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One Sentence Summary: We used single cell transcriptomics to identify the unique molecular
features distinguishing myeloid-derived suppressor cells (MDSCs) from their normal, myeloid
counterparts, which enabled us to reveal distinct transitory gene expression changes during their
maturation in the spleen, and to identify novel cell surface markers for improved detection and

1solation of MDSC:s.
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Abstract: Myeloid-derived suppressor cells (MDSCs) are innate immune cells that acquire the
capacity to suppress adaptive immune responses during cancer. It remains elusive how MDSCs
differ from their normal myeloid counterparts, which limits our ability to specifically detect and
therapeutically target MDSCs during cancer. Here, we used single-cell RNAseq to compare
MDSC-containing splenic myeloid cells from breast tumor-bearing mice to wildtype controls.
Our computational analysis of 14,646 single-cell transcriptomes reveals that MDSCs emerge
through a previously unrealized aberrant neutrophil maturation trajectory in the spleen giving
rise to a unique chemokine-responsive, immunosuppressive cell state that strongly differs from
normal myeloid cells. We establish the first MDSC-specific gene signature and identify novel
surface markers for improved detection and enrichment of MDSCs in murine and human
samples. Our study provides the first single-cell transcriptional map defining the development of

MDSCs, which will ultimately enable us to specifically target these cells in cancer patients.
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[Main Text: |

Introduction

Breast cancer is one of the most prevalent types of cancer with over 260,000 new cases and
over 40,000 deaths in 2018 in the US'. During tumor development, breast cancer cells secrete
various cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF), which
exert systemic effects on hematopoiesis and myeloid cell differentiation promoting the
development of myeloid-derived suppressor cells (MDSCs)>3. These MDSCs are a heterogeneous
population of neutrophil- and monocyte-like myeloid cells, which are increasingly recognized as
key mediators of immune suppression in various types of cancer®*. In cancer patients, increased
numbers of MDSCs in circulation correlate with advanced clinical stages, increased metastatic
progression and immune suppression®. MDSCs can mediate immune suppression through multiple
mechanisms including the production of reactive oxygen species (ROS) and depletion of key
amino acids required for T cell proliferation through expression of arginase (Arg) and indoleamine
2,3-dioxygenase (IDO)®”%. In addition, MDSCs produce a range of immunosuppressive and
cancer-promoting cytokines including IL-10 and TGF-B°. Besides their immune-suppressive
function, MDSCs may also actively shape the tumor microenvironment through complex crosstalk
with breast cancer cells and surrounding stroma, resulting in increased angiogenesis, tumor
invasion, and metastasis®!%!!,

The unique molecular features of MDSCs are currently unclear and it remains elusive
whether MDSCs represent a unique subpopulation of myeloid cells that differ from their normal,
healthy counterparts. This limits our ability to determine specific MDSC functions as opposed to
bulk-level changes in neutrophils or monocytes during cancer. In mice, MDSCs are defined

through the expression of CD11b"Grl* and can be further classified into CD11b"Ly6C"VLy6G*
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granulocytic MDSCs (G-MDSCs) and CD11b"Ly6C*Ly6G- monocytic MDSCs (M-MDSCs)!2. In
humans, G-MDSCs are defined as CD11b"CD14-CD15" or CD11b"CD14-CD66b"and M-MDSCs
as CD11b"CD14"HLA-DR"°¥CD15- followed by additional functional characteristics such as T
cells suppression and ROS assays!2. However, these markers overlap with those defining healthy
neutrophils and monocytes, which makes it challenging to distinguish MDSCs from normal cells
to advance our understanding of MDSCs biology and ultimately, to establish novel therapeutic
avenues to interfere with their tumor-promoting and immune suppressive roles.

Here, we used single-cell RNA sequencing (scRNAseq) to delineate the unique molecular
features of MDSCs in the MMTV-PyMT mouse model of breast cancer. Our computational
analysis of 14,646 single cell transcriptomes revealed a unique MDSC gene signature, which is
largely shared between G-MDSCs and M-MDSCs, but which strongly differs from their normal
myeloid counterparts. Focusing on G-MDSCs, our pseudotemporal analysis delineates the
emergence of MDSCs as an aberrant differentiation state that forms a separate branch during the
transition of neutrophil progenitors into mature neutrophils. Further interrogation of the distinct
MDSC gene expression signature identified several novel surface markers (e.g. CD84, JAML) for
faithful MDSC detection and prospective enrichment. Taken together, our study provides the first
single-cell level molecular census defining novel specific gene signatures and markers for MDSCs
that were previously unrealized in bulk-level expression analyses, which may form the foundation

to ultimately therapeutically interfere with MDSC function in cancer patients.


https://doi.org/10.1101/702860
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/702860; this version posted July 15, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Results
Spleen is the predominant organ of MDSC generation in tumor-bearing mice

Mice expressing the polyomavirus middle T antigen (PyMT) driven by the mouse
mammary tumor virus (MMTYV) promoter!® develop breast tumors that closely resembles human
pathogenesis!* and give rise to MDSCs during tumor progression®. Here, we used the MMTV-
PyMT transgenic mouse model of breast cancer to explore the role of MDSCs during breast cancer
progression. We first sought to confirm the most reliable organ site of MDSC accumulation for
further molecular studies of this cell population. In accordance with previous reports in other
murine models of cancer?, we observed that later stages of cancer progression were associated with
an expansion of CD11b"Grl* myeloid cells in bone marrow, blood, spleens, lungs, brains and
primary tumors (fig. SIA-C), and an enlargement of the spleen of tumor-bearing PyMT mice
compared to wildtype (WT) controls (fig. SID-E). To functionally confirm whether MDSCs are
present in expanded populations of CD11b*Grl" cells in tumor-bearing mice, we isolated
CD11b*Grl*cells from various organs of tumor-bearing and control mice by fluorescence-activated
cell sorting (FACS) and co-cultured these with isolated T cells to measure suppression of T cell
proliferation induced by CD3/CD28 co-stimulation?, and reactive oxygen species (ROS) formation
as a read-out for MDSC function'? (fig. S2A). We found that CD11b*Gr1* cells sorted from spleens
of tumor-bearing mice significantly suppressed CD4" and CD8" T cell proliferation (fig. S2B-C),
whereas CD11b"Grl™ cells from control spleens showed no measurable effect on T cell
proliferation. Of note, CD11b"Gr1" cells sorted from bone marrow (fig. S2D-E) and lungs (fig.
S1F-G) of tumor- bearing mice demonstrated only nonsignificant suppression of T cell
proliferation. These findings were further corroborated by ROS production assays as measured by

flow cytometry using 2',7'-Dichlorofluorescin diacetate (H- DCFDA), which showed that only
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spleen-derived CD11b"Gr1" cells from tumor-bearing mice exhibited significant oxidative burst
formation as a hallmark for MDSCs (fig. S2F-G). Together, these results establish the spleen as

the major site of MDSC emergence during breast tumor formation in PyMT mice.

Single-cell transcriptomics reveal MDSCs as distinct clusters within neutrophilic and monocytic
lineages

In order to determine how MDSCs differ from their normal myeloid counterparts on a
cellular and molecular level, we used scRNAseq to compare the molecular differences of spleen-
derived myeloid cells in tumor-bearing mice against the respective cell population from WT mice
on an individual cell basis. We utilized a scalable droplet-mediated scRNAseq platform (10X
Genomics Chromium) to profile FACS-purified live (Sytox-negative) CD45°CD11b*Grl*
myeloid cells from the spleens of tumor-bearing PyMT and control WT mice (Fig. 1A). We
profiled two samples from tumor-bearing PyMT mice (9,155 cells) and WT control mice (5,491
cells), respectively, for a total of 14,646 cells that were sequenced at an average depth of ~50,000
reads per cell. The two libraries were aggregated and aligned together using the CellRanger
pipeline (10X Genomics) to compensate for minor differences in library complexity. After quality
control filtering to remove cells with low gene detection (<500genes) and high mitochondrial
gene content (>8%), we performed clustering and cell type identification analysis of combined
PyMT and WT datasets using Seurat'” (fig. S3A). Using the canonical correlation analysis (CCA)
method'®, we identified the main cell types based on expression of hallmark genes for myeloid
subsets (Fig. 1B), and determined their marker genes (fig. S3C; table S1). Neutrophils formed
the largest population encompassing numerous distinct clusters (C0, C2, C4, C5, C7 and C8)

characterized by high levels of Ly6g and Cxcr2 expression (Fig. 1B-C). Monocytes were less
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abundant and less diverse forming one cluster (C1) that was marked by expression of CsfI/r and
Ccr2 (Fig. 1B-C). We also detected two minor cell types: T cells (C9) expressing Cd3, Cd4,
Cd8; and B cells (C6 and C3) expressing Cd19, Cd22, Cd79a (Fig. 1B-C).

Further interrogation of neutrophil heterogeneity revealed that cluster CO was marked by
high levels of genes associated with a mature neutrophil state such as Camp'” and high Ly6g
expression'®; cluster C2 was strongly enriched in tumor-bearing PyMT mice (fig. S3E) and
displayed high expression MDSC-related genes such as ///f and Arg2, two major
immunosuppressive factors previously used to define MDSCs in cancer models'®* (Fig. 1D);
clusters C4 and CS displayed overlapping marker gene expression including genes such as Cebpe
and Retnig; clusters C7 and C8 exhibited high expression of cell cycle genes such as Tubalb and
Cdc20 indicating the existence of a proliferative pool of neutrophils in the spleen.

We next focused on the monocyte-restricted cluster C1, which showed diffuse expression
of MDSC genes Arg2 and 1/1b in the combined analysis (Fig. 1D) suggesting that M-MDSC were
present but not clustering distinctly from monocytes due to the more substantial differences
between different cell types in the combined analysis. Therefore, we performed a monocyte-only
clustering analysis to identify several distinct states (clusters M0-M7) including a distinct M-
MDSC population in cluster M2, which was strongly enriched in tumor-bearing PyMT mice (Fig.
1E; fig. S3B, D, F; table S2). These analyses formed the basis for a detailed molecular definition
of G- and M-MDSCs as described below. Our dataset represents the first single-cell level
transcriptome analysis of MDSCs, which revealed that G- and M-MDSCs form distinct clusters

that are unique from their normal myeloid counterparts.
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G- and M-MDSCs share a conserved immune cell activation program that strongly differs from
normal myeloid cells

We next utilized our scRNAseq dataset to reveal the unique molecular features of MDSCs
and to unravel the distinct biological programs that define the MDSC state. We performed
differential expression analysis in Seurat to determine how G- and M-MDSCs from tumor- bearing
mice differ from their normal counterparts, namely neutrophils and monocytes in WT mice (Fig.
1F). Our analysis revealed 642 differentially expressed genes in G-MDSCs compared to normal
neutrophils (table S3), and 223 differentially expressed genes in M-MDSCs compared to normal
monocytes (table S4) demonstrating that MDSCs differ substantially from their normal myeloid
counterparts. Interestingly, there was substantial overlap between gene signatures for G- and M-
MDSCs (196 genes, Fig. 1G; table S5) indicating that this immune-suppressive cell state can be
acquired by both monocytes and neutrophils independently. Shared markers included genes
involved in immune suppression such as Il1b, Arg2, Cd84 and Wjfdc*. Interferon-induced
transmembrane protein 1 (/fitml), which has been reported to be involved in progression of

colorectal cancer?!-?2

and inflammatory breast cancer cells*® was upregulated in MDSCs.
Additional MDSC markers included myeloid associated immunoglobulin like receptor family
(Cd3001d), C-type lectin domain family 4-member E and D (Clec4e and Clec4d), Interleukin 119
(11119), AP-1 transcription factor subunit (Junb), Cathepsin D (Ctsd), phospholipase A2 group VII
(Pla2g7) and cystatin domain containing 5 (Bc100530).

We next performed gene ontology (GO) term analysis (Fig. 1H) using Enrichr (GO
Biological Process 2018)**. The top GO terms included ‘neutrophil activation and involved in

immune response’ genes including the genes encoding complement C5a receptor 1 (C5arl), S100

Calcium binding protein A11(S100all), Clec4d, chemokine receptor 2 (Cxcr2), and Annexin A2
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(Anxa?2). Interestingly, several of these factors promote recruitment of neutrophils and MDSCs
as reported for C5ar1*-2°, and S100a8/9*"?%. In addition, Anxa2 has been reported to modulate
ROS production and inflammatory responses®, which is a hallmark of MDSCs. Another
significant GO term ‘Cytokine-mediated signaling pathway’ included genes such as /15, Ifitml,
Junb, and Myd§8S. In particular, Myd88 has been reported to promote expansion of immature
Grl+ cells and may be involved in mediating T cell suppressing cell states®’. Additionally, this
pathway included genes associated with MDSCs accumulation and trafficking such as Cxcr23!22,
Csf3r3% and Cerl34, suggesting that MDSCs may be able to responsive to recruitment signals
from sites of inflammation such as the primary tumor or metastatic sites. Moreover, ‘Negative
regulation of insulin receptor signaling pathway’ genes such as; /13 3°, and suppresser of
cytokine signaling 3 (Socs3) were prominent in MDSCs. Socs3 has been reported to regulate
granulocyte colony stimulating factor (G-CSF), and signal transducer and activator of
transcription 3 (STAT3) activation®¢ (table S6).

Next, we sought to orthogonally validate the MDSC genes signature. To this end,
CD11b*Grl* cells from spleens of WT and tumor-bearing PyMT mice were isolated by FACS
and subjected to quantitative PCR (qPCR). Our scRNAseq results were broadly confirmed in this
targeted approach, since a large proportion of MDSC signature genes were significantly
upregulated in CD11b"Gr1" cells from PyMT compared to WT (Fig. 1I). Taken together, these
analyses firstly revealed that G- and M-MDSCs share aconserved gene signature that strongly
differs from their normal myeloid counterparts. This shared MDSC marker gene list differs
significantly from previous transcriptome-level analyses of MDSCs, indicating that bulk-level
changes in these myeloid cell populations mask the specific programs underlying MDSC cell

function.
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MDSC gene signature is highly expressed in human breast cancer-associated neutrophils

To determine whether this MDSC gene signature is generalizable and translatable into the
human context, we explored a recently published scRNAseq immune cell map including T cells,
B cells, monocytes, neutrophils from primary tumor samples of breast cancer patients®’. We
performed clustering of this dataset in Seurat to reproduce cell type labels (Fig. 2A), and then
carried out an unbiased gene signature scoring of all cell types, which revealed that specifically
neutrophils and monocytes in the tumor microenvironment express high levels of MDSC signature
genes (Fig. 2B). To assess whether there are distinct subsets of neutrophils with particularly high
MDSC signatures, we also analyzed neutrophils separately using unbiased clustering yielding four
distinct states (Fig. 2C-D). Interestingly, cluster 0 showed MDSC-related marker genes S70049
and CCR2, suggesting that this subset of neutrophils represents G-MDSCs in the tumor
microenvironment of breast cancer patients. Gene scoring analysis of using our MDSC gene
signature in these neutrophil subclusters indeed showed by far the highest scores in cells from
cluster 0 (Fig. 2E). Together, these analyses confirmed that our MDSC gene signature derived
from a murine breast cancer model is translatable into human disease indicating that the MDSC

state is largely conserved between mice and human.

Aberrant neutrophil differentiation in the spleen gives rise to MDSCs in cancer

To reconstruct the maturation process leading to MDSC generation in the spleen and to
determine their differentiation state relative to normal progenitor and mature neutrophil
populations, we next performed Monocle for unsupervised pseudotemporal ordering of our

scRNAseq dataset®®. We focused on the Ly6g+ neutrophil subset (clusters C0, C2, C4, C5, C7
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and C8 in Fig. 1B-C) because in contrast to M-MDSCs we recovered sufficient numbers of total
neutrophils and G-MDSC:s in this analysis to ensure interpretable result. We first generated a new
Seurat-based clustering of this neutrophil subset and then performed Monocle using this newly
defined set of marker genes (fig. S4A; table S7). This resulted in a three-branch trajectory with 5
distinct cell states (Fig. 3A). To interpret this trajectory, we compared our results to recent work
using scRNAseq to define the signatures of the naive haematopoietic stem, progenitor and
differentiated cell states in the bone marrow of mice, which revealed that neutrophil progenitors
are marked by the genes Elane, Mpo and Prtn3, while mature neutrophils expressed elevated
levels of Camp, Lif and Lcn2'. Integrating these markers together with the MDSC signature
established in our work (Fig. 1F), we were able to annotate the five states. First identified were
neutrophil progenitors (state 4; Elane-hi) that show increased proliferation (fig. S4B-C) and form
the beginning of pseudotime. These progenitors then bifurcate into mature neutrophils (state 3;
Camp-hi) on the one branch, and MDSCs (state 1; Cd84-hi) on the other branch as illustrated by
gene plots over pseudotime (Fig. 3B), suggesting that MDSCs emerge from neutrophil
progenitors via an alternative maturation process.

Interestingly, Monocle detected two additional cell states (2 and 5) around the beginning
of the MDSC branch: while state 5 was characterized by high ribosomal gene counts indicative
of a translationally active cell state, state 2 represents the earliest phase of MDSC differentiation
and was marked by high expression of AsprvI3°, Plscr1*’ and Pirb*' (Fig. 3C). Interestingly, it
has been reported that neutrophils promote chronic inflammation using AsprvI3°, suggesting the
aspartic protease encoded by Asprvl may functionally contribute to the emergence of MDSCs in
the spleen. Furthermore, paired immunoglobin-like receptor-b (Pirb) has been reported to

regulate the suppressive function and fate of MDSC, indicating that Pirb is required for MDSC
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generation*!. Taken together, these findings indicate that MDSCs emerge from neutrophil
progenitor cells via an aberrant form of neutrophil differentiation in the spleen rather than from
mature neutrophils that are reprogrammed into immunosuppressive cells (Fig. 3D; table S8). In
addition, our work firstly identified an early, transitional MDSC state characterized by a number
of genes showing elevated expression only around the branching point and during MDSC
differentiation, but not during the normal progenitor or mature neutrophil trajectory. This may
suggest that the transitional MDSC state could be targeted to block differentiation into MDSCs

while not affecting normal neutrophil maturation and function.

Identification of novel cell surface markers for MDSC detection and isolation

Our scRNAseq data revealed several previously unknown specific cell surface markers for
MDSCs including CD84 and Amical/Jaml. CD84 is a cell surface receptor of the signaling
lymphocytic activation molecule (SLAM) family** and is expressed on some immune cell
types*#%. Amical/Jaml is a junctional adhesion molecule known to mediate the transmigration of
neutrophils and monocytes by interacting with coxsackie-adenovirus receptor (CAR) expressed by
epithelia®>. We profiled CD84 and Jaml expression using FACS on CD11b*Grl* cells from
different organs in tumor-bearing PyMT mice and WT mice. We first used FMO and isotype
controls to determine specific marker expression (fig. S4D-E). Next, we characterized CD84 and
Jaml expression in the CD11b"Grl* population from various organ preparations (bone marrow,
lung, spleen, MFP or primary tumor) and compared control WT to tumor-bearing PyMT mice.
Importantly, while CD11b*Grl* cells from bone marrow and lung were generally negative for
CD84 (Fig. 4A) and Jaml (Fig. 4D), we found a significant number of CD11b"Gr1* cells from the

spleen and primary tumors of PyMT mice exhibited high expression of CD84 (Fig. 4B) and Jaml
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(Fig. 4E) compared to the respective WT controls. This is particularly apparent when cells from
all organs are plotted side by side (Fig. 4C&F). This observation of high expression of CD84 and
Jaml in spleen and primary tumors correlates with high MDSC capacity of CD11b*Grl1™ cells in
these sites.

To determine how generalizable these markers are, we next explored if CD11b"Gr1* cells
express CD84 in two additional mouse models of breast cancer: a BRCA1/p53-driven model
(Brcal Vi1 p535&6/5&6Crec)46 and an orthotopic transplant model using 4T1 breast cancer cells in
Balb/c mice. First, we profiled the expansion of CD11b*Gr1™" cells in tumor-bearing BRCA1/p53
mice in comparison to WT mice. We observed a significant increase in CD11b"Grl" cells in
BRCA1/p53 mice in the spleens, lungs, and tumors compared to WT (fig. S4F). Similar to our
PyMT model, we confirmed a high proportion of CD11b*Gr1" cells that expressed CD84 (~24%)
in spleen and (~39.13%) in the tumor, but not in the bone marrow, or lungs, (fig. SSA-B). In line
with these findings, we observed a significant expansion of CD11b*Grl1™ cells in the 4T1 model in
bone marrow, lungs, spleens and tumors compared to WT (fig. S4G), and CD84 expression was
elevated in spleens (~ 21.46%) and tumors (~ 8.49%) (fig. SSC-D) to a significant but lower extent
compared to the other two breast cancer models (fig. S5D), while CD11b*Grl* cells from bone
marrow and lungs showed no detectable CD84 expression (fig. SSC). Additionally, we used in
vitro generation of MDSCs by treating myeloid cells with GMCSF’. We found that after G-MCSF
treatment the CD11b"Grl" population exhibited a significant increase in CD84 positive cells (~
24.45%; fig. SSE-F) and Jaml positive cells (~ 11.26%; fig. SSE and G). Finally, we used
previously established protocols for in vitro generation of human MDSCs by isolating peripheral
blood mononuclear cells (PBMCs) and treating them with G-MCSF and IL6*" (Fig. 4G; fig. S4H).

We observed a significant upregulation of CD84 in samples from in vitro generated
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CD11b+/CD14+ M-MDSCs and CD11b+/CD15+ G-MDSCs compared to control cells (Fig. 4H-
J). Together, these experiments established CD84 and Jaml as novel, generalizable cell surface

markers for MDSC detection.

CD84+ MDSCs exhibit T cell suppression and increased ROS production

To functionally validate whether CD45°CD11b*Gr1"CD84" cells inhibit immune cell
activation, we performed co-cultures activated T cell as described above (Fig. SA). Indeed,
CD45"CD11b"Gr17CD84" cells from spleen of tumor-bearing mice suppressed CD4 and CD8 T
cell proliferation in comparison to CD45"CD11b"Grl" cells isolated from control mice (Fig. SB-
C). Next, we subfractionated CD11b"Gr1*CD84'°% and CD11b*Gr1*CD84" cells from spleens and
tumors of PyMT tumor-bearing mice and measured their potential for ROS production as a
hallmark for MDSC function. We utilized H,DCFDA staining for ROS in combination with flow
cytometry and observed that CD11b"Gr1*CD84" cells produced significantly higher amounts of
ROS compared to CD11b"Grl" cells from control mice, while CD11b"Gr1*CD84°% showed no
statistically different ROS production (Fig. SD-E). Finally, we used qPCR to interrogate selected
genes from our MDSCs signature and found elevated expression of the complete panel of MDSC-
related genes in CD11b"Gr17CD84" cells compared to CD11b"Gr1*CD84Y (fig. S6A). These
findings indicate that MDSCs capable of T cell suppression and ROS production can be faithfully

detected and enriched for based on high CD84 expression.
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Discussion

Understanding the cellular and molecular mechanisms through which the tumor
microenvironment can suppress an active anti-tumor immune response will be critical to improve
current approaches for cancer immunotherapy such as checkpoint inhibition (e.g., PD1, CTLA4)
or CAR-T cell treatments*®. MDSCs represent such microenvironmental components that
commonly expand in cancer patients and promote advanced tumor progression and T cell-
suppression in various different cancers including breast cancer®. Here, we generate the first single-
cell transcriptomics map of MDSC maturation during cancer to dissect the unique molecular
features of MDSCs in breast tumor-bearing mice, and to elucidate how these immunosuppressive
cells differ from their normal myeloid counterparts. Using this resource, we establish an MDSC-
specific gene signature that is largely shared between G- and M-MDSCs but strongly differs from
their normal myeloid counterparts; we reconstruct their unique differentiation trajectory from
neutrophil progenitors through an aberrant path of differentiation; and we identify novel MDSC-
specific cell surface markers for detection and prospective isolation of MDSCs.

The MMTV-PyMT mouse model for breast cancer is one of the most widely used model
system for studying breast cancer, which closely resembles human pathogenesis'* and which is
known to induce significant expansion of MDSCs during tumor progression?>. We show here that
spleen is the major organ site in which MDSCs can be robustly detected. To identify unique
molecular features associated with MDSC function, we utilized scRNAseq as a powerful, unbiased
method to reveal hidden variation on a single-cell level in a population of FACS-isolated
CD45"CD11b"Grl" cells from the spleen of WT control and tumor-bearing PyMT mice. This
dataset not only provides the first single cell-level depiction of monocyte/neutrophil heterogeneity

in the spleen under steady-state conditions (WT mice), but also elucidated how MDSCs emerge as
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distinct clusters in both monocytes and neutrophil-like cells, which allowed us to establish MDSC-
specific gene signatures. Interestingly, there was significant overlap between G- and M-MDSCs,
suggesting that both monocytes and neutrophils acquire similar immune-suppressive features. The
MDSC signature includes various genes associated with immune regulations such as 4Arg2 and
Cd84, as well as chemokine receptors (e.g. Ccr2, Cxcr?) indicating that MDSCs are responsive to
neutrophil/MDSC-recruiting chemokines guiding their migration to active sites of inflammation
such as the primary tumor or metastatic foci (Fig. 6).

Our findings indicate that G-MDSCs may emerge from neutrophil progenitors through an
aberrant differentiation trajectory giving rise to a cell state that is not present in normal conditions.
Interrogating our observed cell states using pseudotemporal ordering and comparing these to
recent work that defined the signatures of various haematopoietic stem and progenitor cell states
in single-cell resolution!” allowed us to reconstruct that MDSCs form an aberrant trajectory from
neutrophil progenitor cells that occurs at the cost of normal differentiation into mature neutrophil
granulocytes, which are less abundant in tumor-bearing mice (Fig. 3A). Further interrogation of
the initial transitional cell state that branches off into G-MDSCs revealed several genes that
strongly increase in expression in this transitional phase (Fig. 3C), which may suggest that
therapeutically interfering with these gene products could block MDSC differentiation before they
become functionally active.

A major limitation for current research studying MDSC:s is the lack of specific cell surface
receptors for detection and prospective isolation for functional interrogation. Here, we identify
CD84 and Jaml as novel cell surface receptors on MDSCs, which can be used in combination
with CD11b/Gr1 staining to detect the presence of MDSCs in various organs of tumor-bearing

mice, or in human in combination with CD11b/CD14 or CD15. CD84 is involved in cell-cell
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interactions and modulation of the activation and differentiation of a variety of immune cells*,
and functions as a homophilic adhesion molecule on B cells, monocytes and, on a lower extent,
T cells where it enhances IFNg secretion and activation****, Interestingly, CD84 can regulate PD-
1/PD- L1 expression and function in chronic lymphocytic leukemia resulting in suppression of T
cell responses and activity®®, suggesting that CD84 may allow MDSCs to directly regulate
immune checkpoints in breast cancer patients. Our future work will be focusing on functional
interrogation of CD84 and other key genes identified here in MDSC biology and their capacity to
inhibit T cell activation, as well as the validation of CD84 and Jaml as markers for tumor-

associated MDSCs in human cancer patients.
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Materials and Methods

Mice. All mouse experiments were approved by the Institutional Animal Care and Use Committee
of University of California Irvine, in accordance with the guidelines of the National Institutes of
Health. Transgenic PyMT (MMTV-PyMT) mice were purchased from The Jackson (JAX)
Laboratory (stock no: 002374) and breedings were maintained on FVB/n and PyMT (MMTV-

PyMT) backgrounds. Littermates from control and transgenic mice were used for all experiments.

Tissue Collection and Cell Isolation.

Bone marrow. After mouse dissection, bone marrow (BM) was flushed from mouse tibia and
femurs using a 28G needle and plastic syringe and then kept in HBSS (Corning, 21-023-CV). BM
cells were centrifuged at 500g at 4°C for 5 min. Cells were incubated for 5 min at RT in 2 mL red
blood cell (RBC) lysis buffer. Cells were quenched with 10 ml HBSS containing 2% FBS (Omega
Scientific, FB-12) and centrifuged at 500g at 4°C for 5 min. Cells were resuspended in 3 mL FACS
buffer (1xPBS, 3% FBS) and total remaining live BM cells were counted using the automated cell
counter Countess™ II (ThermoFisher Scientific, AMQAX1000).

Spleen. The spleen was pushed through a 70-pum cell strainer and washed with RPMI to create a
cell suspension of splenocytes. Cells were centrifuged at 500g at 4°C for 5 min and then incubated
for 5 min in 5 mL RBC lysis buffer at RT. Cells were quenched with 10 mL RPMI (Corning, 10-
040-CV) with 5% FBS and centrifuged at 500g at 4°C for 5 min. Cells were resuspended in 3 mL
FACS buffer (1xPBS, 3% FBS), and total remaining live cells were counted by Countess™ II and
processed for FACS.

Lung, tumor and mammary fat pad (MFP). Tissue samples were harvested from mice and
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mechanically dissociated using a razor blade. Tissues were placed in DMEM/F-12 (Corning,
MT10090CV) complete medium containing 5 pg/mL insulin (Sigma-Aldrich, 11376497001), 50
pg/mL penicillin/streptomycin (HyClone, SV30010), and 0.1 mg/mL collagenase type IV (Sigma-
Aldrich, C5138) and were digested at 37 °C on a shaker for 45 min. Samples were centrifuged at
500g for 5 min at RT. Cells were resuspended in HBSS and centrifuged at 500g for 5 min at RT.
Cells were resuspended in 25 pL. DNase I (Sigma-Aldrich, D4263) for five min at RT and then 2
mL 0f 0.05% Trypsin (Corning, 25-052-CI) was added and samples incubated at 37°C for 10 min.
Samples were centrifuged at 500g for 5 min at RT and then resuspended in 5 mL HBSS with 2%
FBS. The cell suspension was filtered through a 70 uM cell strainer (Fisher Scientific, 22363548)
and incubated for 5 min at RT in 3 mL RBC lysis buffer. Cells were quenched with 10 mL HBSS
with 2% FBS and centrifuged at 500g for 5 min at RT. Cells were then resuspended in RPMI with
10% FBS, and total remaining live cells were counted by Countess™ II and processed for FACS.

Peripheral blood. Blood was collected using a 20G needle and syringe from the chest cavity after
the right atrium and left ventricle were punctured. Mice were perfused with 15 mL of 10 mM
EDTA in 1xPBS and blood was collected. Blood cells were centrifuged at 500g at 4°C for 5 min.
Cells were resuspended in 5 mL RBC lysis buffer and incubated at RT. for 5 min. Cells were
quenched in 5 mL RPMI with 3% FBS and centrifuged at 500g at 4°C for 5 min. Cells were then
resuspended in 3 mL FACS buffer (1xPBS, 3% FBS), and total remaining live cells were counted
by Countess™ II and processed for FACS.

Brain. Brain tissue was dissociated into a single cell suspension using the Adult Brain Dissociation
Kit (Miltenyi Biotec, 130-107-677) according to the manufacturer’s protocol, and a gentleMACS
Octo Dissociator with Heaters (Miltenyi Biotec, 130-096-427). Briefly, the brain was dissected

from the cranium, the meninges were removed, and the brain was chopped into 8-10 pieces. The
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chunks were transferred into a gentleMACS C Tube (Miltenyi Biotec, 130-093-237) containing
enzymes A and P, and then placed onto the gentleMACS. The brain was digested using the 37C-
ADBK protocol on the instrument. After a 30-minute heated digestion, the brain slurry was
strained through a 70 um nylon strainer and washed with 10 mL ice cold 1xPBS with 2% BSA
(Sigma, A-964). The suspension was centrifuged at 300g for 10 min at 4°C and then mixed with 4
mL of 1X Debris Removal Solution provided in the kit and centrifuged for 10 min at 3000g at 4°C
or RT. The myelin layer was removed, and the cells were washed with DPBS, and centrifuged for
10 min at 1000g. Red blood cells were lysed for 3 min on ice with ImL of 1X Red Blood Cell
Lysis Buffer provided in the kit. After quenching in 2 mL of DPBS with 2% BSA, the cells were
pelleted at 500g for 3 min at 4°C and total remaining live cells were counted by Countess™ II and

processed for FACS.

In vitro generation of MDSCs

Mice. BM cells were collected as described above then cells were culture with RPMI and 10%FBS
and treated with 20ng/ml recombinant murine (GM-CSF, Peprotech, 315-03) on day 1 and on day
3. Thus, Cells were collected on day 4 and total remaining live cells were counted by Countess™
IT and processed for FACS.

Human. We followed established protocols for in vitro generation of human MDSCs*’. Briefly,
Human blood were incubated with 3% dextran (Sigma-Aldrich, 31392-10G) for 18 min,
supernatants were collected and followed by differential density gradient separation (Ficoll-
paque™ PLUS, Neta Scientific, GHC-17-1440-02). Samples were centrifuge at 500 RCF for 30
min at 20°C. PBMCs including granulocytes were collected and incubated with 10ng/ml of

recombinants human cytokines (GM-CSF, Peprotech, 300-03 and IL-6, Peprotech, 200-06) or
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without in RPMI contain 10%FBS. Cells were treated with these cytokines every day and on day
3 cells were collected from cultures and total remaining live cells were counted by Countess™ II

and processed for FACS.

Fluorescence-Activated Cell Sorting. Tissue samples were harvested from mice and
mechanically dissociated to generate single cell suspensions as described above. Cells were
blocked with anti-mouse FcyR (CD16/CD32) (BioLegend, 101301) on ice for at least 10 min.
Cells were then centrifuged at 500g for 5 min at 4°C and washed once with FACS buffer (1xPBS
with 3%FBS). Cells were incubated for 30 min at 4°C with pre-conjugated fluorescent labeled
antibodies with the following combinations: CD45 (30-F11) (BioLegend, 103112 (APC) or
103115 (APC-cy7)), CD11b (M1/70) (BioLegend, 101206 (FITC) or 101212 (APC), Grl (Rb6-
8CS5) (BioLegend, 101206 (PE) or 108439 (BV605), CD84 (mCD84.7) (BioLegend, 122805
(PE)), and Jaml (4e10) (BioLegend, 128503 (PE)). Sytox Blue dye (Life Technologies, S34857)
was added to stained cells to assay for viability. Cells sorted by BD FACSAria™ Fusion and
desired populations were isolated for different experiments. Human PBMCs were prepared as
described above, cells were blocked with human TruStain FcX (BioLegend, 422301) on ice for 10
min. Then cells were centrifuged at 500g for 5 min at 4°C and washed once with FACS buffer
(1xPBS with 3%FBS). Cells were incubated for 30 min at 4°C with the following anti-human, pre-
conjugated fluorescent labeled antibodies: CD45 (efluor 450) (Thermofisher, 48-9459-42), CD11b
(BV650) (BioLegend, 101206), CD14 (PerCP-Cy5.5) (Thermofisher, 45-0149-42), CD15 (APC)
(BioLegend, 301907), and CD84 (PE) (BioLegend, 326007). Sytox Green (Life Technologies,
S34860) was added to the stained cells to assay viability. Cells were analyzed by BD FACSAria™

Fusion.
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T cell Suppression Assay. Spleens were dissected, filtered into a single-cell suspension and
depleted of red blood cells using Tris-acetic-acid-chloride (TAC). T cells were isolated from the
spleen using the EasySep™ Mouse T cell Isolation Kit (StemCell Technologies, 19851) according
to the manufacturer’s instructions. Isolated T cells were washed once with PBS and resuspended
at 15 x10%/mL in staining buffer (0.01% BSA in PBS). T cells were stained with proliferation dye
eFluor™ 670 (ThermoFisher Scientific, 65-0840-85) using 5SmM dye per 1x107 cells and incubated
in a 37°C water bath for 10 min. Finally, T cells were washed and resuspended at 1x10%mL in
RPMI 1640 w/ HEPES+ L-glutamine (Gibco, 22400-105) complete medium containing 10% FBS
(Atlanta Biologicals, S11150), 1X non-essential amino acids (Gibco, 11146-050), 100U/mL
penicillin-100pg/mL streptomycin (Gibco, 15140163), 1mM sodium pyruvate (Gibco, 11360-
070), and 55 uM B-mercaptoethanol (Gibco, 21985-023), eFluor™ 670-labeled T cells were plated
(50x10%/well) in a U-bottom 96-well plate (VWR, 10062-902) and activated with plate bound anti-
Armenian hamster IgG (30pg/mL, Jackson Immuno research, 127-005-099 ) with CD3 (0.5
ug/mL, Tonbo, 70-0031) and CD28 (1 pg/mL, Tonbo, 70-0281). Sorted CD11b* Grl1* cells from
PyMT or WT mice were added to T cells in 1:1 ratio (50x103 T cells:50x10° CD11b* Grl™ cells).
After 4 days of culture, cells were collected and blocked with anti-mouse CD16/32 (BioLegend,
101302), stained with Zombie Live/Dead Dye (BioLegend, 423105) and fluorescent-conjugated
antibodies: CD4 (BioLegend, 100512; clone RM4-5), and CD8 (BioLegend, 100709; clone 53-
6.7). Single-stained samples and fluorescence minus one (FMO) controls were used to establish
PMT voltages, gating, and compensation parameters. Cells were processed using the BD LSR II
or BD LSRFortessa™ X-20 flow cytometer and analyzed using FlowJo software v10.0.7 (Tree

Star, Inc).
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ROS Production Assay. Cells were harvested from respective tissues and processed to single cell
suspensions as described above. Cells were stained with CD45, CD11b, Grl, and CD84 antibodies
as described above. Following staining, cells were resuspended in FACS buffer and 10mM 2',7'-
Dichlorofluorescein diacetate (H2ZDCFDA) (Sigma-Aldrich, D6883) was added and incubated for
30 min at RT. Positive control cells were treated with 100 nM phorbol myristate acetate (PMA)
(Sigma-Aldrich, P1585-1MG). Cells were then processed on the BD FACSAria™ Fusion and

analyzed using FlowJo software v10.0.7 (Tree Star, Inc).

Quantitative Real-Time PCR. CDI11b'Grl* cells, CDI11b'Gr1"CD84" cells and
CD11b*Gr17CD84 " cells were sorted by FACS and RNA were extracted by using Quick-RNA
Microprep Kit (Zymo Research, R1050) following manufacturer’s instructions. RNA
concentration and purity were measured with a Pearl nano spectrophotometer (Implen).
Quantitative real-time PCR was conducted using PowerUp™ SYBR™ green master mix (Thermo
Fisher Scientific, A25742) and primer sequences were found in Harvard primer bank and obtained
from Integrated DNA Technologies (Supplemental Table 9). Gene expression was normalized to
GAPDH housekeeping gene. For relative gene expression 2"negAACt values were used and for
statistical analysis ACt was used. The statistical significance of differences between groups was

determined by unpaired t-test using Prism 6 (GraphPad Software, Inc).

Single-Cell RNA Sequencing (scRNAseq). FACS-isolated CD11b+/Grl+ cells from the spleens
of control WT (5 mice pooled) and tumor-bearing PyMT mice (3 mice pooled) were washed once

in PBS with 0.04% BSA, resuspended to a concentration of approximately 1,000 cell/uL and
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loaded onto the 10X Genomics Chromium platform for droplet-enabled scRNAseq according to
the manufacturer’s instructions. Library generation was performed following the Chromium
Single Cell 3’ Reagents Kits v2 User Guide: CG00052 Rev B. Each library was sequenced on the
[llumina HiSeq 4000 platform to achieve an average of 48,488 reads per cell. Alignment of 3* end
counting libraries from scRNAseq analyses was completed utilizing 10x Genomics Cell Ranger
2.1.0. Each library was aligned to an indexed mm10 genome using Cell Ranger Count. “Cell
Ranger Aggr” function was used to normalize the number of confidently mapped reads per cell

across the two libraries.

Cluster Identification Using Seurat. The Seurat pipeline (version 2.3.1) was used for cluster
identification in scRNAseq datasets. Data was read into R (version 3.5.0) as a counts matrix and
scaled by a size factor of 10,000 and log transformed. We set gene expression cut-offs at minimum
of 500 and a maximum cut-off of 5000 genes per cell for each dataset. In addition, cells with a
percentage of total reads that aligned to the mitochondrial genome (referred to as percent mito)
greater than 8% were removed. Using Seurat’s Canonical Correlation Analysis (CCA), cells from
WT and PyMT mice were integrated together into a single analysis. For tSNE projection and
clustering analysis, we used the first 20 principal components. Specific markers for each cluster
identified by Seurat were determined using the “FindAllMarkers” function. For gene scoring
analysis, we compared gene signatures and pathways in subpopulations using Seurat’s
“AddModuleScore” function. For cell type subset analyses (Monocytes and Neutrophils), clusters
with high expression of cell type markers (Csfi1r and Ly6g, respectively) were subset out and

standard Seurat workflow was applied on each. In the case of the neutrophil-specific analysis, a
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population of cells that grouped together and expressed a set of markers associated with neutrophil

progenitors'” was manually labeled and treated as a distinct cluster for analysis.

Reconstruction of Differentiation Trajectories using Monocle. Using the R package Monocle
(version 2.8.0), a differentiation hierarchy within the neutrophil compartment was reconstructed.
Starting with all cells from the WT and PyMT combined analysis, neutrophils were specifically
subset out. Once subset, contaminating cell types were removed and the cells were re-clustered to
explore additional heterogeneity within the neutrophils compartment. Using marker genes of these
clusters, the top 20 unique genes per cluster were used to order cells along a pseudotemporal
trajectory. Because cells that expressed markers associated with neutrophil progenitors!” localized

to a single branch, that branch was chosen as the start of pseudotime for further analysis.

Statistical Analysis. All data are expressed as mean + SEM or SD and performed using Prism 6

software (GraphPad Software, Inc). P values were considered to be significant when p<0.05.

Data Availability. Data will be publicly available on GEO (Accession numbers pending).
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Fig. 1. Identifying MDSC-specific gene expression signatures using scRNAseq. (A) Approach
overview for single-cell analysis of and (sytox blue-negative) CD45°CD11b"Grl" cells were
sorted from the spleen of control WT and tumor-bearing PyMT’s mice by FACS following droplet-
enabled scRNAseq. (B-C) Combined Seurat analysis of in total 14,646 cells from control and
PyMT mice shown in tSNE projection results in various distinct clusters of splenic CD11b"Gr1*
cells. Main cell types (T cells, B cells, neutrophils, monocytes) are outlined based on hallmark
gene expression. (C) Feature plots of characteristic markers of the four main cell types showing
expression levels with low expression in grey to high expression in dark blue. (D) G-MDSCs were
identified in cluster C1 by expression marker genes (4rg2 & I/1/) from the PyMT sample. (E)
Subset analysis of monocytes cluster identified M-MDSCs. Eight total clusters were found; cluster
M2 was identified as M-MDSCs (positive for Arg2 & 1115). (F) Heatmap displaying the scaled
expression patterns of top marker genes within each G-MDSCs and M-MDSCs clusters compared
to normal neutrophil and monocyte clusters from WT mice respectively; yellow = high expression;
purple = low expression. (G) Venn diagram showing the number of statistically significant marker
genes and overlap between G-MDSC and M-MDSC. (H) Gene ontology (GO) term analysis using
Enrichr of curated MDSC signature. (I) Validation using qPCR of selected upregulated MDSC

genes, statistical analysis unpaired t-test (Mean + SEM of n = 3) *P< 0.05.
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Fig. 2. MDSC signature marks subset of neutrophils in the tumor microenvironment of
human breast cancer patients. (A) Seurat analysis of scRNAseq dataset comprising various
immune cell populations in primary human breast tumor samples®” projected in UMAP with cell
type labels as indicated in different colors. (B) Violin plot showing relative MDSC score of all
cells in this dataset ordered by cell type showing highest scores in neutrophils. (C) Separate
unbiased Seurat clustering analysis of neutrophil alone projected in UMAP yielded four distinct
clusters of neutrophils in this dataset. (D) Heatmap showing top 10 marker genes for each
neutrophil cluster. (E) Violin plots showing relative MDSC score ordered by neutrophil subcluster

showing that cluster 0 exhibit highest expression of MDSC gene signature.
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Fig. 3. G-MDSCs emerge through aberrant differentiation trajectory during cancer.

(A) Monocle analysis on the subset of Ly6g+ neutrophil clusters resulted in branched trajectory
with 5 distinct Monocle states (color code for each state is indicated) which are named based on
respective gene expression profile. (B) Pseudotime plot illustrating expression of selected marker
genes over pseudotime with the branch ending in State 1 shown with the dotted line, and the branch
ending with state 3 highlighted by the solid line. Neutrophil progenitors are characterized by high
levels of Elane, Mpo and Prtn3 (state 4), which bifurcate into mature neutrophils (state 3; Camp,
Ltf, Len2) on the one branch, and MDSCs (state 1; e.g. CD84) on the other branch. (C) Early G-
MDSC transition was marked by high expression of Asprvi, Plscrl and Pirb. (D) Summary
schematic indicates that G-MDSCs emerge from neutrophil progenitor cells via an aberrant form
of neutrophil differentiation rather than from mature neutrophils that are reprogrammed into

immunosuppressive cells.
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Fig. 4. Identification of novel cell surface markers for MDSCs in breast cancer models.

(A) CD84 expression profiling in WT and tumor-bearing PyMT showing that only spleen and
primary tumor from PyMT exhibit significant expression. (B) Combined results and statistical
analysis using unpaired t-test (Mean = SEM of n = 10) *P< 0.05. (D) Profiling Jaml expression in
WT and PyMT showing only spleen and tumor from PyMT exhibit significant expression. (E)
Combined results and statistical analysis unpaired t-test (Mean + SEM of n = 3 *P< 0.05. (C&F)
Concatenate multiple flow samples to visualize CD84 and Jamll expression in one feature plot
across all samples including; (FMO, Bone marrow, lung, spleen, MFP and tumor from WT and
PyMT); significant expression was only observed in spleen and tumor from PyMT. g, Overview
of PBMC collection, culture condition and FACS approach. (H) Concatenate multiple flow
samples to visualize CD84 expression G- and M-MDSCs in one feature plot across all samples
including PBMC control and treated. (I-J) Statistical analysis using unpaired t-test (Mean + SEM

of n=13) *P<0.05
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Fig. 5. CD11b*Gr1*CD84" cells exhibit potent capacity for T cell suppression and
increased ROS production.

(A) Overview of FACS approach using two different tissues (spleen and primary tumor) from WT
and PyMT were subjected to T cell activation, ROS formation and qPCR assays. (B-C), Splenic
CD11b*Gr17CD84" cells from tumor-bearing mice suppress T cell proliferation. Histogram overly
(B) and quantitative bar charts (C) showing CD4/CD8 T cell proliferation measured by FACS in
control samples (T cells; red), T cells activated by CD3/CD28 (blue), activated T cells plus
CD11b*Grl1" cells from control spleens (orange) and activated T cells plus CD11b"Gr1"CD84"
cells from spleen of tumor-bearing mice (purple). ¢, Statistical analysis (Mean + SEM of n = 3)
*P< (.05 One-way ANOVA. (D-E) CD11b*Gr1*CD84" cells from tumor-bearing mice show
increased ROS formation compared to CD11b"Gr1"CD84°Y; PMA-treated cells were used as
positive control. ROS was measured by FACS using HDCFDA. (E) Statistical analysis of ROS

assay unpaired t-test (Mean + SEM of n = 3) *P< 0.05.
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Fig. 6. Proposed model of aberrant neutrophil differentiation in the spleen during cancer.
Myeloid cells differentiate in bone marrow from hematopoietic stem cells through
common myeloid progenitors. Common granulocyte/monocyte progenitors expand in the bone
marrow of tumor-bearing mice and migrate to spleen as a marginated pool, where they give rise
to normal neutrophil maturation and, in cancer, aberrant neutrophil differentiation into
MDSCs. Our findings indicate that the MDSC-specific gene signature is largely shared
between G- and M-MDSC s, but strongly differs from their normal myeloid counterparts. This
MDSC signature includes immune-suppressive factors, markers of increased neutrophil
activation, and numerous chemokine receptors, which likely guide their migration towards
primary tumor or metastatic sites (indicated by arrows), where they may shield tumor cells from

anti-tumor adaptive immunity.
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Fig. S1. Expansion of CD11b*Gr1* cells during tumor progression in PyMT mice.

(A-B), Tissues from tumor-bearing PyMT and WT mice were collected and analyzed by FACS.
Cells from WT (A) and PyMT (B) mice were gated on CD45+ and analyzed using CD11b/Gr1
to identify neutrophils/monocytes, which expanded significantly during tumor progression in
bone marrow, blood, spleen, lung, brain and tumor compared to WT. (C) Combined
quantification of FACS results including statistical analysis is shown in bar graphs (Mean + SEM
of n =3) *P< 0.05 t-test vs. WT. (D) Spleen from tumor-bearing PyMT (14 weeks) was enlarged
compared to WT. (E-F) T cell suppression assay, CD11b*Grl" cells were sorted from PyMT-
lung and co-cluttered with activated T cells showed no effect in T cell proliferation. Statistical

analysis one-way ANOVA (Mean + SEM of n = 3) *P< 0.05.
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fig. S2. MDSCs emerge predominantly in spleen of tumor-bearing mice.

(A) Experimental overview. Bone marrow, spleen and lung were processed into single cell
suspensions and (sytox blue-negative) CD45°CD11b*Grl* cells were sorted and subjected to
functional T cell suppression and ROS formation assays. (B-C), Splenic CD11b*Gr1* cells from
tumor-bearing mice suppress T cell proliferation. Histogram overlay (B) and quantitative bar
charts (C) showing CD4/CD8 T cell proliferation measured by FACS in control samples (T cells;
red), T cells activated by CD3/CD28 (blue), activated T cells plus CD11b*Grl* cells from control
spleens (orange) and activated T cells plus CD11b*Gr1™ cells from spleen of tumor-bearing mice
(green). (D-E), Bone marrow-derived CD11b*Grl* cells from tumor-bearing mice show non-
significant suppression of T cell activation. Histogram overly (B) and quantitative bar charts (c)
showing CD4 and CD8 T cell proliferation measured by FACS in T cell control samples (red),
CD3/CD28 activated T cells by CD3/CD28 (blue), activated T cells plus CD11b"Gr1" cells from
control bone marrow (orange) and activated T cells plus CD11b"Gr1* cells from bone marrow of
tumor-bearing mice (green). ns = not significant. (F-G), CD11b"Gr1™" cells from tumor-bearing
mice show increased ROS formation. PMA-treated cells were used as positive control. ROS was
measured by FACS using H,DCFDA in CD11b*Gr1" cells from bone marrow, spleen, and lung
from control and tumor-bearing mice. Only CD11b"Grl* cells (MDSCs) from PyMT’s spleen
significantly produced more ROS. (C) Statistical analysis (Mean £ SEM of n =4) *P< (.05 One-
way ANOVA. (E) Statistical analysis (Mean = SEM of n = 3) *P< 0.05 One-way ANOVA. (G)

Statistical analysis unpaired t-test (Mean £ SEM of n = 3) *P< 0.05.
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fig. S3. Sample labels and marker genes from scRNAseq analysis.

(A) Seurat analysis of combined CD11b*Gr1" cells from WT and tumor-bearing PyMT mouse
spleens shown in tSNE projection labeled by tissue source (WT = blue; PyMT = red). (B) Seurat
analysis subsetted on monocytes only from WT and tumor-bearing PyMT mouse spleens shown
in tSNE projection labeled by tissue source (WT = blue; PyMT = red). (C-D) Heatmaps of Top 10
upregulated genes of all clusters in of combined Seurat analysis including G-MDSC cluster C2
(C) and subset monocyte analysis (D) in all monocyte clusters including M-MDSC cluster M2.

(E-F), Membership pie charts demonstrated clusters belong to WT or PyMT.
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fig. S4. Identification of differentiation trajectory and cell surface marker expression

(A) Seurat-based clustering of neutrophil subset is shown, which was used define a set of marker
genes for subsequent Monocle analysis. (B) Pseudotemporal analysis using Monocle labeled by
cell source (WT=Dblue; PyMT=red) and cell cycle score overlay in monocle plot. (C) Membership
pie charts per monocle detected state (WT=blue; PyMT=red). (D-E), FMO and isotype controls
were used to determine CD84 and Jaml expression. (F-G) Tissues from BCRA1/TP53 or 4T1
breast cancer models and WT mice were collected and processed to single cell suspensions. Cells
were stained with antibodies for CD45*CD11b"Grl* and were gated based on live and FMO
controls then analyzed by flow cytometry. (F) CD11b*Gr1™ cells were profiled in different tissues
from WT and BRCA1/TP53 showed increase expansion significantly in tumor bearing host in
spleen, lung, and tumor compared to WT. (G) CD11b*Gr1" cells were profiled in different tissues
from WT and 4T1 and showed increase expansion in tumor bearing host in bone marrow, spleen,
lung, and tumor compared to WT. Statistical analysis unpaired t-test (Mean = SD of n =3) *P<
0.05 t-test. (H) gating strategies and isotype control were used (CD45°CD11b"CD14" or CD15%)

to determine CD84 expression in human G- and M-MDSCs.
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fig. S5. CD84 is a generalizable MDSC marker in different breast cancer models.

(A-B) FACS plots show profiling of CD84 expression in the CD11b*Grl* cell population in WT
and BRCA1/p53 mice. Bar charts show quantitative analysis of FACS results (Mean £ SEM of n
=3). *P< 0.05 (C-D), FACS plots show CD84 expression in orthotopic 4T1 breast cancer model
specifically in spleen and tumor compared to WT mice. Bar charts show quantitative analysis of
FACS results (Mean = SEM of n =3). *P< 0.05 (E-F), In vitro MDSCs generation by treating
bone marrow cells with GM-CSF showed increase expression of CD84 and Jamal compared to

untreated group normal bone marrow cells. Statistical analysis unpaired t-test (Mean = SEM of n

=3) *P< 0.05
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fig. S6. Characterization and validation of CD11b"Gr1*CD84" cells using PCR and FACS.
(A) CD11b*Gr1*CD84" cells and CD11b"Gr1*CD84Y cells were sorted by FACS and subjected
to qPCR. Numerous of genes were confirmed to be significantly upregulated or downregulated in
CDI11b*Gr1*CD84" compared to CD11b"Gr1"CD84!°¥. Statistical analysis unpaired t-test (Mean

+ SEM of n =3) *P< 0.05.
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