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CoralP: Flexible visualization of the human phosphatome
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Protein phosphatases and kinases play critical roles
in a host of biological processes and diseases via the
removal and addition of phosphoryl groups. While
kinases have been extensively studied for decades,
recent findings regarding the specificity and activities
of phosphatases have generated an increased
interest in targeting phosphatases for pharmaceutical
development. This increased focus has created a
need for methods to visualize this important class of
proteins within the context of the entire phosphatase
protein family. Here, we present CoralP, an interactive
web application for the generation of customizable,
publication-quality representations of human
phosphatome data. Phosphatase attributes can be
encoded through edge colors, node colors, and node
sizes. CoralP is the first and currently the only tool
designed for phosphatome visualization and should
be of great use to the signaling community. The source
code and web application are available at https://
github.com/PhanstielLab/coralp and http://phanstiel-
lab.med.unc.edu/coralp respectively.

INTRODUCTION

rotein phosphorylation is an important post-

translational modification that plays a major role in
regulating protein activity and function. Misregulation of
phosphorylation has been implicated in a host of human
diseases including cancer (Ostman et al., 2006; Tonks,
2006), rheumatoid arthritis (Begovich et al., 2004; Hendriks
etal.,, 2013), and various neurological disorders (Pulido and
Hooft van Huijsduijnen, 2008; Robinson and Dixon, 2005). As
such, altering protein phosphorylation levels has become a
major focus of pharmaceutical development (Cohen, 2002).
Protein phosphorylation is regulated primarily by protein
kinases and protein phosphatases which add and remove
phosphoryl groups respectively. While protein kinases
have been the primary focus of research for the past
several decades, recent findings regarding the activities
and specificities of their counterparts have generated an
increased interest in the role of phosphatases in human
disease research (Andersen et al., 2004; Sacco et al.,
2012; Tiganis and Bennett, 2007; Tonks, 2006). Because
of this interest and the fact that there are over 180 human

phosphatases, there exists a great need for methods to
analyze, interpret, and communicate experimental results
within the context of the entire protein family (Chen et al.,
2017).

While numerous methods have been developed to
visualize the human kinome (Chartier et al., 2013; Eid et
al., 2017; Metz et al., 2018), no such software exists for
the human phosphatome. Existing methods to visualize
kinases make use of a phylogenetic kinase tree that was
constructed shortly after the sequencing of the human
genome and later modified by Cell Signaling (www.
cellsignal.com). These software packages allow for the
encoding of multiple kinase attributes and data types
through colors, sizes, and shapes laid out in a kinase tree
organized by sequence and functional similarity. Last
year, we developed Coral, an interactive web application
that produces publication-quality visualizations of the
human kinome (Metz et al., 2018). Coral allows for the
simultaneous encoding of three attributes per kinase,
supports three modes of visualization, and produces high-
resolution vector images. Recently, Chen et al. published
a phylogenetic phosphatase tree (Chen et al., 2017);
however, to the best of our knowledge, there are currently
no available tools to visualize phosphatase data within the
context of this or any other format.

Here, we describe CoralP, a web application for
the generation of customizable, publication-quality
visualizations of the human phosphatome. Qualitative
and quantitative features can be represented in branch
colors, node colors, and node sizes. Phosphatases can
be organized using the published phosphatome tree or
as radial or force-directed networks. CoralP is simple to
use, well documented, and freely available. Itis the firstand
only dedicated tool for phosphatome visualization and is
widely applicable to a variety of data types including those
generated from proteomic, genomic, epidemiological, and
high-throughput screening experiments.

RESULTS

CoralP is built using the same underlying framework
as Coral and therefore makes use of similar strategies
for data input, setting selection, and data download.
Phosphatase attributes can be entered using pull-down
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Figure 1. CoralP tree plot highlighting some of it's features. The default view of a CoralP tree plot is shown in grey. Circular
inserts reveal some of the formatting options. (Top left) Legends are automatically generated as users configure settings. (Top
middle) Branch color can be used to encode quantitative or qualitative information. (Top right) Users can adjust the font type and
color of phosphatase labels and even match the label color to the branch color. (Bottom left) Nodes can be added and recolored to
depict qualitative or quantitative information. (Bottom middle) Node size can be used to encode quantitative information. (Bottom
right) Users can control many aesthetic options including node opacity and stroke color.
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menus or pasted into text boxes. CoralP supports multiple
identifiers including UniProt, ENSEMBL, Entrez, and HGNC.
Visualization options including color palettes, data scales,
fonts, and protein identifiers can all be edited via an intuitive
graphical user interface. CoralP was written using the
reactive programming package Shiny (Chang et al., 2018),
so CoralP plots update in real-time as users adjust settings,
making it easy to generate a plot perfectly customized to
the user's preferences.

CoralP offers highly flexible methods for visualizing
qualitative and quantitative phosphatase attributes within
the context of the entire protein family (Figure 1). Data
can be encoded via multiple modalities and displayed via
either tree or network views. Qualitative and quantitative
phosphatase attributes can be encoded through three
separate modalities: branch color, node color, and node
size (for quantitative data only). Users can employ individual
modalities or any combination thereof. The resulting data
can be displayed either as a phosphatase tree (modified
from Chen et al.) or as a network organized in a radial or
force-directed fashion.

For ease of use, CoralP is highly documented and freely
available. An ‘Info’ page describes every feature of CoralP
and includes screenshots demonstrating how different
settings impact the appearance of the final plots. For
maximal reproducibility and stability, the code is open-
source, version controlled, and publicly available at https://
github.com/PhanstielLab/coralp. The web application is
available at http://phanstiel-lab.med.unc.edu/coralp.

DISCUSSION

To the best of our knowledge, CoralP is the first and only
dedicated tool for visualizing data within the context of the
human phosphatome. It offers a rich selection of highly
customizable features and produces high-resolution
publication-quality figures in seconds. Itis available online,
employs a simple graphical user interface, and includes
detailed documentation and examples. As such, CoralP
is highly accessible to users, independent of operating
system or computational expertise. Given its ease of use,
the extensive adoption of the kinome tree to visualize
kinome data, and the growing importance of phosphatases
as an area of research and drug development, we anticipate
that CoralP will be of great use to the signaling community.
CoralP will expedite phosphatase research by enhancing
our ability to interpret and communicate studies focused
on the human phosphatome.

METHODS

CoralP is adapted from Coral and is written using R and Javascript.

The R package shiny (Chang et al., 2018) and extensions shiny-

dashboard (Chang and Borges Ribeiro, 2018), shinyBS (Bailey,
2015) and shinyWidgets (Perrier et al., 2019) were used for the
web framework.

The R packages readr (Wickham et al., 2018) and rsvg (Ooms,
2018) were used for data manipulation and rendering the SVG
elements.

RColorBrewer (Neuwirth, 2014) was utilized for color palettes.

The Circle and Force layouts were written using the D3.js library
(Bostock et al., 2011).

The phosphatome tree was adapted from Chen et al. and manually
redrawn using vector graphics in Adobe lllustrator (Chen et al.,
2017).
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