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Protein phosphatases and kinases play critical roles 
in a host of biological processes and diseases via the 
removal and addition of phosphoryl groups. While 
kinases have been extensively studied for decades, 
recent findings regarding the specificity and activities 
of phosphatases have generated an increased 
interest in targeting phosphatases for pharmaceutical 
development. This increased focus has created a 
need for methods to visualize this important class of 
proteins within the context of the entire phosphatase 
protein family. Here, we present CoralP, an interactive 
web application for the generation of customizable, 
publication-quality representations of human 
phosphatome data. Phosphatase attributes can be 
encoded through edge colors, node colors, and node 
sizes. CoralP is the first and currently the only tool 
designed for phosphatome visualization and should 
be of great use to the signaling community. The source 
code and web application are available at https://
github.com/PhanstielLab/coralp and http://phanstiel-
lab.med.unc.edu/coralp respectively.

INTRODUCTION

Protein phosphorylation is an important post-
translational modification that plays a major role in 

regulating protein activity and function. Misregulation of 
phosphorylation has been implicated in a host of human 
diseases including cancer (Ostman et al., 2006; Tonks, 
2006), rheumatoid arthritis (Begovich et al., 2004; Hendriks 
et al., 2013), and various neurological disorders (Pulido and 
Hooft van Huijsduijnen, 2008; Robinson and Dixon, 2005). As 
such, altering protein phosphorylation levels has become a 
major focus of pharmaceutical development (Cohen, 2002). 
Protein phosphorylation is regulated primarily by protein 
kinases and protein phosphatases which add and remove 
phosphoryl groups respectively. While protein kinases 
have been the primary focus of research for the past 
several decades, recent findings regarding the activities 
and specificities of their counterparts have generated an 
increased interest in the role of phosphatases in human 
disease research (Andersen et al., 2004; Sacco et al., 
2012; Tiganis and Bennett, 2007; Tonks, 2006). Because 
of this interest and the fact that there are over 180 human 

phosphatases, there exists a great need for methods to 
analyze, interpret, and communicate experimental results 
within the context of the entire protein family (Chen et al., 
2017).

While numerous methods have been developed to 
visualize the human kinome (Chartier et al., 2013; Eid et 
al., 2017; Metz et al., 2018), no such software exists for 
the human phosphatome. Existing methods to visualize 
kinases make use of a phylogenetic kinase tree that was 
constructed shortly after the sequencing of the human 
genome and later modified by Cell Signaling (www.
cellsignal.com). These software packages allow for the 
encoding of multiple kinase attributes and data types 
through colors, sizes, and shapes laid out in a kinase tree 
organized by sequence and functional similarity. Last 
year, we developed Coral, an interactive web application 
that produces publication-quality visualizations of the 
human kinome (Metz et al., 2018). Coral allows for the 
simultaneous encoding of three attributes per kinase, 
supports three modes of visualization, and produces high-
resolution vector images. Recently, Chen et al. published 
a phylogenetic phosphatase tree (Chen et al., 2017); 
however, to the best of our knowledge, there are currently 
no available tools to visualize phosphatase data within the 
context of this or any other format.

Here, we describe CoralP, a web application for 
the generation of customizable, publication-quality 
visualizations of the human phosphatome. Qualitative 
and quantitative features can be represented in branch 
colors, node colors, and node sizes. Phosphatases can 
be organized using the published phosphatome tree or 
as radial or force-directed networks. CoralP is simple to 
use, well documented, and freely available. It is the first and 
only dedicated tool for phosphatome visualization and is 
widely applicable to a variety of data types including those 
generated from proteomic, genomic, epidemiological, and 
high-throughput screening experiments. 

RESULTS

CoralP is built using the same underlying framework 
as Coral and therefore makes use of similar strategies 
for data input, setting selection, and data download. 
Phosphatase attributes can be entered using pull-down 
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Figure 1. CoralP tree plot highlighting some of it’s features. The default view of a CoralP tree plot is shown in grey. Circular 
inserts reveal some of the formatting options. (Top left) Legends are automatically generated as users configure settings.  (Top 
middle) Branch color can be used to encode quantitative or qualitative information. (Top right) Users can adjust the font type and 
color of phosphatase labels and even match the label color to the branch color. (Bottom left) Nodes can be added and recolored to 
depict qualitative or quantitative information. (Bottom middle) Node size can be used to encode quantitative information. (Bottom 
right) Users can control many aesthetic options including node opacity and stroke color.
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menus or pasted into text boxes. CoralP supports multiple 
identifiers including UniProt, ENSEMBL, Entrez, and HGNC. 
Visualization options including color palettes, data scales, 
fonts, and protein identifiers can all be edited via an intuitive 
graphical user interface. CoralP was written using the 
reactive programming package Shiny (Chang et al., 2018), 
so CoralP plots update in real-time as users adjust settings, 
making it easy to generate a plot perfectly customized to 
the user's preferences.

CoralP offers highly flexible methods for visualizing 
qualitative and quantitative phosphatase attributes within 
the context of the entire protein family (Figure 1). Data 
can be encoded via multiple modalities and displayed via 
either tree or network views. Qualitative and quantitative 
phosphatase attributes can be encoded through three 
separate modalities: branch color, node color, and node 
size (for quantitative data only). Users can employ individual 
modalities or any combination thereof. The resulting data 
can be displayed either as a phosphatase tree (modified 
from Chen et al.) or as a network organized in a radial or 
force-directed fashion.

For ease of use, CoralP is highly documented and freely 
available. An ‘Info’ page describes every feature of CoralP 
and includes screenshots demonstrating how different 
settings impact the appearance of the final plots. For 
maximal reproducibility and stability, the code is open-
source, version controlled, and publicly available at https://
github.com/PhanstielLab/coralp. The web application is 
available at http://phanstiel-lab.med.unc.edu/coralp.

DISCUSSION

To the best of our knowledge, CoralP is the first and only 
dedicated tool for visualizing data within the context of the 
human phosphatome. It offers a rich selection of highly 
customizable features and produces high-resolution 
publication-quality figures in seconds. It is available online, 
employs a simple graphical user interface, and includes 
detailed documentation and examples. As such, CoralP 
is highly accessible to users, independent of operating 
system or computational expertise. Given its ease of use, 
the extensive adoption of the kinome tree to visualize 
kinome data, and the growing importance of phosphatases 
as an area of research and drug development, we anticipate 
that CoralP will be of great use to the signaling community. 
CoralP will expedite phosphatase research by enhancing 
our ability to interpret and communicate studies focused 
on the human phosphatome.

METHODS

CoralP is adapted from Coral and is written using R and Javascript.

The R package shiny (Chang et al., 2018) and extensions shiny-

dashboard (Chang and Borges Ribeiro, 2018), shinyBS (Bailey, 
2015) and shinyWidgets (Perrier et al., 2019) were used for the 
web framework.

The R packages readr (Wickham et al., 2018) and rsvg (Ooms, 
2018) were used for data manipulation and rendering the SVG 
elements.

RColorBrewer (Neuwirth, 2014) was utilized for color palettes.

The Circle and Force layouts were written using the D3.js library 
(Bostock et al., 2011).

The phosphatome tree was adapted from Chen et al. and manually 
redrawn using vector graphics in Adobe Illustrator (Chen et al., 
2017).
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