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Abstract

Mutations can occur throughout the virus genome and may be beneficial or
deleterious. We are interested in mutations that yield a C next to a G, pro-
ducing CpG sites. CpG sites are rare in eukaryotic and viral genomes. For
the eukaryotes, it is thought that CpG sites are rare because they are prone to
mutation when methylated. In viruses, we know less about why CpG sites are
rare. A previous study in HIV suggested that CpG-creating transition muta-
tions are more costly that similar non-CpG-creating mutations. To determine
if this is the case in other viruses, we analyzed the allele frequencies of CpG-
creating and non-CpG-creating mutations across various strains, subtypes, and
genes of viruses using existing data obtained from Genbank, HIV Databases,
and Virus Pathogen Resource. Our results suggest that CpG sites are costly for
most viruses. By understanding the cost of CpG sites, we can obtain further
insights into the evolution and adaptation of viruses.
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Introduction

Viruses cause a multitude of diseases such as AIDS, Dengue Fever, Polio, Hep-
atitis, and the flu. Due to their fast replication, large population sizes and high
mutation rates, viruses are able to quickly adapt to new environments (Cuevas
et al., 2015). The ability of viruses to adapt quickly is seen in drug resistance
evolution in HIV and HCV, immune escape in influenza and vaccine-derived
polio outbreaks. High mutation rates may also lead to a high mutational load,
since a large proportion of mutations are costly to the virus. In fact, experi-
mental work has shown that most mutations are deleterious for viruses, with a
select few being neutral or beneficial (Sanjuán et al., 2004; Duffy, 2018). Costs
of mutations can also be studied using phylogenetic approaches (Stern et al.,
2007) and within-host diversity data (Zanini et al., 2017; Theys et al., 2018).

Several different types of studies found evidence that CpG sites are costly for
viruses. A CpG site refers to an occurrence of a nucleotide C followed by G in the
5’ to 3’ direction. Studies of viral genomic sequences found that CpG sites were
underrepresented in almost all small viruses tested (Karlin and Cardon, 1994).
In 2009, Burns et al. found that CpG sites significantly decreased replicative
fitness of polio viruses in vitro, while an increased CG content in itself had little
to no effect on the virus’s overall fitness. Stern et al. (2017) showed that CpG
sites in the polio vaccine were often mutated in vaccine-derived polio outbreaks,
indicating a direct cost of CpG sites in polio in vivo. In 2018, a study by Theys
et al. found that in HIV, transition mutations resulting in CpG sites, were twice
as costly as -otherwise similar- non-CpG-creating mutations, thereby revealing
that CpG mutations have a cost within the host.

It is not entirely clear why CpG sites are costly, but it is likely, at least
in part, because the mammalian immune system uses CpG sites to recognize
foreign genetic material (Murphy and Weaver, 2016). Recently it was shown
that ZAP proteins, which inhibit the proliferation of most RNA viruses, were
more effective when the CpG sites were common (Takata et al., 2017).

A previous paper from our group (Theys et al., 2018) focused on the cost of
CpG-creating mutations in HIV. Here we expanded our scope to encompass an
array of human viruses, including Dengue, Influenza, Entero, Herpes, Hepatitis
B C, and Polio. We focused on human viruses with a sufficient number of avail-
able sequences in Genbank, HIV Databases, or The Virus Pathogen Resource
(VPR). Unlike in the Theys et al. (2018) paper, we focus on population-wide
data (one sequence per patient) as opposed to within-patient data. The main
assumption for this study is that when CpG-creating mutations come with a cost
(either within hosts or at the transmission stage), we expect them to occur at
lower frequencies in the population-wide sample compared to non-CpG-creating
mutations. Since the types of mutations we consider (CpG-creating and non-
CpG-creating) all occur on the same species-wide genealogy, we consider any
significant differences in frequencies to be likely the result of a difference in
cost. For a second analysis, we assume that the average frequency of muta-
tions is inversely proportional to the cost of the mutations. This is likely an
oversimplification, but it allows us to quantify the effect size we observe.
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Depending on data availability, either individual genes or whole genomes
were used. We found that CpG sites are costly in most viruses, though the
effect is much stronger in some viruses (e.g., HIV) than others (e.g., HCV).

Results

We collected 43 viral datasets from online sources (Genbank, HIV Dataset,
VPR), each of which is a group of viral sequences of the same species, subtype
and gene (see Table 2). Each sequence in a dataset came from an individual host
from various parts of the world. The mean number of sequences in a dataset
is 2,655, median 902, with a maximum at 24,005 and a minimum at 41. The
mean number of nucleotides for each sequence is 3,344, median 1,617, with a
maximum of 15,471 and a minimum of 181. We established a minimum cut off of
60,000 data points per dataset (number of nucleotides ∗ number of sequences),
viruses or genes with less data available were not included.

We use the following approach. We assume that mutations occur at ran-
dom, but are then subject to selection and drift. Selection and drift can act
within hosts or at the transmission stage. For most mutations, selection will
act to purge the mutations from the viral population (within-host population
or the global population). Whether within-host or between-host effects are
more important is not clear for most viruses, but either way, we expect that
more deleterious mutations are less likely to be observed often, and more be-
nign mutations will be observed more often. The main focus of our paper is to
determine whether CpG-creating mutations are observed less often in each of
the 43 datasets than (otherwise similar) non-CpG-creating mutations. We focus
on A→G and T→C mutations, because transition mutations are more common
in viruses than transversion mutations and only these transition mutations can
create CpG sites.

To check whether our approach was sound, in principle, and whether there
was sufficient power to asses the cost of CpG-creating mutations, we first tested
whether synonymous mutations were observed at higher frequencies than non-
synonymous mutations using the non-parametric Wilcoxon test. All tests are
one-tailed, because we expect synonymous mutations to occur at a higher fre-
quency than non-synonymous mutations. To make our approach for non-synonymous
sites as similar as possible to our approach for CpG-creating mutations, we also
focus solely on A→G and T→C mutations. We observed a significant differ-
ence between the frequencies of synonymous mutations and non-synonymous
mutations for 35 of the 43 datasets analyzed (81.4 %) (table 1).

Our study focused on transition mutations that result in CpG sites. We
focused on transition mutations because they occur at a much higher rate than
tranversion mutations, and provide greater power to detect meaningful differ-
ences. There are two ways for a CpG site to be formed by a transition mutation;
1) a C precedes an A (CA) and the A mutates to a G, and 2) a T precedes a G
(TG) and the T mutates to a C (see figure 1).

Both synonymous and non-synonymous mutations can create CpG sites.
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Figure 1: How CpG sites are created. A. There are two ways for a CpG site
to be formed by a transition mutation; 1) a C precedes an A (CA) and the A
mutates to a G, and 2) a T precedes a G (TG) and the T mutates to a C. B. In
this study, we compare mutations that create CpG sites with similar mutations
(A→G and T→C) that do not create CpG sites.

For example, when a TCA codon, which encodes Serine, mutates where the A
becomes G (A→G), making the codon to TCG, this will result in a new CpG
site without changing the amino acid. Comparing synonymous CpG-creating
vs. synonymous non-CpG-creating mutations, we found that the frequencies
of non-CpG mutations were significantly higher than those of CpG-creating
mutations in 32 of the data sets (74.4%) for A→G mutations and 31 of the data
sets (72.1%) for T→C mutations.

Non-synonymous mutations result in an amino acid change that alters the
protein. Mutations which create a CpG site and cause a non-synonymous amino
acid change are called non-synonymous CpG-creating mutations. While muta-
tions that are non-synonymous but do not create CpG sites are called non-
synonymous non-CpG-creating mutations. When comparing non-synonymous
CpG-creating vs. non-synonymous non-CpG-creating mutations, non-CpG-creating
mutations had a significantly higher frequency than CpG-creating mutations
25.6% of the time for A→G mutations and 30.2 % for T→C mutations (See
table 1).

From our collection of viruses, we show results from three datasets as ex-
amples (Figure 2). Only A→G and T→C mutations can form CpG sites, but
here we also show C→T and G→A nucleotides as a comparison. Our results
varied, they ranged from exhibiting high mutation frequencies to low mutation
frequencies and significant to not significant test results. The three examples
chosen show the diversity of our results.

In each graph, four categories are compared with one another: synony-
mous non-CpG-creating mutations (green), synonymous CpG-creating muta-
tions (blue), non-synonymous non-CpG-creating mutations (orange), and non-
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Comparisons A → G T → C

Synonymous: CpG vs non-CpG 32 (74.5%) 31 (72.1%)
Non-synonymous: CpG vs non-CpG 11 (25.6%) 13 (30.2%)

Synonymous vs Non-synonymous 35 (81.4%) 35 (81.4%)

Table 1: The number of data sets for which the Wilcoxon test was significant
(percentages in parentheses) indicating that non-CpG-creating mutations were
observed at higher frequencies than, otherwise similar, CpG-creating mutations.

synonymous CpG-creating mutations (red). Each colored point is the mutation
frequency observed at a single position within each of these categories, along
with the mean value and standard error bars (one standard error above and
below the mean) in black.

Fig 2 A shows mutation frequencies for Dengue 1. Dengue’s genome is com-
prised of one large polyprotein. For Dengue 1, we have 1,785 sequences and
10,176 nucleotides, making this a particularly good dataset. We show frequen-
cies of all 10,176 sites in the genome, split into the four different transition
mutations (A→G, T→C, C→T, G→A) and split into synonymous(green and
blue) and non-synonymous (orange and red). Non-CpG-creating mutations are
green and orange, while CpG-creating mutations are red and blue. For this data
set, all tested comparisons are significantly different. Synonymous CpG-creating
mutations occur at lower frequencies than synonymous non-CpG-creating mu-
tations, for both A→G and T→C mutations (green vs blue and orange vs red
respectively). There is also a significant difference between the synonymous and
non-synonymous mutations for both A→G and T→C mutations.

Next, we show mutation frequencies for the HA gene of the Influenza A H3N2
strain (Fig. 2 C and D). The p-values show that non-CpG-creating mutations
occur at higher frequencies than CpG-creating mutations for synonymous and
non-synonymous A→G and T→C mutations. For the synonymous T→C muta-
tions, the graph shows that the mean frequencies are almost the same, but the
non-parametric Wilcoxon test still detects a significant difference (p<0.01) (Fig.
2 D). The difference in frequencies between synonymous and non-synonymous
mutations is significant for both A→G and T→C mutations.

Next, we show the results for Human Respiratory Syncytial Virus G gene
(Fig. 2 E and F). Here there is a surprising result that for A→G mutations, we
do not detect a difference between synonymous and non-synonymous mutations,
whereas for T→C mutations we do. This could indicate that there is a lot
of positive or balancing selection going on or that we do not have a lot of
power to detect differences for this virus. The mutation frequencies of both the
synonymous A→G and T→C CpG and non-CpG groups were not statistically
different. For the non-synonymous mutations, on the other hand, comparisons
for both A→G and T→C were significant and non-CpG-creating mutations
occurred at higher frequencies (Fig. 2 F).
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Graphs.pdf

[A] [B]

[C] [D]

[E] [F]

Figure 2: Observed transition mutation frequencies of CpG / non-CpG-creating
mutations in select viral datasets (A: the whole genome of Dengue 1 virus, C:
the HA gene of Influenza A virus H3N2, and E: the glycoprotein gene of Human
Respiratory Syncytial virus). Each figure on the left (A, C, E) displays transition
mutation frequencies, with the mean and standard errors (black lines). The
Wilcoxon test results are shown on the right (B, D, F). The shade of the blue
color in the P-value cell represents the significance level; darker the shade, the
more significant the results are (<0.01 dark blue, 0.01-0.05 medium blue, >0.05
light blue).
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Cost of CpG-creating mutations across all datasets

With a Wilcoxon test, we could determine whether CpG-creating mutations
occur at lower frequencies than otherwise similar non-CpG-creating mutations,
but it does not give us a sense of the effect size of this effect. To get a better
sense of how much less frequent CpG-creating mutations are (and thus roughly
how much more costly) we divided the mean frequency of non-CpG-creating
mutations by the mean frequency of CpG-creating mutations for each of the
datasets (Fig. 3). We graphed only the synonymous mutations as they more
often showed a significant CpG effect.

We calculated two ratios for each dataset: 1) the ratio of the mean fre-
quency of synonymous, A→G, non-CpG-creating mutations and synonymous,
A→G, CpG-creating mutations (red), and 2) the ratio of the mean frequency
of synonymous, T→C, non-CpG-creating mutations and synonymous, T→C,
CpG-creating mutations (blue). When these ratios are above 1 it means that
the non-CpG-creating mutations have a higher average frequency than CpG-
creating mutations, which shows that the CpG-creating mutations are more
costly. The higher the frequency, the higher the cost of CpG-creating mutations
relative to the cost of non-CpG-creating mutations. The black line in the figure
3 indicates the ratio = 1. Most, though not all, viruses analyzed show ratios
higher than 1 (above the solid black line).

In figure 3 the viruses are arranged by genus, with RNA viruses on the left
and DNA viruses on the right. We see that the calculated frequency ratios are
consistently above 1 for Dengue 1-4, Hepatitis C, HIV, Influenza A and B, the
Entero viruses including Polio, Human Respiratory Syncytial virus, Measles,
Rhino viruses, Rota A virus, BK polyoma, Human Boca, Human papiloma and
Parvo virus. Results are mixed for Parainfluenza, Hepatitis B and Herpes virus.

There is a pattern among groups of viruses where one type of mutation is
more costly than the other. In Dengue and Human Parainfluenza CpG-creating
T→ C mutations are relatively more costly than CpG-creating A→G mutations.
In Entero and Hepatitis B, on the other hand CpG-creating A→G mutations
are more costly than CpG-creating T→C mutations. It is unclear whether this
is an artifact of our dataset or a real effect.

Since we suspect that the amount of data available per dataset may affect
our results, we plotted the product of the number of sequences and the number
of nucleotides per dataset at the bottom of figure 3. In a separate figure, we
also show how the amount of available data affects whether we find significant
results. Figure 4A shows the comparison synonymous CpG-creating vs synony-
mous non-CpG-creating mutations. Each dot represents a dataset. The dots
are colored by whether the two Wilcoxon tests (for A→G and T→C mutations)
were both significant (blue), one was significant and one not (green) or neither
was significant (red). The figure shows that, in general, having more data makes
it more likely to find one or two significant results. Figure 4B shows the com-
parison non-synonymous CpG-creating vs non-synonymous non-CpG-creating
mutations. In this case, it seems that one needs at least 2000 nucleotides or
2000 sequences to find a significant result. Finally, figure 4C shows the compar-
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ison synonymous vs non-synonymous mutations.

Figure 3: Overview of the cost associated with CpG-creating mutations. Each
dot represents a ratio of the average virus mutation frequency of non-CpG-
creating mutations to the average frequency of CpG-creating mutations. The
bottom half of the figure depicts the total amount of data in each virus data
set(the number of sequences × the number of nucleotides)
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Figure 4: Each point represents the amount of sequences vs number of nu-
cleotides that each data set contained. The colors and shapes represent what
was found significant in each Wilcoxon test; blue triangles if both A→G and
T→C are significant, green squares if only one was significant and red circles if
both are not significant.

Discussion

CpG-creating mutations are costly in most viruses

There is previous evidence that CpG-creating mutations are costly for viruses
such as HIV and Polio (Theys et al., 2018; Stern et al., 2017). It is expected
that such mutations are costly in other viruses too, because CpG sites are rare
in many other viruses too (Karlin and Cardon, 1994). Here we used global
data for 43 viral datasets to test whether CpG sites are costly for most human
viruses. For many viruses, information on within-host diversity is not readily
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available, so we focused, instead, on between-host diversity, using datasets with
one viral sequence per patient. We expect that mutation frequencies in such
datasets are determined by mutation rates, selection coefficients and stochastic
effects such as drift and selective sweeps (Hartl and Clark, 2007). Our main as-
sumption here is that stochastic effects and mutation rates affect CpG-creating
and non-CpG-creating mutations equally. This means that any significant dif-
ference in mutation frequencies between CpG-creating and non-CpG-creating
mutations will be due to differences in selection coefficients, which allows us
to determine whether CpG-creating mutations are generally more costly than
non-CpG-creating mutations (Theys et al., 2018).

We found that indeed, in the majority of viruses we tested, the mutation
frequencies were significantly different between CpG-creating and non-CpG-
creating mutations, which shows that there is a fitness cost to CpG-creating
mutations in most viruses. We found a significant effect of CpG-creating mu-
tations in 74.5 % of datasets for synonymous A-G mutations and in 72% of
synonymous T-C mutations.

To test the statistical power of our novel approach, we also tested whether we
could detect a difference in frequencies between synonymous and non-synonymous
mutations. We used the same datasets and methods to demonstrate that syn-
onymous mutations occur at higher frequencies than non-synonymous muta-
tions. We detected a significant difference between non-synonymous mutations
and synonymous mutations in 81.4 % of datasets for A→G mutations and 81.4%
of datasets for T→C mutations. Hence, we detect the CpG effect almost as of-
ten as the effect of non-synonymous mutations, this despite the fact that the
synonymous/non-synonymous comparison has more data to work with. The
cost of CpG mutations should probably be considered near ubiquitous in hu-
man viruses.

We also tested for an effect of CpG-creating mutations among non-synonymous
mutations, but found that this effect was only detected in 25.6% of datasets for
A→G mutations and 30.2% of datasets for T→C mutations. One reason for
this low number of significant results is probably that many non-synonymous
mutations occur at very low frequencies (see figure 1A, 1C, 1E).

Quantifying the cost

After we found that a majority of viruses displayed a lower frequency of CpG-
creating mutations when compared to non-CpG-creating mutations we moved
on to quantify this cost. We did this separately for A→G and T→C muta-
tions. For each of these two types of mutations, we calculated the ratio between
the mean frequency of synonymous CpG-creating mutations and the mean fre-
quency of synonymous non-CpG-creating mutations. We hypothesize that when
CpG-mutations come with a large cost, they will be found at much lower fre-
quencies, whereas if they come with a small cost, their frequencies will only be
slightly lower than those of non-CpG-creating mutations. Therefore, the ratio
we calculate will give us a sense of the relative cost of CpG sites in different
viruses.
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The levels of the cost ratio vary widely between viruses, with some clear
differences between viral genera. For example, for HIV, the ratio is near 5 for
both AG and CT mutations. This shows that CpG sites in HIV come with a
large cost, as shown before based on a different data set(Theys et al., 2018). On
the other hand, in Hepatitis C the ratio is close to 1 for both genotype 1A and
1B. The Wilcoxon tests were significant for Hepatitis C, but the fact that the
ratio is close to 1 shows that the effect size is small. We find similar results when
we look at within-host diversity for HCV using another dataset (Tisthammer,
unpublished). The cost ratio for Bk Polyoma is very high, but the amount of
data for this virus is quite low and we expect that with more data, the ratio
will go down to a level similar to the other viruses.

We find more variable cost ratios in the DNA viruses than in the RNA
viruses. This may be because of the smaller sample sizes for DNA viruses, or
it may be that different selection pressures are at play in DNA viruses versus
RNA viruses. In RNA viruses, we expect that the mammalian immune system
recognizes CpG sites and forces the viruses to mimic the low CpG content in
mammalian genomes (Takata et al., 2017). In DNA viruses, it is not clear if
the same mechanism is at work, though unmethylated CpG sites are expected
to stimulate the immune response (Hoelzer et al., 2008).

The cost ratio was calculated for both A→G and C→T mutations. These
two ratios are not necessarily equal. In some viruses, we see surprising patterns
in the cost ratios. For example, in the Dengue viruses, T→C CpG-creating
mutations (blue) are relatively more costly than A→G mutations (red). In
Influenza A however, the trend is in the other direction, where T→C CpG-
creating mutations (blue) are relatively less costly than A→G mutations (red).
Further studies are needed to determine what causes these patterns.

Limitations and future studies

We only included datasets with at least 60,000 data points per dataset (number
of nucleotides ∗ number of sequences). However, we still find that our larger
datasets are more likely to yield significant results (Figure 4). This suggests
that increasing either the number of sequences or the sequence length for some
of the viral datasets will increase the number of datasets with significant results.

Another limitation of our study is that we used one sequence per patient.
For some viruses, such as HIV and HCV, it is possible to use within-patient
genetic diversity to study costs of mutations within the host (Wang et al., 2010;
Rambaut et al., 2004; Alizon et al., 2011). This is possible for these viruses
because patients are infected for a long time and there is an expectation that
mutation and selection occur within the host. For other viruses, it is not clear
whether it is possible to study within-host fitness costs separately from between-
host effects. If patients are infected with a diverse sample of the virus, then
within-host mutation and selection may not be the dominant effects that shape
within-host genetic diversity (Varble et al., 2014; Poon et al., 2016). For those
types of viruses, studying within-host and between-host diversity may lead to
the same results, and having data on within-host diversity may not increase our
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knowledge of fitness costs of mutations.
In conclusion, we find that CpG-creating mutations are costly for most hu-

man viruses. For viruses in which we do not detect an effect of CpG-creating
mutations, it is likely because of a small sample size. Future work should focus
on better understanding why the cost of CpG-creating mutations is higher in
some viruses than others.

TABLE 2 Summary of Data

Table 2: All information pertaining to the datasets, such as virus name, how
much and where data was collected, statistical and mathematical results.
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Methods

Data and R scripts

Data and R scripts are available on Github:
https://github.com/Vcaudill/Something Cool-CpG Sites-.git

Data Collection

The sequences were retrieved from the NCBI Genbank, the HIV Databases
(http://www.hiv.lanl.gov/), and the Virus Pathogen resource (VPR, https://www.viprbrc.org/)
using R scripts or manually. We selected viral sequences from a human host,
and for proteins required for viral fitness (e.g. VP1, VP2, envelope protein).
Dengue, Entero, and Polio sequences were all collected through the VPR, HIV
sequences from the HIV Database, and HCV, Human Parainfluenza, Influenza,
Human Respiratory Syncytial, Measles, Rhino, Rota, BK, Human Boca, Hep-
atitis B, Human Heperies, Human Papilloma, and Parvo from Genbank.

Further Data Preparation and Filtering

After data collection, obtained sequences were aligned and trimmed using Geneious
v.11.1.4. After checking the alignment, an online translation tool (SIB Web
Team, 1993) was used to identify coding regions. Once a coding region was
found, the sequences were verified using NCBI BLAST. Upon verification, con-
sensus sequences for each virus/protein data set were generated using R or
Geneious. A custom R script was also used to identify stop codons created
by mutations in the coding sequences. All stop codons and insertions were
removed from the alignment. Accurate estimation of mutation frequencies re-
quires sufficient data points. Therefore, we calculated data points as the number
of sequences multiplied by the number of nucleotides, and removed data sets
that had less than 60,000 data points. We were able to collect sufficient data
for 43 data sets.

Data Analysis

For each of the 43 data sets, the consensus sequence was translated to create
a wild type protein sequence. For each nucleotide, we determined whether a
transition mutation would change the amino acid and/or create a CpG site. We
determined whether the transition mutation was synonymous, non-synonymous
or nonsense by comparing the wild type amino acid to the mutated amino acid.
We calculated the frequency of the transition mutation for each nucleotide in
the data set by dividing the number of observed transition mutations by the
sum of the number of transition mutations and the wild type nucleotide.
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Statistical Analysis

To determine if CpG sites were costly to viruses, the data were separated into
groups. First, the sites were split into four categories; each represented a consen-
sus nucleotide and its transition mutated form (Adenine to Guanine (A→G),
Thymine to Cytosine (T→C), Cytosine to Thymine (C→T), or Guanine to
Adenine (G→A)). The nucleotides were then sectioned into groups of synony-
mous and non-synonymous, and further by CpG-creating or non-CpG-creating
mutations. (Fig. 5). A Wilcoxon rank-sum test was performed to determine
if the mutation frequencies differed between groups of synonymous vs. non-
synonymous, and CpG vs. non-CpG-creating mutations (Fig. 2). To calculate
a ”cost ratio” of CpG-creating transition mutations, we divided the mean mu-
tation frequency of non-CpG-creating mutations by CpG-creating mutations of
the same type (Fig. 3).

Figure 5: A pictorial representation of 12 mutation groups. Each wildtype
nucleotide was categorized into synonymous or non-synonymous by the resulting
amino acid. For A and T, we further separated the groups into CpG or non-
CpG-creating mutations (Nucleotides C and G cannot form CpG sites).
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