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Abstract

A progressive decline of skeletal muscle strength with aging is a primary cause of mobility
loss and frailty in older persons, but the molecular mechanisms of such decline are not fully
understood. Here, using quantitative discovery proteomic data from skeletal muscle
specimens collected from 58 healthy persons aged 20 to 87 years show that ribosomal
proteins and proteins related to energetic metabolism, including those related to the TCA
cycle, mitochondria respiration, and glycolysis were underrepresented in older persons.
Proteins with important roles in innate and adaptive immunity, involved in proteostasis and
regulation of alternative splicing were all overrepresented in muscle from older persons.
Changes with aging of alternative splicing were confirmed by RNA-seq. Overall, older
muscle has a profound deficit of energetic metabolism, a pro-inflammatory environment and
increased proteostasis. Upregulation of the splicing machinery maybe an attempt to

compensate for these changes and this could be tested in future studies.
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Introduction

One of the most striking phenotypes of aging is the decline of skeletal muscle strength,
which occurs in all aging individuals and contributes to the impairment of lower extremity
performance and loss of mobility 3. The magnitude of decline in strength is higher than that
expected from the loss of muscle mass, suggesting that the contractile capacity of each unit
of muscle mass is progressively lower with aging. The reasons for such a decline of
contractile capacity are unclear, and several hypotheses have been proposed *. Studies
conducted in humans by 3'P magnetic resonance spectroscopy as well as “ex vivo”
respirometry have shown that skeletal muscle oxidative capacity declines with aging and
such decline affects mobility performance 5. Ample evidence from animal models, and more
limited evidence from human studies also suggest that aging causes progressive muscle
denervation, with enlargement of the motor units and degeneration of the neuromuscular
junction, but whether these changes account for the change of contractile performance of

human muscle with aging has not been studied 3.

Currently, no treatment is available to prevent or delay the decline of muscle strength and
function with aging. Thus, understanding the mechanisms driving the decline in muscle
contractile capacity with aging is essential to identify new targets of intervention. Previous
studies attempted to address this question by performing cross-sectional untargeted
proteomic analysis in skeletal muscle biopsy specimens from young and old individuals.
However, these studies were limited in size, focused on cancer cachexia, analyzed single
fibers, did not account for levels of physical activity or did not explore the effect of aging over
its continuous range and, therefore, could not distinguish changes due to aging from those
due to disease or sedentary state '8, To overcome these earlier limitations, we have
performed a quantitative mass spectrometry-based proteome analysis (tandem mass tag,
TMT) of skeletal muscle biopsies obtained from individuals distributed over a wide age
range, who were extremely healthy based on strict objective clinical criteria. We

characterized proteins that were overrepresented and underrepresented in older individuals
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and using these data we made inferences about molecular pathways affected by aging in

skeletal muscle.

Results and Discussion

Quantitative Skeletal Muscle Proteome Analysis of Healthy Aging

Skeletal muscle biopsies were collected from 60 healthy participants of the Genetic and
Epigenetic Study of Aging Laboratory Testing (GESTALT) aged 20 to 87 years who were
defined as ‘healthy’ based on very strict evaluation criteria at the National Institute on Aging
Clinical Unit in Baltimore '°. Exclusion criteria included any diseases that required chronic
treatment with the exclusion of mild hypertension fully controlled with one drug only, any
physical or cognitive impairment, and any abnormal values in pre-defined list of blood clinical
tests (see methods for details). Participants who consented for a muscle biopsy were
homogeneously distributed across the age strata 20-34 (n=13), 35-49 (n=11), 50-64 (n=12),
65-79 (n=12) and 80+ (n=10), and biopsies were analyzed by tandem shotgun mass
spectrometry-based quantitative proteomics method (Figure 1A, Table S1). Using
multiplexed isobaric labelling tags (TMT) and a customized analytical strategy 2° 2! we
identified 400,000 tryptic peptides from 6.7 million spectra (396 multiplexed MS runs from 12

TMT 6plex experiments), which allowed the quantification of 5,891 proteins (Table S2).

To control for batch variability and avoid bias, we included a reference sample in all 12 TMT
sets. A loading normalization was implemented that assumed that the sums of all intensities
from all the proteins across the samples in a single TMT experiment were equal and that the
sample loading effects, peptide bias effects and the residual error were normally distributed
across a constant variance across samples (Figure S1A). To test the effectiveness of these
approaches, we examined TMT batch effects in several analyses, allowing for experiment-
specific random effects. We then averaged the expression values from each TMT across the

sample groups and found that the ranks between TMTs were highly correlated (Figure 1B-C,
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Figure S1B). Together, these findings indicate that the protein quantification across the 12

TMT experiments was robust.

Of the initial 5,891 proteins detected, we excluded from the analysis 1,511 proteins that
were not quantifiable in at least 3 participants per age strata (at least 15 participants total)
and performed the analysis in the remaining 4,380 proteins detected in more than 15 donors
(3 per age strata), which were quantified from 46,834 unique peptides and 2.7 million
spectra (Figure 1D). We used Partial Least Squares (PLS) analysis to explore the overall
clustering of the 4,380 proteins across age groups (Figure 1E). The age groups (color-
coded) were well separated along at least one axis in the three-dimensional clustering
classification (Figure S1C). As expected, most of the proteins identified were classified as
“muscle proteins”, and the top 10 most abundant muscle proteins accounted for 45% of the
total spectral abundance. Low-abundant mitochondrial proteins, such as cardiac

phospholamban (PLN), were also quantified.

Focus on the Aging Biological Mechanisms

The relationship of age with the skeletal muscle proteins was estimated by linear mixed
regression models that included sex, race, level of physical activity, type l/type Il muscle
fiber ratio, body mass index (BMI) and TMT batch effect as covariates (method section). Of
note, the age beta-coefficients (aging effect size) are small because they express the
difference in protein “per year” of age. For example, the difference in protein between two
individuals that differ by 20 years would be 20 times the size of the beta coefficient. We
adjusted for physical activity because it both tends to decline with age and strongly affects
biological processes in muscle cells 2224, Previous studies demonstrated that gender and
race strongly affect body composition and muscle mass 2°. Skeletal muscle tissue includes
different myofiber types: type | fibers (slow-twitch), type lla fibers (fast-oxidative), and Ilb
fibers (fast glycolytic muscle fibers containing four different myosin isoforms), each

supported by different energetic metabolism and with different protein composition. An
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analysis for a proxy measure of “muscle fiber ratio” 26 was estimated by calculating the ratio
of myosin 7 (MYH7), the slow-twitch fiber isoform, and the sum of fast-twitch fiber isoforms
(MYH1, MYH2 and MYH4) (Figure S2A1-A4); as expected, the fiber ratio of slow/fast was
higher with older age (Figure S2A5). The slight change of slow/fast fiber ratio was significant
and outweighed the wide variability among individuals (p=0.005); BMI was adjusted because
obese persons tend to have muscle fat infiltration and lower muscle quality and muscle-fat
interaction may affect muscle composition and function 4?’. Gender may also have an
impact on protein expression in skeletal muscle, as males and females are known to have
differences in muscle mass; however, because of the limited sample size, we did not stratify

the analysis by gender. This analysis should be done in future larger studies.

Proteins were then deemed significantly underrepresented or overrepresented in older age
based on p-values for age-coefficients in the regression equation, calculated from
Satterthwaite's t-tests (Figure 2A; Figure S2B). There were 1265 proteins significantly
associated with age (p <0.05, with BH correction <0.1, 917 proteins), suggesting that
approximately 29% of the skeletal muscle proteome changed with aging after 20 years of
age (Table S3). Of these, 29% (361) were significantly underrepresented and 71% (904)
were overrepresented with older age. The age-associated analysis across the experimental

dataset and across multiple comparisons was highly robust (Figure S2C).

Notably, the proteins most strongly associated with older age (Figure 2A, right) were LSM14
homolog A (LSm14A, =0.023, p=0.0109), tissue metalloproteinase inhibitor 3 (TIMP-3,
3=0.0219, p=0.00026) and serum amyloid P-component (APCS, =0.0164, p=1.26E-11).
Protein LSm14A is implicated in processing the assembly of processing bodies, involved in
mRNA turnover, and can also bind to viral nucleic acids and initiate IFN- production,
contributing to innate immunity 2. TIMP3 regulates the adipogenic differentiation of
fibro/adipogenic progenitors (FAPs) in skeletal muscle, and its overrepresentation may
explain the tendency for fat infiltration in aging muscle ?°. Consistent with this hypothesis,

Perilipin 1 (PLIN1, p=0.014, p=0.0003), a lipid droplet-coating protein, and adipogenesis
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regulatory factor (ADIRF, B=0.01173, p=1.78E-05), a protein that is only expressed in
adipose tissue, were among the most overrepresented proteins in old muscle. APCS is
indicative of systemic amyloid, and its overrepresentation in aging muscle has never been

previously described.

The most underrepresented proteins (age f<-0.01 and p<0.05) with old age (Figure 2A, left)
were HLA class Il histocompatibility antigen (HLA-DRB1, p=0.024), dedicator of cytokinesis
protein 4 (DOCK4, p=0.025), myosin-binding protein H (MYBPH, p=0.0005), and Microfibril-
associated glycoprotein 4 (MFAP4, p=0.000002). Although HLA-DRB1 is the most altered
protein, it is present only in 53% of the donors. MYBPH maintains the structural integrity of
the muscle and its decreased expression has been associated with muscle weakness in

age-related disorders *°.

To explore differences of protein expression profiles across the lifespan, we generated a
heatmap of the 1,265 age-associated proteins and looked for clusters of proteins showing
parallel changes with age (Figure 2B). Hierarchical clustering of protein expression
suggested that the strongest difference was between young (20-34) and old (80+). There
were small differences before the age of 50, but afterwards there was on average three log
fold protein expression differences, and even more substantial differences after the age of
64. The separation of protein expression between three age groups (20-49, 50-64, and 65+)
was confirmed by PLS analysis (Figure 2C). These findings are consistent with data showing
that the age-associated decline of muscle strength is already detectable after the fourth

decade of life and substantially accelerates after the age of 70 3'.

Next, we grouped all quantified proteins according to biological mechanisms associated with
aging in skeletal muscle (Figure 2D.1). We also included a category for all contractile and
architectural muscle proteins (named hereafter “muscle proteins”). Though the highest
abundance proteins detected correspond to muscle proteins, the largest category were

mitochondria proteins (15%). Each of the other categories represented <9% of total proteins.
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Protein classes differed between those underrepresented and overrepresented with older
age are summarized in (Figure 2D.2 and 2D.3) and are described in detail in subsequent
sections. Specifically, proteins implicated in muscle contraction, muscle architecture,
mitochondria metabolism, as well as ribosome function decreased with older age. By
contrast, proteins related to genomic maintenance, transcriptional regulators, splicing,
neuromuscular junction, proteostasis, senescence and immune function increased with age.

Other smaller subcategories of proteins were also differentially abundant (Figure 2D.3).

Contractile, Architectural and Neuromuscular Junction Proteins (NMJ)

Since many proteins decreasing with age were contractile proteins, we classified these
further by function. The top 95 proteins in this class are involved in the architectural and
functional stabilization of the sarcomere, including sarcospan (SSPN, =0.002, p=0.016)
(Figure 2E), a dystrophin-associated protein complex important for muscle regeneration,
actin-binding LIM domain and actin-binding protein 1 (LIMA1, f=0.003, p=0.009), a
cytoskeleton-binding protein that stabilizes actin filaments, and plectin (PLEC, $=0.0007,
p=0.036), a large cytoskeleton protein that preserves interactions within the acto-myosin
complex. Increases in delta sarcoglycan (SGCD, =0.0019, p=0.00004, and gamma
sarcoglycan (SGCG, $=0.0016, p=0.0062) were consistent with mouse studies showing that
dystrophin, sarcoglycan subcomplex y- and d-sarcoglycan were overexpressed with aging,
perhaps a compensatory mechanism to avoid damage in the sarcomere during contraction
or as biomarkers of continuous repair 3. Interestingly, MAPT (tau, mostly expressed in
neurons and involved in the assembly and stabilization of microtubules), was also
significantly underrepresented in older muscle (Figure 2E). A crucial component of muscle
function is the neuromuscular junction (NMJ), and since the abundance of all NMJ related
proteins increased with age we examined the agrin signaling pathway of NMJ. Agrin (AGRN)
and acetylcholine esterase (ACHE) increased with age but not significantly (Figure S2D). By
contrast, the levels of Syne-1 which anchors both synaptic and non-synaptic myonuclei for

proper neuron innervation and respiration increased with age (SYNE1 =0.002, p=0.005) as
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did beta-2-syntrophin, which is believed to be involved in acetylcholine receptor clustering

(SNTB2, B=0.0029, p=0.0003).

Decline of Mitochondrial Proteins with Age

Because of the striking difference in abundance of mitochondrial and energy metabolism
proteins with age, we studied these proteins by protein annotations using Uniprot keywords,
GO ontology terms and extensive manual curation based on the most recent literature. The
coverage of mitochondrial proteins quantified by our analysis compared to those described
in the literature ranged from 92% for TCA proteins to 52% for proteins located in outer
mitochondrial membrane [possibly due to incomplete tissue disruption 332*] (Figure 3A). The
coverage of the bioenergetics and mitochondrial proteome in our dataset is similar to that
reported by other authors °33, Of the mitochondrial proteins identified, the abundance of
25% of them (173 proteins) changed with age, mostly (70%) declining with age. Notably,
however, outer membrane proteins were more abundant (Figure 3B); for example, NADH-
cytochrome b5 reductase 3 (CYB5R3), an NADH-dehydrogenase located in the outer
membrane of ER and mitochondria, whose overexpression is known to mimic many effects
of caloric restriction, was significantly overrepresented in older age (Figure S3A) %36, The
permanence of mitochondrial protein debris in aging muscle has been previously reported -
attributed to defective autophagy, and through to cause activation of the inflammasome and

a proinflammatory state .

Of the enzymatic mitochondrial proteins, 99 were respiratory chain proteins (Complex |-V
and assembly complex proteins), and most of them declined with aging (28 proteins p<0.05;
Figure 3C). Surprisingly, succinate dehydrogenase complex assembly factor 2 (SDHAF2),
required for covalent FAD insertion into complex Il, the electron transport chain, and the TCA
cycle, were significantly overrepresented with older age (Figure 3C inset). The reason for

this exception is unclear and if replicated in other analysis requires further work.
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We then analyzed proteins from complex | to V and found that 16 proteins were significantly
lower at older age (Figure 3C, Figure S3B). Among 41 proteins involved in energy
production, most were underrepresented at older ages. Of 22 proteins quantified for TCA
cycle, only malate dehydrogenase (MDH1), isocitrate dehydrogenase (IDH1), fumarate
hydratase (FH) and succinate--CoA ligase (SUCLG1) (Figure S3C) were significantly lower
at older ages. The decreasing levels of IDH-1 with age is unsurprising, as previous studies
have shown a decrease in abundance of IDH-1 in older C.elegans 8. IDH1 converts
isocitrate to a-ketoglutarate by reducing NADP to NADPH in the process. In addition, to
IDH1, NADP+ is also reduced to NADPH via the mitochondrial NAD(P)-malic enzyme (ME2)
3% and predominantly through NNT (NAD(P) transhydrogenase) and the pentose phosphate
pathway. In our study, NNT ($=-0.003, p=0.001) significantly decreased with aging.
Interestingly, the decrease in expression levels of both NNT and IDH1 with age, suggests a
decreased capacity of the mitochondria to maintain proton gradients and results in oxidative
damage. Further, NADK (NAD+ Kinase), which is highly regulated by the redox state of the
cell and regulates NADP synthesis in vivo decreased with age (NADK2, f=-0.001, p=0.052).
The changes in the NADP/NADPH levels influence cellular metabolism, calcium signaling

and anti-inflammatory processes and regeneration of glutathione “°.

NAD* declines with age in several tissues and its metabolism has been implicated in the
aging process and age-related pathologies including loss of skeletal muscle mass 4'42. NAD*
is synthesized in vivo predominantly via the salvage pathway and the de novo and Preiss-
Handler pathways 4*#4. We specifically examined age differences in abundance of proteins
from these pathways. We found that NAM-N-methyl transferase (NNMT, =0.007, p=0.016),
nicotinamide ribose kinases (NMRK1, 3=-0.003, p=0.002), poly-ADP-ribose polymerases
(PARP1, 3=0.002, p=0.003) and CD73 (NT5E, 3=0.004, p=0.056) were significantly
increased with at older ages, while only NMRK1 decreased with age (Figure 3D). NAMPT,
which converts NAM to NMN, was not significantly different with age while NMRK1, which

converts NR to NMN, was significantly lower in the muscle of older participants. These
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findings may explain the mechanism by which NMN tends to be lower in tissue from older

compared to younger persons. Two additional mechanisms that may exacerbate the decline
in NMN and NAD* with aging, namely the increased expression levels of CD73 that converts
NMN to NR and the increase in expression levels of PARP1, which converts NAD* into NAM

and ADP-ribose.

Changes of Proteins Involved in Genomic Maintenance and Cellular Senescence

Most genomic maintenance proteins increased in abundance with age, especially those
involved in DNA damage recognition and repair, such as double-strand break repair protein
(MRE11), X-ray repair cross-complementing protein 5 (XRCC5), and structural maintenance
of chromosomes protein 1A (SMC1A) (Figure S4A). Prelamin-A/C (LMNA), Lamin-B1
(LMNB1) and Lamin-B2 (LMNB2), members of the LMN family of protein components of
nuclear lamina that help maintain nuclear and genome architecture, were all
overrepresented with older age (Figure S4B). Sirtuin 2 (SIRTZ2, =-0.0013, p=0.032),
implicated in genomic stability, metabolism and aging, was also found to be lower in older

skeletal muscle (Figure S4C).

Forty proteins that in the literature have been implicated in cellular senescence were
significantly overrepresented with age. These included extracellular superoxide dismutase
(SOD3, B=0.005, p=0.000009) and Transgelin-2 (TAGLNZ2, =0.005, p=0.0002), a potential
oncogenic factor and senescence-associated protein, The proteins decreased with age were
GOT1, MAP2K3 (3=-0.003 and -0.0021, respectively), and casein kinase Il subunit alpha
(CSNK2A1, B=-0.0016, p=0.014). Interestingly, in addition to regulating cell cycle, CSNK2A1
plays a central role in many other biological mechanisms, including apoptosis, which is
suppressed in senescent cells (Figure S4D). These observations suggest that senescent
cells from different possible origins (e.g., myocytes, adipocytes or fibroblasts) may

accumulate in old muscle.
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Implications of Proteins that Modulate Transcription and Splicing

Of all the 69 age-associated transcription regulatory proteins quantified, only 8 were
underrepresented with older age, including kelch-like protein 31 (KLHL31, 3=-0.0017,
p=0.003), which is implicated in the maintenance of skeletal muscle structure, increases with
muscle growth and prevents congenital myopathy in mice #°. By contrast, myocyte-specific
enhancer factor 2D (MEF2D, $=0.003, p=0.018), essential for myogenesis and muscle
regeneration and regulator of KLHL31 production, increased with age “6. Contrary to earlier
reports, CTCF ($=0.009, p=0.026), a transcriptional activator and repressor protein that fine-

tunes chromatin architecture, also increased with age (Figure 4A).

A major unexpected finding of our analysis was the strong increase in major spliceosome
complex proteins with aging (Figure S5A). The spliceosome comprises five small nuclear
RNAs (snRNAs), U1, U2, U4, U5, and U6, that form functional complexes with proteins to
regulate alternative splicing, a process by which different exons of one pre-mRNA are
variably combined to generate different proteins #’. We found differential expression of many
proteins widely distributed across the five spliceosome complexes and other spliceosome-
associated protein factors essential for mMRNA maturation and gene expression (Figure 4B).
In particular, of the ~300 proteins and spliceosome-associated factors described * 4, we
quantified 99 and 57 of them, respectively, were overrepresented in older muscle (Figure
4C). Overall, spliceosomal proteins increased by ~15% between the ages of 20 and 87
years (Figure 4D). Spliceosome components are actively rearranged during assembly,
catalysis, disassembly and recycling, each step involving recruitment and recycling of
several proteins %°. To understand whether aging affects preferentially one of these
biological steps, we categorized the spliceosomal complexes and snRNPs into E complex, A
complex, and B complex (assembly complex, 37 proteins), Bact complex and C complex
(catalysis complex, 7 proteins) and snRNPs (recycling, SART1 protein) (Figure 4E), but we
found no evidence of proteins from a specific complex being more overrepresented with

aging than proteins from other complexes (Figure S5B). LSm RNA-binding protein (LSM14A)

11


https://doi.org/10.1101/700468
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/700468; this version posted July 11, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

was the most overrepresented assembly protein, displaying a 20-fold increase with age. The
overrepresentation of spliceosomal proteins, such as the pre-mRNA-processing-splicing
factor 8 (PRPF8) (Figure 4E, inset), the key catalytic core and the largest and most
conserved protein in the spliceosome, suggests that pre-RNA processing may be

upregulated in older skeletal muscle.

A systematic change in the splicing machinery with older age was previously suggested by
transcriptomic analyses skeletal muscle biopsies °' and human peripheral blood leukocytes
%2 of young and old individuals. In both studies, processing of MRNAs was the feature that
best discriminated younger and older persons, suggesting that modulation of alternative
splicing is one of the signatures of aging 3. Although the mechanisms and consequences of
the rise in splicing factors with aging are unknown, they may indicate either a dysregulation
of the splicing apparatus or a shift toward increased splicing and/or altered splice isoform

diversity with aging 5.

Age-Associated Alternative Splicing and Splicing Events

The marked rise in overrepresentation of splicing machinery proteins with aging prompted
questions about its functional consequences. Emerging literature suggest that change in
expression of splicing factors is a major determinant for selection of specific splicing variants
and changes in splicing variants contributes to some aging phenotypes, including age-
related diseases *° %¢. We analyzed potential differences in mRNA splicing with age (see
methods) using RNA-seq data that were available for most of the same specimens used for
the proteomic study (n=53). Specifically, we studied a set of variations of the exon-intron
structure, known as transcriptional events, namely Alternative First exon (AF), Skipped Exon
(SE), Alternative Last exon (AL), Alternative 3’ splice-site (A3), Alternative 5’ splice-site (A5),
Retained Intron (RI) and Mutually Exclusive Exons (MX) *’. Donor-specific splicing index
(PSI, which measures each isoform as a % of total isoforms) was calculated for each AS

event in each sample and a linear mixed regression model was used to identify age-
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associated PSls for each splicing event. Analysis of 144,830 transcripts from RNA-seq
datasets showed that around 3.7% of the skeletal muscle transcripts (5,459 transcripts,
corresponding to 6,255 events) showed relative abundance changes with aging (Figure 5A;
Table S4). Next, we calculated the frequency and distribution of splicing events with aging as
well as the directionality of such changes and found that 2,714 events were significantly less
frequent at older ages and 3,545 events significantly more frequent at older ages (Figure 5B;
Table S5). The overall number of events increased slightly with older age but AS events, at
least for the 6,255 AS events quantified, increased significantly with age (r2=0.33, p=6.001e-

06) (Figure 5C).

We then investigated whether any specific class of skeletal muscle AS events was enriched
in our age-association analysis compared to the list of splicing events described for human
skeletal muscle in the Ensembl human transcriptome (Figure 5D). The rates of observed
skeletal muscle events are very similar to those reported in the Ensembl transcriptome
(Figure 5D) except for ME, A3, SE and AF. The largest difference was in the skipped exon
(SE) class of events, where a higher percentage of transcripts were exon-skipped compared
to Ensembl events, with 27% of all the skeletal muscle AS events of the exon skipping type.
A previous study reported 35% of the erythroid genes show evidence of AF exons, indicating
that alternative promoters and AF are widespread in the human genome and play a major
role in regulating expression of select isoforms in a tissue-specific manner . This finding is

in line with our result of 36% AF in our skeletal muscle data.

We next examined whether AS events occurred in proteins connected with pathways that
are known to be dysregulated with aging; interestingly, among the top fold enriched (FE)
gene ontology (GO) biological processes associated with age, splicing changes were more
frequent on those that negatively regulated IkB kinase/NF-kB signaling (FE=2.86, p=3.18E-
04), and those that regulated mitophagy (autophagy of mitochondria; FE=3.71, p=2.23E-04)
and fatty acid beta oxidation (FE=3.21, p=1.72E-04). The GO biological process with positive

age-associated splicing events were mitochondrial morphogenesis (FE=5.15, p=8.98E-03),
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response to mitochondrial depolarization (FE=4.93, p=2.46E-04), and endoplasmic reticulum
calcium ion homeostasis (FE=4.48, p=2.31E-04). These data suggest that the upregulation
of alternative splicing in skeletal muscle with aging may be reactive to change that occur with
aging either by rising an inflammatory response or by activating damage-response

mechanisms at a time when energy becomes scarce.

Among the 5,459 transcripts (from 3,791 genes) that were alternatively spliced with age,
4967 transcripts were protein-coding. We compared these genes with the age-associated
proteins and found that 8.9% of the age-associated alternatively spliced transcripts (385)
were reflected in protein changes (Figure 5E). This comparison of age-associated proteins
and alternatively splicing mRNAs suggests that 30% (385) of the age-associated proteins
undergo alternative splicing. Among this group, 64 proteins are involved in cellular
organization or biogenesis (GO:007180), and proteins like tubulin (TUBB2B, TUBB), profilin
2 (PFN2) and actin-related protein 2/3 complex subunit 4 (ARPC4) are involved in the
cytoskeletal regulation by Rho GTPase pathway. A further PANTHER database
classification of these proteins shows an enrichment in categories like RNA/DNA binding,
cytoskeletal, translational and ribosomal proteins (Figure 5E protein categories). Overall,
these findings suggest that a large percentage of proteins that change with aging also
undergo splicing variations, and this is especially true for mitochondrial proteins. The

physiological reasons for these changes remain unknown.

Depletion of Ribosomal Proteins with Age

Similarly, to previous studies, we found that a large number of ribosomal proteins were
differentially expressed with older age (Figure 2, Figure S6A) °9%°, In particular, all the 60S
and 40S ribosomal proteins were globally reduced in older muscle; exceptions included 60S
ribosomal proteins L12 and L3 (RPL12, 3=0.0008, p=0.024, RPL3, $=0.003, p=0.016), as
well as H/ACA ribonucleoprotein complex subunit 4 (DKC1, f=0.002, p=0.034) and nucleolar

protein 58 (NOP58, =0.003, p=0.00007), which were overrepresented in old muscle.
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RPL12, RPL3, and DKC1 play a role in viral mRNA translation, while NOP58 is important for
ribosomal biogenesis (Figure S6A-C). Changes in ribosome proteins may signal a decline in
protein synthesis with aging, which may lead to slow recycling and progressive damage

accumulation in contractile proteins.

Differential Regulation of Proteins Related to Proteostasis in Aging

Cells rely on a complex proteostatic machinery to handle protein quality control, assembly,
folding and elimination. These activities are essential for the recycling of damaged proteins
or entire organelles and provide critical protection against damage during conditions of
metabolic or oxidative stress. Extensive literature supports the decline of proteostasis with
aging in animal models and in humans 8' 62, Of the 239 detected proteins that has been
related to proteostasis in the literature, 31% were altered with age (p<0.05, 24
underrepresented and 50 overrepresented with older age) (Figure 6A). Most proteins
underrepresented with age were chaperones, including Dnad homolog subfamily A
(DNAJA1), also named heat shock protein (Hsp) 40 (3=-0.0021, p=0.003), Hsp27 (3=-0.004,
p=0.0001), Hsp70 protein 8 (HSPAS8, =-0.002, p=2.34E-07) (Figure S7) as well as Hsp27
protein 1 (HSPB1) and protein 7 (HSPB7), Hsp10 protein 1 (HSPE1) and Hsp60 protein 1
(HSPD1). Excluding HSPD1, the decline of these proteins with aging was previously
described 6254, Other differentially expressed proteostasis-related proteins, including PDIAG,

NPM1, ANP32E, and DNAJC2, are also regulatory chaperones (Figure 6B).

The loss of chaperone function during aging may be compensated by an increase in
autophagic activity (Figure 6C), as misfolded proteins must be removed and degraded
through an alternative mechanism. Indeed, most proteostasis proteins overrepresented with
aging were related to autophagy except HSPA8 and Eukaryotic translation initiation factor 4
gamma 1 (EIF4G1). For example, TDP-43, a DNA/RNA-binding protein that tends to form
aggregates in tissues such as skeletal muscle and brain and is both removed by autophagy

and involved in autophagy maintenance, increased significantly with aging (TARDBP,
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=0.002, p=0.0002) (Figure 6D). On the contrary, calreticulin (CALR), a quality control
chaperone induced under ER stress that stimulated autophagy, was significantly higher in
muscle of older participants (=0.001, p=0.022) (Figure 6D) 5. Of note, calreticulin is used
by macrophages to tag cells to be removed by programmed cell phagocytosis . Consistent

with this finding, CALR is considered a main biomarker of age-related diseases and frailty 7.

Pro-inflammatory and Anti-Inflammatory Immune Proteins of Aging Muscle

Of the 32 immune-related age-associated proteins that were quantified (Figure 7A), three
broad themes emerged from the aging muscle immune proteome (Figure 7B-D). First, many
proteins previously linked to macrophage function (such as CD14, LGALS3, CAPG, INPPL1
and MAST2) were dysregulated in aging muscle, with skewing towards a pro-inflammatory
phenotype. For example, the overrepresentation with aging of proteins such as Monocyte
differentiation antigen CD14 (CD14, 3=0.003, p=0.009), Interferon-induced, double-stranded
RNA-activated protein kinase (E2AK2, 3=0.0008 p=0.046) and ASC (PYCARD) (8=0.0086,
p=0.025) can be viewed as being pro-inflammatory via their proposed role in lipid sensing
and NF-kB activation (Figure 7B.1) 8% Interestingly, we also identified proteins that were
concurrently downregulated, such as Microtubule-associated serine/threonine-protein kinase
2 (MAST2, B=-0.002, p=0.023) and Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase
2 (INPPL1, B=-0.0009, p=0.036), that could accentuate the inflammatory phenotype by
attenuating the negative regulation of NF-kB (Figure 7B.2) "°7'. Thus, increased expression
of NF-kB activators and decreased expression of NF-kB attenuators may synergize to
elevate chronic inflammation in aging muscle. We also noted increased expression of High
mobility group protein B2 (HMGB2, f=0.004, p=0.001), a well-known ‘alarmin’ 72 that is
released from dying cells or within neutrophil extracellular traps (NETs), that may further
exacerbate the inflammatory milieu. Cumulatively, our observations are consistent with the

emergence and/or enrichment of pro-inflammatory macrophages in aging human muscle.
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Second, we found evidence of an anti-inflammatory activity that could potentially offset the
pro-inflammatory milieu of aging muscle (Figure 7C). This was most evident in strong age-
associated up-regulation of annexin A1 (ANXA1, f=0.008, p=0.00001), a protein that has
been linked to resolution of inflammation "3. Elevated levels of adiponectin (ADIPOQ,
=0.002, p=0.008), a chemokine produced exclusively by adipocytes, likely reflected
increased adipogenic activity in aging muscle. However, it is interesting to note that ADIPOQ
has also been proposed to inhibit endothelial NF-kB activation "*’® and may, thereby, have
context-dependent anti-inflammatory functions. Finally, erbin (ERBIN, $=0.002, p=0.019), a
nuclear lamina-associated protein that was overrepresented with age in our studies, has
been implicated in reducing NF-kB activation by some stimuli ¢, with associated reduction in

pro-inflammatory gene expression.

Third, coordinate up-regulation of several members of the alternate complement pathway,
such as CFAH (=0.003, p=0.028, and CFAD (B=0.003, p=0.039) and modulators of
complement activity such as CD antigen CD55 (DAF and CD55, $3=0.006, p=0.00007)
indicate ongoing innate immune activity in aging muscle (Figure 7D). Whether this trend
reflects increased presence of dying cells and cell debris or below-threshold autoimmune
activity remains to be determined. The latter could be mediated, for example, by
Immunoglobulin heavy constant gamma 4 (IGHG4, =0.008, p=0.019) which we found to be
increased with age. This antibody isotype has been implicated in the generation of
autoantibodies against muscle-specific kinases that are prevalent in certain forms of
myasthenia gravis 7’. The possible connection between the aging muscle and chronic
neurodegenerative disorders in which destruction of self-tissue by complement has been

ascribed a causative role "® is an intriguing area for future investigation.

Conclusions

The biological mechanisms that mediate the deleterious effect of aging on skeletal muscle

are still controversial, as some evidence suggested that the decline of mitochondrial content,
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volume and energetic efficiency plays a primary role, while other evidence showed show no
significant change for the same parameters with aging, especially if the level of physical
activity was considered 7°. To investigate systematically the changes in expressed proteins
that might drive the decline in skeletal muscle function, we conducted an in-depth
quantitative measurement of age-related changes in protein abundance in human skeletal
muscle. While we did not use model systems or in vivo experiments, because of the careful
design of the study, the selection of an extraordinary healthy population, the depth of protein
detection and rigorous analysis made it possible to produce a descriptive quantitative
dataset to show aging-associated molecular changes. We used a MS-based isobaric relative
quantitative approach for proteome analysis that provides broad coverage of the proteins of
human skeletal muscle in very healthy individuals over a wide age range and we adjusted
our analysis for potential confounders. The biological function of most of the protein reported
in this study was gathered by an extensive review of the literature and instead of relying only
on annotation of Uniprot or GO database, we manually curated the functional classification
used in the analysis. We present evidence that our approach is robust and sensitive to true
biological variability. We confirmed the altered expression of proteins implicated in pathways
differentially active in human skeletal muscle with aging, including more highly abundant
mitochondrial proteins and less abundant inflammatory proteins. We also identified subsets
of proteins increasing with age that were not previously described, namely proteins
implicated in alternative splicing and autophagy. Our work provides a rich resource to study
the effect of aging on the human skeletal muscle proteome and sets the stage for future

research on the mechanisms driving the age-associated decline in muscle function.

Methods

Study design and participants

Muscle biopsies analyzed in this study were collected from participants from the Genetic and

Epigenetic Study of Aging and Laboratory Testing (GESTALT). Participants were enrolled in
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GESTALT if they were free of major diseases, except for controlled hypertension or a history
of cancer that had been clinically silent for at least 10 years, were not chronically on
medications (except one antihypertensive drug), had no physical or cognitive impairments,
had a BMI less than 30 kg/m?, and did not train professionally. Inclusion criteria were
gathered from information on medical history, physical exams, and blood test interpreted by
a trained nurse practitioner &. Participants were evaluated at the Clinical Research Unit of
the National Institute on Aging Intramural Research Program. Data and muscle specimens
from 60 participants were available for this study. However, two participants were excluded
because the muscle specimen provided was too small to obtain reliable proteomic data.
Therefore, data from 58 participants dispersed over a wide age-range (20-34 y, n=13; 35-49
y, n=11; 50-64 y, n=12; 65-79 y, n=12; 80+ y, n=10) were used for this study.
Anthropometric parameters were objectively assessed. The level of physical activity was
determined using an interview-administered standardized questionnaire originally developed
for the Health, Aging and Body Composition Study 8 and modeled after the Leisure-Time
Physical Activity questionnaire #. Total participation time in moderate to vigorous physical
activity per week was calculated by multiplying frequency by amount of time performed for
each activity, summing all of the activities, then dividing by two to derive minutes of
moderate to vigorous physical activity per week, the following categories were used: <30
minutes per week of high intensity physical activity was considered “not active” and coded as
0; high-intensity physical activity 230 and <75 minutes was considered “moderately active”
and coded as 1, high-intensity physical activity 275 and <150 minutes was considered
“active” and coded as 2, and high-intensity physical activity 2150 minutes was considered to
“highly active” and coded as 3. An ordinal variable from 0 to 3 was used in the analysis. The
GESTALT protocol is approved by the Intramural Research Program of the US National
Institute on Aging and the Institutional Review Board of the National Institute of
Environmental Health Sciences. All participants provided written, informed consent at every

visit.
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Muscle biopsies

The depth of the subcutaneous fat (uncompressed and compressed) was determined using
MRI images of the middle thigh performed on the previous day. A region above the vastus
lateralis muscle was marked at the mid-point of a line drawn between the great trochanter
and the mid-patella upper margin. The skin was prepped with povidone—iodine (Betadine®)
and ethyl alcohol, and the outside areas covered with sterile drapes. The biopsy site was
anesthetized intradermally using a 27-gauge needle and then subcutaneously using a 23-
gauge x 1 1/2 -inch needle, follow by an 18-gauge spinal needle, with ~15 mL of 1%
lidocaine with sodium bicarbonate. The operator was careful that the anesthetic was
infiltrated in the subcutaneous tissue and above the muscle fascia but not the muscle fibers
not to distort the tissue structure and induce a gene expression response. A 6-mm
Bergstrom biopsy needle was inserted through the skin and fascia incision into the muscle,
and muscle tissue samples were obtained using a standard method. Biopsy specimens cut
into small sections were snap frozen in liquid nitrogen and subsequently stored at -80 °C

until used for analyses.

Sample preparation and protein extraction

On average 8 mg of muscle tissue was pulverized in liquid nitrogen and mixed with the lysis
buffer containing protease inhibitor cocktail (8 M Urea, 2M Thiourea, 4% CHAPS, 1% Triton
X-100, 50 mM Tris, pH 8.5 (Sigma)). Protein concentration was determined using
commercially available 2-D quant kit (GE Healthcare Life Sciences). Sample quality was
confirmed using NUPAGE® protein gels stained with fluorescent SyproRuby protein stain

(Thermo Fisher).

In order to remove detergents and lipids 300 ug of muscle tissue lysate were precipitated
using standard methanol/chloroform extraction protocol 3. Proteins were resuspended in
concentrated urea buffer (8 M Urea, 2 M Thiourea, 150 mM NaCl (Sigma)), reduced with 50

mM DTT for 1 hour at 36°C and alkylated with 100 mM iodoacetamide for 1 hour at 36°C in
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the dark. The concentrated urea was diluted 12 times with 50 mM ammonium bicarbonate
buffer and proteins were digested for 18 hours at 36°C using trypsin/LysC mixture
(Promega) in 1:50 (w/w) enzyme to protein ratio. Protein digests were desalted on 10 x 4.0
mm C18 cartridge (Restek, cat# 917450210) using Agilent 1260 Bio-inert HPLC system with
the fraction collector. Purified peptides were speed vacuum-dried and stored at -80°C until

further processing.

Tandem Mass Tags (TMT) labeling was used to perform quantitative proteomics. Each TMT
labeling reaction contains 6 labels to be multiplexed in a single MS run. Donor IDs were
blinded, and samples were randomized to prevent TMT bias. Each TMT 6-plex set included
one donor from each of the 5 age groups and one reference sample. 5 muscle samples 100
Mg each corresponding to 5 different age groups and one separately prepared master
reference sample were labeled with 6-plex tandem mass spectrometry tags using a standard
TMT labeling protocol (Thermo Fisher). 200 femtomole of bacterial beta-galactosidase digest
(SCIEX) was spiked into each sample prior to TMT labeling to control for labeling efficiency
and overall instrument performance. Labeled peptides from 6 different TMT channels were

combined into one experiment and fractionated.

High-pH RPLC fractionation and concatenation strategy

High-pH RPLC fractionation was performed on Agilent 1260 bio-inert HPLC system using
3.9 mm X 5 mm XBridge BEH Shield RP18 XP VanGuard cartridge and 4.6 mm X 250 mm
XBridge Peptide BEH C18 column (Waters). Solvent composition was as follows: 10 mM
ammonium formate (pH 10) as mobile phase (A) and 10 mM ammonium formate and 90%

ACN (pH 10) as mobile-phase B 8.

TMT labeled peptides prepared from the skeletal muscle tissues were separated using a
linear organic gradient that went from 5% to 50% B in 100 min. Initially, 99 fractions were
collected during each LC run at 1 min interval each. Three individual high-pH fractions were

concatenated into 33 combined fractions with the 33 min interval between each fraction
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(fractions 1, 34, 67=combined fraction 1, fractions 2, 35, 68=combined fraction 2 and so on).
Combined fractions were speed vacuum dried, desalted and stored at -80°C until final LC-

MS/MS analysis.

LC-MS/MS analyses

Purified peptide fractions from skeletal muscle tissues were analyzed using UltiMate 3000
Nano LC Systems coupled to the Q Exactive HF mass spectrometer (Thermo Scientific, San
Jose, CA). Each fraction was separated on a 35 cm capillary column (3 um C18 silica,
Hamilton, HxSil cat# 79139) with 150 um ID on a linear organic gradient using 650 nl/min
flow rate. Gradient went from 5 to 35% B in 205 min. Mobile phases A and B consisted of
0.1% formic acid in water and 0.1% formic acid in acetonitrile, respectively. Tandem mass
spectra were obtained using Q Exactive HF mass spectrometer with the heated capillary
temperature +280°C and spray voltage set to 2.5 kV. Full MS1 spectra were acquired from
300 to 1500 m/z at 120000 resolution and 50 ms maximum accumulation time with
automatic gain control [AGC] set to 3x10°. Dd-MS2 spectra were acquired using dynamic
m/z range with fixed first mass of 100 m/z. MS/MS spectra were resolved to 30000 with 155
ms of maximum accumulation time and AGC target set to 2x105. Twelve most abundant
ions were selected for fragmentation using 30% normalized high collision energy. A dynamic

exclusion time of 40 s was used to discriminate against the previously analyzed ions.

Proteomics informatics

The mdf files generated (using MSConvert, ProteoWizard 3.0.6002) from the raw data from
each sample fraction was searched with Mascot 2.4.1 and X!Tandem CYCLONE
(2010.12.01.1) using the SwissProt Human sequences from Uniprot (Version Year 2015,
20,200 sequences, appended with 115 contaminants) database. The search engine was set
with the following search parameters: TMT6plex lysine and n-terminus as fixed modifications
and variable modifications of carbamidomethyl cysteine, deamidation of asparagine and

glutamate, carbamylation of lysine and n-terminus and oxidized methionine. A peptide mass
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tolerance of 20 ppm and 0.08 Da, respectively, and two missed cleavages were allowed for
precursor and fragment ions in agreement with the known mass accuracy of the instrument.
Mascot and X!Tandem search engine results were analyzed in Scaffold Q+ 4.4.6 (Proteome
Software, Inc). The TMT channels’ isotopic purity was corrected according to the TMT
kit.peptide and protein probability was calculated by PeptideProphet & and ProteinProphet
probability model 8. The PeptideProphet model fits the peptide-spectrum matches into two
distributions, one an extreme value distribution for the incorrect matches, and the other a
normal distribution for correct matches. The protein was filtered at thresholds of 0.01%
peptide FDR, 1% protein FDR and requiring a minimum of 1 unique peptide for protein
identification. We allow single peptide hits for two reasons: first, any peptide that is
quantifiable is detected across all samples (n=58); second, we identify proteins with more
than one search engine, so the protein identification is confirmed at least twice, even for
single-peptide hits. For these reasons the even single peptides are unlikely to be random
hits. As for single peptide quantification, the spectrum-to-spectrum variability is no higher
between spectra from the same peptide than between spectra from different peptides from
the same protein. Therefore, it is unlikely that there is any differential ‘bias’ in reporter ions
from peptide to peptide. More importantly, TMT is taken as relative, not absolute,
quantification. So even if there were such a bias, it would be the same across samples, so
the relative quantification would not be affected. Reporter ion quantitative values were
extracted from Scaffold and decoy spectra, contaminant spectra and peptide spectra shared
between more than one protein were removed. Typically, spectra are shared between
proteins if the two proteins share most of their sequence, usually for protein isoforms.
Reporter ions were retained for further analyses if they were exclusive to only one protein,
and they were identified in all 6 channels across each TMT set. Since we have multiple age
group across each TMT experiment, we analyzed the proteins for missing reporter ion

intensity.

23


https://doi.org/10.1101/700468
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/700468; this version posted July 11, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

For this analysis the protein with missing reporter ion in some of the channels (not more than
2 channels) for each TMT experiment was identified and missing value imputation was
performed using multiple imputation with chained equations (MICE) R library by predictive
mean matching. Mean imputation was performed <0.01% in one or two TMT channels in
most of the TMT experiments, except TMTset1 (the missing reporter ion for channel 5 is
0.03%). The reporter ion intensity from the proteins derived from the imputation method (on
an average <10 proteins) were concatenated with reporter ion intensity identified in all 6
channels and further analysis performed using adjudicated values. The log2 transformed
reporter ion abundance was normalized by median subtraction from all reporter ion intensity
spectra belonging to a protein across all channels 2°?'. Relative protein abundance was
estimated by median of all peptides for a protein combined. Protein sample loading effects
from sample preparations were corrected by median polishing, i.e., subtracting the channel
median from the relative abundance estimate across all channels to have a median zero as
described elsewhere 22!, Quantified proteins were clustered together if they shared
common peptides and corresponding gene names were assigned to each protein for
simplicity and data representation. Annotation of the proteins were performed by manual
curation and combining information from Uniprot, GO and PANTHER database. Further
bioinformatics analysis was performed using R programming language (3.4.0) and the free

libraries available on Bioconductor.

Linear mixed effect model and statistical analyses

Linear mixed regression model was implemented to examine age effects and the data was
adjusted for physical activity, gender, race, bmi, type | and type Il myosin fiber ratio and TMT
mass spectrometry experiments. Protein significance from the regression model was
determined with p-values derived from ImerTest. Partial Least Square analysis (PLS) was
used to derive models with classification that maximized the variance between age groups.
PLS loadings were derived from linear model adjusted protein results. The regression model

was performed using R 3.3.4 8 with Ime4 v1.1. library. Heat maps and hierarchical cluster
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analysis were performed using the non-linear minimization package in R 8. GraphPad
PRISM 6.07 and R packages were used for statistical analysis and generation of figures.
STRING analysis (10.5 version) was used for obtaining protein-protein interaction network.
Enrichment analysis was performed by GeneSet Enrichment Analysis (GSEA) and
PANTHER, the pathways were mapped and visualized by Cytoscape 3.0 8. One-way
ANOVA, nonparametric, and chi-square tests (continuous and categorical variables) were

used to test for sample differences between age groups.

RNA extraction and purification

Total RNA was prepared by lysing cell pellets (2x106) in 700 ul Qiazol and extracted using
Qiagen miRNeasy mini kit according to the manufacturer’s recommendation (Qiagen Inc,
CA, USA) from the same samples (n=54). Small ribosomal RNA was further depleted using
Qiagen GeneRead rRNA Depletion Nano Kit. Total RNA quality and quantity was checked
using RNA-6000 nano kits on the Agilent 2100-Bioanalyzer. 375 ng of high-quality RNA was
used for first-strand and second-strand cDNA synthesis followed by single primer isothermal

amplification (SPIA) using NUGEN Ovation RNA-Seq System V2 kits according to

manufacturer’s protocol. This kit amplified both polyA-tailed and non-polyA tailed RNA and
removed ribosomal RNA. The amplified cDNA was sheared using Bioruptor (Diagenode) to
an average size of 150-250 bases. The sequencing library was prepared using lllumina
ChlIP-Seq kits according to the manufacturer’s protocol (lllumina, San Diego, CA). In short,
the ends of the fragments were repaired using T4 DNA polymerase, E. coli DNA Pol | large
fragment (Klenow polymerase), and T4 polynucleotide kinase (PNK) and an A-overhang was
added to the 3’ end. Adapters were ligated to the DNA fragments and size-selected (250-350
bases) on a 4.5% agarose gel. An 18-cycle PCR amplification was performed followed by a
second 4.5% agarose gel size selection before cluster generation in cbot2 and sequencing
with lllumina Hiseq2500 sequencer using V4 reagents. Single-read sequencing was

performed for 138 cycles and Real-Time Analysis (RTA) v1.18.66.3 generated the base-call
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files (BCL files). BCL files were de-multiplexed and converted to standard FASTQ files using

bcl2fastq program (v2.17.1.14)

RNA-Seq quantification and splicing analysis

The quality of the bases was checked using FASTQC program (v11.2) before and after
adapter removal and last base trimming by cutadapt program (v1.9). The cleaned FASTQ
files were aligned, quantified and annotated to the human hg19 genome using Salmon %
with the concept of quasi-mapping with two phase inference procedure for gene model
annotations. The GC bias corrected, quantified transcript isoform abundance values (TPM)
were used for further computation of relative abundance of the events or transcripts isoforms
known as percent spliced-in (PSI) by SUPPA 5. Since the variability of low-expressed genes
between biological replicates were reported, the transcript data were filtered for the
transcripts which were expressed in at least three donors per each age group. Thus, we
excluded ~23% of the transcripts from total transcript quantification for further splicing
analysis. Events coordinates are extracted from the Ensembl annotation (GRCh37.75) and
alternative splicing events were generated. PSI values of alternative splicing events for each
transcript from each sample (n=53) were estimated and the PSI values showing a good
agreement with the RNA seq data were kept for further analysis. The magnitude of the PSI
change (differential splicing) across the age were calculated with a linear mixed model
analysis performed on the PSI to estimate the age-related splicing changes of the transcript
isoform. The PSI regression model was adjusted with the aging confounders as same as
described above for protein regression model except fiber ratio. For transcript data we used
RNA experiment batches as a random effect. The age beta coefficient for each alternative
splicing event transcript PSI was reported as the magnitude to the splicing event-specific PSI
change with age. Significance of the alternative splicing events was calculated by ImerTest
and was reported if the observation had a p-value <0.05 at transcript level for age beta

coefficient.
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Age-association of proteins and transcripts

Proteins or transcripts either significantly upregulated or down regulated with age, present in
50% of the samples or at least in three samples for each age group, and significant (p<0.05)
were considered as age-associated. Age-association was measured by linear mixed model
adjusted for confounders of aging phenotype either in protein analysis or in RNAseq analysis
and were further filtered for significance calculation. Age beta coefficient for each protein or
transcript were calculated from log2 normalized data on which a mixed linear regression
model was applied. Thus, the age beta coefficient represents the mean log2 fold expression
per year of age. LmerTest was used for calculating p-values from t-tests via Satterthwaite’s
degrees of freedom method. Any protein or transcript was represented as age-associated if
the p-value for the protein or transcript was <0.05. P-values for multiple comparisons were
adjusted using Benjamini-Hochberg method in R and adjusted p-values were reported on
supplemental tables. Age-associated proteins and age-associated alternatively spliced
transcripts were further analyzed into two categories, either age-association beta coefficient
(<0) was under represented with age--indicating a decrease in the abundance of the protein
with a year of age or age-association beta coefficient (>0) was over represented with age--
indicating the abundance of the protein was increased with a year of age. For simplicity of
reporting, we calculated the enrichment of these proteins/transcripts over the total age-
associated protein/transcripts and reported as underrepresented and overrepresented with

age.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository with the dataset identifier PXD011967.

RNASeq data is deposited in GEO (GSE129643).

Supplementary Information

Document S1. Supplemental Experimental Procedures, Table S1 and Figure S1- S7
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Table S1. Characteristics of Participants (Related to Figure1)

Table S2. Complete Dataset of Skeletal Muscle Proteome Quantified by TMT6plex.

Related to Figure1. Sheet1: Raw data of all the proteins quantified. Sheet2. Description of

the column headers for the sheet1.

Table S3 to Figure2. Dysregulated Proteins with Age. Sheet1. Age-associated proteins.
Proteins which were significantly (p<0.05) dysregulated with age. Sheet2. Description of the

column headers for the sheet1

Table S4 to Figure 5. Sheet1. Age-associated splicing events (6255 events). Sheet2.

Description of the column headers for the sheet1

Table S5 to Figure 5. Sheet1. Age-associated negative splicing events. Sheet 2. Age
associated positive splicing events. Sheet3. Description of the column headers for the

sheet1 and sheet2
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Figure 1 Quantitative Analysis of the Skeletal Muscle Proteome with Healthy Aging

(A) Study design, TMT assessment, and bioinformatics platform for protein quantification
and age-associated protein analysis. (B) Correlation among all TMTs after using COMBAT
experimental bias correction. Note that the R-values are all >0.99. (C) Principal Component
Analysis (PCA) of 12 TMT batches, each circle indicating a sample from a TMT batch, 5
samples in each batch, overall 58 samples represented, and no substantial batch effect
detectable. (D) Total number of proteins quantified from 12 TMT experiments from 58
donors, according to age group. 4,036 proteins were detected in at least 3 samples in all age
groups and were used for further statistical analysis. (E) Partial Least Square (PLS) analysis
revealed variance in the component1, 2, and 3 for all donors. All 4,036 proteins were used

for PLS analysis, where each circle is a donor and the age groups are color-coded.
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Figure 2 Classification of Age-associated Proteins

(A) Effect of age on protein expression levels. The x axis represents the size and sign of the
beta coefficient of the specific protein regressed to age (adjusted for covariates) and the y
axis represents the relative -log10 p-value. Each dot is a protein and all significant proteins
are indicated in blue and red (age-associated 1,265 proteins, p<0.05). (B) The heatmap of
the 1,265 significantly age-associated proteins reveals changing expression profiles across
aging. (C) PLS analysis of age-associated proteins were classified into three age groups: 20-
49 (young), 50-64 years (middle age), and 65+ (old) years old. (D) Percent distribution of
categories of all quantified proteins, percent distribution of the same categories among
proteins that were significantly downregulated and upregulated with aging. Proteins which
are not considered directly related to mechanisms of aging are annotated as others and their
subclassification is shown in the bar plot. (E-F) Log2 protein abundance of contractile,
architectural and NMJ proteins. Simple linear regression was shown for age (x axis) and

protein (y axis) correlation, confounders were not adjusted, and raw p-values were shown.
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Figure 3 Functional Decline of Mitochondrial Proteins with Age

A) Percent coverage within categories of skeletal muscle proteins compared to the Uniprot
database. The top section shows various energetics categories, while the z axis indicates
the number of proteins identified for each protein category and in parenthesis the number of
proteins reported in Uniprot for the same category. (B) Subcellular location of age-
associated mitochondrial proteins based on up- or downregulation. Of note, most of the
mitochondrial proteins are downregulated. (C) Age-dependent decline of respiratory and
electron transport chain proteins. All mitochondrial proteins in the respiratory and electron
transport chain that are significantly associated with age are downregulated (p<0.05) except
SDHAF2. The inset panel reports data on the proteins that are significantly upregulated with

aging, SDHAF2 (mitochondrial) and the membrane protein CD73.
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Figure 4 Implications of Proteins that Modulate Transcription and Splicing

A) Log?2 protein abundance of age-associated transcriptional regulation proteins. Simple
linear regression was shown for age (x axis) and protein (y axis) correlation, unadjusted p-
values were shown. (B) Spliceosome major complex pathway protein expression abundance
and dsysregulation. KEGG major spliceosome complex pathway representation and
spliceosome complex proteins quantified (associated with splicing RNAs U1, U2, U4/U6, and
U5) as plotted in the side square boxes. (C) The log2 abundance expression of 57
spliceosome complex proteins associated with age (p<0.05) are depicted as magenta
circles, while all other quantified proteins are black circles. All shnRNPs and spliceosome
regulatory proteins are upregulated with age. (D) The average of all age-associated
spliceosome proteins within each age group reveals an upregulation of spliceosome proteins
with age. (E) Effect of age (one-year difference) on the 57 proteins of the spliceosome major
complex and color coded based on spliceosome domains. Inset (left) is a legend for the
complex domains and inset (right) shows that PRPF8 protein is robustly overrepresented

with age.
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Figure 5 Age-associated Alternative Splicing

(A) The number of participants with detected splicing variants is substantial, with >20% of
the participants showing <5% splicing variants for the detected gene. Overall, 3.7% of all
identified skeletal muscle transcripts (3,791 genes) show evidence of differential alternative
splicing with aging. (B) Comparison of skeletal muscle age-associated splicing events
(positive and negative). Negative events are downregulated with age and positive events are
upregulated with age. The category of event is plotted on the X axis, and the Y axis shows
the number of splicing events for each category. (C) Average Percent Spliced-in (PSI) from
6,255 events for each donor is depicted as a red circle. Average PSI across 53 donors
ranging in age from 20 to 84 suggests an increase in alternative splicing with aging. (D)
Comparison between skeletal muscle splicing events detected in GESTALT (solid bars) and
splicing events reported in the Ensemble transcript splice events (shaded bars). (E)
Comparison of age-associated proteins and age-associated alternatively splicing genes
suggesting 30% (385) of the age-associated proteins undergo alternative splicing. Analysis
of PANTHER database shows classes of enriched genes from different protein categories,

and the number of genes representing each class is shown with #.
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Figure 6 Age-associated Proteostasis Proteins

(A) Log2 protein abundance of all 74 age-associated proteostasis proteins across all 58
donors. Rows represent proteostasis proteins and columns represents donors. The average
expression of all age-associated proteostasis proteins from each donor is plotted at the top
and bottom (gray circles) with loess curves. The top section shows downregulated clusters
of proteins (average of 24 proteins) and the bottom shows upregulated clusters of proteins
(average of 54 proteins). The protein rows are ordered based on hierarchical clustering and
displayed by dendrograms. (B) Confounders-adjusted 3 age coefficient of age-associated
proteins, showing age-differentially regulated proteostasis proteins, over representation of
proteostasis category proteins and the log2 magnitude of protein change with each year of
age. (C) The increase of autophagy protein sub category with age is shown. Except HSPAS8
and EIF4G1 all other autophagy proteins are positively correlated with age. Each bar plot
shows each autophagy protein sub category and the average change over a year of age.
The gene/proteins names are organized from lowest to highest log2 expression change per
year of age. (D) Raw log2 abundance of autophagy proteins TDP and CALR were shown,
simple linear regression method was used for age (x axis) and protein (y axis) correlation, of

note unadjusted p-values were shown.
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Figure 7 Age-associated Immune Proteins

(A) Immune-related proteins are depicted; the x axis shows the genes that code for age-
differentially regulated proteins, while the y axis shows the log2 fold expression difference
associated with age. The increase in innate immune signaling and lipid responses may
indicate a reaction to adipocytes muscle infiltration, which in turn causes activation of innate
immune signaling. (B-D) Examples of dysregulated proteins are shown from (B.1-B.4) pro-
inflammatory. (C) Anti-Inflammatory. (D) Complement pathway proteins. Inflammasome
adaptor protein PYCARD is positively associated with age, and the abundance of this protein
is a key mechanism by which IL-13 pathway activation is regulated. In B-D raw log2 protein

abundance and unadjusted p-values are shown.

40


https://doi.org/10.1101/700468
http://creativecommons.org/licenses/by/4.0/

High pH LC

B o C

o =
Sample Preparation 5%
TMT-1 F @ o TMT-1
= = = = = =
n=12 n=13 n=12 n=10 : 11 TMT2 .. = 5 ,\%\ o TMT-2
= ©TMT-3
TMT-3 v &
5 ‘ o .. o = "I'O@,‘ *TMT-4
g% ™4 @@ @ . F e 2, e TMT-5
5 uGel X L X 1 J=un ”"% *TMT-6
[o] -
gg TMT-6 ‘ ‘ ’ ‘. E |°f /&‘é O TMT-7
< & > 5 TMT-7 S o 0\9 ®TMT-8
50-64 20-34 65-79 80+ 35-49 Ref 0000000 ° 2 . oTMT-9
™T8 O @ . F ®TMT-10
s -
= TMT-9 ) g2 o TMT-11
@@ @ 00000-0 0.1
= Sample Pooling x12 ® e
4 TMT-11 ®o:
& - "2 Q90000000 o
O = |
SE = |
23 § £ 0.990 0.995 0.999
'% 8 - D TMT Correlation Coefficient
© S =
= O Mergect ¥E1 3 Fn mfz o
w0 135 minutes / 3 § - 589158915832 583257985647 02034
= 5 35-49
c o
o . © ®50-
Data Analysis & Data Representation S B 50-64
(O 2P 2036 ©65-79
2 84 80+
Data Search T Y
Qualitative & Quantitative Threshold g § ] B
TMT Normalization 5 - i
. —
Protein Clustered 5 81 9
a o o N
Linear Mixed Regression Model g ° o
Protein Annotation & Enrichment Analysis 3 § §
. . o
Age As_somated Prot_ems T g' i’lr’ % o o
Functional Annotation < 5 7 ¢ -8 3
Dysregulated Aging Pathways N ® . 9

Figure 1


https://doi.org/10.1101/700468
http://creativecommons.org/licenses/by/4.0/

Abundance Decreased With Age |,

Abundance Increased With Age 1

A B TMT 1-12 Protein C
Log2 Protein Log2 Protein Abundance Correlation ® 20-49
Abundance Decreased Abundance Increased ® ® 50-64
with Age with Age % o ® 65+
®APCS ¢ glo
o ° TIMP3 2 o
' ADIRF = DagEEGT e
2 !
o o
— [ee] o
() 3 o
)
g : = oe
s ° S 2
S —JY
8’ - - 3 00
= == —] -
— e
= o
~ =s=—==
—_—
= = -05
© 1 —
i T . T
-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03
Age Beta ==
T o o *
® Y on g
o n O
N M O ©
D All Proteins
D1 ga% Legend D3 Age Associated “ Others”
8.1% Neuromuscular Junction Protein Category
Muscle Protein
| Mitochondrion | Abundance Increased with Age
lmmunityllnﬂammaﬁon B Abundance Decreased with Age
0.8% | Epigenetic Re ulatlons —_
pg ) = 100% 121 185 110 [67 [26/ [ 4" [11 [17 220
51.9% =)
? Spllclng c
Senescence Z 75%
o 1.9% Rlbosomal =)
£ 3
()] — 0,
< Others 5 50%
S . . . 2
o D2 Age Associated Protein Categories =
x T 25%
= 0.9% o
z E Rl
< a 10.5% X 0%- . .
T 3 - - =
° 25% 25292385
4% SEL£E8CER:
lolsﬁ% 49.1% 11% SE82:55%8
22528350 §
46% 7.89% % < @3 EZ 2 90 £
8.5% o 2 X o
kg S 903 &
% S8 ©§
. 0.4% R E
361 proteins 904 proteins [ =

0.2

0.0

Protein Abundance (Log2)
-0.2

Protein Abundance (Log2)
00 0.2

-0.4
1
o

KASH domain-containing
protein 1 (SYNEL)

> ®
- r°=0.14, p=0.00.359 °
°
] '.' o o® 8 o o
. °
s = * e °

i ° o
1 e

°

T T T T T T
20 30 40 50 60 70 80

Age (years)
Beta—-2-syntrophin (SNTB2)

= 0.2, p=4e-04 P
)

T T T T T T
20 30 40 50 60 70 80
Age (years)

Sarcospan (SSPN)
1 ®2_0.13, p =0.00481
L Y

0.4

-0.4
1
[ ]

Protein Abundance (Log2)
0.0
1

T
20 30 40 50 60 70 80
Age (years)

Plectin (PLEC)

>=0.16, p = 0.001.62.

0.05 0.15
LT

-0.10

Protein Abundance (Log2)

T
20 30 40 50 60 70 80
Age (years)

Microtubule-associated protein tau (MAPT)

—~

0.

r?=0.24, p =0.01535

0.1

Protein Abundance (Log2
-0.1

-0.3

T T T T T
20 30 40 50 60 70 80
Age (years)

LIM domain actin—binding proteinl (LIMAL)
®

1 =009, p =0.0.2608
F X ® o

lJ T T T T T
20 30 40 50 60 70 80
Age (years)

-0.2 0.2
TR B

Protein Abundance (Log2)

-0.6
1

Figure 2


https://doi.org/10.1101/700468
http://creativecommons.org/licenses/by/4.0/

g ciycoysis [T 255U B I Down-regulated [l Up-regulated
2 TCA Cycle [N 22 [24] c Outer
i Respiratory Chain [ ] 125[170] 2 Membrane
2 Electron Transport 69 [109] & Intermembrane
———— T Space
8 Inner Membrane 181 [283] § Inner
Eé Membrane Space \ 35 [49] 5 Membrane
52  Mitochondrion Matrix 117 [178] E Matrix
£8 Outer Membrane [ 65 [124] 3 Other
%" Other Mitochondrion [N 686 [1150] Mitochondrion
(‘) 2‘0 4‘0 éo 8‘0 1(‘)0 0%  25% 50%  75%  100%
0 )
% of Proteome Coverage [Uniprot] % of Regulation [Down|Up]
. Succinate dehydrogenase
— CD antigen CD73 (NT5E) — assembly factor 2 (SDHAF2)
N o] ® > ®
5 °
oo 2 S 2
2 4 r°=0.07, p=0.05565 234 r°=0.23, p=0.01906 0.
Q< (]
00050 £31 o o ° d 2
g A ° oo ® %" g
=1 s
30 w 3
< Je% . o0 <
a— c o0 (] c
c  0.0025 © ‘©
@ 59 o oY
Qo a9 T T T T T T a T —— T T T
uq:) 20 30 40 50 60 70 80 20 30 40 50 60 70 80
8 Age (years) Age (years)
0.0000
©
g
G) I
)
(=)}
< -0.0025
_00050 L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L]
N N — o] | — © 4 « ~ N — N
§FL22ZaC0r3tliasrfyg3i08340¢8
SRR S S A R
2 oo wn 2 2 = 2
8-0p8355 7 kk0paTz<kpgkI<pggy <220
z pd z pd 2
Age Associated Respiratory Chain Genes
Figure 3

D

NAM N-methyltransferase (NNMT)

1.0
i

r?=0.24, p =0.0074

-05 00 05

Protein Abundance (Log2)

T T T T T T
20 30 40 50 60 70 80
Age (years)
NNAD(P) transhydrogenase (NNT)

< ®
30 :r2 =003, p -0.18943 °
(O ) L J
2 o o ° °
< .} (]
£3 W
3 ®3°% ° °
Z oo
=B )
L o
o' ° °
o T T T T T T
20 30 40 50 60 70 80
Age (years)
Nicotinamide riboside kinase 1
—~ (NMRK1)
N
=) ; @ [
S+—]® =021, p=0.01344
~o [ [} [ ]
8o o2l
] °
go °
c
=}
2
S« ®e
T S °
I °
a T T T T T T

20 30 40 50 60 70 80
Age (years)

o
<

oly [ADP-ribose] polymerase 1 (PARP1)

0.2

2 =0.15, p ~0.00268
L4 °

-0.2
1

—
N

D

3

= ..o'o
8 A ®
e ° 8 S
T o

£9] &
2 o 30%

2 He °
£ e o

3

o

(]

<

a

20 30 40 50 60 70 80
Age (years)


https://doi.org/10.1101/700468
http://creativecommons.org/licenses/by/4.0/

Kelch-like protein 31 (KLHL31)

—

0.2

2
r _%11, p =0.01269

‘...oo
()

%e

Protein Abundance (Log?2)

o
=
4 e o
) oo, o
N °
T [ 4
T T T T T T T
20 30 40 50 60 70 80
Age (years)
Myocyte-specific enhancer
factor 2D (MEF2D)
34 r*-0.39, p-0.00318
[aV)
o

0,0

Protein Abundance (Log?2)

20 30 40 50 60 70 80
Age (years)

-0.2

Transcriptional repressor CTCF

Yo Cam
5’,- ?=0.12, p =0.10867

8w |

£° .

5o ¢ X4 ®
2o

< ° °

c °

£

Il o ®

o T T T T T T T

20 30 40 50 60 70 80
Age (years)

Figure 4

us]

exonlGU AG exon2

0.002
0.003

complex B

0.002

=)
]
=1

W)

Spliceosome Proteins (57)

?*;++

S
I
b

P < 0.0001

© © o o
ok N W

Relative Abundance (Log2)

S S 95
w N e

v
o

&
Age Groups

ACBy
é/, Lo

Beta Age Coefficient

complex B*

0.020 =

0.005 =

i

2r8
Ry
NEZ
22
)

C

- Exon junction complex

| LSm proteins

| NineTeen complex

| SF3b complex

-Sm spliceosomal proteins

[ spliceosomal A complex

-Spliceosomal B complex

|| spliceosomal Bact complex
Spliceosomal C complex
Spliceosomal E complex

|| Other Spliceosome (RNPs)

-tri—snRP complex

| U1 small nucleolar ribonucleoprotein

I U2 small nucleolar ribonucleoprotein

[ U4/U6 small nucleolar ribonucleoprotein

{221 us small nucleolar ribonucleoprotein

Log2 Protein
Abundance Decreased
with Age

Log2 Protein
Abundance Increased
with Age

Relative Abundance

~0.03 -0.02 -0.01

0.03

000 001 002

Beta Age

PRPF8

0.4 4
0.3 4 p=0.003

0.2 4

o
[N
L

0.0 1
-0.1 4

-0.2



https://doi.org/10.1101/700468
http://creativecommons.org/licenses/by/4.0/

Frequency

& Age Associated Age Associated
© 250007  Negative Events Positive Events - ®
2 (2714) (3545) gg— o Y ..
0 | 96.3% 37% 20000 3 $ °
S (5450 g u (1 )
transcripts) = 4500 < @
o & 513 o O
= 2 &0
© B Age Associated Splicing Events £ 10000 g : o ®
O Non Age Splicing Events g % N .. ()
P4
2 5000 HH HH $3| r-0.33p=1e-05
© o
0 T T ml:w—‘m T ® T | T T I I I
g | FEpPpagdEee K 20 30 40 50 60 70 80 90
o | | | I | | Alternative Splicing Events Donor Age
0.00 0.05 0.10 0.15 0.20 0.25
Alternative Splicing Variance
Between Individuals [6255 Events]
D . .
— Age Associated Age Associated
! Proteomics Alternative Splicin
ME N || GESTALT Skeletal Muscle picing
- :I Ensembl H19
o g
5 A
g :I Enriched in GO & PANTHER
m . - - .
c AES N cellular component organization of biogenesis (#4)
2 NN nucleic acid binding (#59)
< SE= RNA binding protgin (#46)
cytoskeletal proteins (#22)
| actin family cytoskeletal proteins (#17)
0 mRNA processing/splicing/translation factor (#33)
N . N N o S ribosomal protein/ribonucleprotein (#16)
S T 5 D) S

Figure 5 % of Alternative Splicing Events


https://doi.org/10.1101/700468
http://creativecommons.org/licenses/by/4.0/

A B
Protein abundance decrease with age 000%0 [ Autophagy [ chaperones [ other Proteostasis

— 00025
o]
5 Negative Age
= Assaociation IIIII IIIIII
g 0.0000 -~
: I
- o
=) Association
<
©
8
©
m
-0.0050
LIARPASREARRSASANARNRAARNRARASRANNSANAARSLNSSSIAAASRNANARAANNNSHANREANNA)
<t ) L. 0 —HO N ! o Ay
(@} 0= 0 OO+ = TV Z I
TTZ0=0 §%I§I%§ wWETLZ a® L e o an% % %Z%: ‘lﬁ §<§t 14 K’%§<Z: zZF <2( g z= faﬂ_k
] <
<<
Proteostasis Genes ©
C D TAR DNA-binding protein 43
— (TDP-43)
[aV]
o | 2 °
S r°=0.23, p =0.00013
TN
GABARAPL2 8o
ATG5 S 4
EEF1A1 HE?ES °
0.004 4 Raalet LAMP1 Tpp1 HDACL So]
= ATPVOD1 ppT1 MAPKS8 -&’ ©
o AsAH1 | CTSB 4
5 VPS26A c
= HTT [ORN
£0.002+ AKTL MAPK14 S o
o P'\IIT{FKBll ol T T T T T T
% 20 30 40 50 60 70 80
©0.0004 = === - == - m e Age (years)
& EIF4G1
. ’ SN Calreticulin (CALR)
ARERIRT AR N R e ~0.0024 HSPAS g,o ® 0
T & T T T T T | ° [ ] [ ] °
x>0 T @ S > T|E T 52X =~
5 stc = €S 8% £&8 £y 2§98 8 e o° 8 o ®
££2 O o = © < Sl S ® S < co o g [)
S E§ 282 S8 a9 a5 =9 G - (]
9¢ 3 o £ > 8 o = o= i) 3O
58 2 o = =] =] =
3 £ > =] .= > S 3 c [ ] [ ]
0 <=5 J= << Joc I oI 5
u— < o) .
O < <5 x o [ [ ]
= b < °
o o c g_ °
: Q
Autophagic Pathways § 1 2= 0.08, p =0.0323 N
. . . o T T T T T T
Protein abundance increase with age 20 30 40 50 60 70 80

Figure 6 Age (years)


https://doi.org/10.1101/700468
http://creativecommons.org/licenses/by/4.0/

A 0009 5

. Antibodies Complement Inflammasome B.1 Pro-inflammatory proteins C Anti-inflammatory proteins D Alternate complement pathway
Antigen Presentation Immunity nfkb Monocyte differentiation antigen (CD14) _ Annexin A1 (ANXAT) Complement factor H (CFAH)
Innate immunity/Lipid sensing and regulation ";; ) ‘é‘»g_ Z-026, p=4e05 ® ® R fé,q_ ) 0
0.006 =_71 =008, p=0.02941 = ° ° 4o r°=008, p=002702
. o ¥ ° 3 ° L4 8]
: £ = :
2 € 18e ° o ,00% f ° R ° s° oo o°
e Sole ° ~ . ER 5 1e . oog © hd
: LR T - 23] > e ’
C 0.003 1 £41 . - S.TS %% e o § 1vee®®® o 0o
8 EHe 3] o % g+ o s
o} a! T T T T T T a T T T T T T T a9 T T T T T T
g 20 30 40 50 60 70 80 20 30 40 50 60 70 80 20 30 40 50 60 70 80
< l I I Age (years) Age (years) Age (years)
0.000 7 Interferon—induced, double-stranded . .
RNA-—activated protein kinase (EIF2AK2) s Adiponectin (ADIPOQ) . Complement factor D (CFD)
< — > J J N 7- : ®
8o 22004, p=0.14999 So] r?=0.12, p=0.0089 ': S« o 700N PROTES,
= ] ~o ] o 8 ~o °
8~ o, ® § B g ° s ®e °
-0.003 | B B B B B B B B B R B B N N N S S R B R N R N N N NN R R | §S e, o ° ...: : ° Sol éo 0o, %°° >
— L =) I - — (] [ ) ° o -0
SLEsSLQSEEER2588 RIFEH0ERE0S § | gut e 2 T . ce.
-0 X JZ T oo x = a < < Iz o o [ ° < | < e
SIPZLREROOQZoUg D gV ©02 BQUOT I ltevet ® o EI L .
= w o < - 3 a ‘s o PR J L o 2 o
I 5! ° o © Slle 2! —
Age A . ﬁ__ o T T T T T T a T T T T T T
ge Associated Immune Genes [31] % 3:0 4:0 SIO 6IO 7I0 BIO 20 30 40 50 60 70 80 2 30 40 50 60 70 80
Age (years) Age (years) Age (years)
B.2 Microtubule-associated serine/ Phosphatidylinositol 3,4,5—
threonine—protein kinase 2 (MAST2) trisphosphate 5-phosphatase 2(INPPL1) Interferon-induced, double—stranded ) ]
@g o > [ * __RNA-activated protein kinase (EIF2AK2) —~ Erbin (ERBIN) — CD antigen CD55
f =005 p=013872 [ §°| ® 2002 p=024176 Sl 2228 8 S ’
saf o ° =_ o . 53] r°=004, p=0.14999 Swof ?=0.15 p=0.00353 S| =026 p=000112
8o ° ° 8 S 5 o 2 ° s s
: .| £ is ecetes| B 2
o © )
Eo% s 2 °°. o o%e 0o o Bol
3 3 2 1L e ER EG
< J°® <~ 2 [°a o < < |
£ £ o £z ] £ £«
T T T 231 °e Su ° £
< b ° <] ° s ! ° Scq _e%e ° <A
a9 T T T T T T T T T T T T T o — T T T T T aT L B E e p— a — T T T
20 30 40 50 60 70 80 20 30 40 50 60 70 80 20 30 40 50 60 70 80 20 30 40 50 60 70 80 20 30 40 50 60 70 80
Age (years) Age (years) Age (years) Age (years) Age (years)

Figure 7


https://doi.org/10.1101/700468
http://creativecommons.org/licenses/by/4.0/

Supplemental Information

Aging Skeletal Muscle Proteomics Finds Changes in Spliceosome, Immune factors,

Proteostasis and Mitochondria

Ceereena Ubaida-Mohien®, Alexey Lyashkov®, Marta Gonzalez-Freire®, Ravi Tharakan®,
Michelle Shardell®, Ruin Moaddel®, Richard D. Semba®, Chee W. Chia®, Myriam Gorospe?®,

Ranjan Sen® & Luigi Ferrucci®*

Author Affiliations

$Intramural Research Program, National Institute on Aging, National Institutes of Health,
Baltimore, MD 21224, USA

#Johns Hopkins Medical Institute, Baltimore, MSD 21205, USA
Contact Info

*Correspondence: FerrucciLu@grc.nia.nih.gov


https://doi.org/10.1101/700468
http://creativecommons.org/licenses/by/4.0/

Table S1 (related to Figure 1)

20-34 35-49 50-64 65-79 80+ P-value R?
Age Group

(n=13) (n=11) (n=12) (n=12) (n=10) - --
Age (yr) 27.2+33 41.3+45 57147 | 70323 82424 | -- -
Gender M8, F5 M7, F4 M7, F5 M8, F4 M6, F4 -- --
Education (yr) 16+£3 14 £3 14 +£2 162 172 0.3305 --
Race 9C, 2AA, 2A | 5C, 6AA 8C, 4AA 10C,1AA1A | 9C1AA 0.0958 --
*BMI, kg/m? 259+28 26.4+26 266+32 |264+24 252 +39 | 0.3458 0.007
Height (cm) 172 + 11 177 £ 10 169 +4 172 + 11 172+ 6 0.3985 --
*Weight (kg) 76 £ 10 819 77 +£12 75+13 73+16 1.74E-05 | 0.34
;‘Ii\:zi:'r;ference (cm) 82+7 877 90 £ 11 92 £ 11 92+13 6.32E-06 | 0.39
*KEIS (left) 192 + 31 208 £55 200 £ 71 165 + 62 130 + 42 4.29E-07 | 0.40
*KEIS (right) £ 194 £ 38 220 + 65 194 £78 169 £ 53 147 £ 57 2.41E-07 | 0.41
TPhysical Activity 1.8+1.4 1.8+13 2+141 231 1.5+1.1 0.5145 --

Table S1 (related to Figure 1). Baseline Characteristics of the GESTALT Skeletal Muscle

Participants. Participants are classified into 5 different age groups. Gender: M is Male, F is

Female; the number of participants is indicated. Age is indicated in years as mean and standard

deviation (SD %) for each age group. Race: number of participants is shown on the left and race

is shown in italics; C is Caucasian, AA is African American, and A is Asian. Body Mass Index

(BMI) is expressed as mean and SD () for each group. P-value is calculated by 1-way ANOVA

with Kruskal-Wallis test. Race is analyzed by Chi-square test.

*P-value calculated from linear regression model, gender adjusted.

+ Knee Extension Isokinetic Strength (KEIS) (30%sec; Nm).

tPhysical activity is calculated from self-report involvement in weight circuit, vigorous exercise,

brisk walking and casual walking and summed as high-intensity physical activity hours per

week. This is further categorized into 0 (not active),1 (moderately active), 2 (active), and 3

(highly active) and expressed as mean of categorical variables (0,1,2,3) £ SD.
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Figure S1 (related to Figure1)

A. Normalized Relative Protein Expression from All Participants. Bar plot of log2
normalized protein relative expression abundance from all 58 participants. Each circle is a
protein. Median levels for all proteins (5891) from all samples are plotted, 25" and 75"

percentiles are represented with first and third quartiles. Age groups are color-coded. This
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analysis was followed by a median polish and median sweep normalization by subtracting the

spectrum median log2 intensity from the observed log2 spectrum intensities.

B. Spectral Count Correlation Across 12 TMT Experiments. The heatmap figure shows the
protein correlation across all 12 TMT experiments. Since we have 12 TMT batches across all
samples, we looked at the data robustness across all 12 TMTs. The proteins identified in each
TMT are ranked based on spectral abundance, and the ranks between TMTs are correlated.
Correlation coefficients between 12 TMT experiments are from 0.99 to 0.85, demonstrating that

the relative abundance of proteins is robustly replicated across TMT sets.

C. Skeletal Muscle Proteins Detected According to Abundance and Mass. The abundance
of proteins quantified, the X axis is the mass distribution of the protein and the Y axis is the
average spectral abundance of the proteins. Proteins are color-coded to visualize enrichments

of muscle protein.
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Figure S2 (related to Figure 2).
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A1-A5. Protein Biomarkers of Slow-Twitch and Fast-Twitch Fiber Types and Estimated

Muscle Fiber Ratios. Log2-normalized fiber expression intensity from all the 58 donors are

shown for fast fiber-twitch type proteins MYH4, MYH1, MYH2 and slow-twitch fiber type protein
MYH7 (A1-A4). The estimated ratios of slow-twitch fiber to fast-twitch fiber (A5) suggest that

slow-twitch fiber type expression increases with age.

B. Statistical Significance of the Proteins and Robustness of Age-Association. p-value

distribution for quantified proteins and their association with age. The p-values are calculated

from t-tests use Satterthwaite's approximations of the F-statistics using ImerTest. To account for

multiple comparisons, we performed a Benjamini-Hochberg (BH) correction, and we still found

917 proteins that have a BH corrected p-value <0.1.
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C. Robustness of the Estimated Beta Coefficients for Age for Quantified Proteins Across
all 12 TMT Experiments. To assess the robustness in the identification of the 1265 age-
associated proteins across all 12 TMT experiments, we estimated the effect of age (beta
coefficient) on single proteins in regression analyses run in two separate sets of 6 TMT sets
selected at random from the 12 available and estimated the average correlation coefficient
between proteins quantified in the two sets. Then, we repeated this analysis 100 times and
plotted the distribution of correlation coefficients. The results of the linear mixed models appear

to be robust against TMT variability.

D. Clusters of Proteins Dysregulated with Aging- NMJ Related Proteins. Neuromuscular
protein abundance with age. Agrin and Acetylcholineesterase proteins are not significantly

associated with age.
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Figure S3 (related to Figure 3).

A. Age-associated protein abundance of CYB5R3 protein. The abundance of this protein is

significantly higher at older age; age groups are color-coded.

B. Respiratory Chain Complex I-V and Aging. Electron Transport Chain Protein

Quantification. Proteins quantified from Complex I, Complex Il, Complex Ill, Complex IV,

Complex V and Assembly complex proteins are represented. Age-associated proteins are

marked by a red asterisk (*). Log2 fold ratios of the gene are on x axis; arrows pointing to left

shows underrepresented proteins and arrows pointing to the right are overrepresented proteins.

C. Dysregulation of Bioenergetic Pathway. Proteins quantified from glycolysis and TCA cycle

are shown. (Left) Of the 26 glycolysis proteins quantified, 6 are significantly underrepresented

with age. (Right) Of the TCA cycle gene products shown, 4 are significantly decreased with

aging. A red asterisk indicates genes significantly changed with age (p<0.05).
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Figure S4 (related to Figure 2).

A. Dysregulation of Proteins Involved in Genomic Maintenance. A large number of proteins

involved in genetic maintenance are overrepresented at older ages.
B. Prelamin. Protein levels increase significantly with age.

C. Sirtuin 2. Raw protein abundance of SIRT2 is plotted according to age and shows no age

association. However, adjusting for confounder the negative association with age becomes
statistically significant (p=0.032).

D. Dysregulation of Proteins Involved in Cellular Senescence. Age-associated proteins of
cellular senescence. Log2 raw protein abundance and age correlation is shown from simple

linear regression method. Unadjusted p-values are represented with r2.
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Figure S5 (related to Figure 4).

A. Spliceosome Protein Abundance and Expression Variation Across Ages. A total of 99
spliceosomal proteins are detected across all 5 age groups. The abundance of each protein is
represented as a heatmap; each column represents a study participant and each row indicates
a specific protein. The x axis scatter plot across the top is the average of spliceosomal protein
abundance for each donor, revealing an increase in spliceosome abundance with age. The y
axis scatterplot on the right is the average log2 protein abundance from all donors for each

protein, showing that most of the spliceosome proteins are highly abundant.

B. Spliceosomal protein categories and age association.
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Figure S6 (related to Figure 2).

A. Depletion of Ribosomal Proteins with Age. Age-associated ribosome proteins and
interacting partners. Different categories of ribosome proteins are color-coded.

B. Protein-protein interaction of age-associated ribosome proteins from co-expression.
The protein-protein interaction enrichment score p-value <1.0e-16. Color node shows query
proteins and black edge represent co-expressed protein association. The top left cluster NOP58
is required for the biogenesis of the 60S ribosomal subunit and the biogenesis of box C/D
snoRNAs such as U3, U8 and U714 snoRNA.

C. Log2 raw protein abundance of NOP58, a nucleolar protein important for ribosomal

biogenesis, according to age. Unadjusted p-value is shown with r?,


https://doi.org/10.1101/700468
http://creativecommons.org/licenses/by/4.0/

Heat shock cognate 71 kDa protein [HSPA8]

[}

2

0

0.1

0.0

Log?2 (Relative Abundance)
-0.1

“Ha-pg

-0.2

20-34 35-49 50-64 65-79 80+
Age Group

Figure S7 (related to Figure 6).

HSPAS8 protein and its association with age.
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