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Abstract

The ability to sustain attention differs across people and changes within a single person over
time. Although recent work has demonstrated that patterns of functional brain connectivity
predict individual differences in sustained attention, whether these same patterns capture
fluctuations in attention in single individuals remains unclear. Here, across five independent
studies, we demonstrate that the sustained attention connectome-based predictive model
(CPM), a validated model of sustained attention function, generalizes to predict attention
changes across minutes, days, weeks, and months. Furthermore, the sustained attention CPM
is sensitive to within-subject state changes induced by propofol as well as sevoflurane, such
that individuals show functional connectivity signatures of stronger attentional states when
awake than when under deep sedation and light anesthesia. Together these results
demonstrate that fluctuations in attentional state reflect variability in the same functional

connectivity patterns that predict individual differences in sustained attention.
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Introduction

As anyone who has struggled to sit through an esoteric film or reached the end of a paragraph
without comprehending its content recognizes, we don’t sustain a continuous level of attention
at every point in time. Rather, we are frequently distracted by our external environment and our
own internal thoughts, and our level of focus fluctuates—intentionally or not (Seli et al., 2016)—
with factors including mindlessness, motivation, resource allocation, and arousal (Esterman and
Rothlein, 2019).

Functional MRI (fMRI) studies in humans have linked these moment-to-moment
attention fluctuations to ongoing activity in large-scale brain networks including the default
mode, dorsal attention, and salience networks (Christoff et al., 2009; Fortenbaugh et al., 2018;
Kucyi et al., 2016a; Leber, 2010; Rosenberg et al., 2015; Weissman et al., 2006). A growing
body of work has also related changes in fMRI and intracranial electroencephalography
functional connectivity to changes in attentional and cognitive states (Gonzalez-Castillo et al.,
2015; Kucyi et al., 2016b, 2018; Shappell et al., 2019; Shine et al., 2016a; Turnbull et al., 2019).
The degree to which functional connectivity dynamics reflect cognitive state dynamics rather
than physiological and measurement noise, however, is still debated (Calhoun et al., 2014;
Gonzalez-Castillo and Bandettini, 2018; Hutchison et al., 2013; Lurie, D. J. et al., 2018; Preti et
al., 2017). Furthermore, despite these advances, cognitive neuroscience lacks a
comprehensive, quantitative measure of intra-individual differences in sustained attention, or
changes in attention over time.

In contrast to the discussions on dynamics, there is growing consensus that models
based on individuals’ unique patterns of static functional brain connectivity can predict individual
differences in abilities including fluid intelligence (Finn et al., 2015; Greene et al., 2018), working
memory (Avery et al.; Galeano Weber et al.,, 2017; Yamashita et al., 2018), and attention
(Kessler et al., 2016; O’Halloran et al., 2018; Poole et al., 2016; Rosenberg et al., 2017; Yoo et
al.,, 2018). The most extensively validated connectome-based predictive model (CPM), the
sustained attention CPM (Rosenberg et al.,, 2016a), has generalized across six independent
data sets and participant populations to predict individuals’ overall sustained attention function
from data collected during rest and five different tasks (Fountain-Zaragoza et al., 2019; Jangraw
et al., 2018; Rosenberg et al., 2016a, 2016b, 2018a). Derived using a data-driven technique
(Shen et al., 2017), the sustained attention CPM comprises a distributed “high-attention”
network of functional connections, or edges, stronger in individuals with better sustained
attention function and a “low-attention” network of edges stronger in individuals with worse

sustained attention.
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Do these networks, which predict a person’s overall ability to maintain focus, also reflect
fluctuations in attentional state? Evidence does suggest that the sustained attention CPM is
sensitive to attention improvements following a pharmacological manipulation. That is, healthy
adults given a single dose of methylphenidate, a common attention deficit hyperactivity disorder
treatment, show higher high-attention network strength and lower low-attention network strength
than unmedicated controls (Rosenberg et al., 2016b). However, this between-subjects study did
not directly test whether changes in attention network strength mirror changes in attentional
state, and it remains an open question whether the same functional networks that predict
differences in attention between people also predict differences in attention within a single
person over time.

Here, in a series of five experiments, we ask whether the sustained attention CPM
predicts a person’s attention task performance—above and beyond predicting their overall level
of sustained attention function—during short experimental blocks and functional MRI sessions
spread across days, weeks, and months. Furthermore, we evaluate the model's sensitivity to
cognitive and attentional state changes resulting from pharmacological interventions by
comparing task-free functional connectivity before and after the administration of two
anesthetics, propofol and sevoflurane, with different mechanisms of action (for reviews see
Patel and Goa, 1996; Trapani et al., 2000). Our results replicate findings that the sustained
attention CPM generalizes to novel individuals to predict their average sustained attention
function, and moreover demonstrate that the model predicts minute-by-minute, day-by-day, and
drug-induced changes in attentional state. Thus, the same neuromarker predicts both inter- and
intra-individual differences in sustained attention, and fluctuations in functional connectivity
around a person’s mean “functional connectome fingerprint” in part reflect fluctuations in

behaviorally relevant attentional states.

Results

Experiment 1: Sustained attention network strength predicts minute-to-minute attention

fluctuations

As a first step, to test whether connectome-based models predict fluctuations in sustained
attention, we re-analyzed functional MRI data from 25 individuals performing a challenging

sustained attention task (the gradual-onset continuous performance task, or gradCPT,;
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Esterman et al., 2013) reported in previous work (Rosenberg et al., 2016). Each participant
performed up to three runs of the gradCPT during fMRI, and each run included four 3-min task
blocks separated by 32-sec rest breaks. During the task, participants saw city and mountain
photographs continuously transitioning from one to the next at a rate of 800 ms/image, and were
instructed to press a button in response to city scenes (90%) but not to mountain scenes (10%).

Mean gradCPT sensitivity (d) was 2.11 (s.d. = .92). Mean standard deviation of d'
across task blocks was .50, and mean coefficient of variation (standard deviation divided by the
mean) of d' across task blocks was 32%. Individuals’ overall d' scores were inversely related to
their coefficients of variation (rs = —.83, p = 2.09x107°) but not to their standard deviation of d'
across task blocks (rs = —.22, p = .28). Suggesting that changes in d' over time were, to some
degree, consistent across participants, performance fluctuations were significantly albeit weakly
correlated across individuals (mean pairwise Spearman correlation between participants’ d’

time-series = .083, p = .003 based on 10,000 permutations).

Predictions from task-block connectivity. To predict minute-by-minute gradCPT performance
from functional connectivity patterns, multiple functional connectivity matrices were generated
for each individual using a 268-node whole-brain functional atlas (Shen et al., 2013): one overall
task matrix from data concatenated across task runs, up to 12 task-block matrices from volumes
acquired during individual 3-min task blocks, and up to 9 rest-break matrices using volumes
acquired during 32-sec rest breaks. Using leave-one-subject-out cross-validation, connectome-
based models were trained to predict d' using n—1 participants’ overall task matrices, and then
applied to each of the held-out individual's task-block matrices to generate block-specific d’
predictions. This prediction pipeline replicated that of Rosenberg et al. (2016a), except that
models were applied to the held-out participant’s task-block matrices rather than to their overall
task matrix (see Methods for details).

At the group level, models trained on overall task matrices generalized to predict task
block-specific gradCPT performance in unseen individuals (mean within-subject Spearman
correlation between predicted and observed block-wise d'scores = .53, s.d. = .55; t,4, =5.46, p =
1.30x107°; Figures 1, 2). Predictions were significant at p < .05 in 12 of 25 participants based
on permutation tests. Importantly, these models, which predict block-specific gradCPT
performance, previously generalized to predict participants’ mean performance over the course

of the entire scan session (Rosenberg et al., 2016a).
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Predictions from rest-break connectivity. Task-based functional connectivity measured
during brief 3-min task blocks predicts block-specific task performance in individual subjects.
Thus, task-free functional connectivity patterns may also reflect transient attentional states. To
test this possibility, models trained on 24 participants’ overall task matrices were applied to each
of the left-out subjects’ rest-break matrices to generate a predicted d' score corresponding to
each rest break (6 for participants with two gradCPT runs and 9 for participants with three).
Because performance is not measured during rest breaks themselves, model performance was
assessed by correlating predictions with the d' scores from the preceding and following task
blocks. These models are referred to as the “pre-break” and “post-break” models, respectively.

Models trained on overall task matrices generalized to predict left-out individuals’
performance fluctuations from functional connectivity observed during task-free rest breaks.
Model predictions were significantly related to performance during the blocks immediately
preceding rest breaks (mean within-subject rs = .28, s.d. = .52; t,4 = 2.57, p = .017; Figure 1) as
well as performance during the blocks immediately following breaks (mean within-subject rs =
.26, s.d. = .52; t,4 = 2.35, p = .028; Figure 1). Predictions were significantly related to pre-break
behavior in 4 of 25 participants and to post-break behavior in 5 of 25 participants.

As expected, behavioral predictions from task-block connectivity patterns were more
accurate than those from rest-break patterns (task-block vs. pre-break: t,4 = 2.0, p = .057; task-
block vs. post-break: t,;, = 2.53, p = .018). Notably, however, predictions from rest-break
connectivity were not more strongly correlated with pre-break than post-break behavior (t,4 =
.20, p = .84), suggesting that functional connectivity patterns observed during mid-task rest
breaks reflect local attentional state rather than past or future attentional performance alone.

The accuracy of task-block and post-break model predictions was correlated across
participants, such that individuals whose attention fluctuations were better predicted from task-
block connectivity were also better predicted from rest-break connectivity (rs = .47, p = .018).
Pre-break model predictive power was not significantly related to post-break (rs = .16, p = .45) or

task-block model predictive power (rs = .27, p = .19).
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Figure 1. Within-subject Spearman correlations between block-wise d' scores and task-block
and rest-break predictions. Subject-level significance was determined with permutation testing.
Group-level significance (p < .03 for all three models) was assessed with a t-test between
observed and mean null correlations between predicted and observed behavior.
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Figure 2. Block-wise d' scores and task-block predictions from four representative individuals
(participant number corresponds to the order of bars in the top panel of Figure 1).

Individual differences in model performance. Task-block models more accurately predicted
attention fluctuations in participants with higher coefficients of variation (rs = .63, p = .001).
There was a trend such that task block models also better predicted performance in individuals
with lower overall d' values (rs = —.46, p = .021), although this relationship does not survive

Bonferroni correction for 6 post-hoc comparisons (3 models [task-block, pre-break, post-break]
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x 2 behavioral measures [d', coefficient of variation]). Overall d' and d' coefficient of variation

values were not significantly related to pre-break or post-break model accuracy (p values > .19).

Predictive network anatomy. Because feature-selection and model building steps replicated
those described in Rosenberg et al. (2016a), predictive networks are identical to those reported
previously. Briefly, across the 25 rounds of leave-one-out cross-validation, networks predicting
better d' scores included 1279-1540 functional connections (mean = 1426.7, s.d. = 73.9;
“positive networks”), and networks predicting worse d’' scores included 1099-1373 functional
connections (mean = 1251.1, s.d. = 68.1; “negative networks”). The 757 edges common to all
25 positive networks and the 630 edges common to all 25 negative networks comprise the high-
attention and low-attention networks, respectively (Figure 3). The high- and low-attention
networks are widely distributed across cortex, subcortex, and cerebellum, and are robust to
computational lesioning methods that exclude predictive nodes and edges in individual brain
lobes and canonical functional networks (Rosenberg et al., 2016a). Thus, the current results
demonstrate that the same distributed pattern of functional brain connectivity that predicts inter-

individual differences in sustained attention also predicts intra-individual differences in attention.
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Figure 3. Functional connections (edges) in the high-attention and low-attention networks
(Rosenberg et al., 2016a). Network nodes are grouped into macroscale brain regions; lines
between them represent edges. Line width corresponds to the number of edges between region
pairs. This figure was adapted with permission from Rosenberg & Chun (in press) and was
created using Circos (Krzywinski et al., 2009).
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Experiment 2: Sustained attention network strength predicts session-to-session changes

in attention

Experiment 1 used leave-one-subject-out cross-validation (i.e., internal validation) to
demonstrate that the same functional networks that predict individual differences in sustained
attention are sensitive to fluctuations in attention across 3-min task blocks. Here we test
whether a model defined using the full Experiment 1 data set, the sustained attention
connectome-based predictive model (CPM), predicts session-to-session variability in focus in
completely new individuals. To this end, we analyzed data collected as an independent group of
50 adults performed 10 min of the gradCPT during two MRI sessions approximately three
weeks apart. In this external validation sample, mean d' was 2.28 (s.d. = .77) in session 1 and
2.14 (s.d. = .99) in session 2. Performance scores were correlated across sessions (rs = .72, p =

3.78x107%) and did not significantly differ between session 1 and session 2 (f4 = 1.46, p = .15).

Attention predictions. The sustained attention CPM was applied to each participant’s session
1 and session 2 gradCPT matrices separately to predict session-specific d' scores. Briefly,
sustained attention CPM predictions are generated by inputting the difference between an
individual’s high-attention network strength and low-attention network strength into a linear
model whose coefficients were defined in previous work (Rosenberg et al.,, 2016a). Model
outputs correspond to predicted gradCPT d’ scores. In the current sample, predicted d' scores
were significantly correlated with true d' scores during the first (r; = .41, p = .0038) and second
(rs = .70, p = 2.00x107°) imaging sessions, demonstrating robust cross-data-set generalization
(Figure 4A). Furthermore, predicted d' was higher for participants’ better vs. worse scan
session (Lo = 3.64, p = 6.56x10™*), and the session with the higher predicted d' corresponded to
the session with the higher observed d’' in 34 out of 50 individuals (68%; Figure 4B). The
difference in d' between participants’ first and second gradCPT sessions was also correlated
with the difference in predicted d' for these sessions (rs = .62, p = 2.26x107°). Thus, the same
functional connectivity patterns that predict individual differences in sustained attention reflect

subtle within-subject changes in attentional performance, even in a highly reliable task.
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Figure 4. (A) The sustained attention CPM generalized to predict gradCPT performance during
two neuroimaging sessions. Individual participants are represented with one gray dot
corresponding to session 1 performance, and one blue dot corresponding to session 2
performance. (B) Histogram of the difference in predicted performance for each person’s better
and worse task sessions. Values greater than zero indicate that the model correctly predicted a
higher score for the better session.

Experiment 3: Sustained attention network strength predicts week-to-week changes in

attention in a single individual

We next investigated whether the sustained attention CPM is sensitive to within-subject
variability in sustained attention over the course of weeks and months. To this end, we analyzed
a longitudinal data set described in previous work (Salehi et al., 2018). This data set consisted
of 30 MRI sessions, each including a run of gradCPT performance, from a single individual
(RTC, a 56-year-old left-handed male) collected over ten months. Across all sessions, the
participant’'s mean gradCPT d'was 2.42 (range = 1.30-4.45; s.d. = .85). Performance increased
monotonically over the course of the sessions (Spearman rank correlation between d' and
session number; rs = .53, p = .003). Due to hardware variability, mean gradCPT trial length
ranged from 738 to 800 ms (mean = 778 ms, median = 794 ms, s.d. = 24.8 ms), and there was
a non-significant monotonic relationship between trial length and d', such that performance was

numerically higher on gradCPT runs with a slower stimulus presentation rate (rs = .28, p = .14).

Trait-like attention prediction. We first validated the sustained attention CPM by applying it to
predict this highly sampled individual’s average gradCPT performance, a trait-like measure of
sustained attention abilities. When the model was applied to the participant’'s mean gradCPT
functional connectivity matrix across all 30 sessions, predicted d' was remarkably similar to true
average performance (predicted mean d' = 2.37 vs. observed mean d' = 2.42). Prediction error

(i.e., the difference between observed and predicted mean d' values) was smaller than the
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absolute prediction error of the task-based model for any participant in Rosenberg et al (2016a),
despite the fact that the current data set is an external validation sample collected with different
scan parameters (Figure 5A). The lower absolute error here may arise because the current
data set includes more fMRI data per individual (165 min vs. 36 min) and/or reflects a more trait-
like estimate of the participant’s overall ability to maintain focus. Furthermore, suggesting that
prediction accuracy is not driven by regression to the training set mean, predicted mean d'is
closer to the participant’'s true mean d' than it is to the average d’' of all training subjects

(|predicted mean d' — observed mean d'| = .054; |predicted mean d' — training set mean d'| =
.26).

State-like attention predictions. We next applied the sustained attention CPM to data from
each scan session separately to generate session-specific d' predictions. Predictions were
positively correlated with observed d' values (rs = .42, p = .02; Figure 5B), which reflect both
state-like and trait-like aspects of sustained attention. Predictions remained significant when
controlling for mean trial duration and session number with partial correlation (partial rs = .39, p
= .04). As a post-hoc analysis, given that mean trial duration was non-normally distributed, we
divided runs based on a median split of trial duration and assessed predictive power separately
in each half. Predictions were significant in the 15 runs with faster trials (rs = .65, p = .0095) but
non-significant in the 15 runs with slower trials (rs = .04, p = .88). Thus, the same networks that
predict individual differences in attention, block-to-block fluctuations in an internal validation
data set, and session-to-session variability in an independent 50-person sample capture mean

performance and session-to-session fluctuations in a dense longitudinal phenotyping sample.
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Figure 5. The sustained attention CPM generalized to predict an individual’'s mean gradCPT
performance (A) as well as day-to-day fluctuations around this mean (B).
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Experiment 4: Propofol modulates sustained attention network strength

The sustained attention CPM captures within-subject changes in sustained attention across
minutes, days, and weeks. These attentional state changes likely result from fluctuations in
internal and external distraction, as well as variability in neurocognitive states such as
motivation and sleepiness. To characterize the sensitivity of the sustained attention CPM to a
completely different kind of attentional state change—one induced by pharmacological
manipulation—we analyzed MRI data collected from 21 adults while awake (eyes-closed rest)
and under deep sedation with propofol in the same imaging session (data set described in Qiu
et al.,, 2017). End-tidal CO,, a measure of carbon dioxide concentration at the end of an
exhalation, and heart rate did not significantly differ between the propofol and awake conditions.
Mean blood pressure was lower in the propofol condition but fell within the autoregulatory range
(Qiu et al., 2017).

As predicted, participants showed functional connectivity signatures of stronger
attention—nhigher high-attention network strength and lower low-attention network strength—
when awake than when under deep sedation (high-attention network: t, = 4.53, p = 2.03x10™*
[effect larger than effects on 93.07% of same-size random networks]; low-attention network: ty
= —7.71, p = 2.05x107" [effect larger than effects on 99.98% of same-size random networks];
Figure 6A). In other words, the sustained attention CPM was sensitive to an anesthesia-
induced attentional and cognitive state change.

Demonstrating the relative specificity of propofol effects to a priori attention networks,
the low-attention network showed a larger propofol effect than did any canonical resting-state
network (defined in Finn et al., 2015). The high-attention network showed a larger propofol
effect than all but within-default network connections, medial-frontal network-frontoparietal

network connections, and visual | network-visual association network connections (Figure 6B).
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Figure 6. Effects of propofol on functional network strength. A. High-attention and low-attention
network strength during the awake and deep sedation conditions. Network strength values were
z-scored within graph for visualization. Individual dots represent individual participants, gray
lines represent individual participant network strength change, and solid black lines indicate
group mean change. B. Differences in within-network and between-network strength (i.e.,
summed functional connectivity) during the awake and deep sedation conditions. Low-attention
network strength differed by condition more than any network pair in the lower right matrix; high-
attention network strength differed more than 33/36 pairs. *p < .05/38

Experiment 5: Sevoflurane modulates sustained attention network strength

We replicated effects of anesthesia on the sustained attention CPM’s high- and low-attention
networks using an independent sample of 11 adults scanned while awake, under light
anesthesia with sevoflurane, and recovering from anesthesia (data set described in Martuzzi et
al., 2010). Importantly, heart and respiratory rates, end-tidal CO,, and O, partial pressure, a
measure of blood oxygen saturation, did not significantly differ between the awake and
sevoflurane conditions. Although systolic, diastolic, and mean blood pressure decreased under
anesthesia, these changes fell within the autoregulatory range and were unlikely to have
resulted in hemodynamic changes (Martuzzi et al., 2010).

As with propofol, participants showed higher high-attention and lower low-attention

network strength in the awake than the anesthesia condition (high-attention network: to = 2.15,
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p = .057 [effect larger than effects on 85.15% of same-size random networks]; low-attention
network: to = =3.37, p = .0071 [effect larger than effects on 96.32% of same-size random
networks]; Figure 7A). High-attention network strength was higher during the awake than the
recovery scan (tio = 2.27, p = .047), and did not significantly differ between the anesthesia and
the recovery scans (tio = .57, p = .58). Low-attention network strength was not significantly
different during the awake and recovery scans (t1o = 1.56, p = .15), but there was a trend such
that it was lower during the recovery than the anesthesia scan (t,0 = 2.14, p = .058). Whole-
brain analyses revealed stronger connectivity between the medial-frontal and visual | networks,
and the motor and visual association networks, during the awake than the anesthesia condition.
Connectivity between the frontoparietal and visual association networks was significantly

stronger during the anesthesia than the awake condition (Figure 7B).
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Figure 7. Effects of sevoflurane on functional network strength. A. High-attention and low-
attention network strength during the awake (pre-anesthesia), sevoflurane, and recovery (post-
anesthesia) conditions. Network strength values were z-scored within graph for visualization.
Individual dots represent individual participants, gray lines represent individual participant
network strength change, and solid black lines indicate group mean change. B. Differences in
within-network and between-network strength (i.e., summed functional connectivity) during the
awake (pre-anesthesia) and sevoflurane conditions. *p < .05/38
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Network strength as a function of state change. Propofol and sevoflurane are different
anesthetic agents with different pharmacodynamic effects. Whereas participants in the propofol
study did not respond to verbal call during the anesthesia condition (Experiment 4), participants
in the sevoflurane study were only under light anesthesia (Experiment 5). To characterize
relationships between the degree of anesthesia-induced cognitive and attentional state change
and attention network strength, we generated a pseudo-dose-response curve by collapsing data
across studies. State affected high-attention (b = —.57, SE = .15, F(3,48.9) = 9.61, p = 4.29x10™
®) and low-attention (b = .91, SE = .14, F(3,2.0) = 24.64, p = .039) network strength, such that
high-attention network strength systematically decreased and low-attention network strength

systematically increased as state changes became more dramatic (Figure 8).

High-attention network Low-attention network
I:  Awake (propofol)

I Awake (sevoflurane)
01 lll: Recovery (sevoflurane)
::_LL—' IV: Light anesthesia (sevoflurane)

V: Deep sedation (propofol)

Mean network strength
(z-score)
o

0w vy A T TR TR VARY

Figure 8. “Dose-response” curve relating attention network strength to the intensity of state
changes across two data sets. Raw network strength values (summed Fisher z-transformed
correlation coefficients) were normalized within the high-attention network and low-attention
network plots separately. Boxes extend from the 25" to 75" percentiles, and whiskers from the
minimum to maximum values. Horizontal lines correspond to group medians. State changes
were most pronounced in the “Deep sedation (propofol)” condition, in which participants were
under deep sedation and did not respond to verbal call. Effects of anesthesia were less
pronounced in the “Light anesthesia (sevoflurane)” condition, and lesser still in the “Recovery
(sevoflurane)” condition. Pre-anesthesia conditions, “Awake (propofol)” and “Awake
(sevoflurane)”, are equivalent to task-free resting-state scans.

Discussion

Each person has a unique pattern of functional brain connectivity, that, like a fingerprint,
distinguishes them from a group (Finn et al., 2015; Miranda-Dominguez et al., 2014). Unlike a
fingerprint, however, this pattern predicts cognitive and attentional abilities (Dubois and

Adolphs, 2016; Rosenberg et al., 2017) and changes on multiple time scales (i.e., minutes,
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hours, days, development). Are these changes meaningful—that is, do they reflect behaviorally
relevant changes in cognitive and attentional states?

Here we tested whether a publication-preregistered model, the sustained attention
connectome-based predictive model, predicts both trait-like and state-like measures of attention.
An internal validation (i.e., leave-one-subject-out) approach first revealed that functional
connectivity patterns observed during 3-minute task blocks and 32-second rest breaks predict
individuals’ block-specific task performance (Experiment 1). In other words, the same models
that predicted participants’ average task performance in previous work (Rosenberg et al.,
2016a) were also sensitive to block-to-block fluctuations in performance. When applied to a 50-
person external validation sample, a model defined using the full Experiment 1 data set—the
sustained attention CPM—not only predicted participants’ task performance during two fMRI
sessions, but also predicted which session had better performance and which session had
worse (Experiment 2). Moreover, when the sustained attention CPM was applied to data from a
one individual’s 30 fMRI sessions, the prediction based on his average functional connectivity
pattern reflected his average task performance, and predictions based on session-specific
patterns reflected session-specific task performance (Experiment 3). Finally, the sustained
attention CPM’s high- and low-attention networks were modulated by sevoflurane and propofol,
such that functional connectivity signatures of better attention were observed when individuals
were awake than when they were under light anesthesia or deep sedation (Experiments 4 and
5). Together these findings demonstrate that behaviorally relevant attentional states are
reflected in functional connectivity patterns calculated from less than 30 seconds of rest data;
that, when averaged over many scan sessions, functional connectivity patterns provide near-
perfect predictions of average sustained attention function; and that the same functional
connections that vary with sustained attention across individuals also change with attentional
state (pharmacologically induced or not) within individuals.

This work aligns with a growing body of evidence that changes in ongoing attention and
cognition are reflected in changes in functional connectivity. In particular, functional connectivity
dynamics as measured by fMRI—particularly in the default mode and dorsal attention
networks—mirror changes in task state (Gonzalez-Castillo et al., 2015; Shirer et al., 2011), task
performance (Kucyi et al., 2016b; Shappell et al., 2019; Shine et al., 2016a, 2016b), and self-
reported mind wandering (Kucyi, 2017; Kucyi and Davis, 2014; Turnbull et al., 2019).
Furthermore, a recent intracranial electroencephalography study in humans revealed that
default and dorsal attention network activity was more anticorrelated during periods of better

attention task performance, and that dorsal attention activations preceded (and potentially
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caused) default mode deactivations (Kucyi et al., 2018). Complementing these findings, our
results demonstrate for the first time that the same functional networks that predict individual
differences in attention in novel individuals also predict attentional states specific to task blocks,
fMRI sessions, and states of consciousness induced by anesthesia. Furthermore, they suggest
that attentional-state-relevant dynamics are not constrained to an a priori set of canonical
functional networks (e.g., the default mode, dorsal attention, and salience networks, which do
not dominate the sustained attention CPM’s high- and low-attention networks; Rosenberg et al.,
2016a), but rather span a distributed set of cortical, subcortical, and cerebellar brain regions
(Figure 3).

At the same time as evidence for behaviorally meaningful functional connectivity
dynamics accumulates, work shows that functional connection reliability is poor when measured
in short time windows (even up to 36 minutes of data from a single fMRI session; Noble et al.,
2017) and that dynamics arise due to sources including motion and sampling variability
(Laumann et al., 2016). How do we resolve these discrepant observations? One possibility is
that attentional-state-specific functional connectivity patterns have been previously
characterized as noise. That is, attention changes over multiple time scales, and these changes
are likely missed by analyses that group task states regardless of behavioral performance or
average performance over long periods of time. A corollary to this suggestion is that functional
connectivity patterns averaged over long periods of time and multiple fMRI sessions better
approximate a person’s “true” connectome and better predict behavior in part because they
sample a wider range of a person’s possible cognitive and attentional states. Importantly, we
are not discounting the serious and well-documented effects of physiological and measurement
noise on functional connectivity measured at short time scales. Rather, we suggest that a
person’s attentional state is another statistically significant source of variability in data-driven
functional networks that predict attention. (Simultaneously, networks that predict other
processes such as emotional reactivity may fluctuate with changes in these states as well.) In
the future, multi-session, multi-task fMRI samples and high-frequency behavioral sampling (e.g.,
ongoing task performance, pupillometry) can help disentangle the contributions of multiple
sources of functional connectivity dynamics.

At first glance, the finding that functional network connectivity predicts moment-to-
moment and day-to-day differences in attention stands in apparent contrast to work showing
that the organization of canonical functional brain networks reflects stable individual differences
rather than task states or day-to-day variability (Gratton et al., 2018). However, the results are

not incongruous. First, Gratton et al. characterized the topography of canonical networks such
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as the default and dorsal attention networks, whereas we consider the strength of a distributed
set of functional connections selected to predict behavior with a data-driven approach. More
importantly, however, Gratton and colleagues found that, while task states and fMRI sessions
are not dominant sources of variability in functional network organization, they do have
significant effects. Thus, it is possible that collapsing across attentional states within broader
task states obscures behaviorally relevant differences in network organization, and that
characterizing networks during distinct periods of successful and unsuccessful task
performance could magnify these small-but-significant effects. Future work characterizing the
effects of task challenges and pharmacological interventions (extrinsic state manipulations) as
well as attention fluctuations (intrinsic state manipulations) on functional network organization
and connectivity patterns will further inform the sources of variability around each individual's
average functional connectome fingerprint.

Together the current work demonstrates that transient functional connectivity patterns
reflect local attentional states. However, it remains an open question whether task-based or
resting-state functional connectivity patterns predict changes in attention over longer periods of
time, such as development and aging. Looking ahead, testing the sensitivity of connectome-
based models to within-subject changes in attentional and cognitive abilities over years and
decades can inform the common and distinct functional architecture of these processes across
the lifespan (Rosenberg et al., 2018b). Furthermore, building new models to predict
developmental trajectories in abilities and behavior can provide insights into the ways in which
functional brain organization reflects risk for or resilience to impairments such as attention deficit
hyperactivity disorder, potentially informing early treatments or interventions.

In sum, we show that a neuromarker of sustained attention generalizes across five
independent data sets to predict individual differences in sustained attention as well as intrinsic
and pharmacologically induced attentional states from task-based and task-free functional
connectivity. Thus, functional connectivity patterns reflect a combination of trait-like and state-
like aspects of attention, and, more broadly, dynamics in functional connectivity in part reflect

dynamics in attentional and cognitive states.
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Methods

Experiment 1: Sustained attention network strength predicts minute-to-minute attention

fluctuations

Participants. Thirty-one right-handed, neurologically healthy adults with normal or corrected-to-
normal vision were recruited from Yale University and the surrounding community to perform the
gradual-onset continuous performance task (gradCPT; Esterman et al., 2014; Rosenberg et al.,
2013) and rest during MRI data collection (data set described in detail in Rosenberg et al.,
2016). All provided written informed consent and were paid for their participation. Following
exclusion for excessive head motion (greater than 2 mm translation or 3° rotation in all
functional runs) or insufficient coverage, data from 25 individuals were submitted to further

analysis (13 females, 18-32 years, mean = 22.7 years).

Experimental design. The gradCPT, a test of sustained attention and inhibitory control, was
used to assess participants’ overall ability to maintain focus and to track their attention
fluctuations over time. During the gradCPT, grayscale images of city (90%) and mountain (10%)
scenes gradually transitioned from one to the next every 800 ms. Participants were instructed to
press a button with their right index finger every time they saw a city scene, but not to press to
mountain images. Because stimuli were constantly in transition, an iterative algorithm was used

to assign button press responses to trials (Rosenberg et al., 2016a).
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Scan sessions began with a high-resolution anatomical image acquisition followed by a
6-min resting-state run, three 13:44-min gradCPT runs, and a second 6-min resting-state run.
GradCPT runs included 8-s of fixation followed by four 3-min task blocks interleaved with 32-s
rest breaks. Resting-state runs are not analyzed here.

For each task block (3 runs x 4 blocks/run = 12 blocks total), performance was
measured with sensitivity (d'), or the inverse of the standard normal cumulative distribution
function of the false alarm rate (incorrect presses to mountains) subtracted from the inverse of
the standard normal cumulative distribution function of the hit rate (correct presses to cities).

Overall gradCPT performance was measures by averaging d' values across blocks.

Imaging parameters and preprocessing. MR| data were collected at the Yale Magnetic
Resonance Research Center on a 3T Siemens Trio TIM system using a 32-channel head coil.
Functional runs included 824 (task) or 363 (rest) whole-brain volumes acquired using a
multiband echo-planar imaging (EPI) sequence with the following parameters: repetition time
(TR) = 1,000 ms, echo time (TE) = 30 ms, flip angle = 62°, acquisition matrix = 84 x 84, in-plane
resolution = 2.5 mm?, 51 axial-oblique slices parallel to the AC-PC line, slice thickness = 2.5
mm, multiband 3, acceleration factor = 2. Parameters of the anatomical magnetization prepared
rapid gradient echo (MPRAGE) sequence were as follows: TR = 2530 ms, TE = 3.32 ms, flip
angle = 7°, acquisition matrix = 256 x 256, in-plane resolution = 1.0 mm?, slice thickness = 1.0
mm, 176 sagittal slices. A 2D T1-weighted image coplanar to the functional images was also
collected for registration.

Functional data were analyzed using Biolmage Suite (Joshi et al.,, 2011) and custom
Matlab scripts (Mathworks) as described previously (Rosenberg et al., 2016a). Motion correction
was performed using SPM8. Linear and quadratic drift, mean signal from the cerebrospinal fluid
(CSF) and white matter, and 24 motion parameters were regressed from the data. Global signal
was also included as a nuisance regressor to reduce the confounding effects of motion (Ciric et
al., 2017; Rosenberg et al., 2018a). Data were temporally smoothed with a zero mean unit
variance Gaussian filter (cutoff frequency = 0.12 Hz).

Preprocessing steps were applied to data concatenated across task runs as well as to
data from each task block and rest break separately to maintain independence between block-
and break-specific functional connectivity matrices (see the Functional connectivity matrix
generation section for detail).

Because head motion can confound functional connectivity analyses, five task runs and

two rest runs with more than 2 mm head translation or 3° head rotation were excluded from
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further analysis. As reported previously, mean frame-to-frame head displacement during

gradCPT runs and average motion across gradCPT runs did not correlate with d' across

individuals (|r] values < .1; p values 2 .62; Rosenberg et al., 2016a).

Functional connectivity matrix generation. Functional network nodes were defined with a
268-node atlas that includes cortical, subcortical, and cerebellar nodes (Shen et al., 2013). The
atlas was warped from MNI space into single-subject space via linear and nonlinear
registrations between the EPI images, coplanar scan, 3D anatomical scan, and MNI brain.

To generate whole-brain functional connectivity matrices, the mean fMRI signal
timecourse for each node was calculated by averaging the timecourses of its constituent voxels.
The Pearson correlation between the average timecourses of every pair of nodes was
computed and Fisher z-transformed to yield symmetrical 268 x 268 matrices of functional
connections, or edges.

To test whether the same functional networks that predict individual differences in
attention also predict attention fluctuations, we measured participants’ overall pattern of
functional connectivity during task engagement as well as their connectivity patterns during
shorter intervals over the course of the task. To this end, for each participant we calculated (A) a
single overall task matrix from data concatenated across task runs, excluding volumes collected
during rest breaks; (B) up to 12 task-block matrices from volumes acquired during individual
task blocks; and (C) up to 9 rest-break matrices using volumes acquired during individual rest
breaks (starting 6 s after break onset and ending 3 s before the onset of the upcoming task

block to reduce the influence of task-related stimulus processing on rest-break connectivity).

Connectome-based predictive modeling. Previous analyses of these data demonstrated that
models based on patterns of functional connectivity observed during the gradCPT—here, the
“overall task matrices™—predict individual differences in performance from both task-based and
resting-state functional connectivity (Rosenberg et al., 2016a). Furthermore, these same
network models generalize to independent data sets to predict measures of attention and
inhibitory control including attention deficit hyperactivity disorder symptoms, stop-signal task
performance, and Attention Network Task performance (Rosenberg et al., 2016a, 2016b;
Rosenberg et al., 2018).

To test whether these same models predict not only differences in attention between
individuals but also differences in attention within single individuals over time, we performed a

variant of connectome-based predictive modeling (Shen et al., 2017) using leave-one-subject-
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out cross-validation. In this pipeline, feature selection and model building steps replicate those
described in Rosenberg et al. (2016a), but models are tested on different data from the held-out
individual.

First, data from one individual were set aside, leaving overall task matrices and overall d'
scores from the remaining 24 participants. Next, robust regression between each edge in the
overall task matrices (35,778 total) and d' was performed across subjects. Edges related to
behavior at p < .01 were retained and separated into a positive tail (positive regression
coefficients) and a negative tail (negative regression coefficients).

For each participant in the training set, overall strength in the positive and negative tails
was calculated by summing their respective connections. The difference in connectivity strength
between the tails (positive tail strength — negative tail strength) was used as a predictor in a
linear regression of the form d' = aX'+ b. This model differs slightly from the general linear model
reported in Rosenberg et al. 2016a, in which positive and negative tail strength were included as
independent predictors. Here the difference in strength between the tails is used to avoid
collinear predictors.

To test whether this model generalized to predict attention fluctuations in previously
unseen individuals, it was applied to each of the left-out participant’s task-block matrices
separately. In other words, the difference between positive and negative tail strength was
calculated using data from each of the held-out individual’s 3-min task blocks. The resulting
difference scores (8 for participants with two gradCPT runs and 12 for participants with three)
were input in the model to generate a predicted d’ value for each task block. Model performance
was assessed by computing the Spearman correlation between the left-out individual’s
predicted and observed block-specific d' scores.

If changes in task-based functional connectivity predict changes in attention within
subjects, task-free connectivity patterns may also reflect transient attentional states. To test this
possibility, the same model was applied to each of the left-out subject’s rest-break matrices to
generate a predicted d' score corresponding to each rest break (6 for participants with two
gradCPT runs and 9 for participants with three). Model performance was assessed by
correlating predictions with the d' scores from the preceding and following task blocks since
performance is not measured during the breaks themselves. These models are referred to as
the “pre-break” and “post-break” models, respectively, throughout the text.

Finally, the prediction pipeline was repeated until every individual had been left out once.
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Significance testing. The significance of model predictions was evaluated at both the
individual and group levels. To determine whether models significantly predicted fluctuating d'in
a single person, block-specific d' scores were shuffled 1,000 times and correlated with model
predictions. This process generated two null rs-value distributions per individual: one of null
task-block predictions and one of null rest-break predictions. The significance of task-block
model predictions was calculated as p = (1+ the number of null task-block rs-values = the
observed task-block rs-value)/1001. The significance of rest-break model predictions was
calculated as p = (1+ the number of null rest-break values = the observed pre-break rs-
value)/1001 and p = (1+ the number of null rest-break values = the observed post-break r¢-
value)/1001.

The significance of model predictions was also evaluated at the group-level with paired t-
tests comparing observed within-subject rs-values to the mean of each participant’s null task-
based or rest-break rs-value distribution. Spearman correlation coefficients were Fisher z-
transformed before averaging; averaged z-values were converted back to rs-values for

reporting.

Experiment 2: Sustained attention network strength predicts session-to-session changes

in attention task performance

Participants and experimental design. 98 individuals (62 female, age 18-35, mean = 22.9
years, s.d. = 4.6 years) participated in a two-session neuroimaging experiment designed to
assess different aspects of attention and memory. 90 participants completed both sessions,
which included 10-minute resting-state runs (two in session 1 and one in session 2); an
Inscapes movie run (one per session; Vanderwal et al.,, 2015); gradCPT, multiple object
tracking, visual short-term memory task runs (one per session; order counterbalanced across
participants and sessions); and an Attention Network Task run (one in session 2). All
participants provided written informed consent in compliance with procedures approved by the
Yale University Human Subjects Committee and were paid for their participation.

GradCPT data from the 50 individuals with whole-brain coverage, d' scores within 3
standard deviations of the group mean, and acceptable levels of head motion (<3 mm maximum
head displacement and <.15 mm mean frame-to-frame displacement) during session 1 and
session 2 were analyzed here (34 female, age 18-32, mean = 23.3 years, s.d. = 4.1 years). For
these individuals, fMRI sessions were held approximately three weeks apart (range = 5-133

days, mean = 20.2 days, s.d. = 24.9 days). The number of days separating sessions 1 and 2 did
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not correlate with gradCPT performance on either day or with the difference between them (|rs
values < .0482, p values > .73). No other data were tested, and this data set has not been

published previously.

Imaging parameters and preprocessing. MR| data were collected at the Yale Magnetic
Resonance Research Center on a 3T Siemens Prisma system using a 64-channel head coil.
Functional gradCPT runs included 600 whole-brain volumes acquired using a multiband EPI
sequence with the following parameters: TR = 1,000 ms, TE = 30 ms, flip angle = 62°,
acquisition matrix = 84 x 84, in-plane resolution = 2.5 mm?, 52 axial-oblique slices parallel to the
AC-PC line, slice thickness = 2.5 mm, multiband 4, acceleration factor = 1. Parameters of the
MPRAGE sequence were as follows: TR = 1800 ms, TE = 2.26 ms, flip angle = 8°, acquisition
matrix = 256 x 256, in-plane resolution = 1.0 mm?, slice thickness = 1.0 mm, 208 sagittal slices.

Data were processed with AFNI (Cox, 1996). Preprocessing steps included the
exclusion of three volumes from the start of each run; censoring of volumes in which more than
10% of voxels were outliers; censoring of volumes for which the Euclidean norm of the head
motion parameter derivatives exceeded .2; despiking; slice-time correction; motion correction;
and regression of mean signal from the CSF, white matter, and whole brain as well as 24
motion parameters. Functional images were aligned to their corresponding skull-stripped high-
resolution anatomical image via linear transformation, and the anatomical image was aligned to
MNI space. For each session, a functional connectivity matrix was defined from gradCPT data
as described in Experiment 1.

Because head motion and amount of data available after censoring can confound
functional connectivity analyses, we confirmed that d' values were not significantly correlated
with mean frame-to-frame motion after censoring, maximum motion after censoring, or number
of frames censored (session 1: || values < .15, p values > .31; session 2: || values < .17, p
values > .26). Head motion and number of post-censoring volumes did not differ between
participants’ day 1 and day 2 gradCPT runs, their better and worse gradCPT runs, or their

predicted-better and predicted-worse gradCPT runs (|49 statistics < 1.24, p values > .22).

Attention predictions. The model used for external validation, the sustained attention
connectome-based predictive model (Rosenberg et al., 2016a), was defined using the high-
attention and low-attention networks described in the Predictive network anatomy section of
Experiment 1. Using data from all 25 participants in the Rosenberg et al. (2016a) sample, a

linear regression of the form d' = aX + b was computed where X = high-attention network
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strength — low attention network strength. This model, the sustained attention CPM, was
applied, completely unchanged, to each participant’s session 1 and session 2 gradCPT matrix
to generate session-specific d' predictions. Model performance was assessed by rank
correlating predictions with d' scores across individuals for each session separately. A paired t-

test was applied to compare predictions for participants’ better vs. worse session.

Experiment 3: Sustained attention network strength predicts week-to-week changes in

attention in a single individual

Participant and experimental design. 30 sessions of MRI data were collected over ten
months from a single individual (RTC, a 56-year-old left-handed male; Salehi et al., 2018). Data
were acquired at the Yale Magnetic Resonance Research Center on two identically configured
Siemens 3T Prisma scanners using a 64-channel head coil.

During each scan session, six 6:49-min task runs and two 6:49-min resting-state
functional MRI runs (including initial shim time and 8 s of discarded acquisitions) were collected.
Tasks included the gradCPT (450 trials/run) as well as an n-back task, stop-signal task, card
guessing task, “reading the mind in the eyes” task, and movies task (described in detail in
Salehi et al.,, 2018). Here we restrict our analyses to gradCPT data. Attention was

operationalized as gradCPT sensitivity (d").

Imaging parameters and preprocessing. A high-resolution anatomical (MPRAGE) scan was
collected during the first session with the following parameters: 208 contiguous slices acquired
in the sagittal plane, TR = 2400 ms, TE = 1.22 ms, flip angle = 8°, slice thickness = 1 mm, in-
plane resolution = 1 mm?, matrix size = 256x256. Functional images were collected using a
multiband gradient EPI sequence with the following parameters: 75 contiguous slices acquired
in the axial-oblique plane parallel to AC-PC line, TR = 1000 ms, TE = 30 ms, flip angle = 55°,
slice thickness = 2 mm, multiband = 5, acceleration factor = 2, in-plane resolution = 2 mm?,
matrix size = 110x110 (Salehi et al., 2018).

Imaging data were analyzed using Biolmage Suite and custom MATLAB scripts. Motion
correction was performed using SPM12. White matter and CSF masks were defined in MNI
space and warped into single-subject space using linear and nonlinear transformations. Linear,
quadratic, and cubic drift, a 24-parameter motion model, mean signal from CSF and white

matter, and mean global signal were regressed from the data. Lastly data were temporally
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smoothed with a Gaussian filter (sigma = 1.55, cutoff frequency = 0.121 Hz; see Salehi et al.,
2018 for detail).

For each session, a functional connectivity matrix was generated from gradCPT data as
described in Experiment 1. Due to hardware variability, mean gradCPT trial length ranged from
738 to 800 ms (mean = 778 ms, median = 794 ms, s.d. = 24.8 ms). Thus, matrices were

calculated from the first 330 volumes of every run to account for differences in task duration.
Attention predictions. The sustained attention CPM was applied to the participant’'s gradCPT
functional connectivity matrices to generate session-specific d' predictions. Model performance

was assessed by rank correlating predictions with d' scores across the 30 sessions.

Experiment 4: Propofol alters sustained attention network strength

Participants and experimental design. Functional MRI data were collected from 32 adults
while awake (eyes-closed rest) and under deep sedation in accordance with research protocols
approved by the Yale University Institutional Review Board (age 19-35 years, 13 female; data
set described in Qiu et al., 2017). After exclusion for excessive head motion (>.15 mm mean
frame-to-frame displacement) in either condition, data from 21 participants remained. Head
motion did not differ between awake and deep sedation conditions (awake: 0.077 £ 0.04 mm,
deep sedation: 0.077 £ 0.03 mm, p = 0.98; Qiu et al., 2017).

Imaging parameters and preprocessing. MR| data were collected at the Yale Magnetic
Resonance Research Center on a 3T Siemens Trio TIM system using a 12-channel head coil.
Two functional runs collected during both the awake and deep sedation conditions included 210
whole-brain volumes acquired using an EPI sequence with the following parameters: TR = 2000
ms, TE = 30 ms, field-of-view (FOV) = 256%256 mm?, flip angle = 90°, matrix size = 64x64, 33
AC-PC aligned slices, slice thickness = 4 mm, no gap. After data were collected during the
awake condition, propofol was infused intravenously to induce an anesthetized state (“deep
sedation”) in which participants did not respond to verbal call. During propofol infusion, a high-
resolution MPRAGE scan was collected with the following parameters: 176 contiguous sagittal
slices, voxel size = 1 mm?®, FOV = 256x256 mm?, TR = 2530 ms, TE = 3.34 ms, flip angle = 7°.
A 2D T1-weighted image with the following parameters was also acquired for the purpose of
registration: TR = 300 ms, TE = 2.43 ms, FOV = 256x256 mm?, matrix size = 256 x 256, flip
angle = 60°.
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Imaging data were analyzed with SPM8 (slice-time correction and motion correction),
Biolmage Suite (all other preprocessing steps), and custom Matlab scripts. After the first ten
volumes of each functional run were discarded, data were slice-time corrected, motion
corrected, and iteratively smoothed to a smoothness of approximately 6 mm full width half
maximum. Covariates of no interest were regressed from the data including linear and quadratic
drift, mean CSF, WM, and gray matter signal, and a 24-parameter motion model. Data were
temporally smoothed with a Gaussian filter (cutoff frequency = approximately 0.12 Hz). For
additional detail see Qiu et al. (2017). Time-series data were concatenated across the two runs
from the same condition. Functional connectivity matrices were calculated from the awake and

propofol conditions as described in Experiment 1.

Network strength comparison. A paired t-test was used to compare high-attention and low-
attention network strength in the awake and deep sedation conditions. Differences in high-
attention and low-attention network strength were compared to differences in 10,000 same-size
random networks. To further assess the specificity of state-dependent differences, we also
compared propofol effects on high-attention and low-attention network strength to propofol
effects on functional connectivity within and between canonical resting-state networks including
the medial-frontal, frontoparietal, default mode, subcortical-cerebellar, motor, visual I, visual II,

and visual association networks (Finn et al., 2015).

Experiment 5: Sevoflurane alters sustained attention network strength

Participants and experimental design. Neuroimaging data were collected in a single imaging
session from 14 adults (7 female, age 22—-34) while awake, under light anesthesia, and during
recovery after anesthesia (data set described in Martuzzi et al., 2010). Data from three
participants were excluded from analysis due to excessive head motion during scanning (>0.15
mm frame-to-frame displacement). During the pre-anesthesia awake condition, participants
received pure oxygen through a facemask. During the sevoflurane condition, participants
received a mixture of oxygen and sevoflurane (end-tidal concentration 1%, equivalent to 0.5
minimum alveolar concentration). In the post-anesthesia recovery condition, participants
received pure oxygen again. Conditions were separated by 10-min transition periods, and
participants were instructed to keep their eyes closed throughout the study. All participants gave
written informed consent and the Human Investigation Committee of the Yale School of

Medicine approved the study protocol.
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Imaging parameters and preprocessing. MR| data were collected at the Yale Magnetic
Resonance Research Center on a 3T Siemens Trio TIM system using a circularly polarized
head coil (Martuzzi et al., 2010). Scan sessions began with a localizer followed by a 2D T1-
weighted anatomical scan (TR = 300 ms, TE = 2.43 ms, FOV = 256 mm, matrix size =
256 x 256, flip angle 60°, 33 axial slices parallel to the AC-PC line, slice thickness = 4 mm, no
gap). Functional runs included 210 volumes and were collected during the pre-anesthesia,
anesthesia, and post-anesthesia conditions using a T2«sensitive gradient-recalled, single-shot
echo-planar imaging pulse sequence (TR =2 s, TE = 31 ms, FOV = 256 mm, flip angle 90°,
matrix size 64 x 64, 33 slices parallel to the bicommissural plane, slice thickness = 4 mm, no
gap). High-resolution anatomical (MPRAGE) images were acquired in between the anesthesia
and post-anesthesia conditions (176 contiguous sagittal slices, slice thickness = 1 mm, matrix
size 256 x 256, FOV = 256 mm TR = 2530 ms, TE = 3.34 ms, flip angle = 7°).

Data were analyzed with Biolmage Suite. After the first ten volumes of each functional
run were discarded, data were temporally and spatially realigned, corrected to remove slice
means and drift, and low-pass filtered at a cut-off frequency of 0.08 Hz. Covariates of no interest
were regressed from the data including mean CSF and white matter signal and a 6-parameter
motion model. Functional images were co-registered to the 2D anatomical image. The 2D
anatomical image was then registered to the 3D anatomical image, and the 3D anatomical
image was aligned into MNI reference space via non-linear transformation (Martuzzi et al.,
2010). Functional connectivity matrices were calculated from the awake, sevoflurane, and

recovery conditions as described in Experiment 1.

Network strength comparison. Changes in high- and low-attention network strength as well as

canonical resting-state networks were assessed as described in Experiment 4.

Network strength as a function of state change. The relationship between cognitive state
and normalized attention network strength was assessed with a linear mixed effects model
using the Ime4 package (Bates et al.,, 2015) in R. State, an ordered factor with levels {rest,
recovery, sevoflurane, propofol}, was entered into the model as a fixed effect. Intercepts for data
sets and participants nested within data set were included as random effects. The limited-
memory Broyden—Fletcher—Goldfarb—Shanno algorithm (L-BFGS-B) (Byrd et al., 1995),
implemented with the optimx package (Nash and Varadhan, 2011), was used for optimization.
P-values were obtained using Type Ill Satterthwaite approximations with the ImerTest package

(Kuznetsova et al., 2017).
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