

1 Systematic assessment of commercially available low-input miRNA library preparation
2 kits

3 Fatima Heinicke¹, Xiangfu Zhong¹, Manuela Zucknick², Johannes Breidenbach³, Arvind
4 Sundaram¹, Siri T. Flåm¹, Magnus Leithaug¹, Marianne Dalland¹, Andrew Farmer⁴, Jordana
5 M. Henderson⁵, Melanie A. Hussong⁶, Pamela Moll⁷, Loan Nguyen⁸, Amanda McNulty⁴,
6 Jonathan M. Shaffer⁶, Sabrina Shore^{5,9}, HoiChong Karen Yip⁸, Jana Vitkovska⁷, Simon
7 Rayner¹, Benedicte A Lie^{1*}, Gregor D. Gilfillan^{1*}

8 ¹ Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo,
9 0450 Norway

10 ² Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of
11 Oslo, Oslo, Norway

12 ³ Norwegian Institute for Bioeconomy Research, National Forest Inventory, Ås, 1431 Norway

13 ⁴ Takara Bio USA, Inc., Mountain View, CA, USA

14 ⁵ TriLink Biotechnologies LLC, San Diego, CA, USA

15 ⁶ QIAGEN Sciences, Frederick, MD 21703, USA

16 ⁷ Lexogen GmbH, Vienna, Austria

17 ⁸ SeqMatic, LLC, Fremont, CA 94539, USA

18 ⁹ Current address: Singular Genomics, La Jolla, CA, USA

19 * contributed equally

20

21

22 **Abstract**

23 High-throughput sequencing is increasingly favoured to assay the presence and abundance of
24 micro RNAs (miRNAs) in biological samples, even from low RNA amounts, and a number
25 of commercial vendors now offer kits that allow miRNA sequencing from sub-nanogram (ng)
26 inputs. However, although biases introduced during library preparation have been
27 documented, the relative performance of current reagent kits has not been investigated in
28 detail. Here, six commercial kits capable of handling <100ng total RNA input were used for
29 library preparation, performed by kit manufacturers, on synthetic miRNAs of known
30 quantities and human biological total RNA samples. We compared the performance of
31 miRNA detection sensitivity, reliability, titration response and the ability to detect
32 differentially expressed miRNAs. In addition, we assessed the use of unique molecular
33 identifiers sequence (UMI) tags in one kit. We observed differences in detection sensitivity
34 and ability to identify differentially expressed miRNAs between the kits, but none were able
35 to detect the full repertoire of expected miRNAs. The reliability within the replicates of all
36 kits was good, while larger differences were observed between the kits, although none could
37 accurately quantify the majority of miRNAs. UMI tags, at least within the input ranges tested,
38 offered little advantage to improve data utility. In conclusion, biases in miRNA abundance
39 are heavily influenced by the kit used for library preparation, suggesting that comparisons of
40 datasets prepared by different procedures should be made with caution. This article is
41 intended to assist researchers select the most appropriate kit for their experimental conditions.

42
43 Keywords: microRNA, miRNA, small RNA-seq, library preparation, sequencing bias, low
44 RNA input, NGS, Next Generation Sequencing, UMI
45

46 **Introduction**

47 Micro RNAs (miRNAs) are ~22 nucleotide long non-coding small RNAs that regulate gene
48 expression at a post-transcriptional level by binding to their mRNA targets to inhibit
49 translation. First discovered in the early 1990s ^{1 2}, miRNAs have been shown to impact
50 biological processes such as cellular differentiation and development ^{3-6 7-9 10-12 13 14}.
51 Alterations in miRNA expression have been observed in various diseases ^{15 16 17} and an
52 accurate method for detecting and measuring miRNA expression is therefore crucial. In
53 recent years, next generation sequencing (NGS) has evolved as the method of choice. The
54 main advantages of NGS, compared to qPCR and microarray techniques, are the possibility
55 to discover novel miRNAs and the ability to detect differences in miRNA sequences on a
56 single base level. Furthermore, NGS enables the study of low-abundance miRNAs, which is
57 especially useful when examining miRNAs in specific cell types or body fluids like serum
58 and plasma. Accordingly, the latest miRNA library preparation kits allow inputs as low as
59 100 picograms total RNA. The library preparation process typically consists of (i) addition of
60 adapter sequences onto the miRNA, (ii) reverse transcription and (iii) PCR amplification
61 prior to sequencing. The kits investigated in this study used both two adapter and single-
62 adapter circularization protocols which can broadly be divided into two classes: those
63 employing RNA ligases (e.g. T4 RNA ligase) and those employing polyadenylation (poly-A)
64 and template-switching oligonucleotides to attach adapter sequences to the single-stranded
65 miRNAs.

66

67 Despite the reported advantages of NGS, the miRNA abundance detected by sequencing and
68 that in the original sample have been shown to differ by up to four orders of magnitude ¹⁸. In
69 particular, the addition of adapters onto the miRNA insert has been identified as a major
70 contributor to this bias ^{19 20}. For protocols utilizing T4 RNA ligase, adapter ligation is

71 influenced by the ligase used, the miRNA insert and adapter primary sequence, as well as the
72 GC content and the secondary structures of miRNA insert and adapter¹⁹⁻²³. For poly-A
73 utilizing protocols, the enzyme poly (A) polymerase has also been reported to be influenced
74 by miRNA primary sequence and secondary structure²⁴. Other reported possible sources of
75 bias during library preparation include the reverse transcription and PCR steps, with PCR in
76 particular able to introduce both amplification bias and duplicate reads, but results have been
77 contradictory¹⁹⁻²¹. A recent study recommended the use of unique molecular identifiers
78 (UMI) to mitigate the reverse-transcription and PCR biases in future experiments²⁵. Previous
79 studies also reported that the incorporation of UMIs into sequence adapters resulted in
80 improved accuracy both in RNA-seq and smallRNA-seq analysis^{26 27}.

81

82 In this study we aimed to systematically assess the miRNA repertoire and frequency observed
83 in NGS data using six different low-input library preparation protocols (Table 1).
84 Commercial vendors marketing kits stating compatibility with total RNA amounts ≤ 100 ng
85 were invited to participate. The performance of the protocols was compared with regard to
86 their detection rate sensitivity, reliability and ability to identify differentially expressed
87 miRNAs. In addition, the relevance of UMIs was studied. All analyses were performed on
88 low-input well-defined synthetic miRNA and human-derived total RNA samples.

89

90 **Results**

91 **Experimental design and miRNA read yields**

92 Synthetic miRNA and biologically derived human total RNA samples (21 samples in total)
93 were distributed to participating companies for library preparation (Figure 1a). Upon return
94 of libraries, library yield and size were measured (Supplementary Figure 2). Libraries were

95 pooled based on their miRNA content with the aim of obtaining at least 5 million reads
96 apiece. Based on the presence of additional small RNAs in some libraries, particularly those
97 prepared with the CATS and SMARTer-beta reagents, which displayed a wider range of
98 insert sizes, we did not expect all libraries to produce similar read counts at this stage.
99 Nevertheless, a large number of reads from both CATS and SMARTer-beta kits failed to pass
100 QC threshold filters.
101 The number of sequencing reads obtained ranged from 400,000 to more than 33 million reads
102 for the individual libraries (Supplementary Table 4).
103
104 For all library preparation kits, the greatest proportion of reads were discarded during
105 mapping, most likely as a result of not allowing for any mismatches (Figure 1b and
106 Supplementary Figure 3). The absolute number of reads excluded differed between the kits.
107 As anticipated, a higher fraction of miRNA reads was obtained in the synthetic miRNA
108 samples compared to the human total RNA samples (Figure 1b), since the human total RNA
109 samples also contain additional classes of small RNA. SMARTer-beta and CATS returned
110 the lowest proportion of miRNA reads both in the synthetic miRNA and the human total
111 RNA samples compared to the other library preparation kits while TailorMix, followed by
112 QIAseq produced the highest proportions of miRNA reads (Figure 1b).
113
114 To comprehensively evaluate the sensitivity and reliability of the library preparation kits, the
115 synthetic miRNA samples were randomly down-sampled to 2.5 million and human total
116 RNA samples to 0.75 million miRNA reads. The libraries of SMARTer-beta and CATS did
117 not reach these thresholds and were therefore excluded from further analysis. The results
118 presented hereafter are based on calculations using the down-sampled data with the exception

119 of the differential expression and UMI analyses for which raw (not down-sampled) miRNA
120 reads were used.

121

122 **Detection rate sensitivity**

123 Applying a relaxed detection threshold where miRNAs were defined as detected if one or
124 more read counts were registered, the detection rate sensitivity for all kits ranged from 94.7%
125 to 99.1%, and all miRNAs could be detected in at least one kit and replicate. QIAseq
126 followed by TailorMix detected the highest numbers of miRNAs in all three replicates in all
127 the mixes (Figure 2a). QIAseq and TailorMix also missed the fewest miRNAs in either one,
128 two, or all three triplicates. When comparing the detection rate sensitivity of the 1.0ng
129 synthetic miRNA samples (mix A-D) with the 0.1ng synthetic miRNA samples (mix E), no
130 striking difference in the number of detected miRNAs could be observed for any of the kits
131 (Figure 2a).

132

133 Most of the miRNAs that were undetected in QIAseq and TailorMix were neither detected by
134 the other two kits (Supplementary Figures 4 and 5). TailorMix was the only reagent that
135 detected each of the 903 equimolar miRNAs in at least one sample (Supplementary Figure 5).
136 srLp followed by CleanTag showed the highest numbers of kit-specific undetectable
137 miRNAs.

138

139 Analysis of the 40 non-equimolar miRNAs revealed that miRNAs undetected in one or more
140 replicates belonged mostly to miRNAs present at low levels (Supplementary Figure 6), with
141 QIAseq showing the highest detection rate, again followed by TailorMix. Notably, CleanTag
142 and srLp failed to detect some miRNAs present at relatively high concentrations in all the
143 replicates (mix C and D, Supplementary Figure 6). However, even though the majority of the

144 non-equimolar miRNAs could be detected in all replicates, the analysis indicated that factors
145 in addition to miRNA abundance influence detection rate sensitivity.

146

147 We next compared the performance at different detection thresholds, i.e. 1, 10, 50, 100, 200
148 read counts per million (CPM) for synthetic miRNA samples in all mix triplicates for each kit
149 (Figure 2b). With the exception of some of the non-equimolar miRNA oligonucleotides
150 present at the lowest concentration, all synthetic miRNAs should in theory obtain CPM
151 values above 200 with the library size of 2.5 million mapped miRNA reads. However, a
152 sharp decline in detection was observed at increasing CPM thresholds. Nonetheless, QIAseq
153 followed by TailorMix consistently detected the highest number of miRNAs across all
154 thresholds.

155

156 **Intra-rater and Inter-rater reliability**

157 Rlog transformed miRNA count data were used for the for intra- and inter-rater reliability
158 calculations. Intra-rater reliability calculations (the concordance between miRNA read counts
159 within the replicates of the library preparation kit) revealed excellent reliability for the
160 synthetic miRNA and the human total RNA samples within all tested kits with ICC values
161 above 0.99 and 0.98, respectively (Supplementary Table 5). Similarly, very strong
162 correlations were found when Pearson correlation coefficients were calculated ($r > 0.97$,
163 $p < 0.05$) (Supplementary Figure 7 and 9a). Bland-Altman plots, which describe the
164 agreement between two replicates by presenting the difference of them against the mean, also
165 showed good agreement (Supplementary Figure 8 and 9b). For all Bland-Altman
166 comparisons the bias was close to 0. The line of equality (not presented in our Bland-Altman
167 plots) was always within the agreement limits, which indicates a lack of systematic error in

168 the measurements within the replicates. All in all, strong intra-rater reliabilities were
169 observed within the samples prepared by each kit.

170

171 For the inter-rater reliability calculations (concordance of read counts seen between the
172 different kits) the first replicate of each mix, RA or healthy control sample was randomly
173 chosen. The synthetic miRNA and the human total RNA samples revealed good and excellent
174 inter-rater reliability with ICC values above 0.83 and 0.95 respectively (Supplementary Table
175 6). The correlation between the different kits was above 0.76 ($p < 0.05$) for the synthetic
176 miRNA and above 0.92 for the human total RNA samples (Supplementary Figure 10).

177 However, differences in the correlations between the reagents were seen for the synthetic
178 miRNA samples. The kits with the highest correlations ($r > 0.94$, $p < 0.05$) were, independent
179 of whether mix A-E was considered, CleanTag and srLp while QIAseq showed the lowest
180 correlation to the other kits. The Bland-Altman plots revealed no systematic error when
181 comparing the different kits to each other (Supplementary Figures 11 and 12). The limits of
182 agreements were smallest for CleanTag and srLp across all tested mixes in the synthetic
183 miRNA samples indicating a high agreement between those two kits. In summary, a modest-
184 to-good inter-rater reliability was obtained when comparing the mix-specific replicates of the
185 four miRNA library preparation kits with each other, with QIAseq showing the greatest
186 differences from the other reagents.

187

188 The reliability measured against the theoretical miRNA concentration was only assessed for
189 the synthetic miRNA samples. For the 903 equimolar miRNAs, the fold deviation of the first
190 replicate of mix A from the median count for that sample was calculated as a rlog ratio
191 (Supplementary Figure 13). When the absolute value of the rlog fold deviation for a miRNA
192 was less than or equal to one, the miRNA was counted as equimolar. For the four kits this

193 was the case for 39.8 to 42.0% of the equimolar miRNAs. The remaining miRNAs showed a
194 bias towards over-representation (positive rlog fold change) rather than under-representation.
195 The coefficient of variation of the rlog counts across all replicates for the equimolar miRNAs
196 was lowest for QIAseq, followed by TailorMix, CleanTag and srLp, respectively
197 (Supplementary Table 7).

198
199 For the 40 non-equimolar miRNAs, the correlation between the rlog counts of each library
200 preparation kit and their theoretical concentration varied between the mixes for all kits.
201 Overall, mix A and mix E showed greater correlations ($0.41 < r > 0.61$, $p < 0.05$) than mix B
202 to mix D ($0.08 < r > 0.47$, $p < 0.05$) (Supplementary Table 8). QIAseq showed the highest
203 correlation coefficients across all samples. All in all, these results suggest that on one hand
204 the reliability between the reagents is good, but on the other hand that none of the reagents
205 are ideally suited for accurate miRNA quantification.

206

207 **Differential expression**

208 Most miRNA profiling studies aim to identify differentially expressed (DE) miRNAs
209 between samples of interest. When comparing mix A and mix B of the synthetic miRNA
210 samples, ideally all 40 non-equimolar miRNAs should be detected as DE with a log2 fold
211 change greater than or equal to one. All kits detected between 32 to 35 DE miRNAs (Figure
212 3a). However, some of those miRNAs (CleanTag, TailorMix and srLp=2 and QIAseq=1)
213 were from the pool of equimolar miRNAs. Of the 40 non-equimolar miRNAs, 26 were
214 detected to be DE by all kits, although they did not always agree on the log fold changes
215 (Figure 3b). The non-equimolar miRNAs hsa-miR-1199-5p, hsa-miR-22-5p and hsa-miR-
216 940, which were three of the ten miRNAs expected to show the lowest fold differences (fold
217 change of 2) between mix A and mix B, could not be detected as DE by any of the reagents.

218

219 In order to control as best possible that the levels of miRNA in mix A and mix B were as
220 expected, we performed quantitative reverse-transcriptase PCR assays on 16 selected non-
221 equimolar miRNAs (Supplementary Figure 14), which confirmed the intended ratios in the
222 starting material.

223

224 Differential expression analysis of the human total RNA samples revealed different numbers
225 of DE miRNAs detected by the kits. CleanTag detected 19 DE miRNAs, QIAseq and
226 TailorMix detected two DE miRNAs each, while srLp did not detect any (Figure 3c). With
227 the exception of hsa-miR-486-3p, no overlap between the DE miRNAs was seen amongst the
228 kits (Figure 3d).

229

230 **Titration response**

231 The titration response of the 40 non-equimolar miRNAs in mixes A - D (Figure 1a) was
232 compared by scoring a miRNA as titrating or non-titrating based on detection in the expected
233 concentration order in the four mixes. Since there were five miRNAs at each chosen
234 concentration, the fraction of titrating miRNAs (0, 0.2, 0.4, 0.6, 0.8 or 1) was calculated for
235 each reagent kit for each concentration group (Table 2). The highest fraction of titrating
236 miRNAs was seen for QIAseq, which correctly scored all miRNA concentrations with greater
237 than 2-fold differences in mix A through mix D.

238

239 **Effectiveness of QIAseq unique molecular identifier sequence tags**

240 QIAseq was the only kit included in this study that implements unique molecular identifiers
241 (UMIs) during library preparation, which are claimed to enable more accurate quantification
242 of miRNAs. For both synthetic miRNA and human total RNA samples, very strong Pearson

243 correlations were observed between the rlog transformed raw read and UMI counts
244 (Supplementary Figure 15). Comparison of the rlog sum of all UMI and ordinary read counts
245 revealed the sum of UMI counts to be negligibly smaller than the ordinary read counts for
246 both synthetic miRNA and human total RNA samples (Supplementary Figure 16a, b).

247

248 To further examine whether UMI read counts might reduce undesirable over-representation
249 of miRNAs that were favourably amplified or sequenced, we examined the abundance of the
250 ten miRNAs with the highest ordinary read counts for each sample and compared this to their
251 respective UMI counts (Supplementary Figure 16c,d). Amongst those miRNAs no
252 overestimation of the ordinary read counts was observed compared to the UMI counts.

253

254 **Discussion**

255 Several publications have revealed discrepancies between the frequencies of miRNAs present
256 in the original samples and those detected by sequencing approaches^{18 20}. The adapter
257 ligation steps in the small library preparation procedure, in addition to miRNA sequence and
258 structure, have emerged as being most critical when trying to explain the discrepancy^{18 19 21 43}
259^{44 20 22}. As an alternative to the ligase-dependent ligation step in library preparation, poly-
260 adenylation based procedures have been developed. Additional biases might be introduced
261 during reverse transcription and PCR steps, but in this case results have been contradictory
262 (^{19-21, 25}). The use of UMI tags has therefore been suggested to remove this potential bias²⁵.
263 Here we performed a comprehensive comparison of six low input small RNA sequencing
264 reagents utilizing both ligase-depend, polyA-based and single-adapter methods, including one
265 kit that employed UMI tags. Note that we assessed here only the performance of the kits to
266 identify miRNAs; other small RNA species that may be captured were not assessed.

267

268 **Sequencing yields and miRNA read proportions**

269 Considerably different numbers of raw reads were obtained from the different kits. The kits
270 from TailorMix and QIAseq returned the highest miRNA read counts both in the synthetic
271 miRNA and the human total RNA samples. However, raw read outputs cannot be used to
272 judge the performance of a method. Furthermore, since the samples from SMARTer-beta
273 were sequenced alone in a single lane, we cannot exclude that technical issues affecting only
274 that lane were responsible for the low raw read numbers that passed filters. The input range
275 tested in this study was at or below the indicated range stated for the SMARTer-beta kit (100
276 ng -1 ug total RNA or 2 ng – 200 ng enriched small RNA); this may have resulted in the
277 observed poor performance. Since this study was performed, the kit has been re-optimized
278 and released with a new formulation and improved performance. Nonetheless, the low
279 proportion of reads mapping to miRNAs from both the CATS and SMARTer-beta was
280 clearly evident, which could be attributable to inefficient removal of other small RNA species
281 during library preparation. However, greater numbers of reads that were not counted as
282 miRNA (due to imperfect match in length to the database reference sequence) were
283 noticeable for CATS, which may indicate that polyadenylation-based methods are trickier to
284 process during data analysis, due to uncertainties on the length of the poly-A tail added. To
285 reduce the influence of technical aspects (e.g. different library size selection and purification
286 methods, as well as raw read yields) on the comparisons, all miRNA counts were down-
287 sampled to the same levels. CATS and SMARTer-beta did not reach the selected thresholds
288 and were therefore excluded from further analysis.

289

290 **Detection rate sensitivity**

291 When applying low detection rate sensitivity thresholds, most synthetic miRNAs could be
292 detected by the four remaining kits, indicating that all of them may be suited to assess the
293 overall miRNA repertoire. However, when applying more stringent detection thresholds
294 ranging from 1cpm to 200cpm, greater differences in detection rates between the kits became
295 evident, and QIAseq and TailorMix emerged as the most sensitive. It is worth noting that kit
296 specific biases played a greater role in miRNA detection than input RNA amounts, at least
297 within the ranges tested here (0.1-1.0 ng miRNA).

298

299 **Reliability**

300 Intra-rater reliability showed very high concordance between miRNA counts within the
301 replicates of a miRNA library preparation kit, independent of the kit, for both synthetic
302 miRNA and human total RNA inputs. Similar results have been reported by Giraldez, et al.⁴⁴
303 and Wright, et al.²⁵, although they refer to intra-rater reliability as reproducibility and
304 consistency respectively. The intra-rater reliability was strong both for 0.1ng and 1.0ng
305 synthetic miRNA samples for all kits in our study (data not shown) which is promising given
306 current interest in using low RNA inputs derived from small biological specimens.

307

308 In concordance with the findings reported by Giraldez, et al.⁴⁴, Coenen-Stass, et al.⁴⁵ and
309 Wright, et al.²⁵, inter-rater reliability (concordance of read counts seen between the different
310 kits, also called reproducibility or consistency across replicates) was lower compared to the
311 intra-rater reliability. In particular, QIAseq deviated from the other kits, but we stress that this
312 does not indicate poorer performance. QIAseq employs a different 3' adapter sequence
313 compared to the other three kits which may underlie the dissimilar preference for subset of
314 miRNAs observed. These observations underscore the emerging conclusion that kit-specific

315 differences should be considered by any researchers comparing miRNA-seq datasets, as
316 supported by another recent study ⁴⁶. Notably, the concordance between the miRNA counts
317 measured and the expected concentration for the synthetic miRNA samples was low, and
318 revealed that none of the library preparation kits could accurately quantify the majority of
319 miRNAs.

320

321 **Differential expression**

322 Differential expression analysis of synthetic miRNA mix A versus mix B revealed that all
323 kits could detect at least 31 out of 40 non-equimolar miRNA correctly as DE (fold change
324 ≥ 2). MiRNAs hsa-miR-1199-5p, hsa-miR-22-5p and hsa-miR-940 were never detected as
325 DE by any of the kits. These miRNAs were present at two-fold concentration differences, the
326 lowest fold change tested, which can be challenging. In general, all reagents displayed greater
327 problems to detect small fold-change differences, reminiscent of results seen in the recent
328 study by Giraldez, et al. ⁴⁴.

329

330 Our study offered the additional possibility to study levels of false positive DE miRNAs
331 detected from the 903 equimolar miRNAs. Equimolar miRNAs found to be DE were
332 characteristically detected as DE with low fold-changes and showed little agreement between
333 the kits, consistent with their being false positive calls. Taken together, QIAseq showed
334 slightly higher sensitivity (true positives) and slightly higher specificity (fewer false
335 positives) than the other reagents, although the false-positive calls did fall within the
336 expected rate set for the analysis (False discovery rate = 0.05). Reinforcing these conclusions,
337 the titration response analysis clearly demonstrated the superior performance of the QIAseq
338 reagents to most faithfully represent the levels of miRNAs in input material.

339

340 It nonetheless appears that the different reagents have differing preferences for particular
341 miRNAs. The primary sequence of terminal miRNA nucleotides¹⁸, secondary structure
342 affecting ligation sites⁴⁷ and co-folding of the miRNA and ligated adapters²¹ have all been
343 documented as sources of bias affecting miRNA detection. Interestingly, the 3' adapter
344 sequence in the QIAseq kit differs from the other three kits analysed. However, our attempts
345 to explain the differences observed between the kits based on primary sequence or secondary
346 structure analyses were inconclusive (data not shown).

347

348 Greater differences between kits were observed by examining DE miRNAs detected when
349 comparing the RA patient pool and healthy control pool of human CD8+ T cell RNA, where
350 the number of DE miRNA varied between none (srLp) to 19 (CleanTag). There are few
351 preceding studies of miRNAs from blood-isolated CD8+ cells in rheumatoid arthritis, but
352 some of the miRNAs found to be DE in this study have previously been associated with RA,
353 e.g. miR-221-3p⁴⁸, miR-223-3p⁴⁹⁻⁵¹, miR-374b-5p⁵² and miR-486-3p⁵², however further
354 confirmation is needed. Worryingly, in addition to the varying number of DE miRNA
355 detected by the different kits, there was almost no concordance between the miRNAs
356 identified. Taken together, it is advisable to interpret DE miRNA results from studies
357 employing different library preparation methods with caution.

358

359 **Re-analysis of QIAseq dataset utilising UMIs**

360 Reverse transcription and PCR-amplification may be potential sources of bias during library
361 preparation, and PCR can also introduce duplicate reads. QIAseq was the only kit tested to
362 address the issue of duplicate reads by the inclusion of UMIs, however, under the employed
363 conditions, no appreciable difference between UMI counts and the ordinary read counts were
364 detected, mirroring the findings of Wong, et al.⁴⁶. Fu, et al.²⁷ observed that higher fractions

365 of PCR duplicates could be observed when reducing the starting material, but when
366 comparing the 1.0ng and 0.1ng synthetic miRNA samples, no difference in the proportion of
367 PCR duplicates was seen. Nonetheless, it remains possible that at lower concentrations than
368 tested here, UMIs may prove useful for the elimination of duplicates to improve dataset
369 quality.

370

371 In conclusion, the QIAseq kit from QIAGEN consistently demonstrated performance at, or
372 near, the top for all metrics examined. It should be mentioned that QIAGEN made an error
373 affecting samples 1-8 in their first attempt at library preparation and were supplied with
374 replacements. With the exception of performance in the titration response assay, the
375 TailorMix kit from SeqMatic closely followed. Lexogen's srLp and Trilink's CleanTag kit
376 also performed well, and the majority of differences we detected point to kit-specific biases.
377 However, whilst the experiments conducted here show that sequencing is a very sensitive
378 method for detecting miRNAs, even at low abundance, it is also clear that none of the kits
379 performed impressively with regard to accurately reflecting the relative input levels of all
380 miRNAs. There is clearly room for improvements in this regard for the development of
381 further enhanced reagents or methods to accurately quantitate miRNA levels.

382

383 **Material and Methods**

384 **Study material**

385 The performance of six miRNA library preparation kits was examined using low-input
386 material consisting of synthetic miRNA samples or human-derived total RNA samples. To
387 maximize the possibility that each procedure was performed under optimum conditions,

388 samples were distributed to the kit vendors for library construction. Sequencing libraries were
389 returned to the Norwegian Sequencing Centre for sequencing and data analysis.

390 **Synthetic miRNA samples**

391 The synthetic miRNA samples consisted of a mixture of equimolar and non-equimolar
392 miRNAs. The miRXplore Universal Reference (Miltenyi, California, United States),
393 comprising 962 HPLC purified, 5' phosphorylated, synthetic oligonucleotides of human,
394 mouse, rat and viral miRNA origin, was used as an equimolar miRNA pool. For the non-
395 equimolar pool, 40 additional HPLC purified, 5' phosphorylated, synthetic oligonucleotides
396 representing human miRNA were purchased from Eurofins MWG Synthesis GmbH (Bavaria,
397 Germany). Altogether five different miRNA mixes were created (denoted mix A to mix E,
398 Figure 1a). Mix A and Mix B consisted of the equimolar miRNA pool supplemented with the
399 non-equimolar pool present at eight different concentration ratios between the two mixes
400 spanning a 100-fold range (Supplementary Table S1). Mix C was a titration of 0.75 mix A
401 and 0.25 mix B, while mix D was a titration of 0.25 mix A and 0.75 mix B. In the case of
402 mixes A-D, the total miRNA concentration was 30 nM, with individual equimolar miRNAs
403 present at 30 pM and other miRNAs ranging from 3 – 300 pM. Mix E consisted of the same
404 miRNAs as mix A but at a 10-fold lower concentration. Due to the low concentrations in the
405 five synthetic miRNA mixes, the samples were blended with yeast (*Saccharomyces*
406 *cerevisiae*) total RNA, which does not contain known endogenous miRNAs²⁸, to minimise
407 degradation and loss of material due to adhesion to plasticware, and to mimic the more
408 complex total RNA mixtures encountered under typical usage. In each mix, the final RNA
409 content was 2 ng/μl, with miRNA representing approx. 10% (w/w) of the total amount (mixes
410 A-D) or 1% (mix E). The samples were distributed in triplicates to the participating vendors.
411 To each of the triplicates in mix A to mix E, one additional specific miRNA (miR-147a, miR-
412 212-3p or miR-412-3p) was added to check that the replicates were processed independently

413 throughout library preparation and were not combined into a single sample to increase
414 reproducibility.

415

416 To verify the intended ratios of the synthetic miRNA sample starting material, quantitative
417 reverse-transcriptase PCR was performed using 16 pre-designed TaqMan® Small RNA
418 assays (Thermo Fisher Scientific, Waltham, MA USA) according to manufacturer's
419 instructions. Assay details are provided in Supplementary Material and Methods. Relative
420 abundances of miRNAs in mixes A and B were measured by absolute quantification relative
421 to a standard curve.

422 **Human-derived total RNA samples**

423 Peripheral blood CD8+ T cells were magnetically sorted from newly diagnosed rheumatoid
424 arthritis (RA) patients (n=4) and healthy controls (n=4) using the EasySep cell isolation
425 system (Stemcell technologies, Vancouver, Canada). The RNA/DNA/Protein Purification Kit
426 (Norgen Biotek, Ontario, Canada) was used to isolate total RNA. Only RNA samples with
427 RNA integrity values above 8.5 were used for downstream analysis. To ensure the desired
428 amount of total RNA input for the miRNA library preparation, the four RA patients and the
429 four healthy controls were mixed together to obtain one pooled RA and one pooled healthy
430 control sample respectively. Triplicates of these different sample types were distributed to the
431 participants.

432 **miRNA library preparation**

433 Each participant was asked to prepare miRNA libraries from the 21 samples described above
434 using their specific miRNA library preparation kit. For optimization purposes the participants
435 received a further 20 ng of synthetic miRNA (blend of Mix A and Mix B) and 200 ng total
436 human RNA. All participants were requested to use the same Illumina i7 index sequence for

437 the same sample to avoid any possible effect of these sequences on the downstream library
438 preparation and sequencing process. Detailed sample and index information can be found in
439 Supplementary Table S2.

440

441 At the time of writing, four of the six kits were commercially available in the formats used
442 for this study (CATs, QIAseq, CleanTag and TailorMix). A fifth kit, srLp, was also
443 commercially available, but with different index primer sequences. For comparison purposes
444 and to avoid possible bias arising from the use of different indexes, this participant
445 synthesised custom index primers complying with the index sequences specified in this
446 article. The SMARTer kit used in the study had not been released for purchase, but a
447 modified version is now available. It should be noted that this study is not exhaustive, since
448 two library preparation suppliers meeting the input amount inclusion criteria (PerkinElmer,
449 formerly Bioo Scientific, and NEB) declined to participate. Detailed descriptions of the
450 library preparation conditions employed by the producers of the specific reagents are
451 supplied in the Supplementary Material and Methods.

452

453 **Sequencing**

454 All libraries were sequenced at the Norwegian Sequencing Center on the same single-read
455 flow cell of a HiSeq 2500 (Illumina, San Diego, CA) with 75 bp reads generated using v4
456 clustering and SBS reagents according to the manufacturer's instructions. To avoid
457 sequencing lane bias, the libraries of srLp, QIAseq, TailorMix, CATS and CleanTag were
458 randomly distributed over five lanes of the flow cell, equivalent to sequencing 21 libraries per
459 lane (Supplementary Table S4). Due to concerns that the SMARTer beta libraries contained a
460 large proportion of non-miRNA inserts (higher molecular weight products than expected,
461 making it challenging to obtain equivalent numbers of reads per sample), these libraries were

462 sequenced independently from the other participants on a single lane (Supplementary Figure
463 1),

464 **Bioinformatic analysis**

465 **Read mapping and reference sequences**

466 Primary base calling and quality scoring was performed using RTA v1.18.66.4 (Illumina),
467 followed by demultiplexing and processing with Bcl2fastq v2.18.0.12 (Illumina).
468 For trimming of the 3' adapter, cutadapt v1.15²⁹ with parameter –m 10 was used. Detailed
469 information about adapter sequences is provided in the Supplementary Material and Methods.

470 Read mapping was performed using bowtie v1.1.2³⁰ with parameters –a and --norc. No
471 mismatch was allowed. As reference, the expected pools of synthetic miRNAs (962 synthetic
472 equimolar miRNAs originating from the miRXplore universal reference and 40 non-
473 equimolar miRNAs) were used for the synthetic miRNA samples, and the mature human
474 miRNA sequences specified in miRBase³¹ v21 for the human total RNA samples. We
475 confirmed that all replicates had been processed separately by verifying the presence/absence
476 of spiked replicate-specific miRNAs in the datasets from each sample. Further analysis
477 revealed that 59 of the miRNA sequences included in the miRXplore Universal Reference
478 were identical to sequences in the *Saccharomyces cerevisiae* (sacCer3) genome
479 (Supplementary Table S3). To avoid potential miscounting of yeast fragments in the
480 downstream analysis, these miRNA were excluded and only the remaining 903 miRNA of
481 the miRXplore Universal Reference were analysed further. Mapped reads (restricted to
482 miRNAs matching exactly to the reference sequence and length) were counted using a
483 custom python script (available upon request).

484 **Read count modelling**

485 With the exception of differential expression and UMI analysis, all further downstream
486 analyses were performed on down-sampled mapped miRNA reads to minimise confounding
487 factors arising from sources such as read numbers and proportions of adapter dimer reads,
488 which can be influenced by the purification method chosen and by pipetting errors. Random
489 down-sampling to 2.5 million reads was performed for the synthetic miRNA samples and to
490 0.75 million reads for the human total RNA samples. The seed number was set to 123.

491

492 In miRNA-seq count data, the average observed variance across samples increases with
493 higher average expression of the miRNA. If this heteroscedastic behaviour of the count data
494 is not taken into account, the results of most downstream analyses will be dominated by
495 highly expressed and highly variable miRNAs. We therefore transformed count data, where
496 indicated, with the rlog function of DeSeq2³² (v1.20.0), which produces a superior
497 homoscedastic output than log2 transformation for low- and high-expressed genes³².

498 **Data analysis**

499 **Detection rate sensitivity and reliability**

500 Data and statistical analyses were performed using R v3.5.2³³ and Python v2.7.13. Unless
501 otherwise stated, ggplot2³⁴ was used for data visualization. Synthetic miRNA and human
502 total RNA down-sampled read count data were used in the detection rate sensitivity analysis.
503 Upset plots were produced using the R package UpSetR³⁵ v1.4.0.

504

505 Rlog transformed synthetic miRNA and human total RNA count data were used for assessing
506 the reliability of the library preparation kits, on which intra-class correlation (ICC), Pearson
507 correlation and Bland-Altman agreements calculations were performed. For ICC, the two-
508 way mixed effects model, absolute agreement and single rater (ICC(3,1)) were applied using

509 the R package psych³⁶ v1.8.4. ICC values were interpreted according to the recommendations
510 of Koo and Li³⁷ where ICC values above 0.9, between 0.75 and 0.9, between 0.5 and 0.75
511 and below 0.5 indicate excellent, good, moderate and poor reliability respectively. Thresholds
512 described by Chan³⁸ were used for the Pearson correlation where correlations above 0.8,
513 between 0.6 and 0.8, between 0.3 and 0.6 and below 0.3 are described as very strong,
514 moderately strong, fair and poor respectively. The R corrplot package³⁹ v0.84 was utilized for
515 correlation plots and the R BlandAltmanLeh package⁴⁰ v0.31 for Bland Altman calculations.

516 **Differential expression and titration response**

517 Original read count data of mix A and mix B were used for the differential expression
518 analysis using the R package edgeR⁴¹ v3.22.3. For the synthetic miRNA samples a read count
519 filtering of 3 counts per million (cpm) in at least two libraries was applied to the differential
520 expression analysis while a filter of 20cpm in at least two libraries was used for the human
521 total RNA samples. miRNAs were defined as significantly differentially expressed after
522 multiple testing adjustment with the methods of Benjamini and Hochberg controlling for a
523 false discovery rate of 0.05. In addition, only those miRNA with $|\log_2 \text{FC}| > 1$ between the
524 tested conditions were kept.

525

526 The titration response of the 40 non-equimolar miRNAs of the synthetic miRNA samples was
527 examined in mixes A to D according to the analyses published by Shippy, et al.⁴². Average
528 rlog expression values for each miRNA were calculated across the three replicates of each of
529 mixes A to D. If the average expression values for each miRNA followed the expected
530 concentration trend (across the four possible concentrations seen in each mix), it was scored
531 as titrating. Any deviations from the expected trend were scored as non-titrating.

532 **UMI analysis**

533 QIAGEN's analysis tool Geneglobe was used for assessing the effectiveness of QIAseq's
534 UMIs. For the synthetic miRNA samples the option "other" was chosen for mapping while
535 "human" was chosen for the human total RNA samples during the primary data analysis. The
536 resulting count table included UMI (after PCR duplicate removal) and raw (before PCR
537 duplicate removal) read counts for each miRNA in the samples. Before analysing the
538 correlation between UMI and raw read counts, the counts were rlog transformed.

539

540 **Acknowledgements**

541 We thank Iris Langstein and Philipp Korber for *S. cerevisiae* RNA. Dalia Daujotyte and
542 Stephanie Bannister are also thanked for reviewing the results and manuscript.

543 **Funding statement**

544 This work was supported by the South-Eastern Regional Health Authorities under Grant
545 2015034 and under Grant 2016122.

546 **Data availability statement**

547 Raw sequencing fastq files and miRNA count tables will be made available in the Gene
548 Expression Omnibus database.

549 **Disclosure of interest**

550 AF and AM are employees of Takara Bio USA Inc., JMH is an employee of, and SS a
551 former employee, of TriLink Biotechnologies LLC. MAH and JMS are employees of
552 QIAGEN Sciences. PM and JV are employees of Lexogen GmbH. LN and HKY are
553 employees of SeqMatic LLC. FH, XZ, MZ, JB, AS, STF, ML, MD, SR, BAL and GDG
554 report no conflict of interest.

555

556 **References**

- 557 1. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene
558 lin-14 by lin-4 mediates temporal pattern formation in *C. elegans*. *Cell* 1993;75(5):855-62.
- 559 2. Lee RC, Feinbaum RL, Ambros V. The *C. elegans* heterochronic gene lin-4 encodes
560 small RNAs with antisense complementarity to lin-14. *Cell* 1993;75(5):843-54.
- 561 3. Chen C-Z, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage
562 differentiation. *Science* 2004;303(5654):83-86.
- 563 4. Ramkissoon SH, Mainwaring LA, Ogasawara Y, et al. Hematopoietic-specific
564 microRNA expression in human cells. *Leukemia Research* 2006;30(5):643-47.
- 565 5. Sempere LF, Freemantle S, Pitha-Rowe I, et al. Expression profiling of mammalian
566 microRNAs uncovers a subset of brain-expressed microRNAs with possible roles
567 in murine and human neuronal differentiation. *Genome Biology* 2004;5(3):R13.
- 568 6. Giraldez AJ, Cinalli RM, Glasner ME, et al. MicroRNAs regulate brain morphogenesis in
569 zebrafish. *Science* 2005;308(5723):833-38.
- 570 7. Bernstein E, Kim SY, Carmell MA, et al. Dicer is essential for mouse development.
571 *Nature Genetics* 2003;35(3):215.
- 572 8. Murchison EP, Partridge JF, Tam OH, et al. Characterization of Dicer-deficient murine
573 embryonic stem cells. *Proceedings of the National Academy of Sciences of the
574 United States of America* 2005;102(34):12135-40.
- 575 9. Gangaraju VK, Lin H. MicroRNAs: key regulators of stem cells. *Nature Reviews
576 Molecular Cell Biology* 2009;10(2):116.
- 577 10. Thai T-H, Calado DP, Casola S, et al. Regulation of the germinal center response by
578 microRNA-155. *Science* 2007;316(5824):604-08.
- 579 11. Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. *Cell*
580 2009;136(1):26-36.
- 581 12. O'Connell RM, Rao DS, Chaudhuri AA, et al. Physiological and pathological roles for
582 microRNAs in the immune system. *Nature Reviews Immunology* 2010;10(2):111.
- 583 13. Chen J-F, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133
584 in skeletal muscle proliferation and differentiation. *Nature Genetics*
585 2006;38(2):228.

587 14. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific
588 microRNA that targets Hand2 during cardiogenesis. *Nature*
589 2005;436(7048):214.

590 15. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of
591 micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.
592 *Proceedings of the National Academy of Sciences* 2002;99(24):15524-29.

593 16. Peng Y, Croce CM. The role of MicroRNAs in human cancer. *Signal transduction and*
594 *targeted therapy* 2016;1:15004.

595 17. Furer V, Greenberg JD, Attur M, et al. The role of microRNA in rheumatoid arthritis
596 and other autoimmune diseases. *Clinical Immunology* 2010;136(1):1-15.

597 18. Linsen SE, de Wit E, Janssens G, et al. Limitations and possibilities of small RNA
598 digital gene expression profiling. *Nature methods* 2009;6(7):474.

599 19. Jayaprakash AD, Jabado O, Brown BD, et al. Identification and remediation of biases
600 in the activity of RNA ligases in small-RNA deep sequencing. *Nucleic Acids*
601 *Research* 2011;39(21):e141-e41.

602 20. Hafner M, Renwick N, Brown M, et al. RNA-ligase-dependent biases in miRNA
603 representation in deep-sequenced small RNA cDNA libraries. *RNA*
604 2011;17(9):1697-712.

605 21. Fuchs RT, Sun Z, Zhuang F, et al. Bias in ligation-based small RNA sequencing library
606 construction is determined by adaptor and RNA structure. *PloS One*
607 2015;10(5):e0126049.

608 22. Zhuang F, Fuchs RT, Sun Z, et al. Structural bias in T4 RNA ligase-mediated 3'-
609 adapter ligation. *Nucleic Acids Research* 2012;40(7):e54-e54.

610 23. Shore S, Henderson JM, Lebedev A, et al. Small RNA library preparation method for
611 next-generation sequencing using chemical modifications to prevent adapter
612 dimer formation. *PloS One* 2016;11(11):e0167009.

613 24. Yehudai-Resheff S, Schuster G. Characterization of the *E. coli* poly (A) polymerase:
614 nucleotide specificity, RNA-binding affinities and RNA structure dependence.
615 *Nucleic Acids Research* 2000;28(5):1139-44.

616 25. Wright C, Rajpurohit A, Burke EE, et al. Comprehensive assessment of multiple
617 biases in small RNA sequencing reveals significant differences in the
618 performance of widely used methods. *BMC Genomics* 2019;20(1):513. doi:
619 10.1186/s12864-019-5870-3

620 26. Hong J, Gresham D. Incorporation of unique molecular identifiers in TruSeq adapters
621 improves the accuracy of quantitative sequencing. *BioTechniques*
622 2017;63(5):221-26.

623 27. Fu Y, Wu P-H, Beane T, et al. Elimination of PCR duplicates in RNA-seq and small
624 RNA-seq using unique molecular identifiers. *BMC Genomics* 2018;19(1):531.

625 28. Drinnenberg IA, Weinberg DE, Xie KT, et al. RNAi in budding yeast. *Science*
626 2009;326(5952):544-50.

627 29. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing
628 reads. *EMBnet journal* 2011;17(1):pp. 10-12.

629 30. Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of
630 short DNA sequences to the human genome. *Genome Biology* 2009;10(3):R25.

631 31. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs
632 using deep sequencing data. *Nucleic Acids Research* 2013;42(D1):D68-D73.

633 32. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for
634 RNA-seq data with DESeq2. *Genome biology* 2014;15(12):550.

635 33. R Core Team. R: A language and environment for statistical computing. 2013
636 34. Wickham H, Chang W. *ggplot2: An implementation of the Grammar of Graphics.*
637 *CRAN* 2008
638 35. Conway JR, Lex A, Gehlenborg N. *UpSetR: an R package for the visualization of*
639 *intersecting sets and their properties.* *Bioinformatics* 2017;33(18):2938-40.
640 36. Revelle W. *Package ‘psych’.* *CRAN* 2015
641 37. Koo TK, Li MY. *A guideline of selecting and reporting intraclass correlation*
642 *coefficients for reliability research.* *Journal of Chiropractic Medicine*
643 *2016;15(2):155-63.*
644 38. Chan Y. *Biostatistics 104: correlational analysis.* *Singapore Med J* 2003;44(12):614-9.
645 39. Wei T, Simko V, Levy M, et al. *Package ‘corrplot’.* *Statistician* 2017;56:316-24.
646 40. Lehnert B. *R Package “BlandAltmanLeh”.* *CRAN* 2014
647 41. Robinson MD, McCarthy DJ, Smyth GK. *edgeR: a Bioconductor package for*
648 *differential expression analysis of digital gene expression data.* *Bioinformatics*
649 *2010;26(1):139-40.*
650 42. Shippy R, Fulmer-Smentek S, Jensen RV, et al. *Using RNA sample titrations to assess*
651 *microarray platform performance and normalization techniques.* *Nature*
652 *Biotechnology* 2006;24(9):1123.
653 43. Dard-Dascot C, Naquin D, d'Aubenton-Carafa Y, et al. *Systematic comparison of small*
654 *RNA library preparation protocols for next-generation sequencing.* *BMC*
655 *Genomics* 2018;19(1):118.
656 44. Giraldez MD, Spengler RM, Etheridge A, et al. *Comprehensive multi-center*
657 *assessment of small RNA-seq methods for quantitative miRNA profiling.* *Nature*
658 *Biotechnology* 2018
659 45. Coenen-Stass AM, Magen I, Brooks T, et al. *Evaluation of methodologies for*
660 *microRNA biomarker detection by next generation sequencing.* *RNA Biology*
661 *2018;15(8):1133-45.*
662 46. Wong RK, MacMahon M, Woodside JV, et al. *A comparison of RNA extraction and*
663 *sequencing protocols for detection of small RNAs in plasma.* *BMC genomics*
664 *2019;20(1):446.*
665 47. Sorefan K, Pais H, Hall AE, et al. *Reducing ligation bias of small RNAs in libraries for*
666 *next generation sequencing.* *Silence* 2012;3(1):4.
667 48. Pandis I, Ospelt C, Karagianni N, et al. *Identification of microRNA-221/222 and*
668 *microRNA-323-3p association with rheumatoid arthritis via predictions using*
669 *the human tumour necrosis factor transgenic mouse model.* *Annals of the*
670 *Rheumatic Diseases* 2012;71(10):1716-23.
671 49. Shibuya H, Nakasa T, Adachi N, et al. *Overexpression of microRNA-223 in*
672 *rheumatoid arthritis synovium controls osteoclast differentiation.* *Modern*
673 *Rheumatology* 2013;23(4):674-85.
674 50. Fulci V, Scappucci G, Sebastiani GD, et al. *miR-223 is overexpressed in T-*
675 *lymphocytes of patients affected by rheumatoid arthritis.* *Human Immunology*
676 *2010;71(2):206-11.*
677 51. Lu MC, Yu CL, Chen HC, et al. *Increased miR-223 expression in T cells from patients*
678 *with rheumatoid arthritis leads to decreased insulin-like growth*
679 *factor-1-mediated interleukin-10 production.* *Clinical & Experimental*
680 *Immunology* 2014;177(3):641-51.

681 52. Murata K, Furu M, Yoshitomi H, et al. Comprehensive microRNA analysis identifies
682 miR-24 and miR-125a-5p as plasma biomarkers for rheumatoid arthritis. *PLoS*
683 *One* 2013;8(7):e69118.
684

685 **Appendices**

686 **Supplementary Figures** (document: Supplementary_figures_Heinicke_etal2019.docx)

687 **Supplementary Tables** (document: Supplementary_tables_Heinicke_etal2019.xlsx)

688 **Supplementary Material and Methods** (document:

689 Supplementary_Material_and_Methods_Heinicke_etal2019.docx)

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705 **Table 1: Small RNA library preparation methods tested in this study.**

Method Name	Commercial supplier	Key points*	Max. input volume tolerated	Reported RNA input range (varies with type of input tested)	Maximum number of indexes available	Method types
CATS Small RNA-Seq Kit (CATS)	Diagenode s.a.	Single-tube, 4-step process of polynucleotide tailing, reverse transcription and PCR amplification. 1 purification step (2 if size selection required).	8 µl	0.1 – 100 ng	24	Poly-A based. 2-adapter procedure
Small RNA-Seq Library Prep Kit (srLp)	Lexogen GmbH [Cat. No. 052, 058]	4-step procedure of 3' adapter ligation, 5' adapter ligation, reverse transcription and PCR. 2 purification steps (3 if size selection required).	6 µl	0.05 – 1000 ng	96	Ligase based. 2-adapter procedure
QIAseq miRNA Library Kit (QIAseq)	QIAGEN [Cat. No. 331502 or 331505]	5-step procedure of 3' adapter ligation, 5' adapter ligation, reverse transcription and PCR. 2 purification steps (3 if size selection required).	5 µl	1 – 500 ng	96	Ligase based. UMI incorporated. 2-adapter procedure
TailorMix microRNA Sample Preparation Kit Version 3 (TailorMix)	SeqMatic LLC.	4-step procedure of 3' adapter ligation, 5' adapter ligation, reverse transcription and PCR. 2 purification steps, including a final PAGE gel excision.	6 µl	1 – 1000 ng	96	Ligase based. 2-adapter procedure
SMARTer® miRNA-seq Kit (Beta version) (SMARTer)	Takara Bio USA Inc.	5-step procedure of 3' mono-adapter ligation, dephosphorylation, adapter dimer blocking, circularisation, reverse transcription and PCR. 2 purification steps, including a final PAGE gel excision.	4 µl	100 – 1000 ng total RNA or 2 – 200 ng enriched small RNA	48	Ligase based. Single adapter procedure

CleanTag™ Small RNA Library Prep Kit (CleanTag)	TriLink BioTechnologi es, LLC.	Single-tube, 4-step procedure of 3' adapter ligation, 5' adapter ligation, reverse transcription and PCR. 1 purification step.	10µl	1 – 1000 ng	48	Ligase based. 2-adapter procedur e
---	--------------------------------------	--	------	-------------	----	--

706 * A step is defined as a labwork period that culminates in an incubation longer than 5
707 minutes.
708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729 **Table 2: Fraction of titrating miRNAs (n=5) in each of the eight concentration groups. Average rlog**
730 **expression values for the 40 non-equimolar miRNAs were calculated across the three replicates each of**
731 **mixes A to D. Each miRNA was scored as titrating if the average values followed the expected trend in**
732 **concentrations from high to low or vice versa across mixes A to D.**

Conc. Ratio	CleanTag	QIAseq	srLp	Tailor Mix
0.01	1	1	1	1
0.1	0.8	1	1	1
0.2	1	1	0.8	0.8
0.5	0.8	0.6	0.4	0.6
2	0.6	0.8	0.8	0.2
5	0.4	1	1	0.8
10	0.6	1	1	0.6
100	0.8	1	0.8	0.8

733

734

735

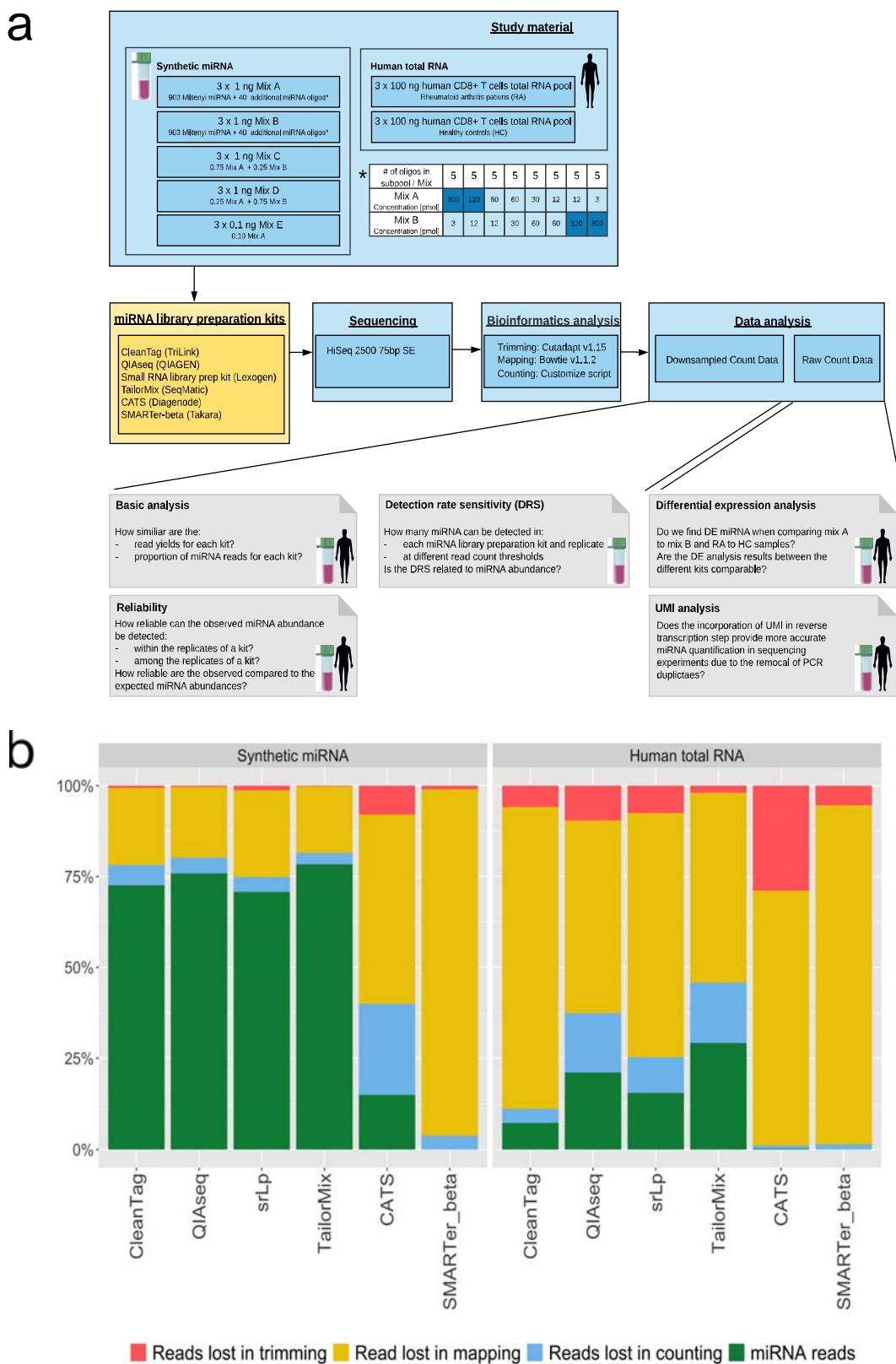
736

737

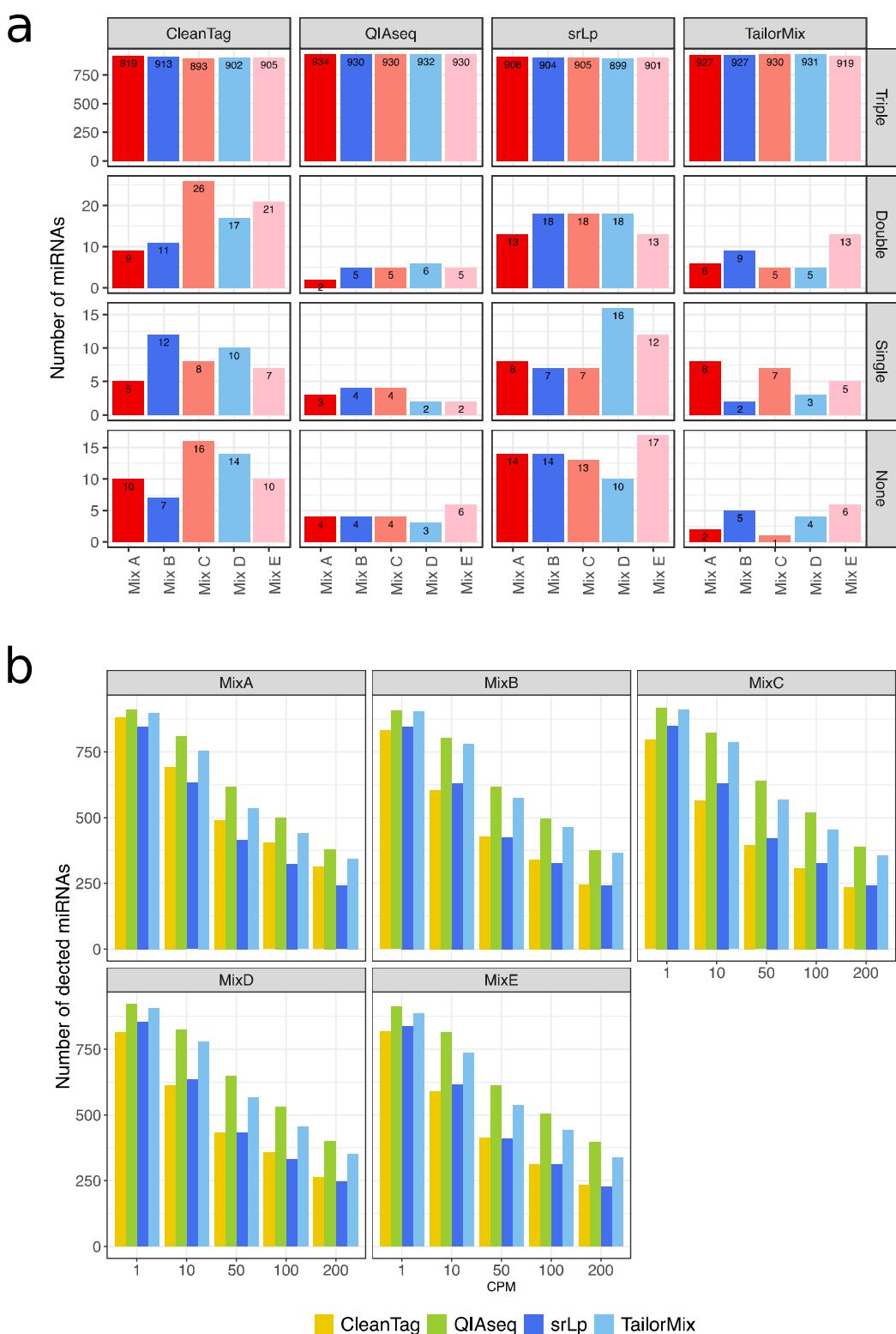
738

739

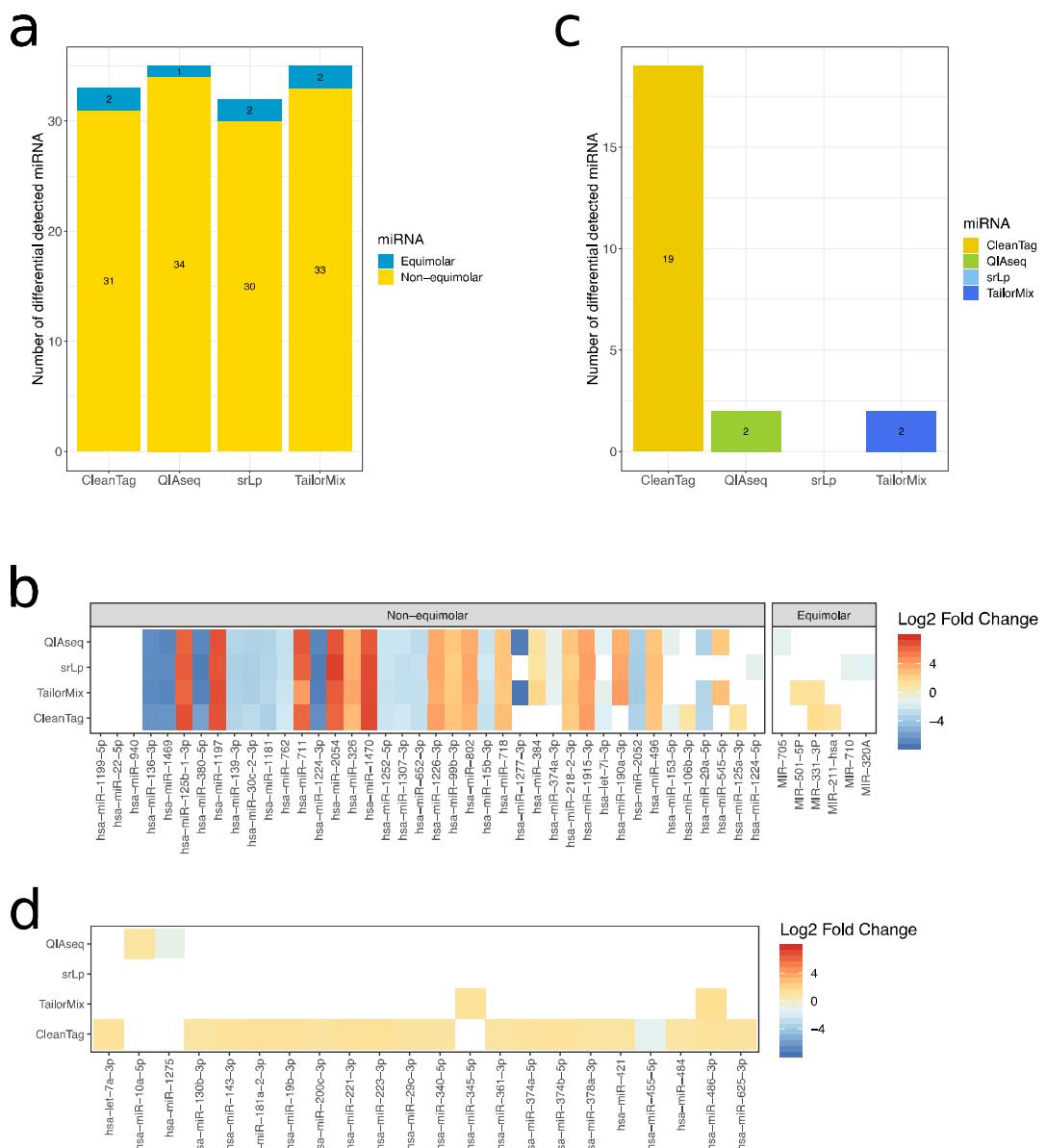
740


741

742


743

744


745 **Figure 1**

747 **Figure 2**

749 **Figure 3**

750

751

752

753

754

755

756

Figure	Caption
1	<p>Experimental design and sequencing read distribution. A: Overview of the study material, miRNA library preparation kits used, sequencing, bioinformatics and data analysis. Steps presented in blue boxes were performed in-house, while the step presented in the yellow box was executed by the indicated library preparation vendors. Grey boxes represent individual data analysis steps. B: Percentage of reads that were removed during the bioinformatic analysis and final miRNA proportion remaining (green). Trimming refers to removal of adapter sequences, mapping to miRNA reference alignment, and counting to filtering of aligned miRNAs that did not have the same length as the reference sequence. Results presented are the mean of 15 replicates in the synthetic miRNA (left) and the mean of six replicates in the human total RNA samples (right).</p> <p>Figure 1 A was created using images from Servier Medical Art (Servier. www.servier.com, licensed under a Creative Commons Attribution 3.0 Unported License).</p>
2	<p>Detection rate sensitivity. A: Bar charts presenting number of miRNAs detected in all replicates (Triple), in 2 out of 3 replicates (Double), in 1 out of 3 replicates (Single) or not detected in any replicate (None) across all synthetic miRNA mixes and all library preparation kits. The maximum number of detectable miRNAs is 943 (903 equimolar and 40 non-equimolar miRNA). B: Bar charts for various read count thresholds in the synthetic miRNA samples. A miRNA is defined as detected when it is (i) expressed in all three replicates of the mix and (ii) the read counts are greater or equal to the count per million (CPM) threshold displayed on the x-axis. The colours of the bars represent the reagents.</p>
3	<p>Differential expression analysis. Kit-specific number of differentially expressed miRNA detected for A: synthetic miRNA samples (mix A versus mix B) and C: human total RNA samples (RA versus healthy control). miRNA-specific log2 fold changes across the different kits for B: synthetic miRNA samples and D: human total RNA samples.</p>