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Summary (150 words)

High throughput single-cell RNA sequencing (sc-RNAseq) has become a frequently
used tool to assess immune cell function and heterogeneity. Recently, the combined
measurement of RNA and protein expression by sequencing was developed, which is
commonly known as CITE-Seq. Acquisition of protein expression data along with
transcriptome data resolves some of the limitations inherent to only assessing
transcript, but also nearly doubles the sequencing read depth required per single cell.
Furthermore, there is still a paucity of analysis tools to visualize combined transcript-
protein datasets.

Here, we describe a novel targeted transcriptomics approach that combines analysis
of over 400 genes with simultaneous measurement of over 40 proteins on more than
25,000 cells. This targeted approach requires only about 1/10 of the read depth
compared to a whole transcriptome approach while retaining high sensitivity for low
abundance transcripts. To analyze these multi-omic transcript-protein datasets, we
adapted One-SENSE for intuitive visualization of the relationship of proteins and

transcripts on a single-cell level.
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Introduction

While pioneering work almost 20 years ago illustrated the ability to study the
transcriptome at the single-cell level (Chiang and Melton, 2003; Phillips and Eberwine,
1996), recent advances in microfluidics and reagents allow the high-throughput
analysis of transcripts of 10* single cells in one experiment (Jaitin et al., 2014; Klein et
al., 2015; Macosko et al., 2015). Although several methods have been developed for
this purpose, currently the most widely adopted platform is a droplet-based
microfluidic system commercialized by 10x Genomics (Zheng et al., 2017).

Though analysis of transcript expression on the single cell level is a powerful tool to
characterize the relationship and functional properties of cells, it is imperative to
consider the relationship between transcript and protein when trying to extrapolate
biology. Typically, transcripts are expressed at a much lower level than proteins — for
example, murine liver cells have a median copy number of 43,100 protein molecules
but only 3.7 RNA molecules per gene (Azimifar et al., 2014). Similarly, the dynamic
range of expression is much greater for proteins with copy numbers spanning about 6-
7 orders of magnitude while transcript copy numbers span about 2 orders of
magnitude (Schwanhausser et al., 2011). Finally, the correlation of gene expression and
protein expression has been estimated to have a Pearson correlation coefficient
between 0.4 (Schwanhausser et al., 2011) and 0.6 (Azimifar et al., 2014). These
discrepancies in transcript and protein expression patterns are relevant for the
biological interpretation of single cell transcriptome data, but also pose analytical
challenges. Suitable approaches are required to visualize the data despite the

pronounced differences in abundance and dynamic range of expression.
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The parallel measurement of transcript and protein phenotype by sequencing has been
recently reported as cellular indexing of transcriptomes and epitopes (CITE-seq)
(Stoeckius et al., 2017) or RNA expression and protein sequencing (REAP-seq)
(Peterson et al., 2017). These technologies leverage existing sc-RNAseq platforms that
use an unbiased whole transcriptome (WTA) detection approach capturing cellular
mRNA via its poly-A tail, and utilize oligonucleotide-labelled antibodies (carrying unique
barcodes and also a poly-A tail) to interrogate surface protein abundance. Typically,
current droplet-based WTA approaches result in the detection of ~1000 unique
transcripts per single cell for the transcriptome (with a substantial fraction of these
transcripts encoding ribosomal proteins), while antibody panels of up to 80 targets
have been reported (Peterson et al., 2017).

Though proof-of-principle for this technology has been established, it remains unclear
how the sequencing-based antibody detection compares to established flow
cytometry-based assays in different experimental settings with regards to capturing the
dynamic range of protein expression and identifying low abundance protein
expression. In addition, the combined WTA plus protein approach can quickly become
resource intensive. Finally, droplet-based WTA pipelines may still miss specific
transcripts of interest if they are below the limit of detection, with current high
throughput chemistries capturing an estimated 10% of the total cellular mRNA (Zheng
et al., 2017).

Here, we report using a high throughput (>10* single cells) targeted transcriptomic
approach employing nanowells to capture single cells (Rhapsody platform,

commercialized by BD Biosciences) (Fan et al., 2015) in combination with
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88 oligonucleotide-barcoded antibodies (termed AbSeq). Specifically, we simultaneously
89 interrogated over 400 immune-related genes and 41 surface proteins that are
90 commonly used for immunophenotyping. We found that this targeted approach was
91 efficient at detecting low-abundance transcripts while only requiring about 1/10 of the
92 sequencing read depth needed for WTA, indicating that targeted transcriptomics is a
93 sensitive and cost-efficient alternative when the focus is on interrogating defined
94 transcripts. Of note, this approach clearly separated different memory T cell subsets as
95 well as regulatory T cells (Tregs) solely based on transcript information, which is often
96 difficult due to the low amount of RNA recovered from T lymphocytes (Zheng et al.,
97 2017). Furthermore, we used 30-parameter fluorescent-based flow cytometry to
98 measure the same proteins targets as in the multi-omic assay. Our data indicate that
99 the validation of oligonucleotide-barcoded antibody panels is necessary for meaningful
100 interpretation of the multi-omic data.
101 To demonstrate the sensitivity and robustness of the system we analyzed T and NK
102  cells before and after one hour of stimulation, revealing an unexpected disconnect in
103 transcript and surface expression levels of the commonly used early activation marker
104 CD69. Analysis of chemokine expression showed distinct phenotypes within the CD8*
105 T cell population as early as 60 minutes after stimulation, suggesting significant
106  heterogeneity within this compartment.
107  Finally, to visualize protein and transcriptome data in an intuitive single plot, we
108 adapted One-SENSE, which was originally developed for visualization of mass
109 cytometry data (Cheng et al., 2016). This adaptation allows for effective visualization

110 and identification of cellular phenotypes that differ either by transcript or by protein.
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111 Overall, we provide a methodological toolset for generating high throughput multi-omic
112  single cell data with a focus on maximizing target transcript sensitivity at minimal read
113  depth and an analytical tool to visualize these protein and transcript datasets.

114

115
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Results

Comparison of oligonucleotide-labelled antibody probes to high-dimensional flow
cytometry

For our reference data set we obtained peripheral blood mononuclear cells (PBMCs)
from three healthy control subjects carrying the HLA-A*02:01 allele, which allowed
isolation of EBV-specific CD8" T cells using an EBV-Tetramer reagent (Dunne et al.,
2002). To ensure sufficient cell numbers of these rare, antigen-specific T cells, we
enriched tetramer-positive T cells by fluorescence-activated cell sorting (FACS). In
parallel, we sorted CD45" live leukocytes from PBMCs (Figure 1A). Moreover, to
minimize batch effects during subsequent staining with 41 oligo-nucleotide labelled
antibodies (Figure 1B), we utilized a multiplexing protocol using barcoded cell-hashing
antibodies (Stoeckius et al., 2018). All samples were processed simultaneously using
the Rhapsody platform, a nano-well based cartridge system (Fan et al., 2015) for
single-cell RNA sequencing with a targeted approach focusing on 490 immune-
relevant transcripts (all targets are listed in Suppl Table 1). Following quality control
and removal of multiplets, we recovered 27,258 cells from the sequencing data, which
were evenly distributed across the three different donors.

First, we wanted to assess whether the surface protein phenotypes as defined by
sequencing match known biology. For this, we designed two optimized 30-parameter
immunophenotyping panels (adapted from (Mair and Prlic, 2018)) covering the same 41
protein targets in an overlapping fashion. We used these panels to stain whole
unsorted PBMC samples from the same 3 donors, down-sampled the cytometry data

to 27,000 cells and used biaxial gating to identify the main immune lineages of the
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139  myeloid compartment (Figure 1C) as well as the lymphoid compartment (Figure 1D). All
140 populations were present at comparable frequencies in the two different data sets

141 (Figure 1E and Figure 1F), with myeloid cells showing slightly lower abundance due to
142  the sorting procedure required to enrich EBV-Tetramer® cells as well as CD45" live

143  cells. Of note, even low-abundance cell populations such as CD1c* conventional

144  dendritic cells (cDCs) and crosspresenting CD141* cDCs were clearly identified by their
145  surface protein phenotype. Furthermore, the oligonucleotide-labelled antibodies

146  allowed to discriminate the CD45 splice variants CD45R0O and CD45RA, which cannot
147  be distinguished by 3’ transcriptomic analysis alone.

148  However, for the anti-TCRyd reagent we used, discordant patterns were observed

149  when comparing the expression within CD3* T cells to conventional flow cytometry

150 (Supplementary Figure 1A). This was not immediately evident when visualizing the data
151 on a heatmap (Supplementary Figure 1B), emphasizing the need for careful reagent
152  validation for sequencing-based protein measurements. Thus, we did not analyze y6 T
153  cells separately for the rest of our study. Furthermore, the CCR7 reagent delivered sub-
154  optimal but usable resolution (data not shown).

155

156  Targeted transcriptomics faithfully captures cellular heterogeneity similar to whole

157  transcriptome approaches at lower read depths

158 Next, we wanted to assess how well a targeted transcriptomics approach can identify
159 immune cell heterogeneity compared to a commonly used whole transcriptome (WTA)
160 pipeline. For this, we used a single donor and compared the resulting populations after

161 graph-based-clustering of the transcript data using the R package Seurat
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implementation of PhenoGraph at standard resolution settings (Butler et al., 2018;
Levine et al., 2015) (Figure 2A and Suppl. Figure 2A and 2B). For visualization, we used
uniform manifold approximation and projection (UMAP), a dimensionality reduction
approach that has recently been adopted for single-cell data (Becht et al., 2018;
Mclnnes et al., 2018). Overall, the targeted transcriptomic approach utilizing 490 genes
revealed similar or even improved resolution of known immune subsets in the
peripheral blood. In particular, CD4* T cells and CD8* T cells separated well, and we
observed regulatory T cells (Tregs) expressing FOXP3 and CTLA4 as a separate cluster
(Figure 2B). For verification of this Treg cluster, we utilized the corresponding protein
signature, which showed high expression of CD25, and low expression of CD127
(Figure 2C). Next, we compared the gene expression for four phenotypically similar
clusters in the WTA and the targeted transcriptomics data set, showing very similar
patterns for the top differentially expressed genes (Suppl. Figure 2B). To obtain a
relative measure of detection efficiency, we calculated the average number of
transcripts per cell both for the targeted transcriptomics as well as the WTA data set
from the same donor. Around 75% of the assayed genes showed equal or slightly
superior detection efficiencies (Figure 2D), suggesting that targeted transcriptomics
can deliver valuable information at relatively low sequencing cost (i.e. approximately
2500 reads/cell).

Finally, to directly assess the effect of different read-depths on resolution of protein
and transcript signals, we analyzed a different donor to a total of approximately 27,000
reads/cell (approximately 18,000 reads/cell for the antibody library, 9,000 reads/cell for

the transcript library) and subsampled the number of reads used during processing of

Page 10


https://doi.org/10.1101/700534
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/700534; this version posted July 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

185 the raw data to 20% (approximately 4000 reads/cell for antibody library, 2000

186  reads/cell for transcript library) and 10%. Visualization of the resulting clusters on a
187 UMAP plot as well as the top-differentially expressed genes on a heatmap revealed no
188  major differences between using 100% or 20% of the reads (Supplementary Figure
189  2C). For the protein signal, the same was observed, while using only 10% of the reads
190 resulted in noticeable loss of signal intensities (Supplementary Figure 2D). Overall, we
191 conclude that using at least 2000 reads/cell for the transcript portion of the library and
192 at least 200 reads/antibody/cell for the antibody portion of the antibody library delivers
193  sufficient resolution.

194

195  Multi-omic analysis identifies canonical memory T cell populations and allows the study
196  of rare-antigen specific CD8" T cells

197 To test the value of multi-omic single cell analysis on a specific subset of the immune
198 compartment, we performed an in-depth analysis of the CD8" T cell compartment.

199  First, we visualized protein and RNA data collected from total CD45" live cells from
200 PBMCs from three patents on separate UMAP plots (Fig 1A). We found that cells from
201  different donors comingled and separated by cell type rather than by donor,

202  suggesting that batch effect across donors was minimal (Figure 3A). Of note, protein
203 information overlayed on the transcript-generated UMAP plot allowed accurate

204 identification of all main immune clusters (Figure 3B), which is not necessarily the case
205 when using transcript information for the corresponding lineage markers. This is

206 exemplified by biaxial plots showing protein signal on the y-axis and transcript signal

207 on the x-axis (Figure 3C): While for CD8A, transcript and protein are co-expressed in
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most cells, only half of the CD4-protein* (throughout the manuscript abbreviated as
CD4-P) cells contained detectable CD4-transcript. In turn, there were other molecules
of interest where the inverse was observed: CD69-RNA (plotted on the x-axis) was
detected across a large number of T cells, but as expected only few T cells in the
peripheral blood express CD69 protein (CD69-P, plotted on y-axis) on their surface.
For CD27, we observed a higher correlation between transcript and protein (Figure 3C).
Overall, these observations emphasize the importance of parallel measurement of
protein and transcript to faithfully study T cell biology.

Next, we continued our analysis of CD3*CD4 CD8* T cells as defined by surface protein
expression using SCAMP (Selected Clustering Annotated using Modes of Projections)
(Greene et al., 2018). Unbiased graph-based clustering using transcript information
suggested the presence of 5 distinct cellular clusters (Figure 3D). Visualization of the
top differentially expressed genes such as SELL (encoding CD62L), CCR7 and GZMB
suggested that these 5 clusters reflect canonical naive and memory T cell populations
(Sallusto et al., 1999) (Figure 3E). Additionally, our data allowed identification of CD8*
mucosal associated invariant T (MAIT) cells, which express high levels of IL18RAP and
TNF (Slichter et al., 2016) (Mori et al., 2016). We confirmed the resemblance of these
populations by surface protein expression (Figure 3F), with central memory CD8* T
cells expressing low levels of CD45RA-protein, and high CD27- and CD28-protein
(Sallusto et al., 2004) (Hamann et al., 1997). Of note, the splice variants CD45R0 and
CD45RA cannot be distinguished by analyzing transcript alone, highlighting the added

value of combined protein and transcript analysis.
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230 To visualize the correspondence between transcript and protein expression in the

231  multi-omic data set, we adopted One-SENSE, which has originally been developed for
232 biologically meaningful visualization of mass cytometry data (Cheng et al., 2016). For
233  this, we mapped cells separately by proteins and transcripts each on to a single UMAP
234 dimension, similar to a recently published 1D t-stochastic neighbor embedding (t-SNE)
235 representation for sc-RNA sequencing data (Linderman et al., 2019). The combined
236  plot shows the overall distribution of protein expression profiles in the x-axis and the
237  top-differentially expressed gene profiles on the y-axis. Aligned heatmaps that

238 represent median expression with bins of cells are provided to annotate the one-

239 dimensional UMAP protein and gene expression profiles. This approach allows easy
240 identification of cellular clusters that are similar by transcript, but separated by protein,
241 and vice versa (Figure 3G). One example for this is highlighted in Figure 3G (red box
242  and arrow), where cluster 2 (light green, containing TEMRA cells) is relatively

243  homogenous by transcript, but can be separated by CD56 protein expression,

244  probably marking some NKT cells. In turn, a fraction of cells between cluster 1 (dark
245  blue, effector memory CD8" T cells) and 2 (green, TEMRA) shares the same protein
246  signature, but can be distinguished by GNLY and GZMH expression (Fig. 3G, red box
247  and arrows). Varying degrees of concordance and ability to discriminate cellular

248  subsets from gene and protein expression profiles can be seen across this plot.

249  To determine if targeted transcriptomics is amenable for studying rare antigen-specific
250 T cell populations, we analyzed CD8* T cells recognizing an EBV-epitope (Dunne et al.,
251  2002). Visualization on the UMAP plot revealed remarkable similarity of EBV-specific T

252  cells across all three donors (Figure 3H). As expected, most of the cells grouped within
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the effector memory CD8" T cell cluster. However, relative to the EBV-nonspecific
memory T cell cluster the EBV-Tet" T cells showed a significant downregulation of the
effector molecule Granulysin, and an upregulation of YBX3, an RNA binding protein
whose function has not been defined in T cells, but has recently been shown to be a
critical regulator for the stability of specific mMRNAs (Cooke et al., 2019).

Overall, this data show that combining targeted transcriptomics and protein
phenotyping by sequencing is a valuable approach for studying T cell subsets and

could be used a resource-efficient tool for studying T cell responses in human disease.

Short-term stimulation of T and NK cells reveals chemokine heterogeneity and a
disconnect with the early activation marker CD69

Cytokines and chemokines are the quintessential effector molecules of T cells, and the
existence of specific T cell subsets that are poised for the production of certain
cytokines has been the subject of intense research over the past decade (van den
Broek et al., 2018; Zhou et al., 2009). To test whether multi-omic single-cell analysis
can provide additional insight, we purified pan T cells together with NK cells and
stimulated them for one hour with Phorbol-Myristate-Acetate (PMA) and lonomycin.
We probed early transcriptional changes with a T cell centric targeted transcriptomic
approach covering 259 genes. Transcripts encoding for IFNG, FASL and ICOS
exhibited robust upregulation in the stimulated versus unstimulated sample (Figure 4A),
as was the case for CD69, a commonly utilized protein marker for early T cell activation
(Figure 4B). Of note, when we analyzed cytokine expression relative to the surface

protein expression of CD69, we observed that both IFNg as well as TNF transcript was
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276  primarily expressed in CD69-transcript positive, but CD69-protein negative cells,

277  suggesting that during very early stages of activation, CD69 protein might not be an
278 ideal marker for T cell activation. However, FOSB, part of the transcription factor AP-1,
279  was co-expressed with CD69-protein (Figure 4B), suggesting a close relationship of
280 FOSB and CD69 expression.

281 We focused our further analysis on CD8* T cells only, though our data set also contains
282 information on NK cells. Projection on a UMAP plot showed 8 discernable clusters that
283  were selected manually. Protein expression patterns for CD45RA and CD45R0O

284  highlight the naive and the memory T cells within this plot (Figure 4C). A heatmap

285 visualization of the most highly expressed transcripts show that these clusters are

286  defined by differential expression of CCL3, CCL4, IFNG, TNF, and various granzymes
287  (Figure 4D). Overall, this analysis reveals considerable functional diversity within the
288 CD8' T cell compartment that is detectable as early as one hour after stimulation.

289

290  Multi-omic analysis of the peripheral myeloid compartment reveals inflammatory

291 subsets not captured by surface protein phenotype

292  Next, we wanted to assess whether the targeted transcriptomics approach can also be
293 used for other immune populations that are not as well studied as T cells. During the
294  past decade it has become evident that the myeloid cell compartment is complex in
295 terms of cellular heterogeneity (Guilliams et al., 2014; See et al., 2017; Villani et al.,

296 2017), and that commonly used bone-marrow derived differentiation protocols do not
297 faithfully capture the phenotype of myeloid cells in vivo (Guilliams and Malissen, 2016;

298 Helft et al., 2015). Thus, we tested how well targeted transcriptomics could dissect the
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heterogeneity of the peripheral myeloid compartment. Unbiased clustering using
transcript suggested the presence of 5 different populations (Figure 5A), with clear
separation for CD14 and CD16 protein expression (Figure 5B). As expected,
visualization of the top differentially expressed genes (Figure 5C) as well as key surface
proteins (Figure 5D) mapped these clusters to CD123" plasmacytoid dendritic cells
(pDCs), CD1c* conventional DCs (cDC2s), CD16* monocytes and CD14* monocytes.
We used One-SENSE to further explore the relationship between cluster 0 and 1,
revealing that these two populations were very similar in terms of surface protein
profile (CD14*CD16), but separated by a specific set of transcripts encoding for pro-
inflammatory cytokines and chemokines (Figure 5E). We confirmed that these
transcripts were part of differentially expressed genes as identified by MAST (Finak et
al., 2015), with higher expression in cluster 1 of CXCL3 and CCL4 (also known as MIP-
1b, a chemoattractant for natural killer cells) (Figure 5E). Thus, combining protein and
transcriptome data allowed us to observe multiple functional subsets within the
peripheral CD14" myeloid population which were not apparent by surface marker
expression alone. In summary, this data highlights that targeted transcriptomics can be

used for exploratory studies of different immune compartments.
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Discussion

Current efforts in the field of single cell analysis focus on the integrative measurement
of multiple modalities per cell. Ultimately, being able to analyze genome accessibility
status, transcript, regulatory RNAs and protein expression all together would allow a
holistic understanding of cellular function, but this has not been achieved yet (Stuart
and Satija, 2019). Arguably one of the most important steps on this trajectory has been
the ability to combine protein and transcript measurements by sequencing at the single
cell level using high-throughput methods (Peterson et al., 2017; Stoeckius et al., 2017).
However, with increased cell numbers, these combined measurements can quickly
become resource intensive, mostly due to the high number of sequencing reads that
are required per cell. Moreover, to fully leverage the advantage of multi-omic single-cell
analysis approaches, it is imperative to collect large cell numbers to adequately
represent low-abundance cellular populations such as antigen-specific T cells, or
antigen-presenting cells.

The targeted transcriptomic approach that we describe here provides an alternative
platform that significantly lowers the number of reads required for sequencing
saturation of transcript compared to whole transcriptome (WTA) approaches, but still
provides valuable information on up to 499 immune-centric genes. Though this
approach sacrifices the unbiased nature of WTA measurements, many immunological
applications center on a set of critical immune effector molecules, such as cytokines,
chemokines or transcription factors. Also, a targeted approach avoids the significant
number of reads used by transcripts encoding ribosomal proteins which are often also

captured using a poly-A based whole transcriptome workflow. Furthermore, as shown
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here, in some cases, targeted analysis can permit higher sensitivity when it comes to
detecting relatively low abundance genes. Overall, in many experimental setups it
might be beneficial to combine both approaches: first utilize a WTA platform to identify
potentially unknown transcripts, and then use a targeted approach (which can be
tailored towards gene sets of interest) for profiling larger cell numbers or interrogating
cellular responses to specific stimuli. We provide proof-of-concept data that as early
as one hour after stimulation CD8" T cells show heterogeneous patterns of chemokine
expression. Comprehensive chemokine and cytokine profiling of T cells after a very
short stimulus could be very valuable to gain additional insights into their function e.g.
in the context of cancer immunotherapy (Nagarsheth et al., 2017).

The decreased number of reads per cell required for targeted transcriptomics makes
the approach very suitable for combined profiling of transcript and protein for larger
number of cells. Doing so is particularly relevant in the context of T cell biology, where
well established T cell subsets, such as memory T cells and regulatory T cells (Tregs)
up to date have been difficult to resolve in some droplet-based sc-RNAseq studies
solely on the basis of transcript (Zheng et al., 2017). This has been attributed to the fact
that lymphocytes contain a relatively low amount of mRNA, which in combination with
the inherent drop-out rate of sc-RNAseq protocols fails to detect some low abundance
transcripts that are defining these cellular subsets (Stuart and Satija, 2019). This issue
can be alleviated by measuring surface protein markers such as the splice variants
CD45RA and CD45R0, which have been well studied in the context of naive and
memory T cells, or the IL-2 receptor alpha chain (CD25) and IL-7 receptor (CD127) for

the distinction of Tregs. In addition, parallel measurement of surface protein
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phenotypes allows to link novel cellular clusters (that are defined solely by transcript)
with a large body of literature that used to define cells by surface protein phenotype
only. Finally, the combined measurement approach can be useful to identify targets
with a significant disconnect between transcript and protein expression such as CD69,
probably indicative of active post-transcriptional modifications.

Of note, the development of novel technologies can sometimes outpace our ability to
validate platforms and reagents. Given that typical single cell sequencing experiments
require complex pre-processing steps and are often visualized using dimensionality
reduction techniques such as UMAP or t-SNE, there is a disconnect between the
actual raw data and the interpretation of final heatmaps. While this might be less of a
problem for transcript counts, antibody-based probes require careful validation. Here,
we have used high-dimensional cytometry, highlighting that not all reagents, even if the
same antibody clone is used, perform equally well in a multi-omic sequencing
experiment relative to conventional cytometry. Thus, with the more widespread
adoption of sequencing-based protein measurements, we argue that reagents need to
be carefully tested, preferably with parallel deposition in public databases.

Ultimately, to advance our understanding of biology the field relies on innovative
approaches to analyze and visualize complex high-dimensional data (Butler et al.,
2018; Cao et al., 2019; Stuart and Satija, 2019). Due to the different expression scales
this presents a challenge for combined protein-transcript data sets. To alleviate this
problem, we have adopted an analysis approach successfully used for high-
dimensional cytometry data, one-dimensional soli expression by nonlinear stochastic

embedding (One-SENSE) (Cheng et al., 2016). By visualizing the top-differentially
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387 expressed genes in one dimension relative to the measured protein phenotypes this
388 method allows to easily dissect cells that are similar in transcript, but different in
389 surface phenotype, and vice versa. This will be a useful tool for biologists to explore
390 future multi-omic data sets to extract biological meaning from these complex multi-
391 dimensional data.

392

393
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Figure Legends

Figure 1: Comparison of oligo-nucleotide antibody probes to high-dimensional
flow cytometry.

(A) Schematic graph describing the workflow of the experiment. PBMC samples from
three donors were split in half, with one aliquot used for the multi-omic workflow, and
one aliquot used for flow cytometry phenotyping using two 30-parameter panels. (B)
Overview of antibody targets used in both the multi-omic and conventional flow
cytometry experiment. (C) Manual gating of main immune subsets using the combined
AbSeq data set (upper panel, red) and concatenated and down-sampled events
(27,000 cells) from the conventional (conv) flow cytometry data set (lower panel, blue).
(D) Manual gating of various T cell markers using the combined AbSeq data set (upper
panel, red) and concatenated, down-sampled events from the cytometry data set
(lower panel, blue). (E) Quantification of main immune subsets in the AbSeq and flow
cytometry data set across the three different donors. (F) Quantification of main T cell
populations and selected phenotyping markers in the AbSeq and flow cytometry data

set across the three different donors.

Figure 2: Targeted transcriptomics faithfully captures cellular heterogeneity in
peripheral blood mononuclear cells.
(A) Graph-based clustering of the transcript data from one representative donor is

shown on a UMAP (uniform manifold approximation projection) plot. Clusters have
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441 been annotated by expression of key lineage genes. (B) The top 10-differentially

442  expressed genes for each cluster were identified using the Seurat implementation of
443  MAST (model-based analysis of single-cell transcriptomes) and visualized on a

444  heatmap after z-score normalization. Cluster names are shown in the same color

445 scheme as in (A). (C) Expression of the indicated transcripts and proteins on the three
446  different CD4"* T cell clusters, highlighting the CD25* CD127"" Treg cluster. (D) Relative
447  detection ratio of all detected transcripts relative to a whole transcriptome data set
448 from the same donor. Genes are manually assigned into four different groups

449  according to their relative detection ratio.

450

451  Figure 3: Multi-omic targeted transcriptomics identifies canonical memory T cell
452  populations and allows the study of rare-antigen specific CD8" T cells

453  (A) UMAP plots calculated on protein (left) or transcript (right) show that there is no
454  batch effect across the three donors analyzed. (B) Example UMAP plots (calculated on
455  transcript) representing the expression of the main immune lineage protein markers
456  which allow the unequivocal identification of CD4* and CD8* T cells, CD19" B cells, and
457 CD14* as well as CD16* myeloid cells. (C) Example plots showing the poor correlation
458  of transcript and protein levels for CD4 and CD69, and good correlation for CD8 and
459 CD27. Protein signal is plotted on the y-axis, transcript on the x-axis. (D) UMAP plot
460 and graph-based clustering of the CD3* CD8*CD4" T cell compartment, revealing 5
461  distinct populations. (E) Examples of top differentially expressed genes identified by
462  MAST for each of the 5 clusters highlighted in (D). (F) Protein signatures of the 5

463  clusters identified canonical naive and memory CD8* T cell subsets, including mucosal
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associated invariant T cells (MAIT cells). (G) One-SENSE plot depicting protein
expression heatmap along the x-axis, and transcript expression heatmap of the top
differentially expressed genes along the y-axis. (H) Identification of EBV-specific CD8*
T cells relative to all CD8* T cells, and expression pattern of two differentially
expressed genes between Tetramer-positive cells and Tetramer negative cells in the

effector memory cluster 1.

Figure 4: Multi-omic analysis of the T and NK cell compartment 1 hour after
stimulation

(A) Representative plots showing the upregulation of selected effector transcripts such
as IFNG, FASL and ICOS after stimulation (red) relative to unstimulated cells (blue). (B)
Disconnect between surface protein expression of the early activation marker CD69
and IFNG and TNF transcript within CD8-protein® T cells. Blue overlay indicated
unstimulated cells, red stimulated cells. (C) UMAP plot of CD8-protein* T cells with
manually identified clusters, and CD45RA and CD45RO0 protein expression. (D)
Heatmap showing the expression of key effector transcripts within the clusters

identified in (C).

Figure 5: Combined protein and transcript phenotyping of the peripheral myeloid
compartment reveals inflammatory subsets not captured by surface protein
phenotype

(A) UMAP plot and graph-based clustering of the peripheral non T/non NK/non B cell

compartment, revealing 5 distinct populations. (B) Heatmap overlay of CD14" and
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CD16-protein expression. (C) Heatmap of the top differentially expressed genes
identified by MAST for each of the 5 clusters highlighted in (A). (D) Protein signatures of
the 5 clusters identifies canonical CD123* plasmacytoid DCs, CD1c* conventional DCs
and CD16" monocytes, but two of the clusters mapping to CD14* monocytes. (E) One-
SENSE plot depicting protein expression heatmap along the x-axis, and transcript
expression heatmap of some of the top differentially expressed genes along the y-axis.
Red box and arrrows are highlighting the differentially expressed genes between
cluster 0 and 1. (F) Violin plots showing key genes of the respective myeloid population
(upper panel) and differentially expressed genes between cluster 0 and 1, suggesting
the presence of an inflammatory subpopulation within CD14* CD16~ monocytes that

expresses high levels of IL1B, TNF, CXCL3 and CCLA4.

Supplementary figure 1: Example for a poorly performing reagent

(A) Manual gating of main immune subsets using the combined AbSeq data set (upper
panel, red) and concatenated and down-sampled events from the flow cytometry data
set (lower panel, blue), highlighting the population of yd T cells. (B) Heatmap overlay of
the TCRgd signal on a CD4 vs CD8 plot for the AbSeq data set (upper panel) and flow

cytometry data set (lower panel).

Supplementary figure 2: Comparison of targeted transcriptomics to whole
transcriptome data (WTA) and assessment of required sequencing depth
(A) Graph-based clustering of WTA data obtained from the same donor as in main

Figure 2. (B) Four of the clusters that matched most closely in terms of their expression
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510 pattern were selected from both experiments and plotted using the top differentially
511 expressed genes obtained from the targeted transcriptomics approach. Heatmap

512 represents relative expression after z-score normalization. Left plot shows WTA data,
513  right plot shows targeted transcriptomic (cells obtained from the same donor). (C)

514 5,400 cells from a different donor were sequenced at a total depth of approximately
515 30,000 reads/cell. Upper panel depicts UMAP plot after graph-based clustering and a
516 heatmap of the top differentially expressed genes (z-score normalized expression) at
517 full read depth, lower panel using only 20% of the reads. Read depth per cell for the
518 transcript library is indicated on the right). Squared box on the UMAP plot indicates
519 one cluster that is separated as cluster 11 at full read depth, but pooled with cluster 8
520 at lower read-depth (D) Protein signals at the indicated read depths.

521
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522 STAR methods

523

524 Cells

525  Peripheral blood mononuclear cells (PBMCs) were obtained as cryopreserved samples
526  from healthy controls (Seattle Area Control Cohort) via the HIV Vaccine Trial network
527 (HVTN). Vials with cryopreserved cells were thawed at 37°C until a tiny ice crystal was
528 left in the tube, and then carefully diluted in 1mL of pre-warmed RPMI with 10% FBS
529 and transferred to a new tube. An additional 13 mL of pre-warmed RPMI with 10%
530 FBS were added drop by drop, followed by centrifugation for 5 minutes at 400g and
531 resuspension in 1 mL of RPMI.

532

533 Flow Cytometry and Cell sorting

534  For flow cytometric analysis good practices were followed as outlined in the guidelines
535  for use of flow cytometry (Cossarizza et al., 2017). Following thawing, PBMCs were
536 incubated with Fc-blocking reagent (BioLegend Trustain FcX, #422302) and fixable UV
537 Blue Live/Dead reagent (ThermoFisher, #L.34961) in PBS for 15 minutes at room

538 temperature. If required, cells were stained with an EBV-Tetramer reagent (peptide
539  YVLDHLIVV; Fred Hutch Immune Monitoring Core) diluted in FACS buffer (PBS with
540 2% FBS, Nucleus Biologics) for 30 minutes at room temperature, followed by two

541 washes. After this, cells were incubated for 20 minutes at room temperature with

542  antibody master mix freshly prepared in Brilliant staining buffer (BD Bioscience, #

543  563794), followed by two washes. All antibodies were titrated and used at optimal
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544  dilution, and staining procedures were performed in 96-well round-bottom plates.

545  Stained cells were fixed with 4% PFA for 20 minutes at room temperature, washed,
546  resuspended in FACS buffer and stored at 4°C in the dark until acquisition.

547  All samples were acquired using a FACSymphony A5 (BD Biosciences), equipped with
548 30 detectors and 355nm, 405nm, 488nm, 532nm and 628nm lasers and FACSDiva (BD
549 Biosciences). Detector gains were optimized using a modified voltage titration

550 approach (Perfetto et al., 2012) and standardized from day to day using 6-peak Ultra
551 Rainbow Beads (Spherotec, # URCP-38-2K). Single-stained controls were prepared
552  with every experiment using antibody capture beads diluted in FACS buffer (BD

553  Biosciences anti-mouse, #552843 and anti-rat, #552844). After acquisition, data was
554  exported in FCS 3.1 format and analyzed using FlowdJo (version 10.5.x, BD

555  Biosciences). Doublets were excluded by FSC-A vs FSC-H gating. For some of the
556 plots, the number of acquired cells was down-sampled using the appropriate FlowJo
557  plugin to match the number of cells analyzed by AbSeq.

558 All cell sorting was performed on a FACSAria Il (BD Biosciences), equipped with 20
559 detectors and 405nm, 488nm, 532nm and 628nm lasers. For all sorts, an 85 um nozzle
560 operated at 45 psi sheath pressure was used. Cells were sorted into chilled Eppendorf
561 tubes containing 500 pL of RPMI, washed once in PBS and immediately used for

562  subsequent processing.

563

564 Targeted Transcriptome and protein single-cell library preparation and

565 Sequencing
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CDA45* live PBMCs and EBV-tetramer® CD8"* T cells were sequentially labeled using
Single Cell Labelling with the BD Single-Cell Multiplexing Kit and BD AbSeq Ab-Oligos
reagents strictly following the manufacturers protocol (BD Biosciences). Briefly, cells
from each donor or subtype of cells (after sorting) were labelled with sample tags
(Stoeckius et al., 2018). Each sample was washed twice with FACS buffer before
pooling all samples together. Pooled samples were washed one more time and then
stained with AbSeq Ab-Oligos (BD Biosciences). The pooled sample was then washed
twice, counted and resuspended in cold BD Sample Buffer (BD Biosciences) to achieve
approximately 20,000 cells in 620 pl. Single cells from the pooled sample were isolated
using Single Cell Capture and cDNA Synthesis with the BD Rhapsody Express Single-
Cell Analysis System following the manufacturers protocol (BD Biosciences). After
priming the nanowell cartridges, the pooled sample was loaded onto two BD
Rhapsody cartridges and incubated at room temperature. Cell Capture Beads (BD
Biosciences) were prepared and then loaded onto the cartridge and incubated prior to
shaking at 1,000rpm at room temperature for 15 seconds on a ThermoMixer C
(Eppendorf). According to the manufacturers protocol, cartridges were washed, cells
were lysed, and Cell Capture Beads were retrieved and washed prior to performing
reverse transcription and treatment with Exonuclease |. cDNA Libraries were prepared
using mMRNA Targeted, Sample Tag, and BD AbSeq Library Preparation with the BD
Rhapsody Targeted mRNA and AbSeq Amplification and BD Single-Cell Multiplexing
Kits and protocol (BD Biosciences). In brief, cDNA underwent targeted amplification
using the Human Immune Response Panel primers and a custom supplemental panel

(all targets are listed in Supplementary Table 1) via PCR (10 cycles). PCR products
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589  were purified, and mMRNA PCR products were separated from sample tag and AbSeq
590 products with double-sided size selection using SPRIselect magnetic beads (Beckman
591  Coulter). mBRNA and Sample Tag products were further amplified using PCR (10

592 cycles). PCR products were then purified using SPRIselect magnetic beads. Quality
593 and quantity of PCR products were determined by using an Agilent 2200 TapeStation
594  with High Sensitivity D5000 ScreenTape (Agilent) in the Fred Hutch Genomics Shared
595  Resource laboratory. Targeted mRNA product was diluted to 2.5 ng/uL and sample tag
596 and AbSeq PCR products were diluted to 1 ng/uL to prepare final libraries. Final

597 libraries were indexed using PCR (6 cycles). Index PCR products were purified using
598 SPRIselect magnetic beads. Quality of final libraries was assessed by using Agilent

599 2200 TapeStation with High Sensitivity D5000 ScreenTape and quantified using a Qubit
600 Fluorometer using the Qubit dsDNA HS Kit (ThermoFisher). Final libraries were diluted
601 to 2nM and multiplexed for paired-end (150bp) sequencing on a HiSeq 2500 sequencer
602  (lllumina).

603

604 Whole Transcriptome single-cell library preparation and sequencing

605 cDNA libraries of CD45* Live PBMCs were generated using the Chromium Single Cell
606 3’ Reagent Kits v2 (10x Genomics) protocol targeting 5,000 cells in two separate wells.
607  Briefly, single cells were isolated into oil emulsion droplets with barcoded gel beads and
608 reverse transcriptase mix. cDNA was generated within these droplets, then the droplets
609  were dissociated. cDNA was purified using DynaBeads MyOne Silane magnetic beads

610 (ThermoFisher). cDNA amplification was performed by PCR (10 cycles) using reagents
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611  within the Chromium Single Cell 3’ Reagent Kit v2 (10x Genomics). Amplified cDNA
612  was purified using SPRIselect magnetic beads (Beckman Coulter). cDNA was

613 enzymatically fragmented and size selected prior to library construction. Libraries were
614 constructed by performing end repair, A-tailing, adaptor ligation, and PCR (12 cycles).
615 Quality of the libraries was assessed by using Agilent 2200 TapeStation with High

616  Sensitivity D5000 ScreenTape (Agilent). Quantity of libraries was assessed by

617 performing digital droplet PCR (ddPCR) with Library Quantification Kit for lllumina

618 TruSeq (BioRad). Libraries were diluted to 2nM and paired-end sequencing was

619 performed on a HiSeq 2500 sequencer (lllumina).

620

621 Cell Ranger processing for WTA data

622 Raw base call (BCL) files were demultiplexed to generate Fastq files using the

623  cellranger mkfastq pipeline within Cell Ranger 2.1.1 (10x Genomics). Targeted

624  transcriptome Fastqgs were further analyzed via Seven Bridges (BD Biosciences). Whole
625 transcriptome Fastq files were processed using the standard cellranger pipeline (10x
626  genomics) within Cell Ranger 2.1.1. Briefly, cellranger count performs alignment,

627 filtering, barcode counting, and UMI counting. The cellranger count output was fed into
628 the cellranger aggr pipeline to normalize sequencing depth between samples. The final
629  output of cellranger (molecule per cell matrix) was then analyzed in R using the

630 package Seurat (version 2.3 and 3.0) as described below.

631

632 Seven Bridges processing for targeted transcriptomics data
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633 Targeted transcriptomics Fastq files were processed via the standard Rhapsody

634 analysis pipeline (BD Biosciences) on Seven Bridges (www.sevenbridges.com). First,
635 R1 and R2 reads are filtered for high-quality reads, dropping reads that are too short
636 (less than 64 bases for R2) or have a base quality score of less than 20. Then, R1 reads
637 are annotated to identify cell label sequences and unique molecular identifiers (UMIs),
638 and R2 reads are mapped to the respective reference sequences using Bowtie2.

639  Finally, all valid R1 and R2 reads are combined and annotated to the respective

640 molecules. For all of our analysis, we utilized recursive substation error correction

641 (RSEC) as well as distribution-based error correction (DBEC), which are manufacturer-
642 developed algorithms correcting for PCR and sequencing errors. For determining

643  putative cells (which will contain many more reads than noise cell labels), a filtering
644  algorithm takes the number of DBEC-corrected reads into account, calculating the
645 minimum second derivative along the cumulative reads as the cut-off point. Final

646  expression matrices contain DBEC-adjusted molecule counts in a CSV format. For
647 further analysis, these molecule count tables were read into the R package Seurat

648 (version 2.3 and 3.0) using customized scripts and analyzed as described below.

649

650 Seurat workflow for targeted and WTA data

651 The R package Seurat (Butler et al., 2018) was utilized for all downstream analysis. For
652  whole transcriptome data, cells that had at least 200 genes (with < 20% being

653 mitochondrial genes) were included in analysis. A natural log normalization using a
654  scale factor of 10,000 was performed across the library for each cell. UMIs and

655 mitochondrial genes (only for WTA data) were linearly scaled to remove these variables
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656 as unwanted sources of variation. Dimensionality reduction using UMAP and clustering
657 was performed on a subset of variable genes. For targeted transcriptomics, no gene
658  per cell cutoffs were imposed, data were normalized with the same method. However,
659 when scaling data, UMI was the only regressed variable. Dimensionality reduction

660 using UMAP and clustering was based on either all genes or all proteins. For

661 differential gene expression analysis we utilized the Seurat implementation of MAST
662 (model-based analysis of single-cell transcriptomes) (Finak et al., 2015). For generation
663 of some FCS files the antibody molecule count tables were converted using the R

664 packages premessa and flowCore. FCS-files with antibody molecule count signals

665 were analyzed in FlowJo 10.5.x (BD Biosciences) using either an arcsin transform or
666  biexponential transform. All the scripts used, listing the detailed parameters for each
667  step are available at https://github.com/MairFlo/Targeted_transcriptomics. Raw data
668  will be deposited on the NCBI gene expression Omnibus at

669  https://www.ncbi.nlm.nih.gov/geo/.

670

671 Data processing for One-SENSE and generation of FCS files

672  CSV files of raw counts were converted to FCS files using a script adapted

673 from https://qist.github.com/yannabraham/c1f9de9b23fb94105ca5. Raw counts were

674 normalized based on total counts per cell, then scaled to a value of 10,000 based on
675 the Seurat normalization algorithm. A natural log transformation was applied to gene
676  expression data, while protein expression data was randomized by adding a random
677  uniform distribution from 0 to 1, followed by transformation with the function

678  arcsinh(x/5). Dimensionality reduction using UMAP was performed separately on all
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679 genes and proteins to reduce them to one dimension before plotting. Cells were also
680  split into 500 bins of equivalent width based on one-dimensional UMAP data, then
681 used to generate heatmaps colored by median marker intensity per bin. All scripts
682  used for data processing and plot generation are available at

683  https://github.com/MairFlo/Targeted_transcriptomics.

684
685
686
687
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Figure 1: Comparison of oligo-nucleotide antibody probes to high-dimensional flow cytometry.

(A) Schematic graph describing the workflow of the experiment. PBMC samples from three donors were split in half, with one
aliquot used for the multi-omic workflow, and one aliquot used for flow cytometry phenotyping using two 30-parameter panels.
(B) Overview of antibody targets used in both the multi-omic and conventional flow cytometry experiment.

(C) Manual gating of main immune subsets using the combined AbSeq data set (upper panel, red) and concatenated and
down-sampled events (27,000 cells) from the conventional (conv) flow cytometry data set (lower panel, blue).

(D) Manual gating of various T cell markers using the combined AbSeq data set (upper panel, red) and concatenated,
down-sampled events from the cytometry data set (lower panel, blue).
(E) Quantification of main immune subsets in the AbSeq and flow cytometry data set across the three different donors.

(F) Quantification of main T cell populations and selected phenotyping markers in the AbSeq and flow cytometry data set across the
three different donors.
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Figure 2: Targeted transcriptomics faithfully captures cellular heterogeneity in peripheral blood mononuclear cells.
(A) Graph-based clustering of the transcript data from one representative donor is shown on a UMAP (uniform manifold
approximation projection) plot. Clusters have been annotated by expression of key lineage genes.
(B) The top 10-differentially expressed genes for each cluster were identified using the Seurat implementation of MAST
(model-based analysis of single-cell transcriptomes) and visualized on a heatmap after z-score normalization. Cluster names are
shown in the same color scheme as in (A).
(C) Expression of the indicated transcripts and proteins on the three different CD4* T cell clusters, highlighting the CD25* CD127"

Treg cluster.

(D) Relative detection ratio of all detected transcripts relative to a whole transcriptome data set from the same donor. Genes are
manually assigned into four different groups according to their relative detection ratio.
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Figure 3: Multi-omic targeted transcriptomics identifies canonical memory T cell populations and allows the study of
rare-antigen specific CD8* T cells

(A) UMAP plots calculated on protein (left) or transcript (right) show that there is no batch effect across the three donors analyzed.
(B) Example UMAP plots (calculated on transcript) representing the expression of the main immune lineage protein markers which
allow the unequivocal identification of CD4* and CD8* T cells, CD19* B cells, and CD14+ as well as CD16* myeloid cells.

(C) Example plots showing the poor correlation of transcript and protein levels for CD4 and CD69, and good correlation for CD8 and
CD27. Protein signal is plotted on the y-axis, transcript on the x-axis.

(D) UMAP plot and graph-based clustering of the CD3* CD8* CD4- T cell compartment, revealing 5 distinct populations. (E)
Examples of top differentially expressed genes identified by MAST for each of the 5 clusters highlighted in (D).

(F) Protein signatures of the 5 clusters identified canonical naive and memory CD8* T cell subsets, including mucosal associated
invariant T cells (MAIT cells).

(G) One-SENSE plot depicting protein expression heatmap along the x-axis, and transcript expression heatmap of the top
differentially expressed genes along the y-axis.

(H) Identification of EBV-specific CD8* T cells relative to all CD8* T cells, and expression pattern of two differentially expressed
genes between Tetramer-positive cells and Tetramer negative cells in the effector memory cluster 1.
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Figure 4: Multi-omic analysis of the T and NK cell compartment 1 hour after stimulation

(A) Representative plots showing the upregulation of selected effector transcripts such as IFNG, FASL and ICOS after stimulation
(red) relative to unstimulated cells (blue).

(B) Disconnect between surface protein expression of the early activation marker CD69 and IFNG and TNF transcript within
CD8-protein* T cells. Blue overlay indicated unstimulated cells, red stimulated cells.

(C) UMAP plot of CD8-protein* T cells with manually identified clusters, and CD45RA and CD45RO0 protein expression.

(D) Heatmap showing the expression of key effector transcripts within the clusters identified in (C).
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Figure 5: Combined protein and transcript phenotyping of the peripheral myeloid compartment reveals inflammatory
subsets not captured by surface protein phenotype

(A) UMAP plot and graph-based clustering of the peripheral non T/non NK/non B cell compartment, revealing 5 distinct populations.
(B) Heatmap overlay of CD14- and CD16-protein expression.

(C) Heatmap of the top differentially expressed genes identified by MAST for each of the 5 clusters highlighted in (A).

(D) Protein signatures of the 5 clusters identifies canonical CD123* plasmacytoid DCs, CD1c* conventional DCs and CD16*
monocytes, but two of the clusters mapping to CD14* monocytes.

(E) One-SENSE plot depicting protein expression heatmap along the x-axis, and transcript expression heatmap of some of the top
differentially expressed genes along the y-axis. Red box and arrrows are highlighting the differentially expressed genes between
cluster 0 and 1.

(F) Violin plots showing key genes of the respective myeloid population (upper panel) and differentially expressed genes between
cluster 0 and 1, suggesting the presence of an inflammatory subpopulation within CD14+ CD16- monocytes that expresses high
levels of IL1B, TNF, CXCL3 and CCLA4.
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Supplementary figure 1: Example for a poorly performing reagent

(A) Manual gating of main immune subsets using the combined AbSeq data set (upper panel, red) and concatenated and
downsampled events from the flow cytometry data set (lower panel, blue), highlighting the population of y8 T cells. (B) Heatmap
overlay of the TCRy8 signal on a CD4 vs CD8 plot for the AbSeq data set (upper panel) and flow cytometry data set (lower panel).
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Supplementary figure 2: Comparison of targeted transcriptomics to whole transcriptome data (WTA) and assessment of

required sequencing depth

(A) Graph-based clustering of WTA data obtained from the same donor as in main Figure 2.
(B) Four of the clusters that matched most closely in terms of their expression pattern were selected from both experiments and
plotted using the top differentially expressed genes obtained from the targeted transcriptomics approach. Heatmap represents
relative expression after z-score normalization. Left plot shows WTA data, right plot shows targeted transcriptomic (cells obtained

from the same donor).

(C) 5,400 cells from a different donor were sequenced at a total depth of approximately 30,000 reads/cell. Upper panel depicts
UMARP plot after graph-based clustering and a heatmap of the top differentially expressed genes (z-score normalized expression) at
full read depth, lower panel using only 20% of the reads. Read depth per cell for the transcript library is indicated on the right).
Squared box on the UMAP plot indicates one cluster that is separated as cluster 11 at full read depth, but pooled with cluster 8 at

lower read-depth

(D) Protein signals at the indicated read depths.
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