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 2 

The evolution of embryological development has long been characterized by deep 13 

conservation. Both morphological and transcriptomic surveys have proposed a 14 

“hourglass” model of Evo-Devo 1,2. A stage in mid-embryonic development, the phylotypic 15 

stage, is highly conserved among species within the same phylum 3–7. However, the reason 16 

for this phylotypic stage is still elusive. Here we hypothesize that the phylotypic stage 17 

might be characterized by selection for robustness to noise and environmental 18 

perturbations. This could lead to mutational robustness, thus evolutionary conservation 19 

of expression and the hourglass pattern. To test this, we quantified expression variability 20 

of single embryo transcriptomes throughout fly Drosophila melanogaster embryogenesis. 21 

We found that indeed expression variability is lower at extended germband, the 22 

phylotypic stage. We explain this pattern by stronger histone modification mediated 23 

transcriptional noise control at this stage. In addition, we find evidence that histone 24 

modifications can also contribute to mutational robustness in regulatory elements. Thus, 25 

the robustness to noise does indeed contributes to robustness of gene expression to genetic 26 

variations, and to the conserved phylotypic stage.  27 

 28 

 29 

Phenotypes can vary even among isogenic individuals in homogenous environments, 30 

suggesting that stochastic effects contribute to phenotypic diversity 8,9. Gene expression 31 

variability among genetically identical individuals under uniform conditions, hereafter 32 

"variability", is one of the most important stochastic processes in the mapping of genotype to 33 

phenotype. It is caused by a combination of molecular noise (stochastic biochemical effects, 34 

e.g., transcriptional burst process based transcriptional noise) and other effects (variation in 35 

cells and their environment, e.g., distribution of molecules at cell division) 10–13. Precise 36 

regulation of gene expression is notably important during development 14, however, this 37 

process inevitably has to deal with stochasticity 15. This tension between precision and 38 

stochasticity in development raises questions, such as whether some stages are more robust to 39 

gene expression stochasticity. And whether natural selection against expression variability can 40 

transfer to mutational robustness, causing the evolutionary conservation of the phylotypic stage. 41 

To answer these questions, we investigated expression variability across fly embryonic 42 

development. 43 

 44 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 31, 2019. ; https://doi.org/10.1101/700997doi: bioRxiv preprint 

https://doi.org/10.1101/700997
http://creativecommons.org/licenses/by/4.0/


 3 

We generated 288 single embryo 3’ end transcriptomes using BRB-seq 16, at eight 45 

developmental stages covering the whole fly embryogenesis, with 3h intervals (Figure 1A). 46 

After quality control, 239 samples were kept (Figure S1, S2). On average, we obtained over 47 

5 million uniquely mapped reads of protein coding genes per embryo. Based on 48 

multidimensional scaling analysis (MDS), 150 embryos follow the developmental trajectory, 49 

while there is a small cluster of 89 embryos collected at different time points mixed together 50 

(Figure 1B). The samples in this cluster appear to be unfertilized eggs (Methods and Figure 51 

S3). All further analysis was performed only on the 150 fertilized embryos. 52 

 53 

 54 
Figure 1: Studying expression variability throughout embryogenesis 55 

A. Method outline. We performed single embryo BRB-seq16 at eight developmental stages, 56 

indicated by different colored dots. The number of samples collected at each stage is 57 

indicated in the colored triangles. Embryo images adapted from 17 and used with 58 

permission from Springer Nature (License Number: 4547630238607) and from the 59 

authors.   60 

B. Multidimensional scaling analysis (MDS) of 239 high quality samples. Different colors 61 

indicate different stages. The samples can be split into two groups: a small cluster in the 62 

top-left delimited by two red lines; and the remaining samples, which are organized 63 

according to embryonic stage. Only the 150 samples which follow embryonic stages 64 

were used for further analysis. 65 

 66 

We measured expression variability as Adjusted SD, standard deviation (SD) of expression 67 

between replicates corrected for expression level (Methods and Figures S4-6). This 68 

expression variability follows an hourglass pattern overall, with a global minimum at E3 69 

(Figure 2A), corresponding to the phylotypic stage of fly 7. There is also a local minimum 70 

at E6. This is consistent with the pattern of transcriptome divergence between fly and 71 
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 4 

mosquito Anopheles gambiae, with the global minimum at E3, and a local minimum at E6 72 
18. Our observations are robust to the use of different variability metrics (Figure S7), and to 73 

sampling (bootstrap analysis, Figure S8). Bootstrap results also suggest that the minimum 74 

of variability extends over E3 to E4. The embryo transcriptome is dominated by zygotic 75 

transcripts 2.5h after egg laying19, so the high variability in E1 and E2 is not directly caused 76 

by maternal transcripts. We didn’t find any significant functional enrichment for genes 77 

which follow the hourglass variability pattern. Overall, expression variability is not equally 78 

distributed throughout embryogenesis, and gene expression at the phylotypic stage appears 79 

more robust to stochastic factors than at other stages.  80 

 81 

 82 
Figure 2: The phylotypic stage (E3) has lower expression variability 83 

The number of individual samples used in each development stage is indicated below each 84 

box. The number of genes analyzed is indicated in the top-left corner of each plot. The lower 85 

and upper intervals indicated by the dashed lines (“whiskers”) represent 1.5 times the 86 

interquartile range (IQR), and the box shows the lower and upper intervals of IQR together 87 

with the median. The black dot in each box indicates the mean.  88 

A. Expression variability pattern of all genes which passed quality control. We performed 89 

pairwise Wilcoxon tests between any two stages to test the significance. The multiple test 90 

corrected p-values (Benjamini–Hochberg method) are shown in Table S1; they are all < 91 

10−7. 92 

B. Expression variability pattern of genes expressed at all stages. We performed pairwise 93 

Wilcoxon tests between any two stages to test the significance. The multiple test corrected 94 

0.
0

0.
5

1.
0

1.
5

2.
0

dj
us

te
d 

SD

●

●

●
●

●

●

●

●

n=11 n=24 n=27 n=14 n=21 n=18 n=21 n=14

E1 E2 E3 E4 E5 E6 E7 E8

0.
0

0.
5

1.
0

1.
5

2.
0

Ad
ju

st
ed

 S
D

●

●
●

●

●

●

●

●

n=11 n=24 n=27 n=14 n=21 n=18 n=21 n=14

E1 E2 E3 E4 E5 E6 E7 E8

A BAll genes Genes expressed at all stages

N=8004 N=4660

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 31, 2019. ; https://doi.org/10.1101/700997doi: bioRxiv preprint 

https://doi.org/10.1101/700997
http://creativecommons.org/licenses/by/4.0/


 5 

p-values (Benjamini–Hochberg method) are shown in Table S2; they are all < 10−5	except 95 

E2 vs. E4, for which p-values = 0.24. 96 

 97 

The variation in expression variability could either be due to changes in the set of active 98 

genes, with genes differing in their intrinsic variability levels, or to genome-wide changes 99 

in the regulation of variability. To test this, we first reproduced our results restricted to the 100 

subset of genes which are expressed at all stages. Under the first explanation, we would 101 

expect to lose the hourglass variability pattern, but the pattern is maintained (Figure 2B). 102 

We performed additional tests: restricting to genes with constant expression level over 103 

development (Figure S9A); restricting to transcription factors (Figure S9B); and contrasting 104 

genes with dispersed or precise promoters (Figure S10), following Schor et al 20. Dispersed 105 

promoters seem to be more robust to mutations, which might also translate into robustness 106 

to noise.  Despite a loss of power with fewer genes, there remains an hourglass pattern of 107 

expression variability in all cases. Interestingly, the precise promoter genes have higher 108 

variability than the dispersed promoter genes except at E3, thus a strongest hourglass pattern. 109 

Overall, these results suggest that the lower variability at E3 is due to genome-wide 110 

regulation mechanisms more than to changes in the gene set.  111 

 112 

Histone modifications can regulate transcriptional noise 21–25, notably through the 113 

modulation of transcriptional burst frequency 22–24. For example, high levels of histone 114 

modifications can increase chromatin accessibility, leading to an increase in transcriptional 115 

burst frequency, which leads to minimizing noise. To check this role of histone modifications, 116 

we analyzed four available euchromatin histone modifications at six developmental stages 26. 117 

For each gene, we calculated the mean modification signal (background-subtracted tag 118 

density) separately for proximal promoters and for gene bodies 23.  Higher modification signal 119 

genes tend to have lower variability for all histone modifications (Figure 3A). This supports a 120 

role in minimizing transcriptional noise, and is consistent with previous studies in yeast and 121 

mammals 22,23.  122 

 123 
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 124 
Figure 3: Histone modification signal and expression variability 125 

Red and blue represent histone modification signals calculated on the proximal promoter 126 

(4kb around the transcription start site – TSS) and the gene body, respectively.   127 

A. Spearman’s correlation coefficient between histone modification signal (background-128 

subtracted tag density) and expression variability. Here, for each gene, both its 129 

variability and its histone modification signal are the mean value across stages. ***, P 130 

< 0.001; **, P < 0.01; *, P < 0.05, NS, P ≥ 0.05. 131 

B. Proximal promoter H3K4Me3 signal (Z score relative to intergenic signal) in different 132 

stages. Corresponding stages of our expression variability data are indicated below. The 133 

lower and upper intervals indicated by the dashed lines (“whiskers”) represent 1.5 times 134 

the interquartile range (IQR), and the box shows the lower and upper intervals of IQR 135 

together with the median. We performed pairwise Wilcoxon tests between any two stages 136 

to test the significance. The multiple test corrected p-values (Benjamini–Hochberg method) 137 

are shown in Table S3; they are all <10−7	except 4-8h vs. 12-16h, for which p-value = 0.68. 138 

C. Gene body H3K4Me3 signal (Z score relative to intergenic signal) in different stages. 139 

Corresponding stages of our single embryo BRB-seq data are indicated below. The lower 140 

and upper intervals indicated by the dashed lines (“whiskers”) represent 1.5 times the 141 

interquartile range (IQR), and the box shows the lower and upper intervals of IQR together 142 

with the median. We performed pairwise Wilcoxon tests between any two stages to test the 143 

significance. The multiple test corrected p-values (Benjamini–Hochberg method) are 144 

shown in Table S4; they are all < 10−5 except 0-4h vs. 20-24h, for which p-value = 0.26; 145 

and 8-12h vs. 16-20h, for which p-value = 0.26. 146 

 147 

The gene-level relation between histone modifications and expression variability raises the 148 

possibility that the pattern of expression variability across development could be driven by 149 

changes in histone modification signal. To compare histone modification signal between stages, 150 
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we normalized gene and promoter signal by that on intergenic regions (Methods), which are 151 

not expected to change histone modification signal between stages. All histone marks present 152 

an hourglass-like pattern, with the highest signal at 8-12h (except for H3K4Me1 on gene body, 153 

where it is a local but not global maximum), corresponding to E3 and E4, i.e. the lowest 154 

expression variability, for both promoters and gene body (Figures 3B-C, S11). Moreover, for 155 

all histone marks on gene body, as well as H3K4Me1 on promoters, there is another local 156 

maximum at 16-20h, corresponding to E6. Generally, these results support changes in histone 157 

modification signal over development, with a correspondence between stronger histone 158 

modification signal and lower expression variability.  159 

 160 

Several studies have suggested that mechanisms which confer robustness to stochastic 161 

variation can also buffer the effects of genetic variation 14,27,28. If histone modifications can 162 

buffer the effect of genetic variation on gene expression, we should observe that genes with 163 

higher histone modification signal are less sensitive to mutations in their regulatory regions, 164 

and are thus less conserved. Indeed, genes with higher histone modification signal tend to 165 

have less conserved core promoter sequences 29 (49 bp upstream TSS and 10 bp downstream 166 

from the TSS) between species (phastCons score; Figure 4A). They are also less conserved 167 

within a population (promoter nucleotide diversity π; Figure S12). The phastCons pattern 168 

remains using 200 bp or 400 bp regions, but disappears using 1 kb regions (Figure S13), 169 

indicating a relatively narrow region around the TSS under this balance of selection and 170 

robustness. 171 

 172 
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 173 
Figure 4: Histone modification signal and promoter sequence conservation 174 

The promoter sequence conservation is the mean of the phastCons score over experimentally 175 

identified core promoter regions (49 bp upstream TSS to 10 bp downstream of the TSS) 29. 176 

A. Spearman’s correlation coefficient between histone modification signal (background-177 

subtracted tag density) and promoter sequence conservation. Red and blue represent 178 

histone modification signals calculated from the proximal promoter (4 kb around the 179 

TSS) and gene body respectively. Here, for each gene, the histone modification signal is 180 

the mean value across stages. ***, P < 0.001; **, P < 0.01; *, P < 0.05, NS, P ≥ 0.05. 181 

B. Variation of promoter sequence conservation for stage specific genes. The number of 182 

genes in each development stage is indicated below each box. We performed pairwise 183 

Wilcoxon test between any two stages to test the significance. The multiple test corrected 184 

p-values (Benjamini–Hochberg method) are shown in Table S5. 185 

C. Transcriptome index of promoter phastCons score across development. The grey area 186 

indicates 95% confidence interval estimated from bootstrap analysis. 187 

 188 

Since histone modifications appear to buffer genetic variation in gene expression, and since 189 

the E3 stage has stronger modification signals, the lower expression divergence in E3 190 

between species 7 might be caused either by stronger purifying selection on mutations in 191 

regulatory regions, or by histone modifications buffering the consequences of mutations in 192 

these regions. In the first case, we expect genes specifically expressed at E3 to have higher 193 

sequence conservation on promoters. In the second case, we expect the opposite pattern, 194 

since mutations that are buffered would behave nearly neutrally. To test this, we identified 195 
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 9 

genes specifically expressed in each stage and compared their promoter sequence 196 

conservation. We found that genes specific of E3 have a relatively weak promoter sequence 197 

conservation (Figure 4B), supporting a stronger buffering mechanism rather than stronger 198 

purifying selection on sequences. The transcriptome indexes of conservation and of diversity 199 

(mean promoter sequence conservation and mean π, respectively, weighted by expression) 200 

extend this observation to the full transcriptome (Figure 4C; Figure S14). These results 201 

support a role of buffering effects on regulatory mutations in the hourglass pattern of 202 

expression divergence in fly embryogenesis. Essential genes, and highly connected genes, 203 

have lower variability (Figure S17), which supports that variability is detrimental, and that 204 

mechanisms which reduce it are adaptive. Thus natural selection on robustness against 205 

expression variability could contribute to the phylotypic stage conservation at 206 

macroevolutionary scale. 207 

 208 

We have found an uneven distribution of variability, and thus of robustness of the process 209 

of gene expression, across development, which mirrors the hourglass Evo-Devo model 1,2. 210 

Stage E3 is the most robust to stochastic variation on gene expression, with lower expression 211 

variability, and is the phylotypic stage of fly, with conservation between species 7. Although 212 

mutational robustness can evolve under natural selection theoretically 30, the conditions are 213 

too restrictive to be relevant in practice. We propose that the mutational buffering effect of 214 

histone modifications is a by-product of selection for minimizing transcriptional noise. Thus, 215 

our model is that selection for robustness to noise and environmental perturbations in a key 216 

embryonic stage has led to the evolutionary conservation over large time scales which 217 

characterizes the phylotypic stage. 218 

 219 

 220 

  221 
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Methods 222 

Availability of code 223 

Data files and analysis scripts are available on GitHub: 224 

https://github.com/ljljolinq1010/expression-noise-across-fly-embryogenesis. 225 

 226 

Availability of data 227 

Expression datasets have been deposited to the Gene Expression Omnibus with accession 228 

number GSE128370.  229 

 230 

Embryo collection and RNA extraction 231 

Fly lines (w1118) were obtained from the Bloomington stock center and reared at room 232 

temperature on a standard fly medium with 12 hours light dark cycle. The fly medium we used 233 

is composed of: 6.2 g Agar powder (ACROS N. 400400050), 58.8 g Farigel wheat (Westhove 234 

N. FMZH1), 58.8 g yeast (Springaline BA10), 100 mL grape juice; 4.9 mL Propionic acid 235 

(Sigma N. P1386), 26.5 mL of Methyl 4-hydroxybenzoate (VWR N. ALFAA14289.0) solution 236 

(400 g/L) in 95% ethanol, 1 L Water. 100 to 150 flies were transferred to cages, which were 237 

sealed to a grape agar plate (1:1 mixture of 6% agar and grape juice). We used 4 separate cages 238 

to collect the embryos. The adults were kept overnight on this plate before being transferred to 239 

a new plate supplemented with yeast paste. Synchronization of eggs on this plate lasted for 2 240 

hours before being swapped with a new plate supplemented with yeast paste. We let the adults 241 

lay eggs for 30 min before removing the plate and letting the eggs incubate for the desired time. 242 

Eggs were harvested using the following protocol. First a 1:1 bleach (Reactolab 99412) 1x PBS 243 

mix was poured on the plate and incubated for 2 min. During this incubation, we used a brush 244 

to lightly scrape the surface to mobilize the embryos. We then poured the PBS-bleach mixture 245 

through a sieve, washed the plate with 1x PBS, and poured the wash on the same sieve. We 246 

washed the sieve several time with 1x PBS until the smell of bleach disappeared. Single 247 

embryos were then manually transferred to Eppendorf containing 50 µL beads and 350 µL 248 

Trizol (lifetechnologies AM9738). The tubes were homogenized in a Precellys 24 Tissue 249 

Homogenizer at 6000 rpm for 30 seconds. Samples were then transferred to liquid nitrogen for 250 

flash freezing and stored at –80°C. For RNA extraction, tubes were thawed on ice, 251 

supplemented with 350 µL of 100% Ethanol before homogenizing again with the same 252 

parameters. We then used the Direct-zol™ RNA Miniprep R2056 Kit, with the following 253 

modifications: we did not perform DNAse I treatment, we added another 2 min centrifugation 254 
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into an empty column after the RNA Wash step, finally elution was performed by adding 8 µL 255 

of RNAse-free water to the column, incubation at room temperature for 2 min and then 256 

centrifugation for 2 min. RNA was transferred to a low-binding 96 well plate and stored at -257 

80°C. 258 

 259 

Bulk RNA Barcoding and sequencing (BRB-seq)  260 

The BRB-seq is a technique for multiplexed RNA-seq 16 which is able to provide high-quality 261 

3’ transcriptomic data at a low cost (e.g. 10-fold lower than Illumina Truseq Stranded mRNA-262 

seq). The data (fastq files) generated from BRB-seq are multiplexed and asymmetrical paired 263 

reads. Read R1 contains a 6 bp sample barcode, while read R2 contains the fragment sequence 264 

to align to the reference genome. 265 

1. Library preparation 266 

RNA quantity was assessed using picogreen (Invitrogen P11496). Samples were then grouped 267 

according to their concentration in 96-well plates and diluted to a final concentration 268 

determined by the lowest sample concentration on the plate. RNA was then used for gene 269 

expression profiling using BRB-seq. In short, the BRB-seq protocol starts with oligo-dT 270 

barcoding, without TSO for the first-strand synthesis (reverse transcription), performed on each 271 

sample separately. Then all samples are pooled together, after which the second-strand is 272 

synthesized using DNA PolII Nick translation. The sequencing library is then prepared using 273 

cDNA augmented by an in-house produced Tn5 transposase preloaded with the same adapters 274 

(Tn5-B/B), and further enriched by limited-cycle PCR with Illumina compatible adapters. 275 

Libraries are then size-selected (200 - 1000 bp), profiled using High Sensitivity NGS Fragment 276 

Analysis Kit (Advanced Analytical, #DNF-474), and measured using Qubit dsDNA HS Assay 277 

Kit (Invitrogen, #Q32851). In total, we generated four libraries. For details of library 278 

information, please check Table S20. 279 

2. Sequencing  280 

Libraries were mixed in equimolar quantities and were then sequenced on an Illumina Hi-Seq 281 

2500 with pair-end protocol (read R2 with 101 bp) at the Lausanne Genomic Technologies 282 

Facility.  283 

 284 

RNA-seq analysis 285 

1. Generating expression matrix  286 
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The fastq files were first demultiplexed by using the “Demultiplex” tool from BRB-seqTools 287 

suite (available at https://github.com/DeplanckeLab/BRB-seqTools). Then, we trimmed the 288 

polyA sequences of the demultiplexed files by using the “Trim” tool. Next, the STAR aligner 289 
31 was used to map the trimmed reads to the reference genome of fly Drosophila melanogaster 290 

(BDGP6, Ensembl release 91 32). Finally, the read count of each gene was obtained with HTSeq 291 
33. 292 

2. Filtering samples and genes 293 

Low-quality samples need to be filtered out, since they might bias results of downstream 294 

analyses. In order to assess sample quality, we calculated the number of uniquely mapped reads 295 

and of expressed genes for each sample 34. We removed samples with <0.3 million uniquely 296 

mapped reads or with <4500 expressed genes (Figure S1). We confirmed that these filtered 297 

samples are indeed outliers in a multidimensional scaling analysis (MDS) (Figure S15). Since 298 

lowly expressed genes have larger technical error, to minimize the technical noise, we need 299 

to remove lowly expressed genes as well. We first calculated counts per million (cpm) with 300 

the edgeR package 35 for each gene. Then we removed genes with mean cpm across samples 301 

≤1, as suggested by Lun et al.34. Finally, for the remaining genes, we re-transformed their 302 

cpm values to the original count values for the downstream normalization analysis. After 303 

filtering, we obtained an expression count matrix with 239 samples (Figure S2) and 8004 304 

protein coding genes. 305 

3. Normalization and batch effect correction 306 

Because BRB-Seq retains only the 3ʹ  end of the transcript, we performed sample 307 

normalization by using quantile normalization with log transformation in the voom package 36, 308 

but without transcript length normalization. To remove potential batch effects across the 309 

four libraries, we applied the ComBat function in the sva package 37 to the normalized and 310 

log2 transformed expression data. For genes with expression values less than 0 after Combat, 311 

or with original expression values equal to 0, we change its values to 0 after Combat 312 

correction as suggested by Kolodziejczyk et al 38. 313 

 314 

Multidimensional scaling analysis (MDS) 315 

A number of factors could be invoked to explain the two groups observed in our 316 

multidimensional scaling analysis (MDS) (Figure 1B), but they should also explain that only 317 

one group is structured according to developmental time. The obvious hypothesis that they 318 

correspond to male and female embryos does not explain that structure, and is also not 319 
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supported by examining X/autosome gene expression ratios (Figure S16). An alternative 320 

hypothesis is that samples in the small cluster are unfertilized eggs. If an egg is not fertilized, 321 

after completion of meiosis, development will be arrested 39, but they are visually 322 

indistinguishable. This hypothesis is confirmed by at least two lines of evidence, in addition 323 

to the lack of developmental time structure. First, for expression correlation, all samples in 324 

the small cluster are highly correlated with unfertilized egg, while the correlations in the 325 

other samples gradually decrease with development (Figure S3A). Second, all the samples 326 

from the small cluster are enriched with meiosis related genes (Figure S3B). Thus we 327 

excluded the small cluster for downstream analyses, i.e. we used 150 embryos with an 328 

average of 18 individuals per developmental stage. 329 

 330 

Metrics of expression variability 331 

Expression variability is generally measured by the coefficient of variation (CV) 40. However, 332 

a gene’s CV is strongly dependent on its RNA abundance (Figure S4). While this is an inherent 333 

property of time-interval counting processes (such as a Poisson process), it makes the 334 

comparison of variability between different conditions difficult 38,41. Distance to median (DM, 335 

the distance between the squared CV of a gene and its running median) has been proposed as 336 

a variability metric that is independent of expression level 38,41,42. However, the DM is still 337 

strongly negatively correlated with the mean expression level in our data (Figure S5). To avoid 338 

this dependency, we developed another variability measure, the adjusted standard deviation 339 

(adjusted SD), by calculating the ratio between observed SD and expected SD. Following the 340 

same approach as Barroso et al. 43, we performed polynomial regressions to predict the 341 

expected SD from mean expression. Since the adjusted SD metric works much better than DM 342 

in terms of accounting for the confounding effects of mean expression (Figure S6), we adopted 343 

it as a measure of expression variability in our study. As observed in yeast 42,44, we found that 344 

essential genes and hubs (proteins in the center of protein-protein interaction network) have 345 

lower expression variability than other genes (Figure S17), indicating selection to reduce it. 346 

This observation provides a control that we are indeed measuring biologically relevant 347 

expression variability. 348 

Detailed calculation of expression variability: 349 

1. Adjusted SD.  350 

For each gene, we computed standard deviation (SD) in each stage and over all stages. Then 351 

we fitted a polynomial model to predict the global (across all stages) SD from the global mean 352 
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expression. We increased the degrees of the model until there was no more significant 353 

improvement (tested with ANOVA, p<0.05 as a significant improvement). Then, based on this 354 

best fitting model, for each gene, we computed its predicted global SD based on its global mean 355 

expression. Finally, the adjusted SD of a gene in one stage is this gene’s SD in its corresponding 356 

stage divided by its predicted global SD. This method is derived from Barroso et al. 43, but 357 

computing adjusted SD rather than adjusted variance. 358 

2. Distance to median: the distance between the squared coefficient of variation (CV) of a 359 

gene and its running median. 360 

For each gene, we computed its squared CV in each stage and over all stages. Then, we ordered 361 

genes based on their global (across all stages) mean expression. Next, we defined series of 362 

sliding windows of 50 genes with 25 genes overlap, starting from lowest global mean 363 

expression. Finally, the distance to median of a gene in one stage is the stage specific log10 364 

squared CV minus the median of global log10 squared CV in this gene’s corresponding 365 

window. R code was modified from the DM function of the scran package 34.  366 

 367 

Bootstrap analysis 368 

For each stage, we randomly sampled the same number of samples. Then, we computed the 369 

adjusted SD based on these random samples. We repeated the first two steps 500 times. Each 370 

time, we only kept the median of the adjusted SD for each stage. Thus in each stage we obtained 371 

500 medians. Finally, we performed a Wilcoxon test to test the significance of the difference 372 

between the bootstrapped values of different stages. 373 

 374 

ChIP-Seq data analysis 375 

1. Histone modification signal datasets  376 

The signal data files of four euchromatin histone modification marks (H3K4me1, H3K4me3, 377 

H3K9ac, and H3K27ac) at six developmental stages (0-4h, 4-8h, 8-12h, 12-16h. 16-20h, 20-378 

24h) were downloaded from modENCODE 26 (NCBI GEO: GSE16013) (March, 2018). The 379 

signal is smoothed, background-subtracted tag density. The signal was precomputed along 380 

the genome in 35-bp windows.  381 

2. Histone modification signal for promoter and gene body  382 

For each gene, as suggested by Nicolas et al. 23,  we separately calculated the mean signal 383 

of its proximal promoter (2 kb upstream to 2 kb downstream for transcription start site (TSS)) 384 

and of its gene body (TSS to transcription end site (TES)) by using the bedtools “map” 385 
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command 45. The TSS and TES information was retrieved from Ensembl release 91 32.  For 386 

a gene with several TSS and TES, we use its mean coordinates.  387 

3. Histone modification signal Z score transformation 388 

For each modification mark in each stage, the signal value was transformed into a Z score by 389 

subtracting the mean signal across intergenic regions and dividing by the standard deviation 390 

signal of the intergenic regions. The intergenic region were defined by removing all proximal 391 

promoter regions and gene body regions with the bedtools “subtract” command 45. Our 392 

assumption is that on average such intergenic regions are not the target of active histone 393 

modification signal, and thus allow to normalize between libraries. Then, for each gene, we 394 

re-calculated the mean signal (Z score) of its proximal promoter (2 kb upstream to 2 kb 395 

downstream for transcription start site (TSS)) and of its gene body (TSS to transcription end 396 

site (TES)) by using the bedtools “map” command 45. 397 

 398 

Identification of stage specifically expressed genes 399 

Following the same approach as previously 46, we first defined 8 stage specific expressed 400 

artificial expression profile (Figure S18A). Then, for each gene, we performed Pearson’s 401 

correlation between its real expression and this artificial expression. Finally, for each 402 

artificial expression profile, we kept genes with top 10% correlation coefficient as the 403 

corresponding stage specifically expressed genes (Figure S18B). 404 

 405 

Identification of hourglass expression variability genes 406 

Similar to the stage specifically expressed gene identification approach, we correlated each 407 

gene’s variability profile with the median across all genes. Then, we kept genes with the top 408 

10% correlation coefficient as the ones following the global hourglass variability profile.  409 

 410 

Identification of genes expressed at all stages 411 

For each gene, we calculated the average expression across replicates in each stage. Then, 412 

we defined the average expression > 1 as expressed.  413 

 414 

Identification of genes with constant expression across all stages 415 

For each gene, we first preformed one-way analysis of variance (ANOVA) to compare the 416 

means of expression in different stage. Then, we calculated the q-values for multiple test 417 
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correction. Finally, the constantly expressed genes were defined as genes with q-values > 418 

0.05.   419 

 420 

Gene ontology (GO) enrichment analysis 421 

We performed GO enrichment analysis for hourglass expression variability genes by using 422 

the topGO 47 R package with the “elim” algorithm.  423 

 424 

Single Nucleotide Polymorphism (SNP) data 425 

The SNP data for 205 D. melanogaster inbred lines were downloaded from the Drosophila 426 

Genetic Reference Panel (DGRP 48) (December, 2018).  427 

 428 

Nucleotide diversity (π) calculation 429 

We calculated nucleotide diversity of promoters with vcftools 49.  430 

 431 

Transcriptome index analysis  432 

A "transcriptome index" 50,51 is a weighted mean of a feature over all genes, where the 433 

weights are the expression levels of the genes at each condition (e.g., developmental stage). 434 

The transcriptome index of phastCons was calculated as:  435 

 436 
where s is the developmental stage, phastConsi is the promoter sequence conservation score 437 

of gene i, n is the total number of genes, and eis is the expression level (log transformed) of 438 

gene i in developmental stage s. For the transcriptome index of nucleotide diversity (π) the 439 

same formula is used, replacing phastConsi by πi. 440 

 441 

Meiosis related genes and transcription factors  442 

The Meiosis  related genes and transcription factors were downloaded from AmiGO 52 (May, 443 

2018).  444 

 445 

Individual unfertilized eggs RNA-seq data 446 

The normalized and log transformed expression matrix of individual unfertilized eggs was 447 

downloaded from NCBI GEO: GSE68062 53 (May, 2018). 448 
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 449 

Dispersed and precise promoters 450 

The annotation of genes with dispersed or precise promoters was downloaded from Schor et 451 

al 20 (June, 2019). Dispersed promoters are often associated with ubiquitously expressed 452 

genes, have more dispersed patterns of transcriptional initiation, and do not contain a TATA 453 

box. On the contrary, precise promoters are typically associated with restricted tissue-specific 454 

expression and with a TATA box, and have a single predominant TSS. 455 

 456 

Essential gene annotation and protein connectivity datasets 457 

The gene essentiality and protein connectivity datasets were downloaded from OGEE v2 54 458 

(March, 2018). 459 

 460 

PhastCons score 461 

The pre-computed sequence conservation score phastCons 55 of fly genome was downloaded 462 

from http://hgdownload.soe.ucsc.edu/goldenPath/dm3/phastCons15way/ (February, 2018). 463 

Higher value means higher conservation.  464 

 465 

Experimentally validated core promoters 466 

Experimentally validated transcription start sites (TSSs) were downloaded from the 467 

Eukaryotic Promoter Database (EPD) 29 (May, 2018). For a gene with several TSSs, we 468 

selected the most representative one (the TSS that has been validated by the largest number 469 

of samples). The core promoter region was defined as 49 bp upstream TSS to 10 bp 470 

downstream of the TSS 29. We used EPD defined TSSs here because they are more accurate 471 

for defining core promoters, whose function is expected to be related to sequence 472 

conservation. Whereas for histone modification signal for promoter and gene body we used 473 

Ensembl defined TSSs to be consistent with the source of TES information, and precision 474 

was less important in defining broader proximal promoters. 475 

  476 
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Supplementary figure legends 492 

Figure S1: Relationship between uniquely mapped reads and expressed genes 493 

Each dot represents one sample. The black dots indicate low quality samples with <4500 494 

expressed genes or with <0.3 million uniquely mapped reads. The 239 orange colored samples 495 

were retained for downstream analysis ("high quality samples"). 496 

 497 

Figure S2: Proportion of retained samples in each development stage 498 

The number of retained samples and of total samples in each stage is indicated in the bottom 499 

of each bar. 500 

 501 

Figure S3: Evidence that the samples from the small cluster are unfertilized eggs 502 

A. Boxplot of Spearman’s correlation coefficients (rho) of expression between individual 503 

unfertilized eggs and each sample from the small cluster or from the large cluster, showing 504 

that the small cluster has an expression profile of unfertilized eggs. The lower and upper 505 

intervals indicated by the dashed lines (“whiskers”) represent 1.5 times the interquartile 506 

range (IQR), and the box shows the lower and upper intervals of IQR together with the 507 

median. 508 

B. Expression heat map of meiosis related genes across all samples, showing that their 509 

expression decreases over development for the large cluster, but is high in all samples of 510 

the small cluster, consistent with unfertilized eggs.  511 

For testing of an alternative explanation of the two clusters as being males and females, see 512 

Figure S16. 513 

 514 

Figure S4: Relationship between average expression and coefficient of variation at each 515 

stage 516 

Pearson’s correlation between average expression and coefficient of variation in each 517 

development stage is indicated in the top left of each subfigure. 518 

 519 

Figure S5: Relationship between average expression and distance to median at each stage 520 

Pearson’s correlation between average expression and distance to median in each development 521 

stage is indicated in the top left of each subfigure. 522 

 523 

Figure S6: Relationship between average expression and adjusted SD at each stage 524 
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Pearson’s correlation between average expression and adjusted SD in each development stage 525 

is indicated in the top left of each subfigure. 526 

 527 

Figure S7: Variation of expression variability across development using alternate 528 

measures of variability 529 

A. Variability measured by adjusted SD; unlike in Figure 2, the variability in E1 was 530 

calculated using all samples from both small and large clusters. 531 

B. Variability measured by coefficient of variation (CV). 532 

C. Variability measured by distance to median (DM). 533 

The legend is the same as for Figure 2. We performed pairwise Wilcoxon test between any 534 

two stages to test the significance. The multiple test corrected p-values (Benjamini–Hochberg 535 

method) are shown in Tables S6, S7 and S8. 536 

 537 

Figure S8: Bootstrap analysis of the variability calculation 538 

We performed pairwise Wilcoxon test between any two stages to test the significance. The 539 

multiple test corrected p-values (Benjamini–Hochberg method) are shown in Table S9. 540 

 541 

Figure S9: Variation of expression variability across development for different categories 542 

of genes 543 

A. Genes with constant expression level over development. 544 

B. Transcription factor.  545 

The legend is the same as for Figure 2. We performed pairwise Wilcoxon test between any 546 

two stages to test the significance. The multiple test corrected p-values (Benjamini–Hochberg 547 

method) are shown in Tables S10 and S11. 548 

 549 

Figure S10: Variation of expression variability across development for dispersed 550 

promoter genes and for precise promoter genes 551 

For each stage, the first and the second box represents dispersed promoter genes and precise 552 

promoter genes respectively. The legend is the same as for Figure 2. We performed pairwise 553 

Wilcoxon test between any two stages to test the significance separately for dispersed promoter 554 

genes and for precise promoter genes. The multiple test corrected p-values (Benjamini–555 

Hochberg method) are shown in Tables S12 and S13. 556 

 557 
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Figure S11: Histone modification signal across development 558 

The legend is the same as for Figure 3B and 3C. The median signal value in each 559 

development stage is indicated above each box. We performed pairwise Wilcoxon test 560 

between any two stages to test the significance. The multiple test corrected p-values 561 

(Benjamini–Hochberg method) for H3K4Me1, H3K27Ac and H3K9Ac are shown in Tables 562 

S14-S19. 563 

 564 

Figure S12: Spearman’s correlation coefficient between histone modification signal 565 

and promoter nucleotide diversity (π). 566 

The legend is the same as for Figure 4A. 567 

 568 

Figure S13: Spearman’s correlation coefficient between histone modification signal 569 

and promoter sequence conservation for different definitions of promoter width 570 

The figure legend is the same as in Figure 4A. 571 

A. Promoter defined as 200 bp around TSS 572 

B. Promoter defined as 400 bp around TSS 573 

C. Promoter defined as 1000 bp around TSS 574 

 575 

Figure S14: transcriptome index of π across development.  576 

The legend is the same as for Figure 4C. 577 

 578 

Figure S15: Multidimensional scaling analysis for all samples  579 

Different colors indicate different stages. The solid triangles represent high quality samples 580 

according to Figure S1; the hollow triangles represent low quality samples which were 581 

discarded.  582 

 583 

Figure S16: Mapping of X/autosome gene expression ratios to the multidimensional 584 

scaling analysis plot 585 

We calculated the ratio of mean expression between genes from the X chromosome and from 586 

the autosomes for each sample. Red represents high ratio, blue represents low ratio. For 587 

Drosophila, dosage compensation is achieved by increasing expression of X chromosome 588 

genes in males.  Since the dosage compensation is still incomplete during development, 589 

females should have a higher ratio of mean expression between genes from the X chromosome 590 
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and from the autosomes. Here, we found both high ratio samples and low ratio samples are 591 

well mixed in both the cluster and large clusters. Thus, we reject the hypothesis that the two 592 

different clusters are due to sex.  593 

 594 

Figure S17: Relationship between expression variability and protein importance 595 

We used the average variability across all development stages. 596 

A. We split genes into 10 equally sized bins based on expression variability. The proportion 597 

of essential genes was fit by regression (the first degree of polynomial), whose R2 and p-598 

value are indicated in the top-left corner of each graph. The median expression variability 599 

of each bin was plotted on the x-axis. 600 

B. Spearman’s correlation between connectivity in a protein-protein interaction network and 601 

expression variability. The coefficient and p-value are indicated in the top-right. Loess 602 

regression lines are plotted in red. 603 

 604 

Figure S18: Detection of stage specific genes 605 

A. The artificial expression profile. 606 

B. The expression of identified stage specific genes. The bold black line represents the 607 

median expression, the two gray lines represent 25th and 75th quantiles of expression, 608 

respectively.  609 

  610 
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