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The evolution of embryological development has long been characterized by deep
conservation. Both morphological and transcriptomic surveys have proposed a
“hourglass’ model of Evo-Devo '*. A stage in mid-embryonic development, the phylotypic
stage, is highly conserved among species within the same phylum *”’. However, the reason
for this phylotypic stage is still elusive. Here we hypothesize that the phylotypic stage
might be characterized by selection for robustness to noise and environmental
perturbations. This could lead to mutational robustness, thus evolutionary conservation
of expression and the hourglass pattern. To test this, we quantified expression variability
of single embryo transcriptomes throughout fly Drosophila melanogaster embryogenesis.
We found that indeed expression variability is lower at extended germband, the
phylotypic stage. We explain this pattern by stronger histone modification mediated
transcriptional noise control at this stage. In addition, we find evidence that histone
modifications can also contribute to mutational robustness in regulatory elements. Thus,
the robustness to noise does indeed contributes to robustness of gene expression to genetic

variations, and to the conserved phylotypic stage.

Phenotypes can vary even among isogenic individuals in homogenous environments,
suggesting that stochastic effects contribute to phenotypic diversity *’. Gene expression
variability among genetically identical individuals under uniform conditions, hereafter
"variability", is one of the most important stochastic processes in the mapping of genotype to
phenotype. It is caused by a combination of molecular noise (stochastic biochemical effects,
e.g., transcriptional burst process based transcriptional noise) and other effects (variation in
cells and their environment, e.g., distribution of molecules at cell division) '"". Precise
regulation of gene expression is notably important during development ", however, this
process inevitably has to deal with stochasticity '°. This tension between precision and
stochasticity in development raises questions, such as whether some stages are more robust to
gene expression stochasticity. And whether natural selection against expression variability can
transfer to mutational robustness, causing the evolutionary conservation of the phylotypic stage.
To answer these questions, we investigated expression variability across fly embryonic

development.
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We generated 288 single embryo 3’ end transcriptomes using BRB-seq '°

, at eight
developmental stages covering the whole fly embryogenesis, with 3h intervals (Figure 1A).
After quality control, 239 samples were kept (Figure S1, S2). On average, we obtained over
5 million uniquely mapped reads of protein coding genes per embryo. Based on
multidimensional scaling analysis (MDS), 150 embryos follow the developmental trajectory,
while there is a small cluster of 89 embryos collected at different time points mixed together

(Figure 1B). The samples in this cluster appear to be unfertilized eggs (Methods and Figure
S3). All further analysis was performed only on the 150 fertilized embryos.
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Figure 1: Studying expression variability throughout embryogenesis
A. Method outline. We performed single embryo BRB-seq'® at eight developmental stages,
indicated by different colored dots. The number of samples collected at each stage is

7 and used with

indicated in the colored triangles. Embryo images adapted from
permission from Springer Nature (License Number: 4547630238607) and from the
authors.

B. Multidimensional scaling analysis (MDS) of 239 high quality samples. Different colors
indicate different stages. The samples can be split into two groups: a small cluster in the
top-left delimited by two red lines; and the remaining samples, which are organized

according to embryonic stage. Only the 150 samples which follow embryonic stages

were used for further analysis.

We measured expression variability as Adjusted SD, standard deviation (SD) of expression
between replicates corrected for expression level (Methods and Figures S4-6). This
expression variability follows an hourglass pattern overall, with a global minimum at E3
(Figure 2A), corresponding to the phylotypic stage of fly 7. There is also a local minimum

at E6. This is consistent with the pattern of transcriptome divergence between fly and


https://doi.org/10.1101/700997
http://creativecommons.org/licenses/by/4.0/

72
73
74
75
76
77
78
79
80
81

82
83

84
85
86
87
88
89
90
91
92
93
94

bioRxiv preprint doi: https://doi.org/10.1101/700997; this version posted July 31, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

mosquito Anopheles gambiae, with the global minimum at E3, and a local minimum at E6
'®_ Our observations are robust to the use of different variability metrics (Figure S7), and to
sampling (bootstrap analysis, Figure S8). Bootstrap results also suggest that the minimum
of variability extends over E3 to E4. The embryo transcriptome is dominated by zygotic
transcripts 2.5h after egg laying'®, so the high variability in E1 and E2 is not directly caused
by maternal transcripts. We didn’t find any significant functional enrichment for genes
which follow the hourglass variability pattern. Overall, expression variability is not equally

distributed throughout embryogenesis, and gene expression at the phylotypic stage appears

more robust to stochastic factors than at other stages.
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Figure 2: The phylotypic stage (E3) has lower expression variability

The number of individual samples used in each development stage is indicated below each

box. The number of genes analyzed is indicated in the top-left corner of each plot. The lower

and upper intervals indicated by the dashed lines (“whiskers”) represent 1.5 times the
interquartile range (IQR), and the box shows the lower and upper intervals of IQR together
with the median. The black dot in each box indicates the mean.

A. Expression variability pattern of all genes which passed quality control. We performed
pairwise Wilcoxon tests between any two stages to test the significance. The multiple test
corrected p-values (Benjamini—Hochberg method) are shown in Table S1; they are all <
107,

B. Expression variability pattern of genes expressed at all stages. We performed pairwise

Wilcoxon tests between any two stages to test the significance. The multiple test corrected
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95 p-values (Benjamini—Hochberg method) are shown in Table S2; they are all < 107 except
96 E2 vs. E4, for which p-values = 0.24.
97

98  The variation in expression variability could either be due to changes in the set of active

99  genes, with genes differing in their intrinsic variability levels, or to genome-wide changes
100  in the regulation of variability. To test this, we first reproduced our results restricted to the
101  subset of genes which are expressed at all stages. Under the first explanation, we would
102 expect to lose the hourglass variability pattern, but the pattern is maintained (Figure 2B).
103 We performed additional tests: restricting to genes with constant expression level over
104  development (Figure S9A); restricting to transcription factors (Figure S9B); and contrasting
105  genes with dispersed or precise promoters (Figure S10), following Schor et al *°. Dispersed
106  promoters seem to be more robust to mutations, which might also translate into robustness
107  to noise. Despite a loss of power with fewer genes, there remains an hourglass pattern of
108  expression variability in all cases. Interestingly, the precise promoter genes have higher
109  variability than the dispersed promoter genes except at E3, thus a strongest hourglass pattern.
110 Overall, these results suggest that the lower variability at E3 is due to genome-wide

111  regulation mechanisms more than to changes in the gene set.

112

113 Histone modifications can regulate transcriptional noise '™

, notably through the
114  modulation of transcriptional burst frequency ****. For example, high levels of histone
115 modifications can increase chromatin accessibility, leading to an increase in transcriptional
116  burst frequency, which leads to minimizing noise. To check this role of histone modifications,
117  we analyzed four available euchromatin histone modifications at six developmental stages *°.
118  For each gene, we calculated the mean modification signal (background-subtracted tag
119  density) separately for proximal promoters and for gene bodies **. Higher modification signal
120  genes tend to have lower variability for all histone modifications (Figure 3A). This supports a
121  role in minimizing transcriptional noise, and is consistent with previous studies in yeast and
2223

122  mammals

123
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125  Figure 3: Histone modification signal and expression variability
126 Red and blue represent histone modification signals calculated on the proximal promoter
127 (4kb around the transcription start site — TSS) and the gene body, respectively.

128  A. Spearman’s correlation coefficient between histone modification signal (background-

129 subtracted tag density) and expression variability. Here, for each gene, both its
130 variability and its histone modification signal are the mean value across stages. ***, P
131 <0.001; **, P<0.0I; * P <0.05 NS, P=0.05.

132 B. Proximal promoter H3K4Me3 signal (Z score relative to intergenic signal) in different

133 stages. Corresponding stages of our expression variability data are indicated below. The
134 lower and upper intervals indicated by the dashed lines ( “whiskers”) represent 1.5 times
135 the interquartile range (IQR), and the box shows the lower and upper intervals of IQR
136 together with the median. We performed pairwise Wilcoxon tests between any two stages
137 to test the significance. The multiple test corrected p-values (Benjamini—Hochberg method)
138 are shown in Table S3; they are all <107 except 4-8h vs. 12-16h, for which p-value = 0.68.
139  C. Gene body H3K4Me3 signal (Z score relative to intergenic signal) in different stages.
140 Corresponding stages of our single embryo BRB-seq data are indicated below. The lower
141 and upper intervals indicated by the dashed lines (“whiskers”) represent 1.5 times the
142 interquartile range (IQR), and the box shows the lower and upper intervals of IQR together
143 with the median. We performed pairwise Wilcoxon tests between any two stages to test the
144 significance. The multiple test corrected p-values (Benjamini—-Hochberg method) are
145 shown in Table $4; they are all < 107 except 0-4h vs. 20-24h, for which p-value = 0.26;
146 and 8-12h vs. 16-20h, for which p-value = 0.26.

147

148  The gene-level relation between histone modifications and expression variability raises the
149  possibility that the pattern of expression variability across development could be driven by

150  changes in histone modification signal. To compare histone modification signal between stages,
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151  we normalized gene and promoter signal by that on intergenic regions (Methods), which are
152  not expected to change histone modification signal between stages. All histone marks present
153  an hourglass-like pattern, with the highest signal at 8-12h (except for H3K4Mel on gene body,
154  where it is a local but not global maximum), corresponding to E3 and E4, i.e. the lowest
155  expression variability, for both promoters and gene body (Figures 3B-C, S11). Moreover, for
156  all histone marks on gene body, as well as H3K4Mel on promoters, there is another local
157  maximum at 16-20h, corresponding to E6. Generally, these results support changes in histone
158  modification signal over development, with a correspondence between stronger histone
159  modification signal and lower expression variability.

160

161  Several studies have suggested that mechanisms which confer robustness to stochastic
162  variation can also buffer the effects of genetic variation '**"**, If histone modifications can
163  buffer the effect of genetic variation on gene expression, we should observe that genes with
164  higher histone modification signal are less sensitive to mutations in their regulatory regions,
165 and are thus less conserved. Indeed, genes with higher histone modification signal tend to
166  have less conserved core promoter sequences > (49 bp upstream TSS and 10 bp downstream
167  from the TSS) between species (phastCons score; Figure 4A). They are also less conserved
168  within a population (promoter nucleotide diversity st; Figure S12). The phastCons pattern
169  remains using 200 bp or 400 bp regions, but disappears using 1 kb regions (Figure S13),
170  indicating a relatively narrow region around the TSS under this balance of selection and
171  robustness.

172
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Figure 4: Histone modification signal and promoter sequence conservation

The promoter sequence conservation is the mean of the phastCons score over experimentally

identified core promoter regions (49 bp upstream TSS to 10 bp downstream of the TSS) *.

A. Spearman’s correlation coefficient between histone modification signal (background-
subtracted tag density) and promoter sequence conservation. Red and blue represent
histone modification signals calculated from the proximal promoter (4 kb around the
TSS) and gene body respectively. Here, for each gene, the histone modification signal is
the mean value across stages. ***, P < 0.001; **, P < 0.01; *, P < 0.05, NS, P = 0.05.

B. Variation of promoter sequence conservation for stage specific genes. The number of
genes in each development stage is indicated below each box. We performed pairwise
Wilcoxon test between any two stages to test the significance. The multiple test corrected
p-values (Benjamini—Hochberg method) are shown in Table S5.

C. Transcriptome index of promoter phastCons score across development. The grey area

indicates 95% confidence interval estimated from bootstrap analysis.

Since histone modifications appear to buffer genetic variation in gene expression, and since
the E3 stage has stronger modification signals, the lower expression divergence in E3
between species ' might be caused either by stronger purifying selection on mutations in
regulatory regions, or by histone modifications buffering the consequences of mutations in
these regions. In the first case, we expect genes specifically expressed at E3 to have higher
sequence conservation on promoters. In the second case, we expect the opposite pattern,

since mutations that are buffered would behave nearly neutrally. To test this, we identified
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196  genes specifically expressed in each stage and compared their promoter sequence
197  conservation. We found that genes specific of E3 have a relatively weak promoter sequence
198  conservation (Figure 4B), supporting a stronger buffering mechanism rather than stronger
199  purifying selection on sequences. The transcriptome indexes of conservation and of diversity
200  (mean promoter sequence conservation and mean 7, respectively, weighted by expression)
201  extend this observation to the full transcriptome (Figure 4C; Figure S14). These results
202  support a role of buffering effects on regulatory mutations in the hourglass pattern of
203  expression divergence in fly embryogenesis. Essential genes, and highly connected genes,
204  have lower variability (Figure S17), which supports that variability is detrimental, and that
205 mechanisms which reduce it are adaptive. Thus natural selection on robustness against
206  expression variability could contribute to the phylotypic stage conservation at
207  macroevolutionary scale.

208

209  We have found an uneven distribution of variability, and thus of robustness of the process
210  of gene expression, across development, which mirrors the hourglass Evo-Devo model '~.
211  Stage E3 is the most robust to stochastic variation on gene expression, with lower expression
212  variability, and is the phylotypic stage of fly, with conservation between species ’. Although
213  mutational robustness can evolve under natural selection theoretically *, the conditions are
214  too restrictive to be relevant in practice. We propose that the mutational buffering effect of
215  histone modifications is a by-product of selection for minimizing transcriptional noise. Thus,
216  our model is that selection for robustness to noise and environmental perturbations in a key
217 embryonic stage has led to the evolutionary conservation over large time scales which
218  characterizes the phylotypic stage.

219

220
221
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222 Methods

223 Availability of code

224  Data files and analysis scripts are available on GitHub:

225  https://github.com/ljljoling1010/expression-noise-across-fly-embryogenesis.
226

227  Availability of data

228  Expression datasets have been deposited to the Gene Expression Omnibus with accession
229  number GSE128370.

230

231  Embryo collection and RNA extraction

232 Fly lines (w'"®) were obtained from the Bloomington stock center and reared at room
233 temperature on a standard fly medium with 12 hours light dark cycle. The fly medium we used
234 is composed of: 6.2 g Agar powder (ACROS N. 400400050), 58.8 g Farigel wheat (Westhove
235 N. FMZH1), 58.8 g yeast (Springaline BA10), 100 mL grape juice; 4.9 mL Propionic acid
236  (SigmaN.P1386),26.5 mL of Methyl 4-hydroxybenzoate (VWR N. ALFAA14289.0) solution
237 (400 g/L) in 95% ethanol, 1 L Water. 100 to 150 flies were transferred to cages, which were
238  sealed to a grape agar plate (1:1 mixture of 6% agar and grape juice). We used 4 separate cages
239  to collect the embryos. The adults were kept overnight on this plate before being transferred to
240  anew plate supplemented with yeast paste. Synchronization of eggs on this plate lasted for 2
241  hours before being swapped with a new plate supplemented with yeast paste. We let the adults
242 lay eggs for 30 min before removing the plate and letting the eggs incubate for the desired time.
243 Eggs were harvested using the following protocol. First a 1:1 bleach (Reactolab 99412) 1x PBS
244 mix was poured on the plate and incubated for 2 min. During this incubation, we used a brush
245  to lightly scrape the surface to mobilize the embryos. We then poured the PBS-bleach mixture
246  through a sieve, washed the plate with 1x PBS, and poured the wash on the same sieve. We
247  washed the sieve several time with 1x PBS until the smell of bleach disappeared. Single
248  embryos were then manually transferred to Eppendorf containing 50 uL. beads and 350 uL
249  Trizol (lifetechnologies AM9738). The tubes were homogenized in a Precellys 24 Tissue
250  Homogenizer at 6000 rpm for 30 seconds. Samples were then transferred to liquid nitrogen for
251  flash freezing and stored at —80°C. For RNA extraction, tubes were thawed on ice,
252  supplemented with 350 uL. of 100% Ethanol before homogenizing again with the same
253  parameters. We then used the Direct-zol™ RNA Miniprep R2056 Kit, with the following

254  modifications: we did not perform DNAse I treatment, we added another 2 min centrifugation

10
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255 into an empty column after the RNA Wash step, finally elution was performed by adding 8 uL
256  of RNAse-free water to the column, incubation at room temperature for 2 min and then
257  centrifugation for 2 min. RNA was transferred to a low-binding 96 well plate and stored at -
258  80°C.

259

260  Bulk RNA Barcoding and sequencing (BRB-seq)

261  The BRB-seq is a technique for multiplexed RNA-seq ' which is able to provide high-quality
262 3’ transcriptomic data at a low cost (e.g. 10-fold lower than Illumina Truseq Stranded mRNA-
263  seq). The data (fastq files) generated from BRB-seq are multiplexed and asymmetrical paired
264  reads. Read R1 contains a 6 bp sample barcode, while read R2 contains the fragment sequence
265  to align to the reference genome.

266 1. Library preparation

267  RNA quantity was assessed using picogreen (Invitrogen P11496). Samples were then grouped
268  according to their concentration in 96-well plates and diluted to a final concentration
269  determined by the lowest sample concentration on the plate. RNA was then used for gene
270  expression profiling using BRB-seq. In short, the BRB-seq protocol starts with oligo-dT
271  barcoding, without TSO for the first-strand synthesis (reverse transcription), performed on each
272  sample separately. Then all samples are pooled together, after which the second-strand is
273  synthesized using DNA Polll Nick translation. The sequencing library is then prepared using
274  cDNA augmented by an in-house produced Tn5 transposase preloaded with the same adapters
275  (Tn5-B/B), and further enriched by limited-cycle PCR with Illumina compatible adapters.
276  Libraries are then size-selected (200 - 1000 bp), profiled using High Sensitivity NGS Fragment
277  Analysis Kit (Advanced Analytical, #DNF-474), and measured using Qubit dSDNA HS Assay
278  Kit (Invitrogen, #Q32851). In total, we generated four libraries. For details of library
279  information, please check Table S20.

280 2. Sequencing

281  Libraries were mixed in equimolar quantities and were then sequenced on an Illumina Hi-Seq
282 2500 with pair-end protocol (read R2 with 101 bp) at the Lausanne Genomic Technologies
283  Facility.

284

285 RNA-seq analysis

286 1. Generating expression matrix

11
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287  The fastq files were first demultiplexed by using the “Demultiplex” tool from BRB-seqTools
288  suite (available at https://github.com/Deplanckel.ab/BRB-seqTools). Then, we trimmed the

289  polyA sequences of the demultiplexed files by using the “Trim” tool. Next, the STAR aligner
290  *' was used to map the trimmed reads to the reference genome of fly Drosophila melanogaster
291  (BDGP6, Ensembl release 91 *). Finally, the read count of each gene was obtained with HTSeq
292 7

293 2. Filtering samples and genes

294  Low-quality samples need to be filtered out, since they might bias results of downstream
295  analyses. In order to assess sample quality, we calculated the number of uniquely mapped reads
296  and of expressed genes for each sample **. We removed samples with <0.3 million uniquely
297  mapped reads or with <4500 expressed genes (Figure S1). We confirmed that these filtered
298  samples are indeed outliers in a multidimensional scaling analysis (MDS) (Figure S15). Since
299  lowly expressed genes have larger technical error, to minimize the technical noise, we need
300 toremove lowly expressed genes as well. We first calculated counts per million (cpm) with
301  the edgeR package ** for each gene. Then we removed genes with mean cpm across samples
302 <1, as suggested by Lun et al.**. Finally, for the remaining genes, we re-transformed their
303  cpm values to the original count values for the downstream normalization analysis. After
304 filtering, we obtained an expression count matrix with 239 samples (Figure S2) and 8004
305 protein coding genes.

306 3. Normalization and batch effect correction

307 Because BRB-Seq retains only the 3’ end of the transcript, we performed sample
308  normalization by using quantile normalization with log transformation in the voom package *°,
309  but without transcript length normalization. To remove potential batch effects across the
310  four libraries, we applied the ComBat function in the sva package *’ to the normalized and
311  log2 transformed expression data. For genes with expression values less than 0 after Combat,
312 or with original expression values equal to 0, we change its values to 0 after Combat
313  correction as suggested by Kolodziejczyk et al **.

314

315 Multidimensional scaling analysis (MDS)

316 A number of factors could be invoked to explain the two groups observed in our
317  multidimensional scaling analysis (MDS) (Figure 1B), but they should also explain that only
318  one group is structured according to developmental time. The obvious hypothesis that they

319  correspond to male and female embryos does not explain that structure, and is also not
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320  supported by examining X/autosome gene expression ratios (Figure S16). An alternative
321  hypothesis is that samples in the small cluster are unfertilized eggs. If an egg is not fertilized,
322  after completion of meiosis, development will be arrested *°, but they are visually
323  indistinguishable. This hypothesis is confirmed by at least two lines of evidence, in addition
324 to the lack of developmental time structure. First, for expression correlation, all samples in
325  the small cluster are highly correlated with unfertilized egg, while the correlations in the
326  other samples gradually decrease with development (Figure S3A). Second, all the samples
327  from the small cluster are enriched with meiosis related genes (Figure S3B). Thus we
328 excluded the small cluster for downstream analyses, i.e. we used 150 embryos with an
329  average of 18 individuals per developmental stage.

330

331  Metrics of expression variability

332 Expression variability is generally measured by the coefficient of variation (CV) *. However,
333  agene’s CV is strongly dependent on its RNA abundance (Figure S4). While this is an inherent
334  property of time-interval counting processes (such as a Poisson process), it makes the
335  comparison of variability between different conditions difficult ***'. Distance to median (DM,
336 the distance between the squared CV of a gene and its running median) has been proposed as
337  a variability metric that is independent of expression level **'**. However, the DM is still
338  strongly negatively correlated with the mean expression level in our data (Figure S5). To avoid
339  this dependency, we developed another variability measure, the adjusted standard deviation
340  (adjusted SD), by calculating the ratio between observed SD and expected SD. Following the
341  same approach as Barroso et al. ¥, we performed polynomial regressions to predict the
342 expected SD from mean expression. Since the adjusted SD metric works much better than DM
343  interms of accounting for the confounding effects of mean expression (Figure S6), we adopted

4244 we found that

344 it as a measure of expression variability in our study. As observed in yeast
345  essential genes and hubs (proteins in the center of protein-protein interaction network) have
346  lower expression variability than other genes (Figure S17), indicating selection to reduce it.
347  This observation provides a control that we are indeed measuring biologically relevant
348  expression variability.

349  Detailed calculation of expression variability:

350 1. Adjusted SD.

351  For each gene, we computed standard deviation (SD) in each stage and over all stages. Then

352  we fitted a polynomial model to predict the global (across all stages) SD from the global mean

13


https://doi.org/10.1101/700997
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/700997; this version posted July 31, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

353  expression. We increased the degrees of the model until there was no more significant
354  improvement (tested with ANOVA, p<0.05 as a significant improvement). Then, based on this
355  best fitting model, for each gene, we computed its predicted global SD based on its global mean
356  expression. Finally, the adjusted SD of a gene in one stage is this gene’s SD in its corresponding
357  stage divided by its predicted global SD. This method is derived from Barroso et al. **, but
358  computing adjusted SD rather than adjusted variance.

359 2. Distance to median: the distance between the squared coefficient of variation (CV) of a
360 gene and its running median.

361  Foreach gene, we computed its squared CV in each stage and over all stages. Then, we ordered
362  genes based on their global (across all stages) mean expression. Next, we defined series of
363 sliding windows of 50 genes with 25 genes overlap, starting from lowest global mean
364  expression. Finally, the distance to median of a gene in one stage is the stage specific log10
365 squared CV minus the median of global logl0 squared CV in this gene’s corresponding
366  window. R code was modified from the DM function of the scran package **.

367

368  Bootstrap analysis

369  For each stage, we randomly sampled the same number of samples. Then, we computed the
370  adjusted SD based on these random samples. We repeated the first two steps 500 times. Each
371  time, we only kept the median of the adjusted SD for each stage. Thus in each stage we obtained
372 500 medians. Finally, we performed a Wilcoxon test to test the significance of the difference
373  between the bootstrapped values of different stages.

374

375  ChIP-Seq data analysis

376 1. Histone modification signal datasets

377  The signal data files of four euchromatin histone modification marks (H3K4mel, H3K4me3,
378  H3K9ac, and H3K27ac) at six developmental stages (0-4h, 4-8h, 8-12h, 12-16h. 16-20h, 20-
379  24h) were downloaded from modENCODE ** (NCBI GEO: GSE16013) (March, 2018). The
380  signal is smoothed, background-subtracted tag density. The signal was precomputed along
381  the genome in 35-bp windows.

382 2. Histone modification signal for promoter and gene body

383  For each gene, as suggested by Nicolas et al. >, we separately calculated the mean signal
384  of its proximal promoter (2 kb upstream to 2 kb downstream for transcription start site (TSS))

385 and of its gene body (TSS to transcription end site (TES)) by using the bedtools “map”
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386  command *. The TSS and TES information was retrieved from Ensembl release 91 **. For
387  a gene with several TSS and TES, we use its mean coordinates.

388 3. Histone modification signal Z score transformation

389  For each modification mark in each stage, the signal value was transformed into a Z score by
390  subtracting the mean signal across intergenic regions and dividing by the standard deviation
391  signal of the intergenic regions. The intergenic region were defined by removing all proximal
392  promoter regions and gene body regions with the bedtools “subtract” command *. Our
393  assumption is that on average such intergenic regions are not the target of active histone
394  modification signal, and thus allow to normalize between libraries. Then, for each gene, we
395  re-calculated the mean signal (Z score) of its proximal promoter (2 kb upstream to 2 kb
396  downstream for transcription start site (TSS)) and of its gene body (TSS to transcription end
397  site (TES)) by using the bedtools “map” command *.

398

399 Identification of stage specifically expressed genes

400  Following the same approach as previously *, we first defined 8 stage specific expressed
401 artificial expression profile (Figure S18A). Then, for each gene, we performed Pearson’s
402  correlation between its real expression and this artificial expression. Finally, for each
403 artificial expression profile, we kept genes with top 10% correlation coefficient as the
404  corresponding stage specifically expressed genes (Figure S18B).

405

406 Identification of hourglass expression variability genes

407  Similar to the stage specifically expressed gene identification approach, we correlated each
408  gene’s variability profile with the median across all genes. Then, we kept genes with the top
409  10% correlation coefficient as the ones following the global hourglass variability profile.
410

411 Identification of genes expressed at all stages

412  For each gene, we calculated the average expression across replicates in each stage. Then,
413  we defined the average expression > 1 as expressed.

414

415 Identification of genes with constant expression across all stages

416  For each gene, we first preformed one-way analysis of variance (ANOVA) to compare the

417 means of expression in different stage. Then, we calculated the g-values for multiple test
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418  correction. Finally, the constantly expressed genes were defined as genes with g-values >
419  0.05.

420

421  Gene ontology (GO) enrichment analysis

422  We performed GO enrichment analysis for hourglass expression variability genes by using
423 the topGO *’ R package with the “elim” algorithm.

424

425  Single Nucleotide Polymorphism (SNP) data

426  The SNP data for 205 D. melanogaster inbred lines were downloaded from the Drosophila
427  Genetic Reference Panel (DGRP *) (December, 2018).

428

429  Nucleotide diversity () calculation

430  We calculated nucleotide diversity of promoters with vcftools *.

431

432  Transcriptome index analysis

n 50,51

433 A "transcriptome index is a weighted mean of a feature over all genes, where the

434  weights are the expression levels of the genes at each condition (e.g., developmental stage).

435  The transcriptome index of phastCons was calculated as:

n
phastCons; *e,
i=1

TPI,=

n

z Cis

436 :

437  where s is the developmental stage, phastCons; is the promoter sequence conservation score
438  of gene i, n is the total number of genes, and ¢;; is the expression level (log transformed) of
439  gene i in developmental stage s. For the transcriptome index of nucleotide diversity (5t) the
440  same formula is used, replacing phastCons, by .

441

442  Meiosis related genes and transcription factors

443 The Meiosis related genes and transcription factors were downloaded from AmiGO ** (May,
444 2018).

445

446  Individual unfertilized eggs RNA-seq data

447  The normalized and log transformed expression matrix of individual unfertilized eggs was

448  downloaded from NCBI GEO: GSE68062 ** (May, 2018).
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449

450  Dispersed and precise promoters

451  The annotation of genes with dispersed or precise promoters was downloaded from Schor et
452 al * (June, 2019). Dispersed promoters are often associated with ubiquitously expressed

453  genes, have more dispersed patterns of transcriptional initiation, and do not contain a TATA
454  box. On the contrary, precise promoters are typically associated with restricted tissue-specific
455  expression and with a TATA box, and have a single predominant TSS.

456

457  Essential gene annotation and protein connectivity datasets

458  The gene essentiality and protein connectivity datasets were downloaded from OGEE v2 **
459  (March, 2018).

460

461  PhastCons score

462  The pre-computed sequence conservation score phastCons > of fly genome was downloaded

463  from http://hedownload.soe.ucsc.edu/goldenPath/dm3/phastConsl5way/ (February, 2018).

464  Higher value means higher conservation.

465

466  Experimentally validated core promoters

467  Experimentally validated transcription start sites (TSSs) were downloaded from the
468  Eukaryotic Promoter Database (EPD) * (May, 2018). For a gene with several TSSs, we
469  selected the most representative one (the TSS that has been validated by the largest number
470  of samples). The core promoter region was defined as 49 bp upstream TSS to 10 bp
471  downstream of the TSS *°. We used EPD defined TSSs here because they are more accurate
472  for defining core promoters, whose function is expected to be related to sequence
473  conservation. Whereas for histone modification signal for promoter and gene body we used
474  Ensembl defined TSSs to be consistent with the source of TES information, and precision

475  was less important in defining broader proximal promoters.

476
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492  Supplementary figure legends

493  Figure S1: Relationship between uniquely mapped reads and expressed genes

494  Each dot represents one sample. The black dots indicate low quality samples with <4500
495  expressed genes or with <0.3 million uniquely mapped reads. The 239 orange colored samples
496  were retained for downstream analysis ("high quality samples").

497

498  Figure S2: Proportion of retained samples in each development stage

499  The number of retained samples and of total samples in each stage is indicated in the bottom
500  of each bar.

501

502  Figure S3: Evidence that the samples from the small cluster are unfertilized eggs

503  A. Boxplot of Spearman’s correlation coefficients (rho) of expression between individual

504 unfertilized eggs and each sample from the small cluster or from the large cluster, showing
505 that the small cluster has an expression profile of unfertilized eggs. The lower and upper
506 intervals indicated by the dashed lines (“whiskers”) represent 1.5 times the interquartile
507 range (IQR), and the box shows the lower and upper intervals of IQR together with the
508 median.

509 B. Expression heat map of meiosis related genes across all samples, showing that their
510 expression decreases over development for the large cluster, but is high in all samples of
511 the small cluster, consistent with unfertilized eggs.

512 For testing of an alternative explanation of the two clusters as being males and females, see
513  Figure S16.

514

515  Figure S4: Relationship between average expression and coefficient of variation at each
516  stage

517 Pearson’s correlation between average expression and coefficient of variation in each
518  development stage is indicated in the top left of each subfigure.

519

520  Figure S5: Relationship between average expression and distance to median at each stage
521  Pearson’s correlation between average expression and distance to median in each development
522  stage is indicated in the top left of each subfigure.

523

524  Figure S6: Relationship between average expression and adjusted SD at each stage
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525  Pearson’s correlation between average expression and adjusted SD in each development stage
526 s indicated in the top left of each subfigure.

527

528 Figure S7: Variation of expression variability across development using alternate
529  measures of variability

530  A. Variability measured by adjusted SD; unlike in Figure 2, the variability in E1 was
531 calculated using all samples from both small and large clusters.

532 B. Variability measured by coefficient of variation (CV).

533  C. Variability measured by distance to median (DM).

534  The legend is the same as for Figure 2. We performed pairwise Wilcoxon test between any
535  two stages to test the significance. The multiple test corrected p-values (Benjamini—-Hochberg
536  method) are shown in Tables S6, S7 and S8.

537

538  Figure S8: Bootstrap analysis of the variability calculation

539  We performed pairwise Wilcoxon test between any two stages to test the significance. The
540  multiple test corrected p-values (Benjamini-Hochberg method) are shown in Table S9.

541

542 Figure S9: Variation of expression variability across development for different categories
543  of genes

544  A. Genes with constant expression level over development.

545  B. Transcription factor.

546  The legend is the same as for Figure 2. We performed pairwise Wilcoxon test between any
547  two stages to test the significance. The multiple test corrected p-values (Benjamini—-Hochberg
548  method) are shown in Tables S10 and S11.

549

550 Figure S10: Variation of expression variability across development for dispersed
551 promoter genes and for precise promoter genes

552 For each stage, the first and the second box represents dispersed promoter genes and precise
553  promoter genes respectively. The legend is the same as for Figure 2. We performed pairwise
554  Wilcoxon test between any two stages to test the significance separately for dispersed promoter
555 genes and for precise promoter genes. The multiple test corrected p-values (Benjamini—
556  Hochberg method) are shown in Tables S12 and S13.

557
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558  Figure S11: Histone modification signal across development

559 The legend is the same as for Figure 3B and 3C. The median signal value in each
560 development stage is indicated above each box. We performed pairwise Wilcoxon test
561 between any two stages to test the significance. The multiple test corrected p-values
562  (Benjamini-Hochberg method) for H3K4Mel, H3K27Ac and H3K9Ac are shown in Tables
563  S14-S109.

564

565  Figure S12: Spearman’s correlation coefficient between histone modification signal
566 and promoter nucleotide diversity (7).

567  The legend is the same as for Figure 4A.

568

569  Figure S13: Spearman’s correlation coefficient between histone modification signal
570 and promoter sequence conservation for different definitions of promoter width

571  The figure legend is the same as in Figure 4A.

572 A. Promoter defined as 200 bp around TSS

573  B. Promoter defined as 400 bp around TSS

574  C. Promoter defined as 1000 bp around TSS

575

576  Figure S14: transcriptome index of & across development.

577  The legend is the same as for Figure 4C.

578

579  Figure S15: Multidimensional scaling analysis for all samples

580 Different colors indicate different stages. The solid triangles represent high quality samples
581 according to Figure S1; the hollow triangles represent low quality samples which were
582  discarded.

583

584  Figure S16: Mapping of X/autosome gene expression ratios to the multidimensional
585  scaling analysis plot

586  We calculated the ratio of mean expression between genes from the X chromosome and from
587  the autosomes for each sample. Red represents high ratio, blue represents low ratio. For
588  Drosophila, dosage compensation is achieved by increasing expression of X chromosome
589  genes in males. Since the dosage compensation is still incomplete during development,

590  females should have a higher ratio of mean expression between genes from the X chromosome
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and from the autosomes. Here, we found both high ratio samples and low ratio samples are
well mixed in both the cluster and large clusters. Thus, we reject the hypothesis that the two

different clusters are due to sex.

Figure S17: Relationship between expression variability and protein importance

We used the average variability across all development stages.

A. We split genes into 10 equally sized bins based on expression variability. The proportion
of essential genes was fit by regression (the first degree of polynomial), whose R’ and p-
value are indicated in the top-left corner of each graph. The median expression variability
of each bin was plotted on the x-axis.

B. Spearman’s correlation between connectivity in a protein-protein interaction network and
expression variability. The coefficient and p-value are indicated in the top-right. Loess

regression lines are plotted in red.

Figure S18: Detection of stage specific genes

A. The artificial expression profile.

B. The expression of identified stage specific genes. The bold black line represents the
median expression, the two gray lines represent 25th and 75th quantiles of expression,

respectively.
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