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One Sentence Summary: We used single cell transcriptomics to identify the unique molecular 

features distinguishing myeloid-derived suppressor cells (MDSCs) from their normal, myeloid 

counterparts, which enabled us to reveal distinct transitory gene expression changes during their 

maturation in the spleen, and to identify novel cell surface markers for improved detection and 

isolation of MDSCs.  
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Abstract: Myeloid-derived suppressor cells (MDSCs) are innate immune cells that acquire the 

capacity to suppress adaptive immune responses during cancer. It remains elusive how MDSCs 

differ from their normal myeloid counterparts, which limits our ability to specifically detect and 

therapeutically target MDSCs during cancer. Here, we used single-cell RNAseq to compare 

MDSC-containing splenic myeloid cells from breast tumor-bearing mice to wildtype controls. 

Our computational analysis of 14,646 single-cell transcriptomes reveals that MDSCs emerge 

through a previously unrealized aberrant neutrophil maturation trajectory in the spleen giving 

rise to a unique chemokine-responsive, immunosuppressive cell state that strongly differs from 

normal myeloid cells. We establish the first MDSC-specific gene signature and identify novel 

surface markers for improved detection and enrichment of MDSCs in murine and human 

samples. Our study provides the first single-cell transcriptional map defining the development of 

MDSCs, which will ultimately enable us to specifically target these cells in cancer patients. 
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[Main Text: ] 

Introduction 

Breast cancer is one of the most prevalent types of cancer with over 260,000 new cases and 

over 40,000 deaths in 2018 in the US1. During tumor development, breast cancer cells secrete 

various cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF), which 

exert systemic effects on hematopoiesis and myeloid cell differentiation promoting the 

development of myeloid-derived suppressor cells (MDSCs)2,3. These MDSCs are a heterogeneous 

population of neutrophil- and monocyte-like myeloid cells, which are increasingly recognized as 

key mediators of immune suppression in various types of cancer3,4. In cancer patients, increased 

numbers of MDSCs in circulation correlate with advanced clinical stages, increased metastatic 

progression and immune suppression5. MDSCs can mediate immune suppression through multiple 

mechanisms including the production of reactive oxygen species (ROS) and depletion of key 

amino acids required for T cell proliferation through expression of arginase (Arg) and indoleamine 

2,3-dioxygenase (IDO)6,7,8. In addition, MDSCs produce a range of immunosuppressive and 

cancer-promoting cytokines including IL-10 and TGF-b9. Besides their immune-suppressive 

function, MDSCs may also actively shape the tumor microenvironment through complex crosstalk 

with breast cancer cells and surrounding stroma, resulting in increased angiogenesis, tumor 

invasion, and metastasis8,10,11.  

The unique molecular features of MDSCs are currently unclear and it remains elusive 

whether MDSCs represent a unique subpopulation of myeloid cells that differ from their normal, 

healthy counterparts. This limits our ability to determine specific MDSC functions as opposed to 

bulk-level changes in neutrophils or monocytes during cancer. In mice, MDSCs are defined 

through the expression of CD11b+Gr1+ and can be further classified into CD11b+Ly6ClowLy6G+ 
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granulocytic MDSCs (G-MDSCs) and CD11b+Ly6C+Ly6G- monocytic MDSCs (M-MDSCs)12. In 

humans, G-MDSCs are defined as CD11b+CD14-CD15+ or CD11b+CD14-CD66b+and M-MDSCs 

as CD11b+CD14+HLA-DR-/lowCD15- followed by additional  functional characteristics such as T 

cells suppression and ROS assays12. However, these markers overlap with those defining healthy 

neutrophils and monocytes, which makes it challenging to distinguish MDSCs from normal cells 

to advance our understanding of MDSCs biology and ultimately, to establish novel therapeutic 

avenues to interfere with their tumor-promoting and immune suppressive roles.  

Here, we used single-cell RNA sequencing (scRNAseq) to delineate the unique molecular 

features of MDSCs in the MMTV-PyMT mouse model of breast cancer. Our computational 

analysis of 14,646 single cell transcriptomes revealed a unique MDSC gene signature, which is 

largely shared between G-MDSCs and M-MDSCs, but which strongly differs from their normal 

myeloid counterparts. Focusing on G-MDSCs, our pseudotemporal analysis delineates the 

emergence of MDSCs as an aberrant differentiation state that forms a separate branch during the 

transition of neutrophil progenitors into mature neutrophils. Further interrogation of the distinct 

MDSC gene expression signature identified several novel surface markers (e.g. CD84, JAML) for 

faithful MDSC detection and prospective enrichment. Taken together, our study provides the first 

single-cell level molecular census defining novel specific gene signatures and markers for MDSCs 

that were previously unrealized in bulk-level expression analyses, which may form the foundation 

to ultimately therapeutically interfere with MDSC function in cancer patients.  
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Results  

Spleen is the predominant organ of MDSC generation in tumor-bearing mice 

Mice expressing the polyomavirus middle T antigen (PyMT) driven by the mouse 

mammary tumor virus (MMTV) promoter13 develop breast tumors that closely resembles human 

pathogenesis14 and give rise to MDSCs during tumor progression2. Here, we used the MMTV-

PyMT transgenic mouse model of breast cancer to explore the role of MDSCs during breast cancer 

progression. We first sought to confirm the most reliable organ site of MDSC accumulation for 

further molecular studies of this cell population. In accordance with previous reports in other 

murine models of cancer2, we observed that later stages of cancer progression were associated with 

an expansion of CD11b+Gr1+ myeloid cells in bone marrow, blood, spleens, lungs, brains and 

primary tumors (fig. S1A-C), and an enlargement of the spleen of tumor-bearing PyMT mice 

compared to wildtype (WT) controls (fig. S1D-E). To functionally confirm whether MDSCs are 

present in expanded populations of CD11b+Gr1+ cells in tumor-bearing mice, we isolated 

CD11b+Gr1+ cells from various organs of tumor-bearing and control mice by fluorescence-activated 

cell sorting (FACS) and co-cultured these with isolated T cells to measure suppression of T cell 

proliferation induced by CD3/CD28 co-stimulation2, and reactive oxygen species (ROS) formation 

as a read-out for MDSC function12 (fig. S2A). We found that CD11b+Gr1+ cells sorted from spleens 

of tumor-bearing mice significantly suppressed CD4+ and CD8+ T cell proliferation (fig. S2B-C), 

whereas CD11b+Gr1+ cells from control spleens showed no measurable effect on T cell 

proliferation. Of note, CD11b+Gr1+ cells sorted from bone marrow (fig. S2D-E) and lungs (fig. 

S1F-G) of tumor- bearing mice demonstrated only nonsignificant suppression of T cell 

proliferation. These findings were further corroborated by ROS production assays as measured by 

flow cytometry using 2ʹ,7ʹ-Dichlorofluorescin diacetate (H2DCFDA), which showed that only 
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spleen-derived CD11b+Gr1+ cells from tumor-bearing mice exhibited significant oxidative burst 

formation as a hallmark for MDSCs (fig. S2F-G). Together, these results establish the spleen as 

the major site of MDSC emergence during breast tumor formation in PyMT mice. 

 

Single-cell transcriptomics reveal MDSCs as distinct clusters within neutrophilic and monocytic 

lineages 

In order to determine how MDSCs differ from their normal myeloid counterparts on a 

cellular and molecular level, we used scRNAseq to compare the molecular differences of spleen-

derived myeloid cells in tumor-bearing mice against the respective cell population from WT mice 

on an individual cell basis. We utilized a scalable droplet-mediated scRNAseq platform (10X 

Genomics Chromium) to profile FACS-purified live (Sytox-negative) CD45+CD11b+Gr1+ 

myeloid cells from the spleens of tumor-bearing PyMT and control WT mice (Fig. 1A). We 

profiled two samples from tumor-bearing PyMT mice (9,155 cells) and WT control mice (5,491 

cells), respectively, for a total of 14,646 cells that were sequenced at an average depth of ~50,000 

reads per cell. The two libraries were aggregated and aligned together using the CellRanger 

pipeline (10X Genomics) to compensate for minor differences in library complexity. After quality 

control filtering to remove cells with low gene detection (<500genes) and high mitochondrial 

gene content (>8%), we performed clustering and cell type identification analysis of combined 

PyMT and WT datasets using Seurat15 (fig. S3A). Using the canonical correlation analysis (CCA) 

method16, we identified the main cell types based on expression of hallmark genes for myeloid 

subsets (Fig. 1B), and determined their marker genes (fig. S3C; table S1). Neutrophils formed 

the largest population encompassing numerous distinct clusters (C0, C2, C4, C5, C7 and C8) 

characterized by high levels of Ly6g and Cxcr2 expression (Fig. 1B-C). Monocytes were less 
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abundant and less diverse forming one cluster (C1) that was marked by expression of Csf1r and 

Ccr2 (Fig. 1B-C). We also detected two minor cell types: T cells (C9) expressing Cd3, Cd4, 

Cd8; and B cells (C6 and C3) expressing Cd19, Cd22, Cd79a (Fig. 1B-C).  

Further interrogation of neutrophil heterogeneity revealed that cluster C0 was marked by 

high levels of genes associated with a mature neutrophil state such as Camp17 and high Ly6g 

expression18; cluster C2 was strongly enriched in tumor-bearing PyMT mice (fig. S3E) and 

displayed high expression MDSC-related genes such as Il1b and Arg2, two major 

immunosuppressive factors previously used to define MDSCs in cancer models19,4 (Fig. 1D); 

clusters C4 and C5 displayed overlapping marker gene expression including genes such as Cebpe 

and Retnig; clusters C7 and C8 exhibited high expression of cell cycle genes such as Tuba1b and 

Cdc20 indicating the existence of a proliferative pool of neutrophils in the spleen. 

We next focused on the monocyte-restricted cluster C1, which showed diffuse expression 

of MDSC genes Arg2 and Il1b in the combined analysis (Fig. 1D) suggesting that M-MDSC were 

present but not clustering distinctly from monocytes due to the more substantial differences 

between different cell types in the combined analysis. Therefore, we performed a monocyte-only 

clustering analysis to identify several distinct states (clusters M0-M7) including a distinct M-

MDSC population in cluster M2, which was strongly enriched in tumor-bearing PyMT mice (Fig. 

1E; fig. S3B, D, F; table S2). These analyses formed the basis for a detailed molecular definition 

of G- and M-MDSCs as described below. Our dataset represents the first single-cell level 

transcriptome analysis of MDSCs, which revealed that G- and M-MDSCs form distinct clusters 

that are unique from their normal myeloid counterparts. 
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G- and M-MDSCs share a conserved immune cell activation program that strongly differs from 

normal myeloid cells 

We next utilized our scRNAseq dataset to reveal the unique molecular features of MDSCs 

and to unravel the distinct biological programs that define the MDSC state. We performed 

differential expression analysis in Seurat to determine how G- and M-MDSCs from tumor- bearing 

mice differ from their normal counterparts, namely neutrophils and monocytes in WT mice (Fig. 

1F). Our analysis revealed 642 differentially expressed genes in G-MDSCs compared to normal 

neutrophils (table S3), and 223 differentially expressed genes in M-MDSCs compared to normal 

monocytes (table S4) demonstrating that MDSCs differ substantially from their normal myeloid 

counterparts. Interestingly, there was substantial overlap between gene signatures for G- and M-

MDSCs (196 genes, Fig. 1G; table S5) indicating that this immune-suppressive cell state can be 

acquired by both monocytes and neutrophils independently. Shared markers included genes 

involved in immune suppression such as Il1b, Arg2, Cd84 and Wfdc20. Interferon-induced 

transmembrane protein 1 (Ifitm1), which has been reported to be involved in progression of 

colorectal cancer21,22 and inflammatory breast cancer cells23 was upregulated in MDSCs. 

Additional MDSC markers included myeloid associated immunoglobulin like receptor family 

(Cd300ld), C-type lectin domain family 4-member E and D (Clec4e and Clec4d), Interleukin 1f9 

(Il1f9), AP-1 transcription factor subunit (Junb), Cathepsin D (Ctsd), phospholipase A2 group VII 

(Pla2g7) and cystatin domain containing 5 (Bc100530). 

We next performed gene ontology (GO) term analysis (Fig. 1H) using Enrichr (GO 

Biological Process 2018)24. The top GO terms included ‘neutrophil activation and involved in 

immune response’ genes including the genes encoding complement C5a receptor 1 (C5ar1), S100 

Calcium binding protein A11(S100a11), Clec4d, chemokine receptor 2 (Cxcr2), and Annexin A2 
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(Anxa2). Interestingly, several of these factors promote recruitment of neutrophils and MDSCs 

as reported for C5ar125,26, and S100a8/927,28. In addition, Anxa2 has been reported to modulate 

ROS production and inflammatory responses29, which is a hallmark of MDSCs. Another 

significant GO term ‘Cytokine-mediated signaling pathway’ included genes such as Il1b, Ifitm1, 

Junb, and Myd88. In particular, Myd88 has been reported to promote expansion of immature 

Gr1+ cells and may be involved in mediating T cell suppressing cell states30. Additionally, this 

pathway included genes associated with MDSCs accumulation and trafficking such as Cxcr231,32, 

Csf3r33   and Ccr134, suggesting that MDSCs may be able to responsive to recruitment signals 

from sites of inflammation such as the primary tumor or metastatic sites. Moreover, ‘Negative 

regulation of insulin receptor signaling pathway’ genes such as; Il1b 35, and suppresser of 

cytokine signaling 3 (Socs3) were prominent in MDSCs. Socs3 has been reported to regulate 

granulocyte colony stimulating factor (G-CSF), and signal transducer and activator of 

transcription 3 (STAT3) activation36 (table  S6). 

Next, we sought to orthogonally validate the MDSC genes signature. To this end, 

CD11b+Gr1+ cells from spleens of WT and tumor-bearing PyMT mice were isolated by FACS 

and subjected to quantitative PCR (qPCR). Our scRNAseq results were broadly confirmed in this 

targeted approach, since a large proportion of MDSC signature genes were significantly 

upregulated in CD11b+Gr1+ cells from PyMT compared to WT (Fig. 1I). Taken together, these 

analyses firstly revealed that G- and M-MDSCs share a conserved gene signature that strongly 

differs from their normal myeloid counterparts. This shared MDSC marker gene list differs 

significantly from previous transcriptome-level analyses of MDSCs, indicating that bulk-level 

changes in these myeloid cell populations mask the specific programs underlying MDSC cell 

function. 
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MDSC gene signature is highly expressed in human breast cancer-associated neutrophils  

To determine whether this MDSC gene signature is generalizable and translatable into the 

human context, we explored a recently published scRNAseq immune cell map including T cells, 

B cells, monocytes, neutrophils from primary tumor samples of breast cancer patients37. We 

performed clustering of this dataset in Seurat to reproduce cell type labels (Fig. 2A), and then 

carried out an unbiased gene signature scoring of all cell types, which revealed that specifically 

neutrophils and monocytes in the tumor microenvironment express high levels of MDSC signature 

genes (Fig. 2B). To assess whether there are distinct subsets of neutrophils with particularly high 

MDSC signatures, we also analyzed neutrophils separately using unbiased clustering yielding four 

distinct states (Fig. 2C-D). Interestingly, cluster 0 showed MDSC-related marker genes S100A9 

and CCR2, suggesting that this subset of neutrophils represents G-MDSCs in the tumor 

microenvironment of breast cancer patients. Gene scoring analysis of using our MDSC gene 

signature in these neutrophil subclusters indeed showed by far the highest scores in cells from 

cluster 0 (Fig. 2E). Together, these analyses confirmed that our MDSC gene signature derived 

from a murine breast cancer model is translatable into human disease indicating that the MDSC 

state is largely conserved between mice and human.  

 

Aberrant neutrophil differentiation in the spleen gives rise to MDSCs in cancer 

To reconstruct the maturation process leading to MDSC generation in the spleen and to 

determine their differentiation state relative to normal progenitor and mature neutrophil 

populations, we next performed Monocle for unsupervised pseudotemporal ordering of our 

scRNAseq dataset38. We focused on the Ly6g+ neutrophil subset (clusters C0, C2, C4, C5, C7 
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and C8 in Fig. 1B-C) because in contrast to M-MDSCs we recovered sufficient numbers of total 

neutrophils and G-MDSCs in this analysis to ensure interpretable result. We first generated a new 

Seurat-based clustering of this neutrophil subset and then performed Monocle using this newly 

defined set of marker genes (fig. S4A; table S7). This resulted in a three-branch trajectory with 5 

distinct cell states (Fig. 3A). To interpret this trajectory, we compared our results to recent work 

using scRNAseq to define the signatures of the naïve haematopoietic stem, progenitor and 

differentiated cell states in the bone marrow of mice, which revealed that neutrophil progenitors 

are marked by the genes Elane, Mpo and Prtn3, while mature neutrophils expressed elevated 

levels of Camp, Ltf and Lcn217. Integrating these markers together with the MDSC signature 

established in our work (Fig. 1F), we were able to annotate the five states. First identified were 

neutrophil progenitors (state 4; Elane-hi) that show increased proliferation (fig. S4B-C) and form 

the beginning of pseudotime. These progenitors then bifurcate into mature neutrophils (state 3; 

Camp-hi) on the one branch, and MDSCs (state 1; Cd84-hi) on the other branch as illustrated by 

gene plots over pseudotime (Fig. 3B), suggesting that MDSCs emerge from neutrophil 

progenitors via an alternative maturation process. 

Interestingly, Monocle detected two additional cell states (2 and 5) around the beginning 

of the MDSC branch: while state 5 was characterized by high ribosomal gene counts indicative 

of a translationally active cell state, state 2 represents the earliest phase of MDSC differentiation 

and was marked by high expression of Asprv139, Plscr140 and Pirb41 (Fig. 3C). Interestingly, it 

has been reported that neutrophils promote chronic inflammation using Asprv139, suggesting the 

aspartic protease encoded by Asprv1 may functionally contribute to the emergence of MDSCs in 

the spleen. Furthermore, paired immunoglobin-like receptor-b (Pirb) has been reported to 

regulate the suppressive function and fate of MDSC, indicating that Pirb is required for MDSC 
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generation41. Taken together, these findings indicate that MDSCs emerge from neutrophil 

progenitor cells via an aberrant form of neutrophil differentiation in the spleen rather than from 

mature neutrophils that are reprogrammed into immunosuppressive cells (Fig. 3D; table S8). In 

addition, our work firstly identified an early, transitional MDSC state characterized by a number 

of genes showing elevated expression only around the branching point and during MDSC 

differentiation, but not during the normal progenitor or mature neutrophil trajectory. This may 

suggest that the transitional MDSC state could be targeted to block differentiation into MDSCs 

while not affecting normal neutrophil maturation and function. 

 

Identification of novel cell surface markers for MDSC detection and isolation  

Our scRNAseq data revealed several previously unknown specific cell surface markers for 

MDSCs including CD84 and Amica1/Jaml. CD84 is a cell surface receptor of the signaling 

lymphocytic activation molecule (SLAM) family42 and is expressed on some immune cell 

types43,44. Amica1/Jaml is a junctional adhesion molecule known to mediate the transmigration of 

neutrophils and monocytes by interacting with coxsackie-adenovirus receptor (CAR) expressed by 

epithelia45. We profiled CD84 and Jaml expression using FACS on CD11b+Gr1+ cells from 

different organs in tumor-bearing PyMT mice and WT mice. We first used FMO and isotype 

controls to determine specific marker expression (fig. S4D-E). Next, we characterized CD84 and 

Jaml expression in the CD11b+Gr1+ population from various organ preparations (bone marrow, 

lung, spleen, MFP or primary tumor) and compared control WT to tumor-bearing PyMT mice. 

Importantly, while CD11b+Gr1+ cells from bone marrow and lung were generally negative for 

CD84 (Fig. 4A) and Jaml (Fig. 4D), we found a significant number of CD11b+Gr1+ cells from the 

spleen and primary tumors of PyMT mice exhibited high expression of CD84 (Fig. 4B) and Jaml 
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(Fig. 4E) compared to the respective WT controls. This is particularly apparent when cells from 

all organs are plotted side by side (Fig. 4C&F). This observation of high expression of CD84 and 

Jaml in spleen and primary tumors correlates with high MDSC capacity of CD11b+Gr1+ cells in 

these sites.  

 To determine how generalizable these markers are, we next explored if CD11b+Gr1+ cells 

express CD84 in two additional mouse models of breast cancer: a BRCA1/p53-driven model 

(Brca1f11/f11p53f5&6/f5&6Crec)46 and an orthotopic transplant model using 4T1 breast cancer cells in 

Balb/c mice. First, we profiled the expansion of CD11b+Gr1+ cells in tumor-bearing BRCA1/p53 

mice in comparison to WT mice. We observed a significant increase in CD11b+Gr1+ cells in 

BRCA1/p53 mice in the spleens, lungs, and tumors compared to WT (fig. S4F). Similar to our 

PyMT model, we confirmed a high proportion of CD11b+Gr1+ cells that expressed CD84 (~24%) 

in spleen and (~39.13%) in the tumor, but not in the bone marrow, or lungs, (fig. S5A-B). In line 

with these findings, we observed a significant expansion of CD11b+Gr1+ cells in the 4T1 model in 

bone marrow, lungs, spleens and tumors compared to WT (fig. S4G), and CD84 expression was 

elevated in spleens (~ 21.46%) and tumors (~ 8.49%) (fig. S5C-D) to a significant but lower extent 

compared to the other two breast cancer models (fig. S5D), while CD11b+Gr1+ cells from bone 

marrow and lungs showed no detectable CD84 expression (fig. S5C).  Additionally, we used in 

vitro generation of MDSCs by treating myeloid cells with GMCSF7. We found that after G-MCSF 

treatment the CD11b+Gr1+ population exhibited a significant increase in CD84 positive cells (~ 

24.45%; fig. S5E-F) and Jaml positive cells (~ 11.26%; fig. S5E and G). Finally, we used 

previously established protocols for in vitro generation of human MDSCs by isolating peripheral 

blood mononuclear cells (PBMCs) and treating them with G-MCSF and IL647 (Fig. 4G; fig. S4H). 

We observed a significant upregulation of CD84 in samples from in vitro generated 
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CD11b+/CD14+ M-MDSCs and CD11b+/CD15+ G-MDSCs compared to control cells (Fig. 4H-

J). Together, these experiments established CD84 and Jaml as novel, generalizable cell surface 

markers for MDSC detection.  

 

CD84+ MDSCs exhibit T cell suppression and increased ROS production  

To functionally validate whether CD45+CD11b+Gr1+CD84hi cells inhibit immune cell 

activation, we performed co-cultures activated T cell as described above (Fig. 5A). Indeed, 

CD45+CD11b+Gr1+CD84hi cells from spleen of tumor-bearing mice suppressed CD4 and CD8 T 

cell proliferation in comparison to CD45+CD11b+Gr1+ cells isolated from control mice (Fig. 5B-

C). Next, we subfractionated CD11b+Gr1+CD84low and CD11b+Gr1+CD84hi cells from spleens and 

tumors of PyMT tumor-bearing mice and measured their potential for ROS production as a 

hallmark for MDSC function. We utilized H2DCFDA staining for ROS in combination with flow 

cytometry and observed that CD11b+Gr1+CD84hi cells produced significantly higher amounts of 

ROS compared to CD11b+Gr1+ cells from control mice, while CD11b+Gr1+CD84low showed no 

statistically different ROS production (Fig. 5D-E). Finally, we used qPCR to interrogate selected 

genes from our MDSCs signature and found elevated expression of the complete panel of MDSC-

related genes in CD11b+Gr1+CD84hi cells compared to CD11b+Gr1+CD84low (fig. S6A). These 

findings indicate that MDSCs capable of T cell suppression and ROS production can be faithfully 

detected and enriched for based on high CD84 expression.  
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Discussion  

Understanding the cellular and molecular mechanisms through which the tumor 

microenvironment can suppress an active anti-tumor immune response will be critical to improve 

current approaches for cancer immunotherapy such as checkpoint inhibition (e.g., PD1, CTLA4) 

or CAR-T cell treatments48. MDSCs represent such microenvironmental components that 

commonly expand in cancer patients and promote advanced tumor progression and T cell-

suppression in various different cancers including breast cancer5. Here, we generate the first single-

cell transcriptomics map of MDSC maturation during cancer to dissect the unique molecular 

features of MDSCs in breast tumor-bearing mice, and to elucidate how these immunosuppressive 

cells differ from their normal myeloid counterparts. Using this resource, we establish an MDSC-

specific gene signature that is largely shared between G- and M-MDSCs but strongly differs from 

their normal myeloid counterparts; we reconstruct their unique differentiation trajectory from 

neutrophil progenitors through an aberrant path of differentiation; and we identify novel MDSC-

specific cell surface markers for detection and prospective isolation of MDSCs. 

The MMTV-PyMT mouse model for breast cancer is one of the most widely used model 

system for studying breast cancer, which closely resembles human pathogenesis14 and which is 

known to induce significant expansion of MDSCs during tumor progression2. We show here that 

spleen is the major organ site in which MDSCs can be robustly detected. To identify unique 

molecular features associated with MDSC function, we utilized scRNAseq as a powerful, unbiased 

method to reveal hidden variation on a single-cell level in a population of FACS-isolated 

CD45+CD11b+Gr1+ cells from the spleen of WT control and tumor-bearing PyMT mice. This 

dataset not only provides the first single cell-level depiction of monocyte/neutrophil heterogeneity 

in the spleen under steady-state conditions (WT mice), but also elucidated how MDSCs emerge as 
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distinct clusters in both monocytes and neutrophil-like cells, which allowed us to establish MDSC-

specific gene signatures. Interestingly, there was significant overlap between G- and M-MDSCs, 

suggesting that both monocytes and neutrophils acquire similar immune-suppressive features. The 

MDSC signature includes various genes associated with immune regulations such as Arg2 and 

Cd84, as well as chemokine receptors (e.g. Ccr2, Cxcr2) indicating that MDSCs are responsive to 

neutrophil/MDSC-recruiting chemokines guiding their migration to active sites of inflammation 

such as the primary tumor or metastatic foci (Fig. 6).  

Our findings indicate that G-MDSCs may emerge from neutrophil progenitors through an 

aberrant differentiation trajectory giving rise to a cell state that is not present in normal conditions. 

Interrogating our observed cell states using pseudotemporal ordering and comparing these to 

recent work that defined the signatures of various haematopoietic stem and progenitor cell states 

in single-cell resolution17 allowed us to reconstruct that MDSCs form an aberrant trajectory from 

neutrophil progenitor cells that occurs at the cost of normal differentiation into mature neutrophil 

granulocytes, which are less abundant in tumor-bearing mice (Fig. 3A). Further interrogation of 

the initial transitional cell state that branches off into G-MDSCs revealed several genes that 

strongly increase in expression in this transitional phase (Fig. 3C), which may suggest that 

therapeutically interfering with these gene products could block MDSC differentiation before they 

become functionally active.  

A major limitation for current research studying MDSCs is the lack of specific cell surface 

receptors for detection and prospective isolation for functional interrogation. Here, we identify 

CD84 and Jaml as novel cell surface receptors on MDSCs, which can be used in combination 

with CD11b/Gr1 staining to detect the presence of MDSCs in various organs of tumor-bearing 

mice, or in human in combination with CD11b/CD14 or CD15. CD84 is involved in cell-cell 
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interactions and modulation of the activation and differentiation of a variety of immune cells49, 

and functions as a homophilic adhesion molecule on B cells, monocytes and, on a lower extent, 

T cells where it enhances IFNg secretion and activation43,44. Interestingly, CD84 can regulate PD-

1/PD- L1 expression and function in chronic lymphocytic leukemia resulting in suppression of T 

cell responses and activity50, suggesting that CD84 may allow MDSCs to directly regulate 

immune checkpoints in breast cancer patients. Our future work will be focusing on functional 

interrogation of CD84 and other key genes identified here in MDSC biology and their capacity to 

inhibit T cell activation, as well as the validation of CD84 and Jaml as markers for tumor-

associated MDSCs in human cancer patients. 
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Materials and Methods 

 

Mice. All mouse experiments were approved by the Institutional Animal Care and Use Committee 

of University of California Irvine, in accordance with the guidelines of the National Institutes of 

Health. Transgenic PyMT (MMTV-PyMT) mice were purchased from The Jackson (JAX) 

Laboratory (stock no: 002374) and breedings were maintained on FVB/n and PyMT (MMTV-

PyMT) backgrounds. Littermates from control and transgenic mice were used for all experiments.  

 

Tissue Collection and Cell Isolation.  

Bone marrow. After mouse dissection, bone marrow (BM) was flushed from mouse tibia and 

femurs using a 28G needle and plastic syringe and then kept in HBSS (Corning, 21-023-CV). BM 

cells were centrifuged at 500g at 4ºC for 5 min. Cells were incubated for 5 min at RT in 2 mL red 

blood cell (RBC) lysis buffer. Cells were quenched with 10 ml HBSS containing 2% FBS (Omega 

Scientific, FB-12) and centrifuged at 500g at 4ºC for 5 min. Cells were resuspended in 3 mL FACS 

buffer (1xPBS, 3% FBS) and total remaining live BM cells were counted using the automated cell 

counter Countessä II (ThermoFisher Scientific, AMQAX1000).    

Spleen. The spleen was pushed through a 70-μm cell strainer and washed with RPMI to create a 

cell suspension of splenocytes. Cells were centrifuged at 500g at 4ºC for 5 min and then incubated 

for 5 min in 5 mL RBC lysis buffer at RT. Cells were quenched with 10 mL RPMI (Corning, 10-

040-CV) with 5% FBS and centrifuged at 500g at 4ºC for 5 min. Cells were resuspended in 3 mL 

FACS buffer (1xPBS, 3% FBS), and total remaining live cells were counted by Countessä II and 

processed for FACS.    

Lung, tumor and mammary fat pad (MFP). Tissue samples were harvested from mice and 
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mechanically dissociated using a razor blade. Tissues were placed in DMEM/F-12 (Corning, 

MT10090CV) complete medium containing 5 μg/mL insulin (Sigma-Aldrich, 11376497001), 50 

μg/mL penicillin/streptomycin (HyClone, SV30010), and 0.1 mg/mL collagenase type IV (Sigma-

Aldrich, C5138) and were digested at 37 °C on a shaker for 45 min. Samples were centrifuged at 

500g for 5 min at RT.  Cells were resuspended in HBSS and centrifuged at 500g for 5 min at RT. 

Cells were resuspended in 25 μL DNase I (Sigma-Aldrich, D4263) for five min at RT and then 2 

mL of 0.05% Trypsin (Corning, 25-052-CI) was added and samples incubated at 37°C for 10 min. 

Samples were centrifuged at 500g for 5 min at RT and then resuspended in 5 mL HBSS with 2% 

FBS. The cell suspension was filtered through a 70 μM cell strainer (Fisher Scientific, 22363548) 

and incubated for 5 min at RT in 3 mL RBC lysis buffer. Cells were quenched with 10 mL HBSS 

with 2% FBS and centrifuged at 500g for 5 min at RT. Cells were then resuspended in RPMI with 

10% FBS, and total remaining live cells were counted by Countessä II and processed for FACS. 

Peripheral blood.  Blood was collected using a 20G needle and syringe from the chest cavity after 

the right atrium and left ventricle were punctured. Mice were perfused with 15 mL of 10 mM 

EDTA in 1xPBS and blood was collected. Blood cells were centrifuged at 500g at 4ºC for 5 min. 

Cells were resuspended in 5 mL RBC lysis buffer and incubated at RT. for 5 min. Cells were 

quenched in 5 mL RPMI with 3% FBS and centrifuged at 500g at 4ºC for 5 min. Cells were then 

resuspended in 3 mL FACS buffer (1xPBS, 3% FBS), and total remaining live cells were counted 

by Countessä II and processed for FACS. 

Brain. Brain tissue was dissociated into a single cell suspension using the Adult Brain Dissociation 

Kit (Miltenyi Biotec, 130-107-677) according to the manufacturer’s protocol, and a gentleMACS 

Octo Dissociator with Heaters (Miltenyi Biotec, 130-096-427). Briefly, the brain was dissected 

from the cranium, the meninges were removed, and the brain was chopped into 8-10 pieces. The 
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chunks were transferred into a gentleMACS C Tube (Miltenyi Biotec, 130-093-237) containing 

enzymes A and P, and then placed onto the gentleMACS. The brain was digested using the 37C-

ADBK protocol on the instrument. After a 30-minute heated digestion, the brain slurry was 

strained through a 70 µm nylon strainer and washed with 10 mL ice cold 1xPBS with 2% BSA 

(Sigma, A-964). The suspension was centrifuged at 300g for 10 min at 4ºC and then mixed with 4 

mL of 1X Debris Removal Solution provided in the kit and centrifuged for 10 min at 3000g at 4ºC 

or RT. The myelin layer was removed, and the cells were washed with DPBS, and centrifuged for 

10 min at 1000g. Red blood cells were lysed for 3 min on ice with 1mL of 1X Red Blood Cell 

Lysis Buffer provided in the kit. After quenching in 2 mL of DPBS with 2% BSA, the cells were 

pelleted at 500g for 3 min at 4ºC and total remaining live cells were counted by Countessä II and 

processed for FACS. 

 

In vitro generation of MDSCs 

Mice. BM cells were collected as described above then cells were culture with RPMI and 10%FBS 

and treated with 20ng/ml recombinant murine (GM-CSF, Peprotech, 315-03) on day 1 and on day 

3. Thus, Cells were collected on day 4 and total remaining live cells were counted by Countessä 

II and processed for FACS.    

Human. We followed established protocols for in vitro generation of human MDSCs47. Briefly, 

Human blood were incubated with 3% dextran (Sigma-Aldrich, 31392-10G) for 18 min, 

supernatants were collected and followed by differential density gradient separation (Ficoll-

paqueTM PLUS, Neta Scientific, GHC-17-1440-02). Samples were centrifuge at 500 RCF for 30 

min at 20oC. PBMCs including granulocytes were collected and incubated with 10ng/ml of 

recombinants human cytokines (GM-CSF, Peprotech, 300-03 and IL-6, Peprotech, 200-06) or 
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without in RPMI contain 10%FBS. Cells were treated with these cytokines every day and on day 

3 cells were collected from cultures and total remaining live cells were counted by Countessä II 

and processed for FACS. 

 

Fluorescence-Activated Cell Sorting. Tissue samples were harvested from mice and 

mechanically dissociated to generate single cell suspensions as described above. Cells were 

blocked with anti-mouse FcγR (CD16/CD32) (BioLegend, 101301) on ice for at least 10 min. 

Cells were then centrifuged at 500g for 5 min at 4°C and washed once with FACS buffer (1xPBS 

with 3%FBS). Cells were incubated for 30 min at 4ºC with pre-conjugated fluorescent labeled 

antibodies with the following combinations: CD45 (30-F11) (BioLegend, 103112 (APC) or 

103115 (APC-cy7)), CD11b (M1/70) (BioLegend, 101206 (FITC) or 101212 (APC), Gr1 (Rb6-

8C5) (BioLegend, 101206 (PE) or 108439 (BV605),  CD84 (mCD84.7) (BioLegend, 122805 

(PE)), and Jaml (4e10) (BioLegend, 128503 (PE)). Sytox Blue dye (Life Technologies, S34857) 

was added to stained cells to assay for viability. Cells sorted by BD FACSAria™ Fusion and 

desired populations were isolated for different experiments. Human PBMCs were prepared as 

described above, cells were blocked with human TruStain FcX (BioLegend, 422301) on ice for 10 

min. Then cells were centrifuged at 500g for 5 min at 4°C and washed once with FACS buffer 

(1xPBS with 3%FBS). Cells were incubated for 30 min at 4°C with the following anti-human, pre-

conjugated fluorescent labeled antibodies: CD45 (efluor 450) (Thermofisher, 48-9459-42), CD11b 

(BV650) (BioLegend, 101206), CD14 (PerCP-Cy5.5) (Thermofisher, 45-0149-42), CD15 (APC) 

(BioLegend, 301907), and CD84 (PE) (BioLegend, 326007). Sytox Green (Life Technologies, 

S34860) was added to the stained cells to assay viability. Cells were analyzed by BD FACSAria™ 

Fusion.  
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T cell Suppression Assay. Spleens were dissected, filtered into a single-cell suspension and 

depleted of red blood cells using Tris-acetic-acid-chloride (TAC). T cells were isolated from the 

spleen using the EasySepä Mouse T cell Isolation Kit (StemCell Technologies, 19851) according 

to the manufacturer’s instructions. Isolated T cells were washed once with PBS and resuspended 

at 15 x106/mL in staining buffer (0.01% BSA in PBS). T cells were stained with proliferation dye 

eFluorä 670 (ThermoFisher Scientific, 65-0840-85) using 5mM dye per 1x107 cells and incubated 

in a 37°C water bath for 10 min. Finally, T cells were washed and resuspended at 1x106/mL in 

RPMI 1640 w/ HEPES+ L-glutamine (Gibco, 22400-105) complete medium containing 10% FBS 

(Atlanta Biologicals, S11150), 1X non-essential amino acids (Gibco, 11146-050), 100U/mL 

penicillin-100µg/mL streptomycin (Gibco, 15140163), 1mM sodium pyruvate (Gibco, 11360-

070), and 55 μM β-mercaptoethanol (Gibco, 21985-023), eFluorä 670-labeled T cells were plated 

(50x103/well) in a U-bottom 96-well plate (VWR, 10062-902) and activated with plate bound anti-

Armenian hamster IgG (30µg/mL, Jackson  Immuno research, 127-005-099 ) with CD3 (0.5 

μg/mL, Tonbo, 70-0031) and CD28 (1 μg/mL, Tonbo, 70-0281). Sorted CD11b+ Gr1+ cells from 

PyMT or WT mice were added to T cells in 1:1 ratio (50x103 T cells:50x103 CD11b+ Gr1+ cells). 

After 4 days of culture, cells were collected and blocked with anti-mouse CD16/32 (BioLegend, 

101302), stained with Zombie Live/Dead Dye (BioLegend, 423105) and fluorescent-conjugated 

antibodies: CD4 (BioLegend, 100512; clone RM4-5), and CD8 (BioLegend, 100709; clone 53-

6.7). Single-stained samples and fluorescence minus one (FMO) controls were used to establish 

PMT voltages, gating, and compensation parameters. Cells were processed using the BD LSR II 

or BD LSRFortessaä X-20 flow cytometer and analyzed using FlowJo software v10.0.7 (Tree 

Star, Inc). 
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ROS Production Assay. Cells were harvested from respective tissues and processed to single cell 

suspensions as described above. Cells were stained with CD45, CD11b, Gr1, and CD84 antibodies 

as described above. Following staining, cells were resuspended in FACS buffer and 10mM 2ʹ,7ʹ-

Dichlorofluorescein diacetate (H2DCFDA) (Sigma-Aldrich, D6883) was added and incubated for 

30 min at RT. Positive control cells were treated with 100 nM phorbol myristate acetate (PMA) 

(Sigma-Aldrich, P1585-1MG). Cells were then processed on the BD FACSAria™ Fusion and 

analyzed using FlowJo software v10.0.7 (Tree Star, Inc).  

 

Quantitative Real-Time PCR. CD11b+Gr1+ cells, CD11b+Gr1+CD84hi cells and 

CD11b+Gr1+CD84low cells were sorted by FACS and RNA were extracted by using Quick-RNA 

Microprep Kit (Zymo Research, R1050) following manufacturer’s instructions. RNA 

concentration and purity were measured with a Pearl nano spectrophotometer (Implen). 

Quantitative real-time PCR was conducted using PowerUpä SYBRä green master mix (Thermo 

Fisher Scientific, A25742) and primer sequences were found in Harvard primer bank and obtained 

from Integrated DNA Technologies (Supplemental Table 9). Gene expression was normalized to 

GAPDH housekeeping gene. For relative gene expression 2^negΔΔCt values were used and for 

statistical analysis ΔCt was used. The statistical significance of differences between groups was 

determined by unpaired t-test using Prism 6 (GraphPad Software, Inc). 

 

Single-Cell RNA Sequencing (scRNAseq). FACS-isolated CD11b+/Gr1+ cells from the spleens 

of control WT (5 mice pooled) and tumor-bearing PyMT mice (3 mice pooled) were washed once 

in PBS with 0.04% BSA, resuspended to a concentration of approximately 1,000 cell/µL and 
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loaded onto the 10X Genomics Chromium platform for droplet-enabled scRNAseq according to 

the manufacturer’s instructions. Library generation was performed following the Chromium 

Single Cell 3ʹ Reagents Kits v2 User Guide: CG00052 Rev B. Each library was sequenced on the 

Illumina HiSeq 4000 platform to achieve an average of 48,488 reads per cell. Alignment of 3’ end 

counting libraries from scRNAseq analyses was completed utilizing 10× Genomics Cell Ranger 

2.1.0. Each library was aligned to an indexed mm10 genome using Cell Ranger Count. “Cell 

Ranger Aggr” function was used to normalize the number of confidently mapped reads per cell 

across the two libraries.  

 

Cluster Identification Using Seurat. The Seurat pipeline (version 2.3.1) was used for cluster 

identification in scRNAseq datasets. Data was read into R (version 3.5.0) as a counts matrix and 

scaled by a size factor of 10,000 and log transformed. We set gene expression cut-offs at minimum 

of 500 and a maximum cut-off of 5000 genes per cell for each dataset. In addition, cells with a 

percentage of total reads that aligned to the mitochondrial genome (referred to as percent mito) 

greater than 8% were removed. Using Seurat’s Canonical Correlation Analysis (CCA), cells from 

WT and PyMT mice were integrated together into a single analysis. For tSNE projection and 

clustering analysis, we used the first 20 principal components. Specific markers for each cluster 

identified by Seurat were determined using the “FindAllMarkers” function. For gene scoring 

analysis, we compared gene signatures and pathways in subpopulations using Seurat’s 

“AddModuleScore” function. For cell type subset analyses (Monocytes and Neutrophils), clusters 

with high expression of cell type markers (Csf1r and Ly6g, respectively) were subset out and 

standard Seurat workflow was applied on each. In the case of the neutrophil-specific analysis, a 
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population of cells that grouped together and expressed a set of markers associated with neutrophil 

progenitors17 was manually labeled and treated as a distinct cluster for analysis. 

 

Reconstruction of Differentiation Trajectories using Monocle. Using the R package Monocle 

(version 2.8.0), a differentiation hierarchy within the neutrophil compartment was reconstructed. 

Starting with all cells from the WT and PyMT combined analysis, neutrophils were specifically 

subset out. Once subset, contaminating cell types were removed and the cells were re-clustered to 

explore additional heterogeneity within the neutrophils compartment. Using marker genes of these 

clusters, the top 20 unique genes per cluster were used to order cells along a pseudotemporal 

trajectory. Because cells that expressed markers associated with neutrophil progenitors17 localized 

to a single branch, that branch was chosen as the start of pseudotime for further analysis. 

 

Statistical Analysis. All data are expressed as mean ± SEM or SD and performed using Prism 6 

software (GraphPad Software, Inc). P values were considered to be significant when p<0.05.  

 

Data Availability. Data will be publicly available on GEO (Accession numbers pending). 
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Fig. 1. Identifying MDSC-specific gene expression signatures using scRNAseq. (A) Approach 

overview for single-cell analysis of and  (sytox blue-negative) CD45+CD11b+Gr1+  cells were 

sorted from the spleen of control WT and tumor-bearing PyMT’s mice by FACS following droplet-

enabled scRNAseq. (B-C) Combined Seurat analysis of in total 14,646 cells from control and 

PyMT mice shown in tSNE projection results in various distinct clusters of splenic CD11b+Gr1+ 

cells. Main cell types (T cells, B cells, neutrophils, monocytes) are outlined based on hallmark 

gene expression. (C) Feature plots of characteristic markers of the four main cell types showing 

expression levels with low expression in grey to high expression in dark blue. (D) G-MDSCs were 

identified in cluster C1 by expression marker genes (Arg2 & Il1b) from the PyMT sample. (E) 

Subset analysis of monocytes cluster identified M-MDSCs. Eight total clusters were found; cluster 

M2 was identified as M-MDSCs (positive for Arg2 & Il1b ). (F) Heatmap displaying the scaled 

expression patterns of top marker genes within each G-MDSCs and M-MDSCs clusters compared 

to normal neutrophil and monocyte clusters from WT mice respectively; yellow = high expression; 

purple = low expression. (G) Venn diagram showing the number of statistically significant marker 

genes and overlap between G-MDSC and M-MDSC. (H) Gene ontology (GO) term analysis using 

Enrichr of curated MDSC signature. (I) Validation using qPCR of selected upregulated MDSC 

genes, statistical analysis unpaired t-test (Mean ± SEM of n = 3) *P< 0.05.  
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Fig. 2. MDSC signature marks subset of neutrophils in the tumor microenvironment of 

human breast cancer patients. (A) Seurat analysis of scRNAseq dataset comprising various 

immune cell populations in primary human breast tumor samples37 projected in UMAP with cell 

type labels as indicated in different colors. (B) Violin plot showing relative MDSC score of all 

cells in this dataset ordered by cell type showing highest scores in neutrophils. (C) Separate 

unbiased Seurat clustering analysis of neutrophil alone projected in UMAP yielded four distinct 

clusters of neutrophils in this dataset. (D) Heatmap showing top 10 marker genes for each 

neutrophil cluster. (E) Violin plots showing relative MDSC score ordered by neutrophil subcluster 

showing that cluster 0 exhibit highest expression of MDSC gene signature.  

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 15, 2019. ; https://doi.org/10.1101/702860doi: bioRxiv preprint 

https://doi.org/10.1101/702860
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3

0.0 2.5 5.0 7.5 10.0 12.5

Pseudotime

Component 1

Co
m

po
ne

nt
 2

Neutrophil
progenitors

Elane+

Mature
Neutrophils

Ltf+

G-MDSCs
Il1b+

G-MDSC transition
Plscr1+

Monocle State 1 2 3 4 5A

D

Elane Cd84

Il1bMpo

Camp

Prtn3

Lcn2

Ltf Spi1

Pseudotime
G

en
e 

ex
pr

es
si

on
 le

ve
l

B

100

10

1

10

1

100

10

1

100

10

1

100

10

1

10

1

G-MDSC Transition

Plscr1 PirbAsprv1

Pseudotime

G
en

e 
ex

pr
es

si
on

 

C
10

1

10

1

G-MDSC
Cd84/Il1b/Spi1+

Mature Neutrophil
Camp/Lcn2/Ltf+Neutrophil progenitor

Elane/Mpo/Prtn3+

G-MDSC Transition
Asprv1/Plscr1/Pirb

100

10

1

1000

10

10

1

10

1

State 1 State 3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 15, 2019. ; https://doi.org/10.1101/702860doi: bioRxiv preprint 

https://doi.org/10.1101/702860
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 3. G-MDSCs emerge through aberrant differentiation trajectory during cancer. 

(A) Monocle analysis on the subset of Ly6g+ neutrophil clusters resulted in branched trajectory 

with 5 distinct Monocle states (color code for each state is indicated) which are named based on 

respective gene expression profile. (B) Pseudotime plot illustrating expression of selected marker 

genes over pseudotime with the branch ending in State 1 shown with the dotted line, and the branch 

ending with state 3 highlighted by the solid line. Neutrophil progenitors are characterized by high 

levels of Elane, Mpo and Prtn3 (state 4), which bifurcate into mature neutrophils (state 3; Camp, 

Ltf, Lcn2) on the one branch, and MDSCs (state 1; e.g. CD84) on the other branch. (C) Early G-

MDSC transition was marked by high expression of Asprv1, Plscr1 and Pirb. (D) Summary 

schematic indicates that G-MDSCs emerge from neutrophil progenitor cells via an aberrant form 

of neutrophil differentiation rather than from mature neutrophils that are reprogrammed into 

immunosuppressive cells. 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 15, 2019. ; https://doi.org/10.1101/702860doi: bioRxiv preprint 

https://doi.org/10.1101/702860
http://creativecommons.org/licenses/by-nc-nd/4.0/


CD84+
0

0-103 103 104 105
0

50K

100K

150K

200K
CD84+

7.69E-3

0-103 103 104 105
0

50K

100K

150K

200K

250K

CD84+
3.14E-3

0-103 103 104 105
0

50K

100K

150K

200K

250K

CD84+
0

0-103 103 104 105
0

50K

100K

150K

200K

250K

CD84+
0.067

0-103 103 104 105
0

50K

100K

150K

200K

250K

CD84+

0-103 103 104 105
0

50K

100K

150K

200K

250K

CD84+
48.0

0-10
3

10
3

10
4

10
5

0

50K

100K

150K

200K

250K CD84+
46.3

0-10
3

10
3

10
4

10
5

0

50K

100K

150K

200K

250K

250K

Lung Spleen MFP vs TM

W
T

Py
M

T

BM

CD84

SS
C-

A
A

WT
PyMT

0

20

40

60 MFP vs TM

*

WT
PyMT

0

20

40

60
Spleen

*

CD84 expression gated on CD11b+/Gr1-hi B

D

Jaml +
0.015

0-103 103 104 105
0

50K

100K

150K

200K

250K

Jaml +
0.035

0-103 103 104 105
0

50K

100K

150K

200K

250K

Jaml +
0

0-103 103 104 105
0

50K

100K

150K

200K

250K

Jaml+
31. 5

0-103 103 104 105
0

50K

100K

150K

200K

250KJaml+
21. 9

0-103 103 104 105
0

50K

100K

150K

200K

250KJaml +
0.084

0-103 103 104 105
0

50K

100K

150K

200K

250K

Jaml +
1.33

0-103 103 104 105
0

50K

100K

150K

200K

250K Jaml +
0

0-103 103 104 105
0

50K

100K

150K

200K

250K

W
T

Py
M

T

Jaml

SS
C-

A

Lung Spleen MFP vs TMBM

WT
PyMT

0

10

20

30
MFP vs TM

*

E

WT
PyMT

0

10

20

30
Spleen

*

Jaml expression gated on CD11b+/Gr1-hi

Figure 4

0

-10
3

10
3

10
4

10
5

CD
84

FM
O

-C
D

84
W

T-
BM

Py
M

T-
BM

W
T-

Lu
ng

Py
M

T-
Lu

ng
W

T-
Sp

le
en

W
T-

M
FP

Py
M

T-
Sp

le
en

Py
M

T-
Tu

m
or

0

-10
3

10
3

10
4

10
5

FM
O

-J
am

l
W

T-
BM

Py
M

T-
BM

W
T-

Lu
ng

Py
M

T-
Lu

ng
W

T-
Sp

le
en

W
T-

M
FP

Py
M

T-
Sp

le
en

Py
M

T-
Tu

m
or

Ja
m

l

C

Sample ID

Sample ID

F

0

%
 o

f C
D

84
 E

xp
re

ss
io

n
%

 o
f C

D
84

 E
xp

re
ss

io
n

%
 o

f J
am

l
 E

xp
re

ss
io

n
%

 o
f J

am
l

 E
xp

re
ss

io
n

Human PBMC treated
GM-CSF+IL-6

in vitro 

Blood
PBMC CD11b+/CD14+

M-MDSC G-MDSCG

0

-10
3

10
3

10
4

10
5

PB
M

C-
Co

nt
ro

l

Sample ID

PB
M

C-
Co

nt
ro

l

PB
M

C-
Co

nt
ro

l

PB
M

C-
Tr

ea
te

d

PB
M

C-
Tr

ea
te

d

PB
M

C-
Tr

ea
te

d

CD
84

PB
M

C-
Co

nt
ro

l

Sample ID

PB
M

C-
Co

nt
ro

l

PB
M

C-
Co

nt
ro

l

PB
M

C-
Tr

ea
te

d

PB
M

C-
Tr

ea
te

d

PB
M

C-
Tr

ea
te

d

10
5

10

10

0

-10

4

3

3

CD
84

0

5

10

15

20

G-MDSC
CD11b+CD15+

*

%
 o

f C
D

84
 E

xp
re

ss
io

n

0

10

20

30

40

*

%
 o

f C
D

84
 E

xp
re

ss
io

n

M-MDSC
CD11b+CD14+

PBMC-Control PBMC-Treated

I J

H
CD11b+/CD15+

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 15, 2019. ; https://doi.org/10.1101/702860doi: bioRxiv preprint 

https://doi.org/10.1101/702860
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 4. Identification of novel cell surface markers for MDSCs in breast cancer models. 

(A) CD84 expression profiling in WT and tumor-bearing PyMT showing that only spleen and 

primary tumor from PyMT exhibit significant expression. (B) Combined results and statistical 

analysis using unpaired t-test (Mean ± SEM of n = 10) *P< 0.05. (D) Profiling Jaml expression in 

WT and PyMT showing only spleen and tumor from PyMT exhibit significant expression. (E) 

Combined results and statistical analysis unpaired t-test (Mean ± SEM of n = 3 *P< 0.05. (C&F) 

Concatenate multiple flow samples to visualize CD84 and Jaml1 expression in one feature plot 

across all samples including; (FMO, Bone marrow, lung, spleen, MFP and tumor from WT and 

PyMT); significant expression was only observed in spleen and tumor from PyMT. g, Overview 

of PBMC collection, culture condition and FACS approach.  (H) Concatenate multiple flow 

samples to visualize CD84 expression G- and M-MDSCs in one feature plot across all samples 

including PBMC control and treated. (I-J) Statistical analysis using unpaired t-test (Mean ± SEM 

of n = 3) *P< 0.05 
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Fig. 5. CD11b+Gr1+CD84hi cells exhibit potent capacity for T cell suppression and 

increased ROS production.  

(A) Overview of FACS approach using two different tissues (spleen and primary tumor) from WT 

and PyMT were subjected to T cell activation, ROS formation and qPCR assays. (B-C), Splenic 

CD11b+Gr1+CD84hi cells from tumor-bearing mice suppress T cell proliferation. Histogram overly 

(B) and quantitative bar charts (C) showing CD4/CD8 T cell proliferation measured by FACS in 

control samples (T cells; red), T cells activated by CD3/CD28 (blue), activated T cells plus 

CD11b+Gr1+ cells from control spleens (orange) and activated T cells plus CD11b+Gr1+CD84hi 

cells from spleen of tumor-bearing mice (purple). c, Statistical analysis (Mean ± SEM of n = 3) 

*P< 0.05 One-way ANOVA. (D-E) CD11b+Gr1+CD84hi cells from tumor-bearing mice show 

increased ROS formation compared to CD11b+Gr1+CD84low; PMA-treated cells were used as 

positive control. ROS was measured by FACS using H2DCFDA.  (E) Statistical analysis of ROS 

assay unpaired t-test (Mean ± SEM of n = 3) *P< 0.05.   
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Fig. 6. Proposed model of aberrant neutrophil differentiation in the spleen during cancer. 

Myeloid cells differentiate in bone marrow from hematopoietic stem cells through 

common myeloid progenitors. Common granulocyte/monocyte progenitors expand in the bone 

marrow of tumor-bearing mice and migrate to spleen as a marginated pool, where they give rise 

to normal neutrophil maturation and, in cancer, aberrant neutrophil differentiation into 

MDSCs. Our findings indicate that the MDSC-specific gene signature is largely shared 

between G- and M-MDSCs, but strongly differs from their normal myeloid counterparts. This 

MDSC signature includes immune-suppressive factors, markers of increased neutrophil 

activation, and numerous chemokine receptors, which likely guide their migration towards 

primary tumor or metastatic sites (indicated by arrows), where they may shield tumor cells from 

anti-tumor adaptive immunity.  
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Fig. S1. Expansion of CD11b+Gr1+ cells during tumor progression in PyMT mice.  

(A-B), Tissues from tumor-bearing PyMT and WT mice were collected and analyzed by FACS. 

Cells from WT (A) and PyMT (B) mice were gated on CD45+ and analyzed using CD11b/Gr1 

to identify neutrophils/monocytes, which expanded significantly during tumor progression in 

bone marrow, blood, spleen, lung, brain and tumor compared to WT. (C) Combined 

quantification of FACS results including statistical analysis is shown in bar graphs (Mean ± SEM 

of n =3) *P< 0.05 t-test vs. WT. (D) Spleen from tumor-bearing PyMT (14 weeks) was enlarged 

compared to WT. (E-F) T cell suppression assay, CD11b+Gr1+ cells were sorted from PyMT-

lung and co-cluttered with activated T cells showed no effect in T cell proliferation. Statistical 

analysis one-way ANOVA (Mean ± SEM of n = 3) *P< 0.05. 
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fig. S2. MDSCs emerge predominantly in spleen of tumor-bearing mice. 

(A) Experimental overview. Bone marrow, spleen and lung were processed into single cell 

suspensions and (sytox blue-negative) CD45+CD11b+Gr1+ cells were sorted and subjected to 

functional T cell suppression and ROS formation assays. (B-C), Splenic CD11b+Gr1+ cells from 

tumor-bearing mice suppress T cell proliferation. Histogram overlay (B) and quantitative bar 

charts (C) showing CD4/CD8 T cell proliferation measured by FACS in control samples (T cells; 

red), T cells activated by CD3/CD28 (blue), activated T cells plus CD11b+Gr1+ cells from control 

spleens (orange) and activated T cells plus CD11b+Gr1+ cells from spleen of tumor-bearing mice 

(green). (D-E), Bone marrow-derived CD11b+Gr1+ cells from tumor-bearing mice show non-

significant suppression of T cell activation. Histogram overly (B) and quantitative bar charts (c) 

showing CD4 and CD8 T cell proliferation measured by FACS in T cell control samples (red), 

CD3/CD28 activated T cells by CD3/CD28 (blue), activated T cells plus CD11b+Gr1+ cells from 

control bone marrow (orange) and activated T cells plus CD11b+Gr1+ cells from bone marrow of 

tumor-bearing mice (green). ns = not significant.  (F-G), CD11b+Gr1+ cells from tumor-bearing 

mice show increased ROS formation. PMA-treated cells were used as positive control. ROS was 

measured by FACS using H2DCFDA in CD11b+Gr1+ cells from bone marrow, spleen, and lung 

from control and tumor-bearing mice. Only CD11b+Gr1+ cells (MDSCs) from PyMT’s spleen 

significantly produced more ROS. (C) Statistical analysis (Mean ± SEM of n = 4) *P< 0.05 One-

way ANOVA. (E) Statistical analysis (Mean ± SEM of n = 3) *P< 0.05 One-way ANOVA. (G) 

Statistical analysis unpaired t-test (Mean ± SEM of n = 3) *P< 0.05.  
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fig. S3. Sample labels and marker genes from scRNAseq analysis. 

(A) Seurat analysis of combined CD11b+Gr1+ cells from WT and tumor-bearing PyMT mouse 

spleens shown in tSNE projection labeled by tissue source (WT = blue; PyMT = red). (B) Seurat 

analysis subsetted on monocytes only from WT and tumor-bearing PyMT mouse spleens shown 

in tSNE projection labeled by tissue source (WT = blue; PyMT = red). (C-D) Heatmaps of Top 10 

upregulated genes of all clusters in of combined Seurat analysis including G-MDSC cluster C2 

(C) and subset monocyte analysis (D) in all monocyte clusters including M-MDSC cluster M2.

(E-F), Membership pie charts demonstrated clusters belong to WT or PyMT.
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fig. S4. Identification of differentiation trajectory and cell surface marker expression 

(A) Seurat-based clustering of neutrophil subset is shown, which was used define a set of marker 

genes for subsequent Monocle analysis. (B) Pseudotemporal analysis using Monocle labeled by 

cell source (WT=blue; PyMT=red) and cell cycle score overlay in monocle plot.  (C) Membership 

pie charts per monocle detected state (WT=blue; PyMT=red). (D-E), FMO and isotype controls 

were used to determine CD84 and Jaml expression. (F-G) Tissues from BCRA1/TP53 or 4T1 

breast cancer models and WT mice were collected and processed to single cell suspensions. Cells 

were stained with antibodies for CD45+CD11b+Gr1+ and were gated based on live and FMO 

controls then analyzed by flow cytometry. (F) CD11b+Gr1+ cells were profiled in different tissues 

from WT and BRCA1/TP53 showed increase expansion significantly in tumor bearing host in 

spleen, lung, and tumor compared to WT. (G) CD11b+Gr1+ cells were profiled in different tissues 

from WT and 4T1 and showed increase expansion in tumor bearing host in bone marrow, spleen, 

lung, and tumor compared to WT. Statistical analysis unpaired t-test (Mean ± SD of n =3) *P< 

0.05 t-test. (H) gating strategies and isotype control were used (CD45+CD11b+CD14+ or CD15+) 

to determine CD84 expression in human G- and M-MDSCs.   
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fig. S5.  CD84 is a generalizable MDSC marker in different breast cancer models.      

(A-B) FACS plots show profiling of CD84 expression in the CD11b+Gr1+ cell population in WT 

and BRCA1/p53 mice. Bar charts show quantitative analysis of FACS results (Mean ± SEM of n 

=3). *P< 0.05 (C-D), FACS plots show CD84 expression in orthotopic 4T1 breast cancer model 

specifically in spleen and tumor compared to WT mice. Bar charts show quantitative analysis of 

FACS results (Mean ± SEM of n =3). *P< 0.05 (E-F), In vitro MDSCs generation by treating 

bone marrow cells with GM-CSF showed increase expression of CD84 and Jamal compared to 

untreated group normal bone marrow cells. Statistical analysis unpaired t-test (Mean ± SEM of n 

=3) *P< 0.05 
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fig. S6. Characterization and validation of CD11b+Gr1+CD84hi cells using qPCR and FACS. 

(A) CD11b+Gr1+CD84hi cells and CD11b+Gr1+CD84low cells were sorted by FACS and subjected 

to qPCR. Numerous of genes were confirmed to be significantly upregulated or downregulated in 

CD11b+Gr1+CD84hi compared to CD11b+Gr1+CD84low. Statistical analysis unpaired t-test (Mean 

± SEM of n =3) *P< 0.05.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 15, 2019. ; https://doi.org/10.1101/702860doi: bioRxiv preprint 

https://doi.org/10.1101/702860
http://creativecommons.org/licenses/by-nc-nd/4.0/


SUPPLEMENTARY TABLES 

Table S1. Marker genes from combined Seurat analysis 

Table S2. Marker genes from Seurat analysis of monocytes only 

Table S3. Gene signature from G-MDSCs vs. Neutrophils comparison 

Table S4. Gene signature from M-MDSCs vs. Monocytes comparison 

Table S5. Combined MDSC signature gene list 

Table S6. GO terms (Biological Process 2018) MDSC gene signature 

Table S7. Marker genes from Seurat analysis of neutrophils only 

Table S8. Monocle state marker genes 
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