

Quantitative real-time PCR assay for the rapid identification of the multidrug-resistant bacterial pathogen *Stenotrophomonas maltophilia*

3 Tamieka A. Fraser^{a,b}, Mikaela G. Bell^{a,b}, Patrick N.A. Harris^{c,d}, Scott C. Bell^{e,f}, Haakon
4 Bergh^c, Thuy-Khanh Nguyen^e, Timothy J. Kidd^{e,g}, Graeme R. Nimmo^c, Derek S. Sarovich^{a,b},
5 and Erin P. Price^{a,b#}

⁶ ^aGeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland,
⁷ Australia

⁸ ^b Sunshine Coast Health Institute, Birtinya, Queensland, Australia

⁹ ^c Microbiology Department, Central Laboratory, Pathology Queensland, Royal Brisbane &
¹⁰ Women's Hospital, Herston, Queensland, Australia

11 ^dUniversity of Queensland Centre for Clinical Research, Royal Brisbane & Women's
12 Hospital, Herston, Queensland, Australia

13 ^eQIMR Berghofer Medical Research Institute, Herston, Queensland, Australia

14 ^f Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, Queensland,
15 Australia

16 ^gSchool of Chemistry and Molecular Biosciences, Faculty of Science, The University of
17 Queensland, St Lucia, Queensland, Australia

18 # Corresponding author

19 University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Qld, 4558, Australia

20 Email: eprice@usc.edu.au

21 Phone: +61 7 5456 5568

22 **Abstract**

23 *Stenotrophomonas maltophilia* is emerging as an important cause of disease in nosocomial
24 and community-acquired settings, including bloodstream, wound and catheter-associated
25 infections. Cystic fibrosis airways also provide optimal growth conditions for various
26 opportunistic pathogens with high antibiotic tolerance, including *S. maltophilia*. Currently,
27 there is no rapid, cost-effective, and accurate molecular method for detecting this potentially
28 life-threatening pathogen, particularly in polymicrobial specimens, suggesting that its true
29 prevalence may be underestimated. Here, we used large-scale comparative genomics to
30 identify a specific genetic target for *S. maltophilia*, with subsequent development and
31 validation of a real-time PCR assay for its detection. Analysis of 165 *Stenotrophomonas* spp.
32 genomes identified a 4kb region specific to *S. maltophilia*, which was targeted for Black Hole
33 Quencher assay design. Our assay yielded the positive detection of 89 of 89 (100%) clinical
34 *S. maltophilia* strains, and no amplification of 23 non-*S. maltophilia* clinical isolates. *S.*
35 *maltophilia* was detected in 10/16 CF sputa, demonstrating the utility for direct detection in
36 respiratory specimens. The assay demonstrated good sensitivity, with limits of detection and
37 quantitation on pure culture of ~10 and ~100 genome equivalents, respectively. Our assay
38 provides a highly specific, sensitive, and cost-effective method for the accurate identification
39 of *S. maltophilia*, and will improve the diagnosis and treatment of this under-recognized
40 pathogen by enabling its accurate and rapid detection from polymicrobial clinical and
41 environmental samples.

42 **Introduction**

43 *Stenotrophomonas maltophilia* is a Gram-negative, intrinsically multidrug-resistant bacterium
44 that is ubiquitous in aqueous environments such as soils, plant roots, water treatments and
45 distribution systems (1). Whilst conventionally overlooked as a laboratory contaminant, or as
46 a common commensal in hospitalized patients, *S. maltophilia* is increasingly being
47 recognized as an important nosocomial pathogen in its own right due to its ability to cause
48 life-threatening disease in immunocompromised individuals (2). This opportunistic pathogen
49 has been isolated from a variety of hospital settings including faucets, sinks, central venous
50 catheters, ice machines, tap water, and water fountains, reinforcing its nosocomial importance
51 (1, 3, 4). *S. maltophilia* most commonly infects people with meningitis, cancer, chronic
52 obstructive pulmonary disease (COPD), or cystic fibrosis (CF), with pneumonia, bacteraemia,
53 and wound and urinary infections being the most frequent clinical manifestations (5, 6). Risk
54 factors for *S. maltophilia* infection include prolonged hospitalization, neutropenia,
55 catheterization, and previous use of broad-spectrum antibiotics (7). The recommended
56 antibiotic treatment for *S. maltophilia* infections is co-trimoxazole; however, resistance
57 towards this antibiotic combination has been documented (2, 8, 9). Indeed, treatment options
58 are limited for *S. maltophilia*, with this pathogen also exhibiting resistance towards several
59 antibiotic classes including fluoroquinolones, macrolides, β -lactams, aminoglycosides,
60 carbapenems, tetracyclines, polymyxins, chloramphenicol and cephalosporins (1, 2). With a
61 mortality rate approaching 70%, the importance of timely identification and effective
62 treatment of *S. maltophilia* infections is paramount (10).

63 *S. maltophilia* is a common pathogen in CF airways due to its ability to evade many
64 antipseudomonal antibiotics, with chronic *S. maltophilia* infection associated with an
65 increased risk of respiratory disease and mortality (11, 12). CF is an autosomal recessive
66 genetic disorder effecting multiple organs; however, its pathogenesis is most prominent in

67 airways, with ~90% of CF deaths associated with respiratory failure (13). The excessive
68 production of mucus in CF airways provides optimal growth conditions for opportunistic
69 pathogens, which drives most CF morbidity and mortality. Molecular methods have
70 confirmed that CF lower airways harbour diverse microbial communities, with *Pseudomonas*
71 *aeruginosa* and *Burkholderia cepacia* complex species of greatest concern due to frequent
72 rapid respiratory decline in people infected with these pathogens (14, 15). However, other co-
73 infecting opportunistic pathogens such as *Achromobacter* spp., *S. maltophilia*,
74 *Staphylococcus aureus*, *Haemophilus influenzae* and certain fungal species (e.g. *Aspergillus*)
75 are also prominent in CF airways, and are known to contribute to pathogenesis (14). Indeed,
76 recent studies have shown a mutualistic relationship between *S. maltophilia* and *P.*
77 *aeruginosa* in CF airways, with compounds produced by *S. maltophilia* under exposure to
78 certain antibiotics, such as imipenem, supporting the survival of otherwise antibiotic-
79 susceptible *P. aeruginosa* strains (16). Furthermore, these *S. maltophilia* compounds can
80 enhance *P. aeruginosa* stress tolerance, increasing polymyxin tolerance (17). These studies
81 highlight the importance of *S. maltophilia* in CF airway pathogenesis, particularly during
82 antibiotic treatment, and emphasize the need for correct species identification in
83 polymicrobial infections.

84 Although there are a variety of diagnostic methods available for *S. maltophilia* detection,
85 such as PCR amplicon sequencing, VITEK mass spectrometry identification, or key
86 morphological characteristics on growth media, these methods suffer from issues such as
87 limited access to equipment with a large capital expenditure (e.g. ~USD\$200,000 for VITEK
88 MS instrumentation), high per-assay cost, the need for highly trained personnel,
89 laboriousness, slow turn-around time, the requirement for purified colonies, or
90 misidentification issues (16, 18, 19). For example, *S. maltophilia* and *P. aeruginosa* exhibit
91 colonial colour differences when grown on bromothymol blue-containing media, which

92 reflects their different metabolic processes (16). However, the use of media containing
93 bromothymol blue is not routine, and thus the retrieval of *S. maltophilia* from polymicrobial
94 specimens requires clinical expertise in identifying appropriate culture media for
95 differentiation of this bacterium from other pathogens. As a non-exhaustive list, *S.*
96 *maltophilia* has been misidentified as several other organisms, including *Bordetella*
97 *bronchiseptica*, *Alcaligenes faecalis*, *B. cepacia*, and numerous *Pseudomonas* species, which
98 are common in clinical settings, including CF sputa (1, 20). Diagnostic inconsistencies in *S.*
99 *maltophilia* detection from clinical specimens can lead to inappropriate or even detrimental
100 treatment (16), particularly for those patients requiring urgent care. There is therefore a need
101 to accurately identify this emerging pathogen to improve antibiotic treatment regimens,
102 stewardship, and patient outcomes. Here, we report the development and validation of a
103 Black Hole Quencher (BHQ) probe-based real-time PCR assay for the specific detection of *S.*
104 *maltophilia*. Our results indicate that our real-time PCR assay is more sensitive than routine
105 culture for detecting *S. maltophilia*, particularly in polymicrobial respiratory specimens.

106 **Materials and Methods**

107 **Ethics.** This study was approved by The Prince Charles Hospital Human Research Ethics
108 Committee (HREC/13/QPCH/127).

109 **Genomes of *Stenotrophomonas* spp. and closely related species.** All non-redundant
110 *Stenotrophomas* spp. genomes available on the NCBI GenBank database were downloaded as
111 of December 2018. Additional non-redundant *Stenotrophomonas* spp. genomes generated
112 using paired-end Illumina sequencing were downloaded from the NCBI Sequence Read
113 Archive database (SRA; <https://www.ncbi.nlm.nih.gov/sra>). In total, 165 publicly available
114 genomes were available for this study (Table S1), represented by *S. maltophilia* (including all
115 “*S. pavanii*”; $n=132$), *S. acidaminiphila* ($n=4$), *S. bentonitica* ($n=3$), *S. chelatiphaga* ($n=1$), *S.*
116 *daejeonensis* ($n=1$), *S. ginsengisoli* ($n=1$), *S. humi* ($n=1$), *S. indicatrix* ($n=4$), *S. koreensis*
117 ($n=1$), *S. lactitubi* ($n=1$), *S. nitritireducens* ($n=2$), *S. panacihumi* ($n=1$), *S. pictorum* ($n=1$), *S.*
118 *rhizophila* ($n=2$), *S. terrae* ($n=1$), and unassigned *Stenotrophomonas* spp. ($n=9$). Three strains
119 listed on the NCBI database as *Pseudomonas geniculata* (95, AM526, and N1) were included
120 in the phylogenomic analysis to confirm that they were in fact *S. maltophilia*. Sequence data
121 from assembled genomes were converted to simulated 100bp paired-end Illumina reads at
122 85x coverage using ART version MountRainier (21). SRA data were quality-filtered using
123 Trimmomatic v0.33 (22) using previously described filtering parameters (23) prior to
124 analysis.

125 **Bioinformatic analysis to identify a *S. maltophilia*-specific genetic locus.** The haploid
126 comparative genomics pipeline SPANDx v3.2.1 (24) was used to phylogenetically delineate
127 *S. maltophilia* from non-*S. maltophilia* species, and subsequently, to identify *S. maltophilia*-
128 specific loci. Illumina reads for the publicly available strains (Table S1) were mapped to the
129 closed 4.85Mbp *S. maltophilia* K279a genome (GenBank accession NC_010943.1) (25).

130 Phylogenetic reconstruction of the 165 taxa was performed using 31,246 core, biallelic
131 single-nucleotide polymorphisms (SNPs) using the maximum parsimony function of PAUP*
132 v4.0a.164 (26), rooted with *Stenotrophomonas daejeonensis* JCM 16244 (GenBank accession
133 LDJP01000001.1), and with bootstrapping carried out using 1,000 replicates. To identify
134 genetic loci present in all *S. maltophilia* but absent in all other organisms, including other
135 *Stenotrophomonas* spp., the BEDcov output (27) from SPANDx was examined. Candidate
136 regions were assessed further for specificity and PCR assay design.

137 ***S. maltophilia* probe-based real-time PCR assay design.** Upon identification of a putative
138 *S. maltophilia*-specific genetic target, sequence alignments were used to locate conserved
139 regions. Although some variation was allowed within the amplicon, primer- and probe-
140 binding regions required 100% sequence identity in all *S. maltophilia* strains to avoid false
141 negatives. Oligo self-dimers and heterodimers were assessed *in silico* using NetPrimer
142 (<http://www.premierbiosoft.com/netprimer/>) and Beacon Designer
143 (<http://www.premierbiosoft.com/qOligo/Oligo.jsp/>), with configurations resulting in ΔG
144 values of <-8.0 (NetPrimer) and <-4.0 (Beacon Designer) excluded. The following sequences
145 and probe label were chosen for the assay: Smalto-For: 5'-
146 AAGGACAAGGCGATGACCATC, Smalto-Rev: 5'-CCCCACCAACGAYTTCATCA, and
147 Smalto-Probe: 5'-FAM-CAGAACGACATCTGGTTGGCG-BHQ1, resulting in an amplicon
148 length of 344 bp. NCBI Microbial Nucleotide discontiguous MegaBLAST
149 (<http://blast.ncbi.nlm.nih.gov/>) analysis of this amplicon was used to determine assay
150 specificity for only *S. maltophilia*. No mismatches in the probe-binding site were tolerated in
151 any *S. maltophilia* strain, whereas ≥2 mismatches in the probe-binding site were considered
152 sufficient for conferring *S. maltophilia* specificity.

153 **Microbiological cultures and CF sputum DNA extractions.** A total of 89 *S. maltophilia*
154 isolates were obtained for PCR testing: *S. maltophilia* control strain LMG 957, 16 sputum-

155 derived isolates cultured from individuals with CF identified either by amplified rRNA gene
156 restriction analysis ($n=8$ (28)) or *in silico* multilocus sequence typing ($n=8$ (29)), and 72
157 isolates from various clinical presentations that had previously been identified as *S.*
158 *malophilia* by Pathology Queensland Central laboratory, Brisbane, Australia, according to
159 the VITEK2 GNI card (98% of isolates) or VITEK MS (2% of isolates). Strains were grown
160 on Luria-Bertani (LB) agar for 24h at 37 °C. DNA was extracted from a small (toothpick
161 head) swatch of the primary culture by heat soaking in 80 µL of a 5% chelex solution at 95
162 °C for 10 min, with the resultant DNA diluted 1:10 with molecular grade H₂O prior to real-
163 time PCR testing.

164 Sixteen sputa collected from nine Australian adult CF patients underwent DNA extractions
165 using the Zymo Quick-DNA Miniprep Plus Kit (ZYMO Research) protocol, with the addition
166 of an enzymatic lysis solution (20 mg/mL lysozyme, 22U/mL lysostaphin, and 250 U/mL
167 mutanolysin) at 37 °C for 1-3 hours prior to the addition of Proteinase K. Three patients had
168 sputa collected over three time points (range: 13-46 days), and one patient had two sputa
169 collected 320 days apart. “Day 1” samples represent sputa collected on the day of intravenous
170 antibiotic commencement.

171 ***S. malophilia* real-time PCR assay validation and specificity testing.** Each PCR consisted
172 of 1X Sso Advanced Universal Probes Supermix (Bio-Rad Laboratories, Gladesville, NSW,
173 Australia), optimised primer and probe concentrations of 0.30 and 0.35 µM, respectively
174 (Macrogen Inc., Geumcheon-gu, Seoul, Rep. of Korea), 1 µL of DNA template, and
175 RNase/DNase-free PCR grade water (Thermo Fisher Scientific), to a final per-reaction
176 volume of 5 µL. Thermocycling parameters included an initial hot start activation at 95 °C
177 for 2 minutes, followed by 45 cycles of 95 °C for 3 seconds and 60 °C for 10 seconds, using
178 the CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad). Results were analysed
179 using CFX Maestro v4.1.2433.1219 software.

180 The 89 *S. maltophilia* isolates and 16 CF sputa were tested using the optimised PCR
181 conditions to ensure accurate detection of *S. maltophilia* DNA in known positive isolates, and
182 in sputum samples from which *S. maltophilia* was variably detected using selective culture
183 (Horse Blood Agar, McConkey Agar, *Burkholderia cepacia* Agar Base and Bacitracin Agar
184 Base). Relative *S. maltophilia* abundance in sputa was determined by performing a previously
185 described 16S rDNA real-time PCR (30) and calculating the cycles-to-threshold difference
186 (ΔC_T) between 16S and the *S. maltophilia* assays. Further specificity testing was performed
187 on 23 non-*S. maltophilia* DNA: *Burkholderia thailandensis* (n=1), *Enterobacter aerogenes*
188 (n=1), *Enterobacter cloacae* (n=4), *Klebsiella oxytoca* (n=1), *Klebsiella pneumoniae* (n=2),
189 *P. aeruginosa* (n=11), *S. aureus* (n=1), and *Staphylococcus epidermidis* (n=2).
190 Limit of detection (LoD) and limit of quantification (LoQ) were determined for our newly
191 designed *S. maltophilia* real-time PCR assay using serial dilutions of 50 ng/ μ L to 0.05 fg/ μ L
192 *S. maltophilia* DNA across eight replicates/dilution. Twenty-four no-template controls were
193 also included. The upper and lower LoD/LoQ limits were determined as described elsewhere
194 (31).

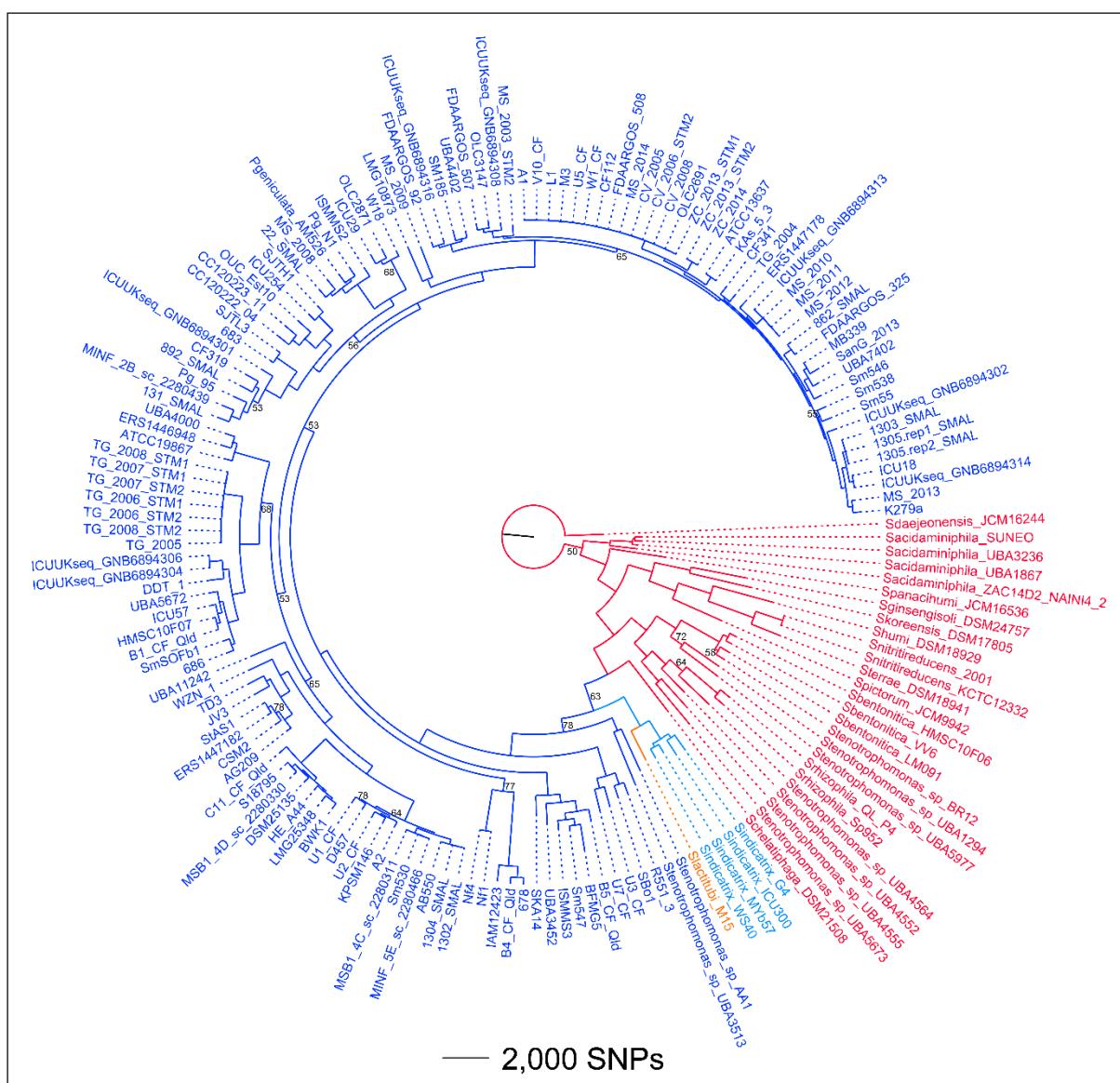
195 **Results**

196 **Comparative genomics of *Stenotrophomonas* spp. identifies a *S. maltophilia*-specific gene**

197 **target.** Phylogenomic reconstruction of 165 *Stenotrophomonas* spp. genomes using 31,306

198 core-genome, biallelic, orthologous SNPs demonstrated a close relationship between *S.*

199 *maltophilia* and two recently described *Stenotrophomonas* species, *S. indicatrix* and *S.*


200 *lactitubi* (32), and a clear distinction of these taxa from other *Stenotrophomonas* spp. (Fig 1).

201 This phylogenomic analysis was used to delineate *S. maltophilia* from other species, and to

202 modify incorrect species designations for 43 taxa, including reclassification of all four “*S.*

203 *pavani*”, three *P. geniculata*, and 17 *Stenotrophomonas* sp. as *S. maltophilia*, and nine *S.*

204 *maltophilia* as *Stenotrophomonas* spp. (Table S1).

206 **Figure 1: Phylogenomic analysis of *Stenotrophomonas* spp.** Dark blue, *S. maltophilia*

207 (target species); red, distantly related *Stenotrophomonas* spp.; light blue, *S. indicatrix*;

208 orange, *S. lactitubi*. The tree was rooted with *S. daejeonensis* JCM16244. Consistency

209 index=0.20. Branches with bootstrap values with <80% support are labelled.

210 Following identification of the species boundary for *S. maltophilia*, we next identified loci

211 specific for *S. maltophilia*. A single 4kb region was found to be *S. maltophilia*-specific, being

212 present in the 134 *S. maltophilia* genomes but absent or highly divergent in the other

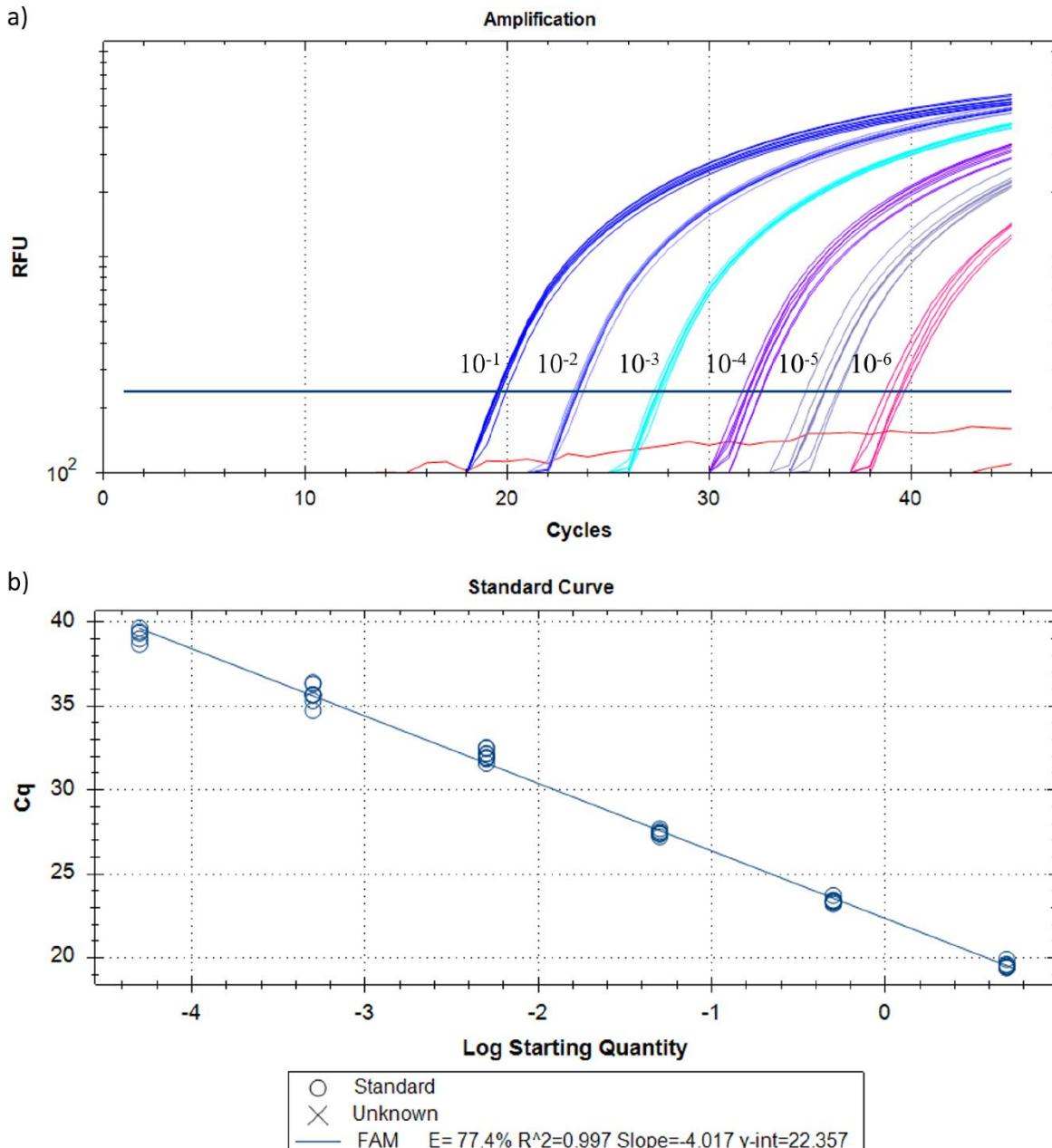
213 *Stenotrophomonas* spp., including *S. indicatrix* and *S. lactitubi*. The genetic coordinates for

214 these loci are 3,935,000-3,939,000 in *S. maltophilia* K279a, spanning gene-coding regions for
215 formate dehydrogenase (α , β , and γ -subunits; encoded by *fdnG*, *fdnH*, and *fdnI*, respectively).

216 Upon identification of a suitable 344 bp *S. maltophilia*-specific amplicon, a microbial
217 discontiguous MegaBLAST analysis was conducted to confirm specificity (performed
218 15Mar19). For all available *S. maltophilia* genomes, 100% sequence identity for both primers
219 and probe was attained. Unexpectedly, the genomes of two recently published *S. indicatrix*
220 strains, which were obtained from soil in Lebanon (RS1 and RS7; GenBank accessions
221 NZ_RKSQ00000000 and NZ_RKSR00000000, respectively), provided close BLAST hits to
222 this amplicon, despite this locus being absent or highly divergent in the four *S. indicatrix*
223 genomes used in the phylogenomic analysis. Fortunately, RS1 and RS7 contained two SNPs
224 in the probe-binding region, including a mismatch at the very 3' end, which would be
225 expected to inhibit or substantially reduce fluorophore detection in these strains due to poor
226 binding kinetics.

227 **BLAST analysis identifies further *S. maltophilia* misclassification.** In addition to RS1 and
228 RS7, BLAST analysis revealed several non-*S. maltophilia* matches to this amplicon,
229 including three *P. geniculata* strains, several misclassified *Stenotrophomonas* spp. (Table
230 S1), and even misclassifications assigned to distant bacteria e.g. *Acinetobacter baumannii*
231 (4300STDY7045681; GenBank ref. UFGS00000000.1), *Pseudomonas aeruginosa*
232 (E15_London_28_01_14; GenBank ref. CVWF00000000.1) and *Pseudomonas* sp.
233 (UBA10046; GenBank ref. DPXK00000000.1). In all cases, these isolates were confirmed to
234 be *S. maltophilia* according to Microbes BLAST analysis of the whole genome, thereby
235 representing species assignment errors in the NCBI database, and demonstrating the
236 specificity of our *S. maltophilia* target.

237 ***S. maltophilia* real-time PCR assay specificity.** To further assess assay specificity, DNA
238 from 89 *S. maltophilia* isolates derived from both CF and non-CF acute infections was tested.
239 The real-time PCR assay accurately detected 100% of the *S. maltophilia* isolates but did not
240 amplify across any of the tested non-*S. maltophilia* species (*B. thailandensis* [$n=1$], *P.*
241 *aeruginosa* ($n=11$), *K. pneumoniae* ($n=2$), *K. oxytoca* ($n=1$), *E. cloacae* ($n=4$), *E. aerogenes*
242 ($n=1$), *S. epidermidis* ($n=2$) and *S. aureus* ($n=1$)). As *S. maltophilia* is known to be a common
243 bacterium in CF sputa, we next tested the assay across 16 CF sputum samples obtained from
244 nine patients. Of these, 10 sputa demonstrated *S. maltophilia* presence at various abundances,
245 with 16S rDNA: *S. maltophilia* ΔC_T values ranging from 2.5 (SCHI0019 Day 11; same as
246 pure *S. maltophilia* DNA control) to 17.0 (Table 1). In two longitudinal samples (SCHI0020
247 and SCHI0021), *S. maltophilia* was only detected at very low levels at the Day 1 time point,
248 with the two subsequent sputa being PCR-negative for this organism. In contrast, *S.*
249 *maltophilia* persisted in the other two longitudinal samples (SCHI0002 and SCHI0019).
250 There was an 84.6% congruence between the two methods, with two PCR-positive sputa
251 (SCHI0020 Day 1 and SCHI0021 Day 1) being negative by culture (Table 1). However, these
252 two specimens had the lowest *S. maltophilia* load (ΔC_T values of 13.8 and 17.0), indicating
253 higher sensitivity with the real-time PCR.


254 **Table 1. Real-time PCR quantification of *Stenotrophomonas maltophilia* on 16 sputa**
255 **obtained from cystic fibrosis airways, with concurrent culture diagnosis.**

Sample	$\Delta Ct^{\#}$	Culture Result
<i>S. maltophilia</i> isolate control	2.5	Positive
SCHI0002 Day 1	7.9	Positive
SCHI0002 Day 320	6.0	Positive
SCHI0008	NA	ND
SCHI0010	NA	Negative
SCHI0011	12.4	ND
SCHI0013	9.7	ND
SCHI0014	8.0	Positive
SCHI0019 Day 1	6.7	Positive
SCHI0019 Day 11	2.5	Positive
SCHI0019 Day 46	6.5	Positive
SCHI0020 Day 1	17.0	Negative
SCHI0020 Day 6	NA	Negative
SCHI0020 Day 31	NA	Negative
SCHI0021 Day 1	13.8	Negative
SCHI0021 Day 5	NA	Negative
SCHI0021 Day 13	NA	Negative

256 [#]Cycles-to-threshold difference; NA, no amplification; ND, not determined.

257 ***S. maltophilia* real-time PCR assay sensitivity.** To assess assay sensitivity, LoD and LoQ
258 values were determined (Figure 2). Using a 10-fold DNA dilution series (50 ng/ μ L to 0.05
259 fg/ μ L), the LoD for this assay is ~5 fg/ μ L, or ~9 genome equivalents (GEs), and the LoQ is
260 0.5 pg/ μ L, or ~94 GEs.

261

262

263 **Figure 2. Limits of detection (LoD) and quantitation (LoQ) for the *Stenotrophomonas***
264 ***malophilia*-specific real-time PCR assay.** To determine the LoD and LoQ, serial dilutions
265 of a *S. malophilia*-positive control DNA sample were performed across eight replicates,
266 ranging from 50 ng/ μ L to 0.05 fg/ μ L (a). To assess the correlation coefficient, a standard
267 curve was also included for these dilutions, resulting in an R^2 of 0.997 (b). LoD and LoQ was
268 identified as \sim 5 fg/ μ L and \sim 0.5 pg/ μ L, respectively. All 24 negative controls (red) were
269 negative.

270 **Discussion**

271 *S. maltophilia* is emerging as an important multidrug-resistant nosocomial pathogen, being
272 amongst the top three most common non-fermentative Gram-negative bacilli identified in
273 hospitalized patients (5, 33). Despite *S. maltophilia* being well-adapted to many
274 environments, most infections occur in immunocompromised individuals in the nosocomial
275 setting (10), although community-acquired infections are also on the rise (1). Here, we
276 describe the first real-time PCR assay to detect *S. maltophilia* with 100% accuracy in purified
277 colonies, and demonstrate that this assay is superior to microbiological culture for detecting
278 this multidrug-resistant bacterium in polymicrobial respiratory specimens collected from CF
279 patients.

280 There is currently a lack of a rapid, cost-effective, accessible, and accurate diagnostic method
281 for *S. maltophilia* detection, particularly from polymicrobial clinical specimens such as CF
282 sputa. As *S. maltophilia* is thought to be the only *Stenotrophomonas* species to cause human
283 disease, mass spectrometry-based systems such as VITEK 2 and VITEK MS are a common
284 diagnostic method in large, centralized pathology laboratories. However, the accuracy of
285 species determination using mass spectrometry is heavily dependent on the quality of the
286 associated databases, and it is currently unknown whether other *Stenotrophomonas* spp. can
287 be accurately differentiated from *S. maltophilia* on these systems. In addition, access to this
288 instrument is limited to well-resourced laboratories owing to a large barrier-to-entry cost
289 (~USD\$200,000) (34-36). From a genotyping standpoint, 16S rDNA PCR has been used to
290 identify *S. maltophilia* in blood samples for patients undergoing chemotherapy for leukemia
291 (37), and a multiplex PCR to detect *P. aeruginosa*, *S. maltophilia* and *B. cepacia* successfully
292 identified *S. maltophilia* in 85% of cases (38). However, these assays have either not been
293 optimized to avoid non-specific amplification in other *Stenotrophomonas* spp. and members
294 of the closely related *Xanthomonas* genus, or they require downstream processing (e.g. gel

295 electrophoresis, Sanger sequencing) to confirm results, which is laborious, time-consuming,
296 and raises potential laboratory contamination issues.

297 Therefore, the purpose of this study was to use large-scale comparative genomics to identify
298 a *S. maltophilia*-specific genetic target, and to subsequently design a highly-specific and
299 accurate real-time PCR-based assay for identifying *S. maltophilia*. Using this approach, we
300 identified a genetic region specific to *S. maltophilia*, which was subsequently targeted for
301 assay development. We found that our newly developed assay correctly identified 89 *S.*
302 *maltophilia* isolates with 100% accuracy. The accuracy and specificity of this assay is both
303 highly sensitive and selective for *S. maltophilia*, with an LoQ and LoD of ~94 and ~9 GEs,
304 respectively. We chose the Black Hole Quencher probe real-time PCR format due to its
305 relatively inexpensive up-front cost (~USD\$25,000 for real-time instrumentation), low per-
306 reaction cost (~USD\$0.80 per sample when performed in duplicate), high-throughput
307 capacity, closed-tube format (which eliminates post-PCR contamination concerns), simple
308 set-up, and rapid turn-around-time (~1 h). This format also enables robust identification of
309 target species in polymicrobial specimens. Although not examined in this study, the multi-
310 fluorophore capacity of many real-time PCR instruments also enables multiplexing of probe-
311 based assays for the simultaneous identification of multiple organisms in a single specimen,
312 leading to further cost reductions.

313 Our *in silico* and laboratory results indicate that all non-*S. maltophilia* microorganisms failed
314 to amplify, with the possible exception of two *S. indicatrix* strains, RS1 and RS7. *S.*
315 *indicatrix* is a newly identified *Stenotrophomonas* species (32) that has so far been isolated
316 from dirty dishes in Germany (strain WS40; (32)), sewage in China (strain G4; unpublished),
317 a rotting apple in Germany (Myb57; unpublished), soil in Lebanon (strains RS1 and RS7;
318 unpublished), and an unknown source in Germany (ICU300; unpublished). The RS1 and RS7
319 *S. indicatrix* genomes became available subsequent to assay design; however, BLASTn

320 analysis showed that there were two SNPs in the probe-binding region, including a SNP at
321 the 5' ultimate base of the BHQ probe, which would likely result in poor or no amplification.
322 Taken together, we show that our assay is highly specific for *S. maltophilia*, particularly in
323 clinical samples, but it also has applicability for testing environmental samples, such as
324 hospital water supplies.

325 Although the quality of life and life expectancy for people with CF has markedly increased in
326 recent decades due to improvements in antibiotic treatments and clinical management,
327 persistent polymicrobial infections in CF airways remain the primary cause of morbidity and
328 mortality (39). A recent longitudinal study of a single CF patient's airways using a cutting-
329 edge metatranscriptomic approach, which measures only the 'active' microbial population
330 through messenger RNA characterisation, revealed that *S. maltophilia* was the second most
331 prevalent bacterium behind *P. aeruginosa* in the six months prior to death (39). Our results
332 also revealed a high prevalence of *S. maltophilia* in adult CF sputa, with 10/16 samples
333 positive for this bacterium according to our assay. As these sputa samples had concurrent
334 culture results, we demonstrated 84.6% congruence to real-time PCR results, with two culture
335 negative samples returning as positive by real-time PCR (SCHI0020 Day 1 and SCHI0021
336 Day 1). This finding demonstrates that our assay has a higher sensitivity for detecting *S.*
337 *maltophilia* in CF clinical specimens than culture methods. Of four longitudinally collected
338 sputa, one patient (SCHI0019) had *S. maltophilia* at all time points (Days 1, 11, and 46; Table
339 1) despite intravenous antibiotic therapy during this time, and another patient, SCHI0002,
340 was positive for *S. maltophilia* in samples that were collected nearly 12 months apart (Days 1
341 and 320), indicating either long-term airway persistence or reinfection with this organism. In
342 one sputum sample from SCHI0019 (Day 11), the ΔC_T value between the 16S rDNA and *S.*
343 *maltophilia* PCRs was identical to that of pure *S. maltophilia* culture (Table 1), indicating that
344 *S. maltophilia* had become the dominant, and potentially sole bacterial species, in this

345 specimen. Although outside the scope of this study, this finding demonstrates the potential
346 for *S. maltophilia* to persist and dominate in CF airways following antibiotic-driven
347 microbiome perturbations, which may have implications for rapid re-infection with more
348 formidable pathogens such as *P. aeruginosa*. A further two patients, SCHI0020 and
349 SCHI0021, had *S. maltophilia* at Day 1, but subsequent sampling (up to Day 31 and 13,
350 respectively) were PCR-negative during the intravenous antibiotic treatment phase, indicating
351 successful eradication of *S. maltophilia* in these cases. Future work will entail testing across
352 larger CF sputum panels, including longitudinal samples, to further examine potential
353 mutualistic relationships between *S. maltophilia* and other pathogens such as *P. aeruginosa*,
354 and on assessing assay performance directly on clinical specimens to further reduce sample
355 processing timeframes.

356 In conclusion, the ability to accurately, rapidly, and cheaply detect *S. maltophilia* is critical
357 for understanding the prevalence of this underappreciated opportunistic pathogen and for
358 reducing its burden of disease. The implementation of this assay in the clinical setting will
359 enable researchers, clinicians and pathologists to more accurately identify this multidrug-
360 resistant bacterium, particularly in isolates that have been ruled out as other multidrug-
361 resistant Gram-negative pathogens, such as *P. aeruginosa* or *Burkholderia* spp. Finally, the
362 correct and rapid identification of *S. maltophilia* will improve antibiotic stewardship
363 measures by enabling more targeted eradication of this pathogen, and in polymicrobial
364 infections such as those commonly found in CF airways, *S. maltophilia* eradication may
365 reduce the prevalence and persistence of more serious pathogens such as *P. aeruginosa*,
366 leading to improved quality of life and lifespans for people with CF.

367 **Acknowledgements**

368 We wish to thank Kay Ramsay (formerly QIMR-Berghofer; currently University of Otago)
369 for assistance with *S. maltophilia* identification from CF sputum. This study was funded by
370 the University of the Sunshine Coast and Advance Queensland (awards AQRF13016-17RD2
371 [DSS] and AQIRF0362018 [EPP]). TJK is the recipient of a National Health and Medical
372 Research Council Early Career Fellowship (1088448).

373 **References**

374 1. Brooke JS. 2012. *Stenotrophomonas maltophilia*: an Emerging Global Opportunistic
375 Pathogen. *Clin Microbiol Rev* 25:2-41.

376 2. Adegoke AA, Stenström TA, Okoh AI. 2017. *Stenotrophomonas maltophilia* as an
377 emerging ubiquitous pathogen: looking beyond contemporary antibiotic therapy.
378 *Front Microbiol* 8:2276.

379 3. Trifonova A, Strateva T. 2018. *Stenotrophomonas maltophilia*—a low-grade pathogen
380 with numerous virulence factors. *Infect Dis* :1-11.

381 4. Waters V, Yau Y, Prasad S, Lu A, Atenafu E, Crandall I, Tom S, Tullis E, Ratjen F.
382 2011. *Stenotrophomonas maltophilia* in cystic fibrosis: serologic response and effect
383 on lung disease. *Am J Respir Crit Care Med* 183:635-640.

384 5. Looney WJ, Narita M, Mühlemann K. 2009. *Stenotrophomonas maltophilia*: an
385 emerging opportunist human pathogen. *Lancet Infect Dis* 9:312-323.

386 6. Jeon YD, Jeong WY, Kim MH, Jung IY, Ahn MY, Ann HW, Ahn JY, Han SH, Choi
387 JY, Song YG, Kim JM, Ku NS. 2016. Risk factors for mortality in patients with
388 *Stenotrophomonas maltophilia* bacteremia. *Medicine (Baltimore)* 95:e4375.

389 7. Senol E, DesJardin J, Stark PC, Barefoot L, Snydman DR. 2002. Attributable
390 Mortality of *Stenotrophomonas maltophilia* Bacteremia. *Clin Infect Dis* 34:1653-
391 1656.

392 8. Gales AC, Jones RN, Forward KR, Liñares J, Sader HS, Verhoef J. 2001. Emerging
393 Importance of Multidrug-Resistant *Acinetobacter* Species and *Stenotrophomonas*
394 *maltophilia* as Pathogens in Seriously Ill Patients: Geographic Patterns,
395 Epidemiological Features, and Trends in the SENTRY Antimicrobial Surveillance
396 Program (1997–1999). *Clin Infect Dis* 32:S104-S113.

397 9. Al-Jasser AM. 2006. *Stenotrophomonas maltophilia* resistant to trimethoprim-
398 sulfamethoxazole: an increasing problem. *nn Clin Microbiol Antimicrob* 5:23-23.

399 10. Falagas M, Kastoris A, Vouloumanou E, Dimopoulos G. 2009. Community-acquired
400 *Stenotrophomonas maltophilia* infections: a systematic review. *Eur J Clin Microbiol*
401 *Infect Dis* 28:719.

402 11. Parkins MD, Floto RA. 2015. Emerging bacterial pathogens and changing concepts of
403 bacterial pathogenesis in cystic fibrosis. *J Cyst Fibros* 14:293-304.

404 12. Waters V, Atenafu EG, Lu A, Yau Y, Tullis E, Ratjen F. 2013. Chronic
405 *Stenotrophomonas maltophilia* infection and mortality or lung transplantation in
406 cystic fibrosis patients. *J Cyst Fibros* 12:482-486.

407 13. Klimova B, Kuca K, Novotny M, Maresova P. 2017. Cystic Fibrosis Revisited—a
408 Review Study. *J Med Chem* 13:102-109.

409 14. Sherrard LJ, Tunney MM, Elborn JS. 2014. Antimicrobial resistance in the respiratory
410 microbiota of people with cystic fibrosis. *Lancet* 384:703-713.

411 15. Muhlebach MS, Hatch JE, Einarsson GG, McGrath SJ, Gilipin DF, Lavelle G,
412 Mirkovic B, Murray MA, McNally P, Gotman N. 2018. Anaerobic bacteria cultured
413 from cystic fibrosis airways correlate to milder disease: a multisite study. *Eur Respir J*
414 52:1800242.

415 16. Kataoka D, Fujiwara H, Kawakami T, Tanaka Y, Tanimoto A, Ikawa S, Tanaka Y.
416 2003. The indirect pathogenicity of *Stenotrophomonas maltophilia*. *Int J Antimicrob*
417 *Agents* 22:601-606.

418 17. Ryan RP, Fouhy Y, Garcia BF, Watt SA, Niehaus K, Yang L, Tolker-Nielsen T, Dow
419 JM. 2008. Interspecies signalling via the *Stenotrophomonas maltophilia* diffusible
420 signal factor influences biofilm formation and polymyxin tolerance in *Pseudomonas*
421 *aeruginosa*. *Mol Microbiol* 68:75-86.

422 18. Gallo SW, Ramos PL, Ferreira CAS, Oliveira SDd. 2013. A specific polymerase
423 chain reaction method to identify *Stenotrophomonas maltophilia*. Mem Inst Oswaldo
424 Cruz 108:390-391.

425 19. Pinot C, Deredjian A, Nazaret S, Brothier E, Cournoyer B, Segonds C, Favre-Bonté S.
426 2011. Identification of *Stenotrophomonas maltophilia* strains isolated from
427 environmental and clinical samples: a rapid and efficient procedure. J Appl Microbiol
428 111:1185-1193.

429 20. Denton M, Kerr KG. 1998. Microbiological and clinical aspects of infection
430 associated with *Stenotrophomonas maltophilia*. Clin Microbiol Rev 11:57-80.

431 21. Huang W, Li L, Myers JR, Marth GT. 2011. ART: a next-generation sequencing read
432 simulator. Bioinformatics 28:593-594.

433 22. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
434 sequence data. Bioinformatics 30:2114-2120.

435 23. Price EP, Viberg LT, Kidd TJ, Bell SC, Currie BJ, Sarovich DS. 2018.
436 Transcriptomic analysis of longitudinal *Burkholderia pseudomallei* infecting the
437 cystic fibrosis lung. Microb Genom 4.

438 24. Sarovich DS, Price EP. 2014. SPANDx: a genomics pipeline for comparative analysis
439 of large haploid whole genome re-sequencing datasets. BMC Res Notes 7:618.

440 25. Crossman LC, Gould VC, Dow JM, Vernikos GS, Okazaki A, Sebaihia M, Saunders
441 D, Arrowsmith C, Carver T, Peters N. 2008. The complete genome, comparative and
442 functional analysis of *Stenotrophomonas maltophilia* reveals an organism heavily
443 shielded by drug resistance determinants. Genome Biol 9:R74.

444 26. Swofford DL, Sullivan J. 2003. Phylogeny inference based on parsimony and other
445 methods using PAUP*, p 160-206, vol 7. Cambridge University Press.

446 27. Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing
447 genomic features. *Bioinformatics* 26:841-842.

448 28. Kidd TJ, Ramsay KA, Hu H, Bye PT, Elkins MR, Grimwood K, Harbour C, Marks
449 GB, Nissen MD, Robinson PJ. 2009. Low rates of *Pseudomonas aeruginosa*
450 misidentification in isolates from cystic fibrosis patients. *J Clin Microbiol* 47:1503-
451 1509.

452 29. Wood ME, Stockwell RE, Johnson GR, Ramsay KA, Sherrard LJ, Kidd TJ, Cheney J,
453 Ballard EL, O'rourke P, Jabbour N. 2019. Cystic fibrosis pathogens survive for
454 extended periods within cough-generated droplet nuclei. *Thorax* 74:87-90.

455 30. Yang S, Lin S, Kelen GD, Quinn TC, Dick JD, Gaydos CA, Rothman RE. 2002.
456 Quantitative Multiprobe PCR Assay for Simultaneous Detection and Identification to
457 Species Level of Bacterial Pathogens. *J Clin Microbiol* 40:3449-3454.

458 31. Price EP, Dale JL, Cook JM, Sarovich DS, Seymour ML, Ginther JL, Kaufman EL,
459 Beckstrom-Sternberg SM, Mayo M, Kaestli M. 2012. Development and validation of
460 *Burkholderia pseudomallei*-specific real-time PCR assays for clinical, environmental
461 or forensic detection applications. *PloS One* 7:e37723.

462 32. Weber M, Schünemann W, Fuß J, Kämpfer P, Lipski A. 2018. *Stenotrophomonas*
463 *lactitubi* sp. nov. and *Stenotrophomonas indicatrix* sp. nov., isolated from surfaces
464 with food contact. *Int J Syst Evol Microbiol* 68(6):1830-1838.

465 33. Zhao J, Xing Y, Liu W, Ni W, Wei C, Wang R, Liu Y, Liu Y. 2016. Surveillance of
466 Dihydropteroate Synthase Genes in *Stenotrophomonas maltophilia* by LAMP:
467 Implications for Infection Control and Initial Therapy. *Front Microbiol* 7.

468 34. AbdulWahab A, Taj-Aldeen SJ, Ibrahim EB, Talaq E, Abu-Madi M, Fotedar R. 2015.
469 Discrepancy in MALDI-TOF MS identification of uncommon Gram-negative bacteria

470 from lower respiratory secretions in patients with cystic fibrosis. Infect Drug Resist
471 8:83.

472 35. Gautam V, Sharma M, Singhal L, Kumar S, Kaur P, Tiwari R, Ray P. 2017. MALDI-
473 TOF mass spectrometry: An emerging tool for unequivocal identification of non-
474 fermenting Gram-negative bacilli. Indian J Med Res 145:665.

475 36. Nashid N, Yau Y. Evaluation of the Matrix-Assisted Laser Desorption Ionization
476 Time-of-Flight Mass Spectrometry for the Identification of Cystic Fibrosis Pathogens,
477 p. In (ed), Oxford University Press,

478 37. Nakamura A, Sugimoto Y, Ohishi K, Sugawara Y, Fujieda A, Monma F, Suzuki K,
479 Masuya M, Nakase K, Matsushima Y. 2010. Diagnostic value of PCR analysis of
480 bacteria and fungi from blood in empiric-therapy-resistant febrile neutropenia. J Clin
481 Microbiol 48:2030-2036.

482 38. da Silva Filho LV, Tateno AF, Velloso LdF, Levi JE, Fernandes S, Bento CN,
483 Rodrigues JC, Ramos SR. 2004. Identification of *Pseudomonas aeruginosa*,
484 *Burkholderia cepacia* complex, and *Stenotrophomonas maltophilia* in respiratory
485 samples from cystic fibrosis patients using multiplex PCR. Pediatr Pulmonol 37:537-
486 547.

487 39. Güemes AGC, Lim YW, Quinn RA, Conrad DJ, Benler S, Maughan H, Edwards R,
488 Brettin T, Cantú VA, Cuevas D. 2019. Cystic Fibrosis Rapid Response: Translating
489 Multi-omics Data into Clinically Relevant Information. mBio 10:e00431-19.