relapses for the majority of patients.

Perturbations in lipid metabolism are emerging as potential drivers and therapeutic targets in
cancer development and progression [7]. This is of particular relevance because obesity is a
risk factor for a number of cancer types, including multiple myeloma (MM) [1]. A pooled
analysis of 1.5 million participants from 20 unique prospective cohorts found a 1.2 to 1.5 fold

increased risk of MM mortality with increasing body mass index [3]. In addition to the
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systemic chronic inflammation associated with obesity, increased bone marrow adiposity of

the MM microenvironment may directly fuel MM progression [6].

In MM, initial lipidomic studies comparing malignant plasma cells to healthy plasma cells
have reported decreased levels of phosphatidylcholines [8], and differing fatty acid
composition of cellular membranes [8, 9]. There are limited studies on the metabolic changes
that occur during MM relapse, with most studies focusing at the genomic level [10]. Using
Raman spectroscopy to compare between drug resistant and sensitive MM cell lines, Franco
et al. suggested differences in nuclear structure, as reflected by altered DNA:RNA ratio as
well as cholesterol and phosphatidylethanolamine content [11]. Metabolic reprogramming,
elevated oxidative stress response and up-regulated prostaglandin synthesis were reported by
Zub et al. who compared the proteome and transcriptome of melphalan sensitive and resistant

RPMI8226 cell lines [12].

Advances in omics technologies herald the potential of multi-omics systems analysis, where
regulatory networks could be evaluated, for example, by combining proteomics and
transcriptomics data. One challenge of performing multi-omics analysis on clinical samples is
the limited patient-derived material. In this study, we investigated the feasibility of
conducting lipidomic and proteomic analyses from the same patient-derived plasma cell
sample. To validate the omics results from our pilot cohort, we compared the proteomics data
with a larger public transcriptomic dataset from Multiple Myeloma Research Consortium
reference collection, and interpreted the lipidomics data against a combined transcriptomics-

proteomics lipid metabolism network for relapsed MM.
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99  Materials and Methods

100  Study design and setting

101 A single-center, prospective pilot study was performed at the Princess Alexandra Hospital,
102  Brisbane, Australia. We identified patients as possible candidates (on the basis of clinical
103 features) prior to bone marrow aspiration and biopsy, and informed consent was sought prior
104  to the aspiration and biopsy procedure. Bone marrow biopsies were all performed in the

105  outpatient setting. Participant details are in Table S1.

106  Plasma cell isolation from bone marrow

107  Plasma cells were isolated from fresh bone marrow aspirate samples using CD138
108  microbeads (Miltenyi). Purity was verified by flow cytometry (on the basis of CD38 and
109  CD138 expression) and was >80% for all samples. Purified plasma cells were stored in

110  aliquots of 10 cells at -80°C until analysis.

111 Lipid and protein extraction

112 Samples were selected based on laboratory confirmation of the diagnosis of myeloma with
113 >10% plasma cells in the marrow aspirate sample, and >80% of CD138" plasma cells post-
114 purification. Extraction of lipids and proteins from 10° isolated plasma cells was carried out
115  using a bi-phasic solvent system of cold methanol, methyl tert-butyl ether (MTBE) and water
116  [13]. Briefly, each sample was suspended in 20 pL of cold Milli-Q water and homogenized
117  with a pipette tip, followed by addition of 20 uL of a 20 uM solution of zidovudine (AZT) in
118  methanol as internal standard. Cold methanol (205 pL) was then added. The sample was

119  vortexed briefly, frozen in liquid nitrogen for 2 min, thawed, and sonicated for 10 min. The
120  freeze-thaw-sonication cycle was repeated twice. After incubating at -30 °C for 1 h, the

121  sample was extracted by 750 pL cold MTBE with shaking at 4 °C for 15 min. Phase
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122 separation was induced by addition of 188 pL Milli-Q water, vortexing and centrifugation at
123 14000 g for 15 min at 4 °C. The upper phase was collected (700 puL) as the lipid-rich extract
124  fraction, and protein was recovered as the pellet. The lipid extract was evaporated to dryness
125  under vacuum and then reconstituted in 100 pL of a methanol/toluene (9:1) mixture for LC-

126  MS analysis.

127

128  Untargeted lipidomics

129  Untargeted lipidomics using LC-MS was performed as previously described [14], using

130 Agilent 1290 Infinity I UHPLC with 6550 iFunnel Q-TOF mass spectrometer and Dual

131  Agilent Jet Stream (AJS) source. Agilent Zorbax Eclipse Plus RRHD C18 column (2.1 x 50
132 mm, 1.8 um) was used at a flow rate of 0.5 mL/min. Mobile phases for positive mode LC-MS
133 consisted of A: acetonitrile/water (60:40) and B: isopropanol/acetonitrile (90:10). Both A and
134 B contained 10 mM ammonium formate and 0.1% formic acid. In negative mode, ammonium
135  formate and formic acid was replaced with 10 mM ammonium acetate in both eluents. LC

136  gradient is described in Supplementary File S2.

137  Full scan MS spectra were acquired for samples at a mass range of m/z 100-1700. The TOF
138  component was tuned using reference masses 118.09, 322.05, 622.03, 922.00, 1221.99 and
139  1521.97 in positive ionization mode, and the masses 112.99, 302.00, 601.98, 1033.99,

140  1333.97 and 1633.95 in negative mode. Source capillary voltages were set to 4000 V for

141  positive ionization mode and 3500 V for negative ionization mode whilst the nozzle voltage
142 was set to 0 V, fragmentor was set to 365 and octopoleRFPeak to 750. Nitrogen gas

143 temperature was set to 250°C at a flow of 15 L/min and a sheath gas temperature of 400°C at

144 aflow of 12 L/min. During the experiment reference masses were enabled for positive
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145  (121.05 and 922.01 Da) and negative modes (68.99, 112.98 and 1033.99 Da) to enable auto-

146  recalibration of compounds with known masses.

147  The MSI untargeted LC-MS data were subjected to batch Molecular Feature Extraction

148  (MFE) with Agilent Profinder (B.08.00, Agilent Technologies Inc., Santa Clara, CA, USA).
149  Data were then imported into R statistical framework for analysis. Data were first filtered to
150  retained only features that in at least 75% of samples of one or more comparison groups.
151  Remaining missing values were imputed with the minimum value. After quantile

152 normalization and log2 transformation, differential analysis was carried out using limma

153 package [15] to identify significant features (p value < 0.05, logFC > 1.5).

154  To assign the molecular identity to candidate features, LC-MS/MS was performed using
155  nitrogen as the CID collision gas. MS/MS acquisition was performed in targeted mode. The
156  HPLC, column and source parameters were identical to those used in the MS acquisition. A
157  fixed collision energy of 20 eV was used to induce fragmentation for all targets in positive
158  and negative mode. MS/MS data was acquired between 70-1500 m/z with MS and MS/MS
159  scan rates of 3 spectra per second, with a maximum of 5 seconds between MS scans. The
160 isolation width for all targets was set to medium (~4 amu) and a delta retention time of 0.3
161  minutes. The LC-MS/MS data were submitted to the open source software MS-DIAL [16]

162  with LipidBlast in-silico LC-MS/MS library [17] for identification of lipids.

163 Targeted lipidomics

164  Targeted lipidomics experiments were performed using an Agilent Technologies 1290 Infinity
165 II UHPLC system with an Agilent HILIC Plus RRHD 2.1x100 mm 1.8-micron column,
166  coupled online to an Agilent 6490A Triple Quadrupole Mass spectrometer with iFunnel and
167  AJS source. The mass spectrometer was operated in dynamic MRM mode. Each sample was

168  analyzed in three separate dynamic MRM runs for the following lipid classes: Cer, PC and SM
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169  in method F1; PC-O, PC-P, HexCer, LPE, LPC in method F2; PE, PE-O, PE-P, PI, PG in

170  method A1l. MRM lipid transitions are shown in Supplementary File S2.

171  The source nitrogen gas temperature was set to 250°C at a flow of 15 L/min. The sheath gas
172 temperature was 400°C with a flow of 12 L/min. The capillary voltage was set to 4000 V for
173 positive mode and 5000 V for negative mode and the nebulizer operated at 30 psi. Ion funnel
174 low and high pressure in positive mode were 150 and 60, and in negative mode 150 and 120
175  respectively. The autosampler was operated at 4°C and the column compartment was operated
176  at 30°C for the duration of the experiment. A solution of 95% acetonitrile was used to perform
177  the needle wash with a duration of 15 seconds. An injection volume of 8uL was used for all
178  samples. Pooled quality control (QC) samples were injected multiple times to condition the
179  HPLC column prior to analyzing the biological samples. Chromatographic separation of lipids
180  was performed using 2 different HILIC buffer systems; 25 mM ammonium formate (pH4.6) or
181 10 mM ammonium acetate (pH7.6). The acetonitrile gradient was from 50% to 95% as

182  described in Supplementary File S2.

183  Raw LC-MS data was imported into Skyline [18], where peak integration was automated but
184  manually confirmed and adjusted if required. Retention time for internal standard of each
185  lipid class was used to confirm correct peak integration of lipids belonging to the same class.
186  Peak areas were exported from Skyline for further analysis in R. Data were then normalized
187  using probabilistic quotient normalization [19] to correct for injection variations, and then
188  log2 transformed. Differential analysis was carried out using limma package identify

189  significant lipids (p value < 0.05, logFC > 1.5).

190  To perform enrichment analysis, lipid sets were generated based on class, total chain length
191  and total chain unsaturation. Lipid set enrichment analysis was performed in R using the

192  fgsea package [20].
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193

194  Proteomics

195  Proteins pellets were thawed on ice then centrifuged. Any excess liquid was removed and
196  samples dried under N> for 10 min. Protein pellets were resuspended in 15 uL of buffer (70
197  mM Tris pHS, 1% sodium deoxycholate, 10 mM tris(2-carboxyethyl)phosphine and 40 mM
198  2-chloroacetamide), and sonicated in the Bioruptor (Diagenode) for 15 minutes. Protein

199  concentration was measured using DirectDetect® infrared spectrometer (Merck). A 10 pg
200 aliquot of 1 mg/mL protein extract was denatured by heating at 95°C for 5 minutes. After
201  cooling to room temperature, 0.2 pg trypsin (Promega) was added and incubated at 37C

202  overnight. Digest was stopped by acidification to 0.5 % TFA, and peptides were isolated

203  using OMIX C18 tips (Agilent). NanoLC-MS/MS was performed using a Waters

204  nanoACQUITY UPLC system interfaced to an LTQ-Orbitrap Elite hybrid mass spectrometer

205  asdescribed in [21].

206  Acquired data was searched using MaxQuant [22] version 1.5.8.3 against SwissProt human
207  proteome downloaded on 25/10/2017, and later exported to R for analysis. Proteins were

208 filtered according to unique peptides (>2) and Score (>5), and then according to missing

209  values, where proteins were only kept if they were detected in at least 75% of samples of one
210  or more comparison groups. Data was then quantile normalized and remaining missing values
211  imputed using two techniques: 1) proteins missing in < 25% of all samples were considered
212 missing at random, and were imputed using localized least square regression as described in
213 [23], ii) proteins missing in > 25% were imputed from a normal distribution centred at

214  minimum intensity. Log2 transformed data was analyzed using limma package to identify
215  significant proteins (p value < 0.05, logFC > 1.5). Pathway enrichment analysis was carried

216  out using the fgsea package and pathways from Reactome database [24].
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217

218  Transcriptomics data set

219  Gene expression profiles of the Multiple Myeloma Research Consortium (MMRC) reference

220  collection were downloaded from the Multiple Myeloma Genomics Portal

221  (http://portals.broadinstitute.org/mmgp/) as a GCT file. Expression signals were obtained as
222  median centered and log2 transformed, and imported into R. Patient samples were filtered to
223 include only those diagnosed with Multiple myeloma and reported treatment status.

224 Microarray probes were first mapped to UniProt IDs, followed by differential analysis and

225  pathway enrichment using limma and fgsea packages, respectively.

226

227  Network analysis

228  Biopax level 3 file of the “Metabolism of Lipids” pathway was downloaded from the

229  Reactome database, imported and analyzed in R using NetPathMiner package [25].

230  Transcriptomic data was used to weight network based on adjacent pairwise correlation. Top
231 50 correlated paths, with a minimum path length of 6 reactions, were then extracted for

232 relapsed and newly-diagnosed patients. Association of extracted paths with disease status was
233 assessed by a path classification model. A subnetwork of top paths was then exported to

234  Cytoscape [26] for interactive visualization and analysis.

235

236
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Results

Following clinical diagnosis, plasma cell isolation and quality control, a total of 7 participant
samples were available for inclusion (Table S1). For each participant, 1x10° plasma cells
were extracted for proteomics and lipidomics analyses. Lipidomics was performed using both
untargeted and targeted approaches. Two comparisons were conducted based on clinical
information, with the caveat that the sample sizes were small in this study. Firstly, high risk
MM (n=3) were compared to low risk MM (n=4) according to R-ISS staging. Secondly,
relapsed/refractory MM (RRMM, n=2) versus newly diagnosed MM (NDMM, n=7). Table 1

summarizes the number of detected, filtered, and significant features for each analysis.

Table 1 Overview of lipidomics and proteomics LC-MS analyses.

Untargeted lipidomics  Targeted lipidomics Proteomics

Positive Negative
Detected features 6069 3617 313 4169
Filtered features 3015 2080 219 2569
Risk groups
P<0.05 62 88 12 28
Up-regulated* 19 24 4 20
Down-regulated* 16 8 4 8
RRMM vs NDMM
P<0.05 467 454 16 182
Up-regulated* 58 36 6 45
Down-regulated* 128 61 7 123
*logFC>1.5

Page 12 of 29


https://doi.org/10.1101/702993
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/702993; this version posted November 15, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

249  Abbreviations: NDMM, newly diagnosed multiple myeloma; RRMM, relapsed/refractory
250  multiple myeloma.

251

252 Untargeted lipidomics profiling of plasma cells

253  For untargeted lipidomics profiling, 6069 and 3617 features were detected in the positive and
254  negative mode, respectively. Filtering missing and low intensity features retained 3015 and
255 2080 features. Differential analysis between risk groups identified 62 and 88 significant

256  features in positive and negative mode (Supplementary File 3). The number of significant
257  features was much higher (>400 features) in RRMM/NDMM comparison, indicating higher
258  variation compared to different risk groups. Differential features with logFC > 1.5 were

259  selected for identification via MS/MS fragmentation and database matching using MS-DIAL.
260  Out of ~400 features, MS-DIAL matched 17 features to their lipid composition, in which

261  several PCs were diminished in RRMM as well as in high risk patients (Table 2).

262

263  Table 2. Untargeted lipid features identified via MS/MS fragmentation.

Lipid Molecule ESI Mode Comparison* logFC
Cer[NS] 34:1; Cer[NS](d18:1/16:0); [M+H]+ + high.low 1.58

Cer[NS] 34:2; Cer[NS](d18:1/16:1); [M+H]+ + RRMM.NDMM -2.90
PC 30:0; [M+H]+ + high.low -1.75
PC 30:0; [M+H]+ + RRMM.NDMM -1.66
PC 31:1; [M+H]+ + high.low -1.87
PC 31:1; [M+H]+ + RRMM.NDMM -1.56
PC 32:2; [M+H]+ + RRMM.NDMM -1.56
PC 34:4; [M+H]+ + high.low -2.39
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PC 34:4; [M+H]+ + RRMM.NDMM -2.10
PC 35:4; [M+H]+ + RRMM.NDMM -1.67
PC 40:4; [M+H]+ + RRMM.NDMM -3.82
PC 40:7; [M+H]+ + RRMM.NDMM -1.55
Plasmenyl-PC 30:0; [M+H]+ + RRMM.NDMM -3.83
Plasmenyl-PC 36:1; [M+H]+ + RRMM.NDMM -2.55
Plasmenyl-PC 38:5; [M+H]+ + RRMM.NDMM -4.12
Plasmenyl-PE 40:6; [M-H]- - RRMM.NDMM -1.76
PS 36:4; [M+H]+ + RRMM.NDMM -2.24

264  *Comparison between high and low risk group (high.low) or between relapse and newly-diagnosed
265 (RRMM.NDMM)

266  Abbreviations: ESI, electrospray; logFC, log fold change

267

268  Targeted lipidomics profiling of plasma cells

269  The targeted lipidomics method included 313 lipids, from which 219 lipids were retained
270  after manual inspection and filtering through Skyline (Supplementary File 4). Differential
271  analysis confirmed untargeted profiling results with several PCs diminished in both high risk
272  and RRMM (Table 3). To investigate if the observed differences are specific to particular
273 lipid class, we performed Lipid set enrichment analysis (Figure 1, Supplementary File 4),
274  which revealed significant down-regulation trend in PCs in both high risk and RRMM.

275  Ceramides and lyso-PEs were significantly enriched for upregulation in high risk patients,
276  while down-regulated in RRMM. Elevated levels of phosphatidylethanolamines (PEs),

277  sphingomyelins and sphingosines resulted in significant enrichment of these classes in

278 RRMM.
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Table 3. Reduced abundance of phosphatidylcholines (PC) in high risk and RRMM, measured

by targeted lipidomics
Lipid Molecule Comparison* logFC
PC 30:0 high.low -1.57819
PC30:1 high.low -1.37218
PC 34:4 high.low -1.7996
PC 34:4 RRMM.NDMM -1.14782
PC 34:5 high.low -2.19233
PC 38:0 RRMM.NDMM -3.03733
PC 38:1 RRMM.NDMM -1.99746
PC 40:0 RRMM.NDMM -2.39816
PC 40:1 RRMM.NDMM -1.7426
PC 40:2 RRMM.NDMM -1.13424
PC(0-38:6) / PC(P-38:5) RRMM.NDMM -1.93524
PC(0-40:7) / PC(P-40:6) RRMM.NDMM -1.77034

*Comparison between high and low risk group (high.low) or between relapse and newly-diagnosed

(RRMM.NDMM)

Abbreviations: logFC, log fold change

Untargeted proteomics of plasma cells

In the untargeted proteomic analysis, 4169 proteins were identified, of which 2569 were

subjected to differential analysis after filtering. Difference between risk groups was limited to

28 significant proteins, while RRMM vs NDMM comparison reported 182 differential

proteins, the majority of which are down-regulated (Supplementary File 5). Enrichment
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291  analysis using Reactome pathways identified ~ 150 significant pathways in RRMM
292 (Supplementary File 6). In contrast, risk groups had only ~25 enriched pathways, mostly

293  related to extracellular matrix.

294

295  Comparison of RRMM proteomics dataset with gene expression data

296  In both lipidomics and proteomics measurements, the differences between RRMM and

297  NDMM were larger than those observed between risk groups. We followed up on these

298  observations in RRMM by integrative analysis with the publicly available MMRC reference
299  collection which contains gene expression profiles for plasma cells from a total of 222

300 patients, with 107 being NDMM (termed untreated) and 115 RRMM (termed treated).

301  Mapping microarray probes to their corresponding UniProt IDs obtained expression levels for
302~ 17,000 genes. Differential expression analysis followed by pathway enrichment identified

303 430 significant pathways (Supplementary File 6).

304

305  There was significant overlap between the proteomics results from our cohort and the

306  independent transcriptomics results at the pathway level but not at the gene level

307  (hypergeometric test, Figure 2). Out of 6900 significantly expressed genes, 62 genes were
308 also found significant at the protein level, only 20 of which were regulated in the same

309  direction (p = 0.99) (Supplementary File 5). Interestingly, out of the 430 significantly

310  enriched pathways in the transcriptomics dataset, 76 pathways were also enriched at the
311  protein level, 67 of which in the same direction (p < 1e-16). Overlapped pathways included
312 TCR, NF-k8B signalling and protein synthesis pathways (Supplementary File 6).

313

314 Network analysis
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315  Next, we focused on the lipid related pathways in RRMM. Reactome pathway group

316  “Metabolism of lipids” was converted into a single connected network using NetPathMiner R
317  package. Following the package instructions, small ubiquitous compounds, such as water and
318  co-factors, were removed to prevent over-connectivity of the network, resulting in a network
319  with 1130 nodes and 1571 edges. Metabolite nodes were then removed to obtain a reaction
320  network, subsequently weighting the edges using transcriptomics datasets (see Methods). Top
321  correlated paths showed strong association with their corresponding conditions. This was

322  demonstrated by the ability of pathClassifier function to correctly predict path condition.

323 Receiver Operating Characteristic (ROC) curve showed area under the curve (AUC) of 0.995,

324  indicating high sensitivity and specificity of the path classifier (Figure ).

325  Subnetworks constructed from correlated paths resulted in substantially smaller networks. In
326 RRMM, a subnetwork of 101 nodes and 125 edges was obtained, with paths related to PCs,
327  ceramides, cardiolipin metabolism, production of leukotrienes, exotoxins from arachidonic
328 acid (AA), and production of dihydroxycholestanoic acid from cholesterol (Figure 4, red
329  edges). On the other hand, the subnetwork correlated amongst NDMM consisted of 87 nodes
330  and 96 edges, and incorporated FA and PE metabolism, production of prostaglandins and
331  thromboxanes from AA, and production of phosphoserine from cholesterol. Subnetworks
332 from both conditions showed a small overlap, with only 32 nodes and 23 edges (Figure 4,

333 grey edges).

334  Exploring the proteomics data in the context of correlated subnetwork for RRMM revealed a
335  low detection rate (Figure 5). Notably, PLBD1, a phospholipase B implicated in snl and sn2
336  hydrolysis PCs, was up-regulated in RRMM proteomics and transcriptomics. This up-

337  regulation of PLBDI, along with the correlation of PC metabolic subnetwork in RRMM,

338  propose a possible explanation for the reduced levels of PCs observed in lipidomics data.
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339  Discussion

340  This study confirmed the feasibility of conducting concurrent lipidomics and proteomics
341  profiling of freshly isolated plasma cells from patients with MM. We observed more

342  lipidomic and proteomic differences between RRMM and NDMM, than between high and
343  low risk MM based on the current R-ISS staging system. As an initial cross-validation, the
344  proteomics data from our small pilot cohort was compared to a larger transcriptomics dataset
345  for RRMM versus NDMM cases. This comparison revealed limited overlap at the

346  transcript/gene level, likely due to the lower proteomics depth compared to transcriptomics.
347  However, significant correlation was observed in the differential pathways at the transcript
348  and proteome level, indicating agreement of our pilot cohort data with the larger

349  transcriptome data. Together, these results confirm the feasibility of concurrent lipidomics
350  and proteomics analyses from a single aliquot of one million plasma cells prepared from

351  freshly collected bone marrow.

352  From both targeted and untargeted lipidomics, we observed significantly lower level of PC in
353  RRMM compared to NDMM, and in high risk compared to low risk patients. Decreased PC
354  was previously observed in MM cells compared to normal plasma cells [8]. Recently, Steiner
355 et al reported significantly lower circulating plasma levels of several PCs, and elevated lyso-
356  PCs in RRMM compared to NDMM [27]. Hydrolysis of PCs by phospholipases generate

357  lyso-PCs and a free fatty acid which could be further processed to generate lipid second

358  messengers such as arachidonic acid, prostaglandins and leukotrienes [28]. These bioactive
359 lipids play multiple roles in promoting cancer development and metastasis [29]. Interestingly,
360  our transcriptomics network analysis of the larger independent cohort revealed high

361  correlation of PC, arachidonic acid, prostaglandin metabolic pathways among RRMM.

362  Furthermore, although the proteomic coverage of lipid metabolic enzymes was overall very

363  limited, we found phospholipase B-like 1 gene product PLBDI to be elevated in RRMM. The
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364  major cellular phospholipases that participate in signal transduction are PLA, PLC and PLD
365 [28]. PLBDI was recent identified from neutrophils as a phospholipase which removes fatty
366  acids from either sn-1 or sn-2 positions [30]. Coupled with observed high level of transcripts
367 in the arachidonic pathway, it is tempting to suggest that elevated PLBDI1 levels contributes
368  to MM progression and relapse by increasing arachidonic acids levels. Future studies in

369 larger cohorts should examine this pathway.

370

371  We acknowledge that the small patient numbers in our study limit the broader applicability of
372 the work, but in our small dataset, plasma cells from patients with RRMM appear to have a
373  different lipidomic and proteomic profile when we compare with samples from NDMM. This
374 s potentially clinically relevant, as patients who have relapsed disease experience poorer

375  outcomes, with shorter periods of disease control than patients receiving front-line therapy at
376  first diagnosis. The altered lipidomic and proteomic profile observed may reflect the clonal
377  evolution that occurs in the malignant cells over time following serial chemotherapeutic

378  challenges. To this end, it is interesting to note that PC is an important lipid in maintaining
379  endoplasmic reticulum (ER) function, and that ER stress response pathways is implicated in
380 the development of resistance to proteasome inhibitors in MM [31]. Further studies, with

381 larger groups of patients will be beneficial in establishing the relationship between clonal
382  evolution, subsequent lipidomic and proteomic changes. These results may enable

383  personalized therapy selection, thereby improving patient outcomes.

384

385  In summary, we report the feasible concurrent lipidomic and proteomic analyses of purified
386  plasma cells collected from a small cohort of multiple myeloma patients. As the goal was to

387  determine the methodological feasibility and develop a suitable workflow, interpretation of
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the biological data from this study is limited by the small cohort size and possible
confounders which were not considered. Nonetheless, in alignment with previous reports of
reduced levels of PCs in MM (compared with healthy plasma cells), we observed reduced
levels of several PCs in high risk MM and in RRMM. Furthermore, independent
transcriptome data from a larger cohort corroborates altered PC metabolism in RRMM, and
further suggest altered arachidonic acid and eicosanoid metabolism. We believe these
preliminary observations warrants further exploration in a larger cohort, as these approaches
are likely to provide valuable clinical insights into disease biology, as well as perhaps offer

novel biomarkers for the prediction of disease kinetics.
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Figure 1. Targeted lipidomics measurements per lipid class, with significantly enriched classes
marked with red. Targeted lipidomics data were grouped by lipid class and then evaluated for
significance for high versus low risk MM (left) and RRMM versus NDMM (right) using enrichment

analysis of fgsea R package. Lipid classes with adjusted P value < 0.05 are considered significantly

different between the two groups (labelled red). LogFC, log fold change.
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545

546  Figure 2. Overlap between proteomics and transcriptomics data at the gene and pathway levels.
547  Proteomic level changes in RRMM compared to NDMM were evaluated against independent

548  transcriptome data from the Multiple Myeloma Research Consortium reference collection. The graph
549  shows the number of genes/proteins (left) or pathways (right) that are significantly different in the
550  proteomics data (red bar), which also was significantly different in the transcriptome data (green bar),

551  in the same direction (blue bar).

552
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Figure 3. Receiver Operating Characteristic (ROC) curve for correlated path classification
model of lipid metabolic pathways based on transcriptome data for RRMM. Diagnostic plot of
the result from the path classification model for RRMM transcriptome data. ROC curves are shown
for each component (M1, M2), which represent a path structure pattern. This gives information about
which components is associated with RRMM and NDMM. A ROC curve with an AUC < 0.5 relates
to RRMM. Conversely, ROC curve with AUC > 0.5 relates NDMM. Complete ROC represents the

performance of the classifier using both components.
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Figure 4. Extracted correlated lipid metabolism path network for RRMM and NDMM patients.
A sub-network comprised of top 50 correlated paths based on gene expression in RRMM and NDMM
was extracted from the lipid metabolism path network. Red and blue edges indicate exclusive
correlation in RRMM and NDMM patients, respectively. Grey edges indicate correlation in both

conditions.
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Figure 5. Proteomics results shown in the context of extracted lipid metabolism path network
for RRMM and NDMM patients. Proteomic data were projected on to the same network shown in
Figure 4. Red nodes indicate up-regulation at protein level in RRMM compared to NDMM.
Conversely, blue nodes indicated down-regulated proteins. Inset: PC metabolism pathways, showing

expression correlation and proteomics up-regulation suggest active PC degradation in RRMM.
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