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We present RNA-Bloom, a de novo RNA-seq assembly algorithm that leverages the rich
information content in single-cell transcriptome sequencing (SCRNA-seq) data to
reconstruct cell-specific isoforms. We benchmark RNA-Bloom’s performance against
leading bulk RNA-seq assembly approaches, and illustrate its utility in detecting cell-
specific gene fusion events using sequencing data from HiSeq-4000 and BGISEQ-500
platforms. We expect RNA-Bloom to boost the utility of sScRNA-seq data, expanding what

is informatically accessible now.

The early stages of single-cell RNA sequencing (SCRNA-seq) data analyses have been
primarily limited to gene expression quantification and individual splice-junction detection?.
Isoform-level analyses for single cells remain scarce?. Although long-read sequencing
technologies excel in capturing near full-length transcript sequences, which are ideal for isoform-
level analyses?, they have a significantly higher error-rate, limited sequencing depth, and higher
input requirement compared to short-read sequencing technologies®. Short-read sequencing
prepared with transcript-end capture protocols*® are scalable to nearly one million cells, but they
exhibit strong transcript-end bias, prohibiting the reconstruction of alternative isoforms. Lifting

this bias, there are other short read sequencing protocols’ 8 that offer full-length transcript
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sequencing, thus permitting both expression quantification and isoform structure analysis.
However, to leverage the rich information in the data generated by the latter protocols new
bioinformatics approaches are required. The current SCRNA-seq assembly methods are primarily
intended for specific gene targets®!!, and de novo assembly methods for bulk RNA-seq do not
effectively accommodate uneven transcript coverage and amplified background noise in SCRNA-
seq data. In principle, pooling reads from multiple cells can introduce reads to low-coverage and
noisy regions of transcripts, thus closing coverage gaps and increasing the signal-to-noise ratio
(Supplementary Fig. 1). Naively pooling reads from multiple cells would obscure the cell-
specificity of the assembly process and would require much more memory than assembling
sequencing data for each individual cell. Therefore, a resource-efficient ScRNA-seq de novo
assembly method that maintains high cell-specificity of reconstructed transcripts is needed.
Leading de novo transcriptome assembly methods, such as Trans-ABySS*?, follow the de
Bruijn graph (DBG) assembly paradigm. While these methods use a hash table data structure to
store the DBG in memory, recent genome assembly methods'® 14 showed how memory
requirements may be reduced by adopting succinct data structures, such as Bloom filters®®, for
compact k-mer storage to representing an implicit DBG. Adapting this strategy for RNA-seq
assembly is an attractive proposition for reducing memory consumption. Further, short-read
sequencing platforms are often used to produce paired-end reads, which can be valuable in
reconstructing longer transcript sequences, and existing transcriptome assembly methods rely on
alignment of these paired-end reads against assembled sequences to do that. Read alignments are
computationally costly, especially when performed against a non-static target, such as earlier
stages of an assembly. We note that, recent RNA-seq quantification tools, such as kalisto*,

reduce runtime by replacing alignment with pseudoalignment. Borrowing the strategy of
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substituting read alignment with a lightweight alternative should also benefit runtimes when
assembling transcriptomes.

These strategies are implemented in our sScRNA-seq assembly method, RNA-Bloom. The
method leverages sequencing content from multiple cells for improved transcript reconstruction
of individual cells. It follows the DBG assembly paradigm but uses Bloom filters to represent
graphs for efficient in-memory storage of k-mers as well as k-mer counts (Online Methods). It
utilizes paired distant k-mers derived from reads and reconstructed fragments as a fast alternative
to read alignments (Online Methods).

RNA-Bloom consists of three stages: (1) shared DBG construction, (2) fragment
sequence reconstruction, and (3) transcript sequence reconstruction (Fig. 1 and Online Methods,
Algorithm 1). In stage 1, an implicit DBG is constructed using the k-mers from all input reads of
all cells. In stage 2, fragment sequences of each cell are reconstructed by connecting the cell’s
read pairs using the DBG from stage 1. To maintain the cell-specificity of the transcripts to be
reconstructed in stage 3, a new DBG for each cell is created solely using k-mers from the cell’s
reconstructed fragments following stage 2. In stage 3, using the cell-specific DBGs, fragments
are extended outward in both directions to reconstruct transcript sequences.

To benchmark RNA-Bloom, we compared it against three state-of-the-art de novo
assemblers for bulk RNA-seq: Trans-ABySS®2, Trinity'’, and rnaSPAdes'®. We examined the
computing performance and assembly quality of the four assembly tools on a simulated SCRNA-
seq dataset of 168 mouse embryonic stem cells (total of 672 million paired-end 100-bp reads). In
our tests, RNA-Bloom had the best mean reconstruction of 3,181 (SD=498) full-length isoforms
per cell, and it assembled on average 30.00% more full-length isoforms than the next best

method, Trinity (Supplementary Fig. 2). RNA-Bloom maintained a mean proportion of
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misassemblies (1.69%, SD=0.38%), and is comparable to rnaSPAdes (1.43%, SD=0.37%) and
Trans-ABYSS (1.93%, SD=0.35%) in its performance, while Trinity had the highest mean
proportion of misassemblies (4.08%, SD=0.82%) (Fig. 2c).

We next examined the reconstruction of simulated isoforms at different expression levels.
We split the set of all simulated isoforms into four strata based on the quartiles of the expression
levels from all cells (Online Methods). We observed RNA-Bloom to have the highest
reconstruction figures for all expression strata in all cells, while Trinity was a close second only
when the expression levels are high (Fig. 2b, stratum 4). All assemblers reconstructed the most
full-length isoforms in the highest expression stratum, likely because highly expressed transcripts
are represented by more reads, making them easier to assemble. However, the proportional
difference in mean reconstruction between RNA-Bloom and bulk RNA-seq assemblers
substantially increased in the lower expression strata (1.04x in stratum 4 vs 3.73x in stratum 1).
This illustrates that RNA-Bloom’s pooled assembly strategy is working effectively despite
potential coverage gaps and amplified noise, which tend to have larger detrimental effect on the
reconstruction of low-expressed transcripts due to insufficient good quality reads.

We then examined the effect of the number of cells on RNA-Bloom’s assembly cell-
specificity (Supplementary Note 2) by down-sampling to smaller pool sizes. We found that the
average cell-specificity of RNA-Bloom decreased slightly from 99.90% (SD=0.02%) to 99.89%
(SD=0.02%) as the pool size increased from seven cells to 168 cells (Fig. 2d).

RNA-Bloom outperformed all other methods in total runtime. It used only 74.7% of total
runtime of the best bulk RNA-seq assembly methods (2,709 CPU hours vs 3,628 CPU hours for
rnaSPAdes) (Fig. 2a). Trinity had the longest total runtime (51,611 CPU hours), which is 19

times that of RNA-Bloom.
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We also explored the scalability of RNA-Bloom using a dataset of 260 mouse embryonic
stem cells with a total of 3.94 billion paired-end 100-bp reads®®. In this dataset, each cell was
deeply sequenced to over 9 million reads on average. Using 48 CPUs and 120 GB of memory,
RNA-Bloom assembled the dataset in 11 days 21 hours 54 minutes.

To demonstrate RNA-Bloom’s ability to reconstruct unannotated transcripts, we used an
scRNA-seq dataset describing the myelogenous leukemia cell line K562 cells (Online Methods),
which are known to have five gene fusions (Supplementary Table 1). This dataset comprised
sequencing data generated with two high-throughput sequencing platforms, Illumina HiSeq 4000
and BGISEQ-500. We used PAVFinder?® to detect fusions from single cell transcriptomes
assembled by RNA-Bloom. We compared our assembly-first detection method against an
alignment-first detection method, STAR-Fusion?!, which relies on mapping reads against the
reference genome. Overall, RNA-Bloom reconstructed 15% more fusion transcripts than those
detected by STAR-Fusion (Fig. 2e). Although the difference is not significant (Chi-squared test,
N=310, p=0.242), this illustrates that reference-free assembly methods can be effective in
transcript discovery, even when a high-quality reference genome is available. Interestingly, both
methods together detected 16.8% more fusions in BGISEQ than HiSeq (Chi-squared test,
N=185, p=0.0337). This difference is probably a result of the larger number of reads in the
BGISEQ libraries. RNA-Bloom reconstructed 22.9% more fusion transcripts in BGISEQ
libraries than in HiSeq libraries, but the difference is not statistically significant (Chi-squared
test, N=170, p=0.202).

New sequencing technologies that interrogate single cell transcriptomes provide
information on gene regulation at an unprecedented detail. Whereas transcript-end capture

protocols are primarily used to measure expression levels, full-length sequencing protocols have
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richer information content for isoform structures in single cells. However, to realize the full
potential of the full-length sequencing protocols, specialized bioinformatics tools are needed.
Here we present RNA-Bloom, a de novo single-cell RNA-seq assembly algorithm to address this
need. As a scalable assembler demonstrated to work for nearly four billion paired-end reads,
RNA-Bloom unlocks the possibility of cataloguing cell types at the isoform level in large
datasets. The software is implemented in the Java programming language, and distributed under
GPLv3 license. It is available for download in source code and as a pre-built executable JAR file

at https://github.com/bcgsc/RNA-Bloom.

METHODS

Methods and associated references and data accession codes are available in the online version of

the paper.

ACKNOWLEDGEMENTS

This work was supported by Genome Canada and Genome BC [243FOR, 281ANV]; the
National Institutes of Health [2R01HG007182-04A1]; and the Natural Sciences and Engineering
Research Council of Canada (NSERC). The content of this work is solely the responsibility of
the authors, and does not necessarily represent the official views of the National Institutes of

Health or other funding organizations.


https://doi.org/10.1101/701607
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/701607; this version posted July 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

AUTHOR CONTRIBUTIONS

K.M.N. and I.B. designed the method and algorithms. K.M.N., J.C., H.M., and 1.B. designed the
Bloom filter data structures. K.M.N. implemented the RNA-Bloom software. K.M.N., R.C., and
C.Y. conducted the benchmarking experiments. K.M.N., R.C., C.Y, R.L.W, and 1.B. analyzed

the results. All authors wrote the manuscript.


https://doi.org/10.1101/701607
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/701607; this version posted July 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

FIGURES

Cell 1 Cell 2

paired reads paired reads

~——

shared graph

B

fragments fragments
o %‘ph

transcripts

transcripts

Stage 1

Stage 2

Stage 3

Figure 1 Pooled assembly of sScRNA-seq data in RNA-Bloom, illustrated for two cells.

RNA-Bloom consists of three stages: (1) construction of a shared de Bruijn graph using reads

from all cells, (2) reconstruction of fragments from read pairs of individual cells, and (3)

reconstruction of transcripts of individual cells.
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Figure 2 Computing performance and assembly quality of RNA-Bloom and other methods.

(a) Total run time and peak memory usage of RNA-Bloom, rnaSPAdes, Trans-ABYySS, and
Trinity. Assemblies were performed on a simulated dataset of 168 mouse embryonic stem cells
(4 million paired-end 100-bp reads per cell, total of 672 million reads). All tools were configured
to use 48 threads. (b) Number of full-length isoforms stratified by the expression level quartiles
in the simulated data. Stratums from top to bottom correspond to highest expression to lowest
expression. (c) Number of misassemblies normalized by the number of full-length isoforms
reconstructed. (d) Assembly cell-specificity for increasing number of cells in the pool. The pool
sizes are selected to ensure that each sub-pool is derived from single pools at larger sizes. (e)
Total counts for five selected gene fusions detected in 62 cells sequenced with lllumina HiSeq
4000 and BGISEQ-500. (f) Dot plot showing the distribution of five selected fusions (rows)
across 62 cells (columns). The fusions arranged from top to bottom are: ABL1:BCR,
C160rf87:0RC6, NUP214:XKR3, BAG6:SLC44A4, and CBX5:GTSF1. Colors of half-circles
indicate the detection by software tools and sequencing platforms for each cell as indicated on

the figure.
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ONLINE METHODS

Algorithm 1. RNA-Bloom reference-free assembly algorithm for sScRNA-seq.
The overall procedure for each stage of RNA-Bloom is illustrated as pseudocode.

1. Shared DBG construction
fori=1toNdo
forrinRido
InsertkKmers(r, Bpga, Bkc, Brkp)

2. Fragment sequence reconstruction
fori=1toNdo
Empty(Brkp, Ba)
for rier, rriguT INRj dO
CorrectErrors(rier, rricHT, Boes, Bke)
f«—Connect(rLert, rricHT, Boss, Bkc, Brip)
if f == NULL then
s«—AssignStratum(reeT, IRIGHT)
Append(rert, rricHT, Fis)
else if not IsAssembled(f, Brkp, Ba) then
s—AssignStratum(f)
Append(f, Fis)
InsertkKmers(f, Brkp, Ba)

3. Transcript sequence reconstruction
fori=1toNdo
Empty(Bogg, Brke, Ba)
forsinSdo
forfin Fisdo
InsertkKmers(f, Bogg, Brkp)
forsinSdo
forfin Fisdo
t«—Extend(f, Boes, Bkc, Brkp, Brkp)
if not IsAssembled(t, Ba) then
Append(t, Ti)
InsertkKmers(t, Ba)

Symbols
N : number of cells
Ri  : RNA-seq read pairs for cell i

Bosc : DBG Bloom filter
Bkc : k-mer counting Bloom filter
Brkp : read k-mer pairs Bloom filter
Fis :fragments at stratum s for cell i
Brkp : fragment k-mer pairs Bloom filter
Ba :assembled k-mers Bloom filter
S - ordered stratum 1Ds
(see Supplementary Fig. 6)
Ti  :transcripts for cell i

11
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Bloom filter data structure.

The hash functions for Bloom filters in RNA-Bloom were implemented based on the
nucleotide hashing algorithm, ntHash??. The number of unique k-mers and the user-defined false
positive rate (FPR) for Bloom filters are used to determine the size for each Bloom filter. RNA-
Bloom has the option to run ntCard?® to quickly estimate the number of unique k-mers, provided
ntCard is already installed in the user’s computing environment. If the number of unique k-mers
is not specified or ntCard is not available, then the total size of Bloom filters is configured in
proportion to the total file size of all input reads files. In our experience, a Bloom filter FPR of

0.5~1.0% provides a relatively good trade-off between memory usage and assembly quality.

Shared de Bruijn graph construction.

The shared DBG is represented by three separate Bloom filters: (1) DBG Bloom filter,
(2) k-mer counting Bloom filter, and (3) read k-mer pairs Bloom filter. The DBG Bloom filter is
a bit-array, and it provides an implicit representation of the DBG for the k-mers in all cells. The
k-mer counting Bloom filter provides a compact non-exact storage of k-mer counts, and it is
implemented based on the 8-bit minifloat byte-array data structure introduced previously?*. To
minimize the effect of false-positives in the Bloom filters, a k-mer is deemed present in the
dataset only if it is found in the DBG Bloom filter, and it has a non-zero count in the k-mer
counting Bloom filter. The read k-mer pairs Bloom filter stores pairs of distant k-mers at a fixed
distance along each read (Supplementary Fig. 3). These k-mer pairs are essentially sparse
representations of individual reads, and they are useful in guiding graph traversal in later stages.

The shared DBG is used throughout fragment reconstruction of individual cells.

12
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Fragment sequence reconstruction.

After the shared DBG has been constructed, the process of fragment sequence
reconstruction is performed separately for individual cells. For each read pair in each cell,
mismatch and indel errors are identified and corrected based on k-mer counts in a procedure
similar to the RNA-seq error correction method, Rcorrector?® (Supplementary Fig. 4). After
error correction, the read pair is connected by extending each constituent read towards its mate to
reconstruct the underlying fragment sequence. Each read is extended by searching for neighbors
in the shared DBG. When the current extension reaches a branching point in the graph, the
unambiguous extension of each branch is assigned a score based on its median k-mer count and
the number of read k-mer pairs spanning across the branching point (Supplementary Fig. 5 and
Supplementary Note 1). Since longer extensions tend to have more supporting k-mer pairs, the
score is normalized by the length of the extension. The branch with the highest score is added to
the current extension from the read. This extension routine is initially depth-bounded by a
permissive default threshold (default = 1,000 bp) for each cell. After the first N read pairs
(default = 1,000) of the cell have been evaluated, the depth threshold is re-adjusted to 1.5-fold of
the interquartile range of reconstructed fragment lengths. This threshold limits the depth of graph
traversal to ensure fast overall assembly runtime and prevents spurious connections of reads.
Extension is first attempted from the left read towards the right and a second attempt is made
from the right read towards the left when the first attempt fails. Extension from each direction
terminates if the paired reads are connected or the extension has reached either a dead-end or the
depth threshold.

Each reconstructed fragment is checked for consistency with input reads by scanning for

overlapping read k-mer pairs. If the reconstructed fragment is consistent with read k-mer pairs,

13
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more distant pairs of k-mers at a fixed distance within the reconstructed fragment are stored in
the fragment k-mer pairs Bloom filter (Supplementary Fig. 3). The distance between the paired
k-mers are set to the first quartile of reconstructed fragment lengths from the first N read pairs
evaluated. This results in approximately 75% of the cell’s reconstructed fragments being
represented by at least one fragment k-mer pair. Although more distant paired k-mers tend to be
more unique, and thus are better at the resolution of ambiguous branches in the DBG, increasing
the distance between paired k-mers would lower the proportion of fragments represented by k-
mer pairs. Therefore, it is important to balance the proportion of fragments represented by k-mer
pairs and the distance between paired k-mers.

To avoid redundant storage, each fragment is screened against an assembled k-mers
Bloom filter, which contains k-mers of previously reconstructed fragments, and the fragment k-
mer pairs Bloom filter. If the fragment contains at least one new k-mer or k-mer pair, new k-mers
and k-mer pairs are inserted into the corresponding Bloom filters. The fragment is then assigned
to one of the strata according to its minimum k-mer count and its length (Supplementary Fig.
6). Fragments not consistent with reads are discarded, and their original paired-end reads are
assigned to the strata for unconnected reads. This stratification of reconstructed transcript
fragments provides a crude separation of fragment sequences of different expression levels. After
all paired-end reads have been evaluated for a cell, both fragment k-mer pairs Bloom filter and
the assembled k-mers Bloom filter are emptied in preparation for transcript fragment

reconstruction of the next cell.

Transcript sequence reconstruction.

14
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After fragment sequence reconstruction have been completed for all cells, transcript
sequences can be reconstructed by extending each fragment sequence outward in both directions.
To reconstruct transcript sequences for each cell, the DBG Bloom filter is emptied and
repopulated with only k-mers along the cell’s reconstructed fragments. Emptying the DBG
Bloom filter ensures that fragments are extended with k-mers specific to the corresponding cell.

Fragment sequences are retrieved from strata with decreasing k-mer counts because low-
expression strata tend to be more enriched in sequencing errors and artifacts. Strata for long
fragments are retrieved first, followed by the strata for short fragments, and finally strata for
unconnected reads (Supplementary Fig. 6). Each fragment sequence is extended outward in
both directions. The extension routine for each direction is similar to its counterpart in fragment
sequence reconstruction, except that the scoring scheme here includes fragment k-mer pairs in
addition to read k-mer pairs (Supplementary Fig. 5 and Supplementary Note 1).

The reconstructed transcript sequences are evaluated for consistency with input reads and
reconstructed fragments by scanning along the reconstructed transcript sequence for overlapping
read k-mer pairs and fragment k-mer pairs. Segments of the transcript sequence without
overlapping k-mer pairs are trimmed from the transcript sequence. This procedure ensures low

number of mis-assembled transcripts.

Software evaluations.

We used RSEM?® to simulate 4 million paired-end reads of length 100 bp for 168 cells in
the SMARTer scRNA-seq samples of mouse embryonic stem cells (ArrayExpress accession: E-
MTAB-2600)%°. The procedure for simulations is described in Supplementary Note 3.

Benchmarking was performed with RNA-Bloom, Trans-ABYSS, Trinity, and rnaSPAdes. The
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software versions and commands for each assembler are described in Supplementary Note 4.
All assemblers were run using 48 threads on a machine with 48 HT-cores at 2.2 Ghz and 384 GB
of RAM. Since the three bulk RNA-seq assemblers evaluated do not pool reads from multiple
cells in their algorithms, the total run-time was the sum of those of the assemblies of individual
cells. The number of full-length isoforms and missassemblies in each assembly were determined
with rnaQUAST?’, using the mouse reference genome GRCm38 and Ensembl version 91
annotations for measuring assembly sensitivity and correctness.

We calculated the quartiles of the expression levels measured on the transcripts per
million (TPM) scale for all simulated isoforms in all 168 cells. We used these TPM quartiles to
define four expression strata: (1) TPM <Ql1, (2) Q1 < TPM <Q2, (3) Q2 < TPM < Q3, and (4)
Q3 < TPM. Every simulated isoform in each cell was assigned to one of the four strata. For each
cell, we counted the number of isoforms reconstructed to >95%, as reported by naQUAST,
within each stratum.

We used the dataset of 260 mouse embryonic stem cells (ArrayExpress accession: E-
MTAB-2600)* to investigate whether RNA-Bloom would scale to a much larger volume of
input reads. Due to the input size, we used a maximum allowable Bloom filter FPR of 5% in

RNA-Bloom to ensure low memory consumption.

Fusion transcript discovery.
We assembled the matching libraries of 62 K562 cells (SRA accession: SRP132313)8
from HiSeq and BGISEQ separately with RNA-Bloom. We supplied the assembled transcripts

and the reads for each cell to PAVFinder for fusion detection. Similarly, we supplied the reads
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for each cell to STAR-Fusion for fusion detection. The software versions and commands for

each method are described in Supplementary Note 4.
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