

1 **Characterising the mechanisms underlying genetic resistance to amoebic gill
2 disease in Atlantic salmon using RNA sequencing**

3 Diego Robledo^{1*}, Alastair Hamilton^{2,3}, Alejandro P. Gutiérrez¹, James E. Bron⁴, Ross
4 D. Houston^{1*}

5 ¹The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
6 Edinburgh, EH25 9RG Midlothian, United Kingdom

7 ²Landcatch Natural Selection Ltd., Roslin Innovation Centre, University of Edinburgh,
8 EH25 9RG Midlothian, United Kingdom

9 ³Hendrix Genetics Aquaculture BV/ Netherlands, Villa 'de Körver', Spoorstraat 69,
10 5831 CK Boxmeer, NL

11 ⁴Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, FK9 4LA
12 Stirling, United Kingdom

13

14 *Corresponding authors:

15 Ross D. Houston - ross.houston@roslin.ed.ac.uk

16 Diego Robledo - diego.robledo@roslin.ed.ac.uk

17 E-mail addresses:

18 Alastair Hamilton – Alastair.Hamilton@hendrix-genetics.com

19 Alejandro P. Gutiérrez – Alejandro.Gutierrez@roslin.ed.ac.uk

20 James E. Bron - bron.james@googlemail.com

21

22 **ABSTRACT**

23 **Background:** Gill health is one of the main concerns for Atlantic salmon aquaculture,
24 and Amoebic Gill Disease (AGD), attributable to infection by the amoeba
25 *Neoparamoeba perurans*, is a frequent cause of morbidity. In the absence of preventive
26 measures, increasing genetic resistance of salmon to AGD via selective breeding can
27 reduce the incidence of the disease and mitigate gill damage. Understanding the
28 mechanisms leading to AGD resistance and the underlying causative genomic features
29 can aid in this effort, while also providing critical information for the development of
30 other control strategies. AGD resistance is considered to be moderately heritable, and

31 several putative QTL have been identified. The aim of the current study was to improve
32 understanding of the mechanisms underlying AGD resistance, and to identify putative
33 causative genomic factors underlying the QTL. To achieve this, RNA was extracted
34 from the gill and head kidney of AGD resistant and susceptible animals following a
35 challenge with *N. perurans*, and sequenced.

36 **Results:** Comparison between resistant and susceptible animals pointed to differences
37 mainly in the local immune response in the gill, involving red blood cell genes and
38 genes related to immune function and cell adhesion. Differentially expressed immune
39 genes highlighted differences in the Th2 and Th17 responses, which are consistent with
40 the increased heritability observed after successive challenges with the amoeba. Five
41 QTL-region candidate genes showed differential expression, including a gene connected
42 to interferon responses (*GVINP1*), a gene involved in systemic inflammation
43 (*MAP4K4*), and a positive regulator of apoptosis (*TRIM39*). Analyses of allele-specific
44 expression highlighted a gene in the QTL region on chromosome 17, cellular repressor
45 of E1A-stimulated genes 1 (*CREG1*), showing allelic differential expression suggestive
46 of a cis-acting regulatory variant.

47 **Conclusions:** In summary, this study provides new insights into the mechanisms of
48 resistance to AGD in Atlantic salmon, and highlights candidate genes for further
49 functional studies that can further elucidate the genomic mechanisms leading to
50 resistance and contribute to enhancing salmon health via improved genomic selection.

51

52 **Keywords:** AGD, genomics, amoeba, gene expression, RNA-seq, transcriptome,
53 *Salmo salar*, disease resistance, allelic specific expression

54

55 **BACKGROUND**

56 Gill health is currently one of the major concerns for Atlantic salmon farming
57 worldwide. Fish gills are multifunctional organs fundamental for gas exchange,
58 ionoregulation, osmoregulation, acid-base balance and ammonia excretion, but also play
59 an important role in hormone production and immune defence (Rombough 2007). Gills
60 are constantly exposed to the marine environment, and are often the first line of defence
61 against pathogens. Gill damage is often observed in Atlantic salmon under farming

62 conditions, and can pose a significant welfare, management and economic burden.
63 While the aetiology of gill disorders is complex, Amoebic Gill Disease (AGD) is
64 currently regarded as a key threat to gill health. This disease adversely affects the gill,
65 and can result in respiratory distress, and ultimately mortalities if left untreated. Initially
66 limited to Tasmania, this disease is currently causing major economic and fish welfare
67 burden to Norwegian, Scottish and Australian salmon aquaculture (Shinn et al. 2015).
68 The causative agent of this disease is the amoeba *Neoparamoeba perurans*, an
69 opportunistic pathogen that can only be removed with expensive and laborious fresh
70 water or hydrogen peroxide treatments (Novak and Archibald, 2018), and there are
71 currently very limited opportunities for prevention.

72 A promising avenue to decrease the incidence of AGD in farmed Atlantic salmon is to
73 increase genetic resistance of aquaculture stocks to *N. perurans*. There is significant
74 genetic variation in resistance to AGD in commercial Atlantic salmon populations
75 (Taylor et al. 2007, 2009; Kube et al. 2012; Robledo et al. 2018; Boison et al. 2019),
76 therefore selective breeding has potential to improve gill health via a reduction in
77 amoebic load and associated gill damage. The use of genetic markers through genomic
78 selection can expedite genetic gain in aquaculture breeding programmes (e.g. Robledo
79 et al. 2018; Yoshida et al. 2018; Palaiokostas et al. 2018a, 2018b), however, the need to
80 genotype a large number of animals and to perform disease challenges in every
81 generation involves a relatively high cost. The discovery of the mechanisms leading to
82 resistance and the underlying causative genetic variants has the potential to reduce this
83 cost via incorporation of functional SNPs into the genomic prediction models.

84 Discovering the genes and pathways that lead to successful immune responses to
85 pathogens is a major goal in genetics and immunology research. Understanding disease
86 resistance can aid selective breeding via incorporation of putative causative variants
87 with greater weighting in genomic prediction models, which can improve selection
88 accuracy and reduce the need for routine trait recording (MacLeod et al. 2016; Houston
89 et al. 2017). Such information can also inform the development of improved disease
90 challenge models, and more successful prevention or treatment strategies through an
91 increased knowledge of host-pathogen interactions. Finally, with the potential role for
92 targeted genome editing (e.g. using CRISPR/Cas9) in future aquaculture breeding
93 programmes, understanding the functional mechanisms underlying disease resistance
94 traits is key to identifying target genes and variants for editing. Previous studies into

95 AGD-infected Atlantic salmon have suggested that the amoebae might elicit an
96 immunosuppressive effect on the innate response of the host, with a concurrent up-
97 regulation of the adaptive Th2-mediated response (Benedicenti et al. 2015; Marcos-
98 López et al. 2017, 2018). Th2 cytokines were also found consistently up-regulated when
99 comparing AGD infected and non-infected samples, and lesion and non-lesion areas
100 (Marcos-López et al. 2018). The heritability of resistance to AGD has been shown to
101 increase after successive cycles of disease challenge / treatment (Taylor et al. 2009),
102 which could suggest that the ability to elicit a successful adaptive immune response is
103 partly under genetic control. Finally, a higher expression of genes related to adaptive
104 immunity has been previously reported in more AGD-resistant salmon compared to
105 their more susceptible counterparts using a microarray approach to measure gene
106 expression (Wynne et al. 2008).

107 In a previous study by our group, several QTL regions with a significant contribution to
108 genetic AGD resistance were identified in Atlantic salmon derived from a commercial
109 breeding programme (Robledo et al. 2018). In the current study, the gill and head
110 kidney transcriptomes of AGD resistant and susceptible Atlantic salmon from the same
111 population were sequenced and compared. The main goals of the study were a) to assess
112 the differences in local and systemic immune responses between AGD resistant and
113 susceptible Atlantic salmon, and b) to use gene expression data to identify positional
114 and functional candidate genes underlying the previously detected resistance QTL.

115

116 **RESULTS**

117 **Sampling and sequencing**

118 Fish were classified into resistant or susceptible based on their mean gill score and their
119 gill amoebic load. A previous study by our group has shown a high positive genetic
120 correlation between these two traits (higher gill score associated with higher amoebic
121 load), and both are considered indicator traits for resistance to AGD. RNA sequencing
122 was performed on the gill and head kidney of 12 resistant and 12 susceptible fish.
123 Resistant animals had a mean gill score of 2.92 ± 0.13 , mean amoebic load (qPCR ct
124 value) of 37.12 ± 3.63 and mean weight of 543 ± 116 g at the point of sampling;
125 susceptible animals had a mean gill score of 4.12 ± 0.20 , mean amoebic load of $25.99 \pm$

126 1.80 and mean weight of 409 ± 96 g. Sequencing of one of the gill samples rendered an
127 extremely low number of reads and therefore was discarded. The remaining samples
128 had an average of 24M filtered paired-end reads, which were pseudoaligned to genes in
129 the Atlantic salmon genome. Exploratory analyses based on distance measures revealed
130 two head kidney samples as outliers and they were removed (Additional file 1).
131 Therefore, the final dataset comprised of 23 gill and 22 head kidney samples from 24
132 individuals. The two tissues showed clearly distinct patterns of gene expression, as
133 would be expected. The difference in global gene expression pattern between resistant
134 and susceptible samples in both tissues was much less pronounced, but still evident in
135 the gill in particular (Figure 1). Similar results were described in a Norwegian
136 commercial population (Boison et al. 2019).

137

138 **Differential expression**

139 A total of 115 and 42 differentially expressed transcripts (following multiple-testing
140 correction, FDR p-value < 0.05) were detected between resistant and susceptible
141 samples in gill and head kidney tissues respectively (Figure 2, additional file 2). The
142 clearest evidence for differential immune responses was found in gill, where several
143 differentially expressed immune-related transcripts were detected. Most differentially
144 expressed transcripts in head kidney were not obviously related to AGD or disease
145 resistance. To gain an overall view of the results we performed a gene Ontology (GO)
146 enrichment test in both gill and head kidney for sets of differentially expressed
147 transcripts according to three different significance criteria (p-value < 0.01, 0.05 and
148 0.1) (Figure 3). In the gill, various relevant GO terms were observed, such as “Response
149 to stress”, “Cytoskeleton” and “Circulatory system process”. We observed a larger
150 number of enriched GO terms in head kidney. While most of them are seemingly
151 unconnected to AGD resistance, terms such as “Response to stress” or “Protein
152 modification process” were observed. For instance, of 22 genes showing p-values <
153 0.01, 15 of them were assigned to “Response to stress”. Similar analyses for KEGG
154 pathways did not reveal any significant enrichment.

155 Detailed inspection of the differentially expressed transcripts in the gill revealed that
156 they can be grouped into three broad categories concordant with GO enrichment results:

157 1) immune response (“Response to stress”), 2) cell adhesion or cell shape

158 (“Cytoskeleton”), and 3) red blood cells and coagulation (“Circulatory system
159 process”).

160 Amongst the immune-related transcripts showing differential expression in the gill was
161 interleukin-17 receptor E (*IL17RE*), which was highly expressed in resistant animals
162 ($\log FC = 1.1$). In mice *IL17RE* is the receptor for *IL-17C*, which has an essential role in
163 host mucosal defense against infection and is critical for a successful immune response
164 against bacterial infection (Song et al. 2011). The *IL-17C – IL17RE* pair also stimulates
165 T-helper cell 17 responses, which has a proinflammatory effect (Chang et al. 2011).
166 Benedicenti et al. (2015) reported that *IL-17C* expression showed a negative correlation
167 with amoebic load in Atlantic salmon, and that the Th17 pathway in general was found
168 to be significantly down-regulated in response to AGD. This could be a mechanism of
169 immune evasion elicited by the parasite, which might be more effective in susceptible
170 fish than resistant. Another highly expressed transcript is involved in T-cell function, T-
171 cell specific surface glycoprotein CD28 (*CD28*; $\log FC = 1.60$). *CD28* promotes T-cell
172 survival and proliferation, and enhances the production of multiple cytokines including
173 *IL4* (Blotta et al. 1996) *IL4* has been found to be up-regulated in response to AGD
174 (Marcos-López et al. 2018), and this gene induces differentiation of naïve helper T cells
175 to Th2 cells. The Th2 pathway was found to be up-regulated in late stages of AGD
176 (Benedicenti et al. 2015). This pathway is linked to humoral immune responses against
177 extracellular parasites and to tissue repair (Allen and Sutherland, 2014), and therefore is
178 an expected response to AGD. A higher prevalence of this type of response in resistant
179 animals would also be consistent with the observed increase of the heritability of
180 resistance after successive cycles of disease challenge / treatment (Taylor et al. 2009),
181 reflecting genetic variability in the effectiveness of the adaptive response, and / or
182 variation in immune memory.

183 Several genes connected to red blood cells were found to be differentially expressed,
184 including five different haemoglobin subunit transcripts, which were highly expressed
185 and clearly up-regulated in resistant samples in the gill ($\log FC \sim 2$). Reduced hematocrit
186 has been described in AGD infected Atlantic salmon, linked mainly to gill damage
187 (Hvas et al. 2017). The plasma protease C1 inhibitor gene (*SERPING1*) is also up-
188 regulated ($\log FC = 1.2$). This gene inhibits the complement system and also has anti-
189 inflammatory functions (Davis et al. 2008). Complement proteins have been found in
190 gill mucus of AGD infected Atlantic salmon (Valdenegro-Vega et al. 2014). The lower

191 expression of *SERPING1* in susceptible samples might simply be a reflection of the
192 higher extent of gill damage in these animals, requiring activation of the complement
193 system and increase of local inflammatory responses.

194 There are also a few differentially expressed transcripts connected to cell adhesion and
195 cell shape, including a cadherin gene (cadherin-related family member 5; logFC = 4.5)
196 and an actin related gene (actin filament associated protein 1-like 1; logFC = 1.3). The
197 Cdc42 effector protein 2 (*CDC4EP2*; logFC = 0.6) was also up-regulated in resistant
198 fish, and has been associated with roles in actin filament assembly and control of cell
199 shape (Hirsch et al. 2001). A previous study identified an enrichment of cell-adhesion
200 genes in severely affected animals compared to others with healthier gills infected by
201 AGD (Boison et al. 2019). These changes are consistent with the epithelial hyperplasia
202 and other structural changes caused by the parasite in the gill of infected animals
203 (Nowak 2012).

204 Head kidney differential expression results are much harder to interpret, and most of the
205 DE transcripts are seemingly not connected to biological processes that have previously
206 been related to AGD. Tumor necrosis factor alpha-induced protein 8-like protein 1
207 (*TNFAIP8L1*; logFC = -0.9) was found to be more highly expressed in susceptible
208 samples. This gene inhibits apoptosis by suppressing the activity of caspase-8 (You et
209 al. 2001). The down-regulation of pro-apoptotic genes has been connected to AGD
210 severity (Marcos-López et al. 2018). The lack of a clear picture in head kidney might
211 reflect the relative importance of the local and systemic immune responses in response
212 to AGD. Two transcripts showed differential expression in both tissues: putative ferric-
213 chelate reductase 1 (*FRRS1*) and CG057 protein.

214 The regulation of transcripts upon infection is a strong indication of the involvement of
215 the gene product in the immune and physiological response of the host to the pathogen,
216 but a comparison between resistant and susceptible animals can offer insight into the
217 mechanisms determining the success of the immune response against the pathogen. The
218 main caveat of this approach is that it is difficult to distinguish cause and consequence,
219 i.e. is the gene differentially expressed because it confers resistance or due to
220 differential disease progression? Additional evidence, such as the co-localization of
221 differentially expressed genes with QTL or the identification of cis regulatory variants

222 in the QTL regions can further contribute to our understanding of disease resistance, and
223 help us discover underlying candidate genes.

224

225

226

227 **Integration with previous QTL**

228 The overlap between previously identified QTL regions in this population (Robledo et
229 al. 2018) and the differentially expressed genes was explored (Figure 4). A differentially
230 expressed gene, interferon-induced very large GTPase 1 (*GVINP1*), was found in one of
231 the QTL regions of chromosome 18, which explained ~20% of the genetic variance in
232 resistance to AGD (second largest QTL). Very little is known about the function of this
233 gene, but it has been shown to respond to both type I and type II interferon response in
234 mammals (Klamp et al. 2003). The genes showing FDR corrected p-values < 0.1 (a total
235 of 268 genes) were also investigated, and four additional genes were found in these
236 QTL regions. *MAP4K4*, located in a putative QTL region of chromosome 17, surpassed
237 this threshold, and is involved in systemic inflammation in mammals (Aouadi et al.
238 2009), and *TRIM39* in the second QTL region in chromosome 18, a positive regulator of
239 apoptosis (Rosenthal 2012).

240

241 **Allele specific expression**

242 To explore potential cis-acting variation underlying the resistance QTL, an allele
243 specific expression (ASE) test was performed for the SNPs in transcripts within the
244 QTL regions, finding a significant ASE event in a gene in chromosome 17; cellular
245 repressor of E1A-stimulated genes 1 (*CREG1*). In humans this protein is connected to
246 the regulation of cellular proliferation and differentiation (Di Bacco and Gill, 2003), and
247 antagonizes the proliferative effects of adenovirus E1A protein (Veal et al. 1998). This
248 gene showed a log fold change of 0.75 between resistant and susceptible samples in gill
249 (FDR p-value = 0.25). A second significant ASE event was found in an uncharacterised
250 gene in chromosome 18 (LOC106576659), however this gene showed no differences in
251 fold change between resistant and susceptible samples.

252 The polygenic nature of resistance to AGD means that different resistance mechanisms
253 might be operating in each different family. The connection between genotypes and
254 expression, through expression QTL (eQTL) or ASE, can provide strong evidence for
255 functional candidate genes underlying QTL. While eQTL studies require a relatively
256 large number of animals, the advantage of ASE is that the statistical test is performed
257 separately in each heterozygous individual. It is well known that most causative variants
258 are part of regulatory elements and affect gene expression (Keane et al. 2011; Albert
259 and Kruglyak 2015), therefore the detection of ASE in a QTL can provide strong
260 evidence linking the function of a gene to the QTL and the phenotype of interest.

261

262 **DISCUSSION**

263 The potential benefits of the identification of causative variation impacting on complex
264 traits are substantial, ranging from fundamental knowledge of the biology underlying
265 the traits of interest to their application for enhancing these traits in farmed populations.
266 However, even with the addition of various layers of information such as RNA
267 sequencing, determining the causative gene underlying a QTL is not straightforward,
268 especially because the QTL regions tend to be large and contain a large number of
269 genes, as previously described for sea lice resistance QTL (Robledo et al. 2019).

270 Eventually, functional assays are necessary to provide actual evidence of its causality.
271 The advent of CRISP-CAS9 has made this much more feasible in non-model species.
272 Likewise, this technology now provides the opportunity of using this information to
273 introduce or fix favorable alleles in farmed populations. The genetic architecture of
274 quantitative traits usually varies across populations, and indeed AGD resistance QTL
275 seem to vary across different Atlantic salmon commercial populations (Robledo et al.
276 2018, Boison et al. 2019). While the use of genome editing in farmed animals requires
277 societal and regulatory changes, the transference of causative variants across
278 populations can lead to a rapid increase in disease resistance (Jenko et al. 2015), with
279 long-lasting effects on animal welfare and food security. Nevertheless, the discovery of
280 causative variants and genes can be used to increase the weight of causative variants in
281 genomic selection, increasing its accuracy and therefore speeding up genetic gain in
282 each generation (MacLeod et al. 2016). More widely, basic knowledge about the
283 pathways leading to resistance to disease can inform drug development or preventive

284 measures such as functional feeds. To summarise, finding the underlying cause(s) of
285 resistance to disease can provide large benefits for aquaculture and society in the form
286 of healthier animals, increased food security and sustainable economic gain, directly
287 through their implementation in breeding schemes in the present and through genome
288 editing in the future.

289

290 CONCLUSIONS

291 The transcriptomic differences between AGD resistance and AGD susceptible Atlantic
292 salmon are limited, which might not be surprising considering the polygenic nature of
293 the trait. The differences were more evident in the gill than in head kidney, potentially
294 highlighting the importance of the local immune response. Genes involved in immune
295 response (Th2 and Th17 pathways), red blood cells and cell adhesion could be part of
296 the mechanisms leading to AGD resistance, however, it is difficult to discriminate cause
297 and consequence. The integration of previously discovered QTL and expression data
298 pointed to potential candidate genes of interest, such as *GVINP1*, *MAP4K4* or *TRIM39*.
299 An additional candidate gene, *CREG1*, showed allele specific expression in one of the
300 QTL regions. Follow-up studies to investigate the functional role of these genes in the
301 response to AGD could help us understand the molecular mechanism of resistance to
302 this parasite, and contribute to improving gill health in farmed populations through
303 incorporation of functional data to improve genomic prediction, or potentially via
304 genome editing in the longer term.

305

306 METHODS

307 Experimental design

308 The AGD challenge experiment was performed using 797 Atlantic post-smolt salmon
309 from 132 nuclear families (~18 months, mean weight after challenge ~464 g)
310 originating from a commercial breeding programme (Landcatch, UK). The challenge
311 experiment was performed as described in Robledo et al. (2018). In brief, seeder fish
312 with a uniform level of AGD infection were produced by cohabitation with fish infected
313 from an *in vivo* culture. The challenge was then performed by cohabitation of infected

314 seeder fish at a ratio of 15% seeder to naïve fish, allowing three separate cycles of
315 infection with a treatment and recovery period after the first two (Taylor *et al.* 2009)
316 using a 4 m³ seawater tank in the experimental facilities of University of Stirling's
317 Marine Environmental Research Laboratory, Machrihanish (Scotland, UK). The fish
318 were kept under a 16-h light and 8-h dark photoperiod, starting at 05:00; the fish were
319 fed Biomar organic salmon feed, automatic every 20 minutes to approximately 1%
320 biomass; water supply was ambient flow-through filtered to approximately 90 microns,
321 for the duration of the trial, water temperature was between 13 & 14 °C and salinity was
322 33-35 ppt. For the first two challenges, fresh water treatment was performed 21 days
323 after challenge, followed by a week of recovery. The fish were checked visually four
324 times daily during this period. The disease was allowed to progress until the terminal
325 sampling point in the third challenge, when fish were terminated by an overdose of
326 anaesthetic followed by destruction of the brain. Fish were sampled and phenotypes
327 were recorded during three consecutive days. A subjective gill lesion score of the order
328 of severity ranging from 0 to 5 was recorded for both gills (Taylor *et al.* 2016). These
329 gill lesion scores were recorded by a single operator, who referred to pictures to guide
330 classification. Some fish were scored by additional operators, and the scores never
331 differed by > 0.5. Further, one of the gills was stored in ethanol for qPCR analysis of
332 amoebic load using *N. perurans* specific primers. Amoebic load has previously been
333 used as a suitable indicator trait for resistance to AGD in salmon (Taylor *et al.* 2009).
334 All fish were phenotyped for mean gill score (mean of the left gill and right gill scores)
335 and amoebic load (qPCR values using *N. perurans* specific primers, amplified from one
336 of the gills). 24 fish from 24 different families were selected for RNA sequencing
337 (Additional file 3) based on high or low levels of resistance according to the measured
338 traits (mean gill score and amoebic load as measured by qPCR). Gill and head kidney
339 samples were obtained from each animal and stored in RNAlater at 4 °C for 24 h, and
340 then at -20°C until RNA extraction.

341 **RNA extraction and sequencing**

342 For all the 48 samples a standard TRI Reagent RNA extraction protocol was followed.
343 Briefly, approximately 50 mg of tissue was homogenized in 1 ml of TRI Reagent
344 (Sigma, St. Louis, MO) by shaking using 1.4 mm silica beads, then 100 µl of 1-bromo-
345 3-chloropropane (BCP) was added for phase separation. This was followed by
346 precipitation with 500 µl of isopropanol and subsequent washes with 65-75 % ethanol.

347 The RNA was then resuspended in RNase-free water and treated with Turbo DNase
348 (Ambion). Samples were cleaned up using Qiagen RNeasy Mini kit columns and their
349 integrity was checked on Agilent 2200 Bioanalyzer (Agilent Technologies, USA).
350 Thereafter, the Illumina Truseq mRNA stranded RNA-Seq Library Prep Kit protocol
351 was followed directly. Libraries were checked for quality and quantified using the
352 Bioanalyzer 2100 (Agilent), before being sequenced on three lanes of the Illumina
353 Hiseq 4000 instrument using 75 base paired-end sequencing at Edinburgh Genomics,
354 UK. Raw reads have been deposited in NCBI's Sequence Read Archive (SRA) under
355 BioProject accession number PRJNA552604.

356 **Read mapping**

357 The quality of the sequencing output was assessed using FastQC v.0.11.5
358 (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>). Quality filtering and
359 removal of residual adaptor sequences was conducted on read pairs using Trimmomatic
360 v.0.38 (Bolger et al. 2004). Specifically, Illumina specific adaptors were clipped from
361 the reads, leading and trailing bases with a Phred score less than 20 were removed and
362 the read trimmed if the sliding window average Phred score over four bases was less
363 than 20. Only reads where both pairs were longer than 36 bp post-filtering were
364 retained. Filtered reads were mapped to the most recent Atlantic salmon genome
365 assembly (ICSASG_v2; Genbank accession GCF_000233375.1; Lien et al. 2016) using
366 STAR v.2.6.1a (Dobin et al. 2013), the maximum number of mismatches for each read
367 pair was set to 10 % of trimmed read length, and minimum and maximum intron lengths
368 were set to 20 bases and 1 Mb respectively. Transcript abundance was quantified using
369 kallisto v0.44.0 (Bray et al. 2016) and the latest Atlantic salmon genome annotation
370 (NCBI *Salmo salar* Annotation Release 100).

371 **Differential Expression**

372 Differential expression (DE) analyses were performed using R v.3.5.2 (R Core Team
373 2014). Gene count data were used to estimate differential gene expression using the
374 Bioconductor package DESeq2 v.3.4 (Love et al. 2014). Briefly, size factors were
375 calculated for each sample using the 'median of ratios' method and count data was
376 normalized to account for differences in library depth. Next, gene-wise dispersion
377 estimates were fitted to the mean intensity using a parametric model and reduced
378 towards the expected dispersion values. Finally a negative binomial model was fitted for

379 each gene and the significance of the coefficients was assessed using the Wald test. The
380 Benjamini-Hochberg false discovery rate (FDR) multiple test correction was applied,
381 and transcripts with $FDR < 0.05$ and absolute \log_2 fold change values (FC) > 0.5 were
382 considered differentially expressed genes. Hierarchical clustering and principal
383 component analyses were performed to visually identify outlier samples, which were
384 then removed from the analyses. PCA plots were created using the R package factoextra
385 (<http://www.sthda.com/english/rpkgs/factoextra/>).

386

387 Gene Ontology (GO) enrichment analyses were performed in R v.3.5.2 (R Core Team
388 2014) using Bioconductor packages GOstats v.2.48.0 (Falcon and Gentleman, 2007)
389 and GSEABase v.1.44.0 (Morgan et al. 2018). GO term annotation for the Atlantic
390 salmon transcriptome was obtained using the R package Ssa.RefSeq.db v1.3
391 (<https://gitlab.com/cigene/R/Ssa.RefSeq.db>). The over-representation of GO terms in
392 differentially expressed gene lists compared to the corresponding transcriptomes (gill or
393 head kidney) was assessed with a hypergeometric test. GO terms with ≥ 5 DE genes
394 assigned and showing a p-value < 0.05 were considered enriched. Kyoto Encyclopedia
395 of Genes and Genomes (KEGG) enrichment analyses were performed using KOBAS
396 v3.0.3 (Wu et al. 2006). Briefly, salmon genes were annotated against KEGG protein
397 database (Kanehisa and Goto 2000) to determine KEGG Orthology (KO). KEGG
398 enrichment for differentially expressed gene lists was tested by comparison to the whole
399 set of expressed genes in the corresponding tissue using Fisher's Exact Test. KEGG
400 pathways with ≥ 5 DE genes assigned and showing a Benjamini-Hochberg FDR
401 corrected p-value < 0.05 were considered enriched for differential expression. The
402 reference tissue transcriptome for both GO and KEGG enrichment comprised only those
403 genes with mean normalized counts value > 5 .

404 **Allele specific expression**

405 Gene expression estimates and genotypes obtained from the RNA sequencing were used
406 to investigate allele specific expression. The samtools v1.6 software (Li et al. 2009) was
407 used to identify SNPs, and call genotypes for those SNPs in individual samples. PCR
408 duplicates, reads with mapping quality < 20 and bases with phred quality scores < 20
409 were excluded. SNPs within 5 bp of an indel, with quality < 20 , MAF < 0.05 or less
410 than 4 reads supporting the alternative allele were discarded. The putative effect of the
411 SNPs was assessed using the official salmon genome annotation (NCBI *Salmo salar*

412 Annotation Release 100) and the SnpEff v.4.2 software (Cingolani et al. 2012). Allelic
413 specific expression was assessed using the R package AllelicImbalance (Gadin et al.
414 2015). For every SNP in the regions of interest, read counts were obtained for each
415 allele in heterozygous animals, those with less than 10 reads were filtered, and a
416 binomial test was performed to assess the significance of the allelic differences. Only
417 those genomic positions called as heterozygotes in a minimum of 4 and a maximum of
418 36 (75%) samples (75%) were considered. An allele specific expression event was
419 considered significant if the mean p-value of all heterozygotes was < 0.05. All
420 significant events were manually inspected.

421

422

423

424 **DECLARATIONS**

425 **Ethics approval and consent to participate**

426 All animals were reared in accordance with relevant national and EU legislation
427 concerning health and welfare. The challenge experiment was performed by the Marine
428 Environmental Research Laboratory (Machrihanish, UK) under approval of the ethics
429 review committee of the University of Stirling (Stirling, UK) and according to Home
430 Office license requirements. Landcatch are accredited participants in the RSPCA
431 Freedom Foods standard, the Scottish Salmon Producers Organization Code of Good
432 Practice, and the EU Code-EFABAR Code of Good Practice for Farm Animal Breeding
433 and Reproduction Organizations.

434

435 **Consent for publication**

436 Not applicable

437

438 **Availability of data and materials**

439 The RNA sequencing dataset generated during the current study is available in NCBI's
440 Sequence Read Archive (SRA) under BioProject accession number PRJNA552604. The

441 phenotypes of all sequenced samples are included in this published article (Additional
442 file 3).

443

444 **Competing interests**

445 A commerical organisation (Landcatch Natural Selection Ltd) was involved in the
446 development of this study. AH works for Landcatch Natural Selection Ltd. The
447 remaining authors declare that they have no competing interests.

448

449 **Funding**

450 The authors gratefully acknowledge funding from Innovate UK and BBSRC
451 (BB/M028321/1; disease challenge and genotyping), from the Scottish Aquaculture
452 Innovation Centre (Ref: SL_2017_09; RNA sequencing), and from the European
453 Union's Horizon 2020 Research and innovation programme under Grant Agreement no.
454 634429 (ParaFishControl; RNA sample collection and amoebic load measurements).
455 This output reflects only the author's view and the European Union cannot be held
456 responsible for any use that may be made of the information contained herein. RH was
457 supported by BBSRC Institute Strategic Programme Grants (BB/P013759/1 and
458 BB/P013740/1). DR was supported by a Newton International Fellowship from The
459 Royal Society (NF160037).

460

461 **Author's contributions**

462 RH and DR were responsible for the concept and design of this work and drafted the
463 manuscript. AH was responsible for the disease challenge. AH and JB managed the
464 collection of the samples. AG performed the molecular biology experiments. DR
465 performed bioinformatic and statistical analyses. All authors read and approved the final
466 manuscript.

467

468 **Acknowledgements**

469 Not applicable

470

471 **REFERENCES**

472 Albert FW, Kruglyak L. The role of regulatory variation in complex traits. *Nat Rev Genet.* 2015; 16:197-212.

474 Allen JE, Sutherland TE. Host protective roles of type 2 immunity: parasite killing and
475 tissue repair, flip sides of the same coin. *Semin Immunol.* 2014; 26:329-40.

476 Aouadi M, Tesz GJ, Nicoloro SM, Wang M, Chouinard M, Soto E, Ostroff GR, Czech
477 MP. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic
478 inflammation. *Nature.* 2009; 458:1180-4.

479 Benedicenti O, Collins C, Wang T, McCarthy U, Secombes CJ. Which Th pathway is
480 involved during late stage amoebic gill disease? *Fish Shellfish Immunol.* 2015; 46:417-
481 25.

482 Blotta MH, Marshall JD, DeKruyff RH, Umetsu DT. Cross-linking of the CD40 ligand
483 on human CD4+ T lymphocytes generates a costimulatory signal that up-regulates IL-4
484 synthesis. *J Immunol.* 1996; 156:3133-40.

485 Boison SA, Gjerde B, Hillestad B, Makvandi-Nejad S, Moghadam HK. Genomic and
486 transcriptomic analysis of amoebic gill disease resistance in Atlantic salmon (*Salmo*
487 *salar* L.). *Front Genet.* 2019; 10:68.

488 Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
489 sequence data. *Bioinformatics.* 2004; 30:2114-20.

490 Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq
491 quantification. *Nat Biotechnol.* 2016; 34:525-27.

492 Chang SH, Reynolds JM, Pappu BP, Chen G, Martinez GJ, Dong C. Interleukin-17C
493 promotes Th17 cell responses and autoimmune disease via interleukin-17 receptor E.
494 *Immunity.* 2011; 35:611-21.

495 Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. A program for
496 annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs
497 in the genome of *Drosophila melanogaster* strain w1118; iso-2; iso-3. *Fly (Austin).*
498 2012; 6:80-92.

499 Di Bacco A, Gill G. The secreted glycoprotein CREG inhibits cell growth dependent on
500 the mannose-6-phosphate/insulin-like growth factor II receptor. *Oncogene*. 2003;
501 22:5436-45.

502 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast
503 universal RNA-seq aligner. *Bioinformatics*. 2013; 29:15-21.

504 Falcon S, Gentleman R. Using GOSTATS to test gene lists for GO term association.
505 *Bioinformatics*. 2007; 23:257-8.

506 Gadin JR, van't Hooft FM, Eriksson P, Folkersen L. AllelicImbalance: an
507 R/bioconductor package for detecting, managing, and visualizing allele expression
508 imbalance data from RNA sequencing. *BMC Bioinformatics*. 2015; 16:194.

509 Houston RD. Future directions in breeding for disease resistance in aquaculture species.
510 *R Bras Zootec*. 2017; 46:545-51.

511 Hvas M, Karlsbakk E, Mæhle S, Wright DW, Oppedal F. The gill parasite *Paramoeba*
512 *perurans* compromisos aerobic scope, swimming capacity and ion balance in Atlantic
513 salmon. *Conserv Physiol*. 2017; 5:cox066.

514 Jenko J, Gorjanc G, Cleveland MA, Varshney RK, Whitelaw BA, wooliams JA, et al.
515 Potential of promotion of alleles by genome editing to improve quantitative traits in
516 livestock breeding programs. *Gen Sel Evol*. 2015; 47:55.

517 Keane TM, Goodstadt L, Danecek P, White MA, Wong K, et al. Mouse genomic
518 variation and its effect on phenotypes and gene regulation. *Nature*. 2011; 477:289-94.

519 Klamp T, Boehm U, Schenk D, Pfeffer K, Howard J. A giant GTPase, very large
520 inducible GTPase-1, is inducible by IFNs. *J Immunol*. 2003; 171:1255-65.

521 Kube PD, Taylor RS, Elliott NG. Genetic variation in parasite resistance of Atlantic
522 salmon to amoebic gill disease over multiple infections. *Aquaculture*. 2012; 364-
523 365:165-72.

524 Morgan M, Falcon S, Gentleman R. *GSEABase*: Gene set enrichment data structures
525 and methods. R package version 1.44.0. 2018.

526 Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, et al. The Atlantic salmon
527 genome provides insights into rediploidization. *Nature*. 2016; 533:200-5.

528 Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for
529 RNA-seq data with DESeq2. *Genome Biol*. 2014; 15:550.

530 MacLeod IM, Bowman PJ, Vander Jagt CJ, Haile-Mariam M, Kemper KE,
531 Chamberlain AJ, et al. Exploiting biological priors and sequence variants enhances QTL
532 discovery and genomic prediction of complex traits. *BMC Genom*. 2016; 17:144.

533 Marcos-López M, Espinosa Ruiz C, Rodger HD, O'Connor I, MacCarthy E, Esteban
534 MA. Local and systemic humoral immune response in farmed Atlantic salmon (*Salmo*
535 *salar* L.) under a natural amoebic gill disease outbreak. *Fish Shellfish Immunol*. 2017;
536 66:207-16.

537 Marcos-López M, Calduch-Giner JA, Mirimin L, MacCarthy E, Rodger HD, O'Connor
538 I, et al. Gene expression analysis of Atlantic salmon gills reveals mucin 5 and
539 interleukin 4/13 as key molecules during amoebic gill disease. *Sci Rep*. 2018; 8:13689.

540 Nowak BF (2012) *Neoparamoeba perurans*. In: Woo PTK, Buchmann K, editors. *Fish*
541 *Parasites, Pathobiology and Protection*. CAB International; 2012. P. 1–18.

542 Nowak BF, Archibald JM. Opportunistic but lethal: the mystery of paramoebae. *Trends*
543 *Parasitol*. 2018; 34:404-19.

544 Palaiokostas C, Kocour M, Prchal M, Houston RD. Accuracy of genomic evaluations of
545 juvenile growth rate in common carp (*Cyprinus carpio*) using genotyping by
546 sequencing. *Front Genet*. 2018; 9:82.

547 Palaiokostas C, Cariou S, Bestin A, Bruant JS, Haffray P, Morin T, et al. Genome-wide
548 association and genomic prediction of resistance to viral nervous necrosis in European
549 sea bass (*Dicentrarchus labrax*) using RAD sequencing. *Genet Sel Evol*. 2018; 50:30.

550 Robledo D, Matika O, Hamilton A, Houston RD. Genome-wide association and
551 genomic selection for resistance to amoebic gill disease in Atlantic salmon. *G3*. 2018;
552 8:1195-203.

553 Robledo D, Gutiérrez AP, Barría A, Lhorente JP, Houston RD, Yáñez JM. Discovery
554 and functional annotation of quantitative trait loci affecting resistance to sea lice in
555 Atlantic salmon. *Front Genet.* 2019; 10:56.

556 Rombough P. The functional ontogeny of the teleost gill: which comes first, gas or ion
557 exchange? *Comp Biochem Physiol A Mol Integr Physiol.* 2007; 148:732-42.

558 Rosenthal CK. Trim39 ligase keeps apoptosis going. *Nat Cell Biol.* 2012; 14:566.

559 Shinn AP, Pratoomyot J, Bron JE, Paladini G, Brooker EE, Brooker AJ. Economic costs
560 of protistan and metazoan parasites to global mariculture. *Parasitology.* 2015; 142:196-
561 270.

562 Song X, Zhu S, Shi P, Liu Y, Shi Y, Levin SD, et al. IL-17RE is the functional receptor
563 for IL-17C and mediates mucosal immunity to infection with intestinal pathogens. *Nat*
564 *Immunol.* 2011; 12:1151-8.

565 Taylor RS, Wynne JW, Kube PD, Elliott NG. Genetic variation of resistance to amoebic
566 gill disease in Atlantic salmon (*Salmo salar*) assessed in a challenge system.
567 *Aquaculture.* 2007; 272S1: S94–S99.

568 Taylor RS, Kube PD, Muller WJ, Elliott NG. Genetic variation of gross gill pathology
569 and survival of Atlantic salmon (*Salmo salar* L.) during natural amoebic gill disease
570 challenge. *Aquaculture.* 2009; 294(3-4): 172–9.

571 Taylor RS, Huynh C, Cameron D, Evans B, Cook MT, et al. Gill score guide – amoebic
572 gill disease (AGD) management training document, edited by Evans B. Tassal Pty. Ltd.,
573 Hobart, Tasmania. 2016.

574 Valdenegro-Vega VA, Crosbie P, Bridle A, Leef M, Wilson R, Nowak BF.
575 Differentially expressed proteins in gill and skin mucus of Atlantic salmon (*Salmo*
576 *salar*) affected by amoebic gill disease. *Fish Shellfish Immunol.* 2014; 40:69-77.

577 Veal E, Eisenstein M, Tseng ZH, Gill G. A cellular repressor of E1A-stimulated genes
578 that inhibits activation by E2F. *Mol Cell Biol.* 1998; 18:5023-41.

579 Wynne JW, O’Sullivan MG, Stone G, Cook MT, Nowak BF, Lovell DR, et al.
580 Resistance to amoebic gill disease (AGD) is characterized by the transcriptional

581 dysregulation of immune and cell cycle pathways. *Dev Comp Immunol.* 2008; 32:1539-
582 60.

583 Yoshida GM, Bangera R, Carvalheiro R, Correa K, Figueroa R, Lhorente JP, et al.
584 Genomic prediction accuracy for resistance against *Piscirickettsia salmonis* in farmed
585 rainbow trout. *G3.* 2018; 8:719-26.

586 You Z, Ouyang H, Lopatin D, Polver PJ, Wang CY. Nuclear factor-kappa B-inducible
587 death effector domain-containing protein suppresses tumor necrosis factor-mediated
588 apoptosis by inhibiting caspase-8 activity. *J Biol Chem.* 2001; 276:26398-404.

589

590 **FIGURES**

591 **Figure 1. Principal component analysis.** RNA-Seq samples clustered according to
592 their gene expression. The larger symbols represent group means, and ellipses represent
593 95% confidence intervals for the groups.

594

595 **Figure 2. Heatmap of differentially expressed genes between resistant and**
596 **susceptible samples.** Heatmaps of all differentially expressed genes in gill (A) and head
597 kidney (B). Samples and genes were clustered according to gene expression (mean
598 centered and scaled normalized counts).

599

600 **Figure 3. Gene Ontology enrichment for differentially expressed genes.** GO
601 enrichment is shown for all differentially expressed genes in gill and head kidney
602 according to three different significant criteria (FDR p-value < 0.1, 0.05 and 0.01). The
603 height of the bars represents fold enrichment (percentage of genes assigned to the GO
604 term in the set of differentially expressed genes compared to the percentage assigned to
605 that GO term in the transcriptome of that tissue).

606

607 **Figure 4. Differentially expressed genes located in resistance QTL.** The location of
608 the QTL regions in the chromosomes are shown in grey. Genes with significance values

609 < 0.05 are in red, those with significance values < 0.1 are in orange. Positive fold
610 changes correspond to higher expression in resistant samples.

611

612 **Figure 5. Allele specific expression CREG1.** Barplot showing the read counts for each
613 allele for those SNPs in the QTL regions showing allele specific expression. The two
614 SNPs are located in *CREG1* (Chromosome 17 – 24,545,527 bp) and the uncharacterized
615 gene LOC106576659 (Chromosome 18 – 57,163,493 bp).

616

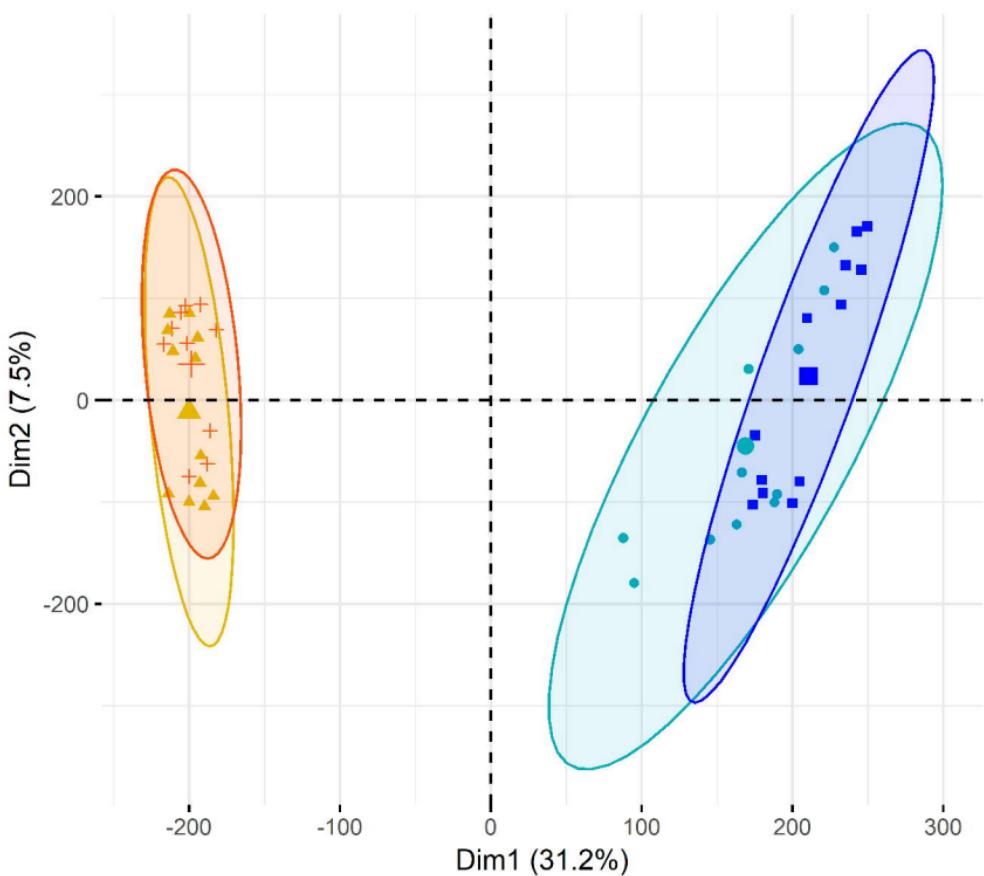
617 ADDITIONAL FILES

618 Additional file 1

619 Portable Network Graphics (.png)
620 Principal component analysis of all RNA sequenced samples
621 RNA-Seq samples clustered according to their gene expression. Outliers were discarded
622 for further analyses.

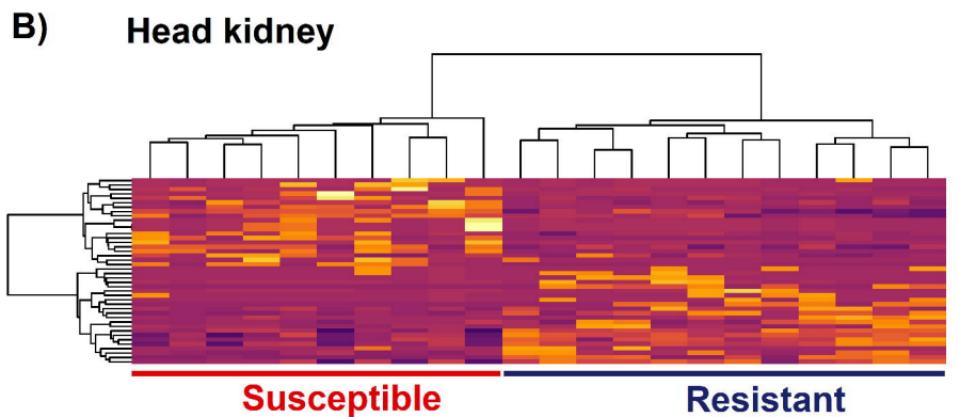
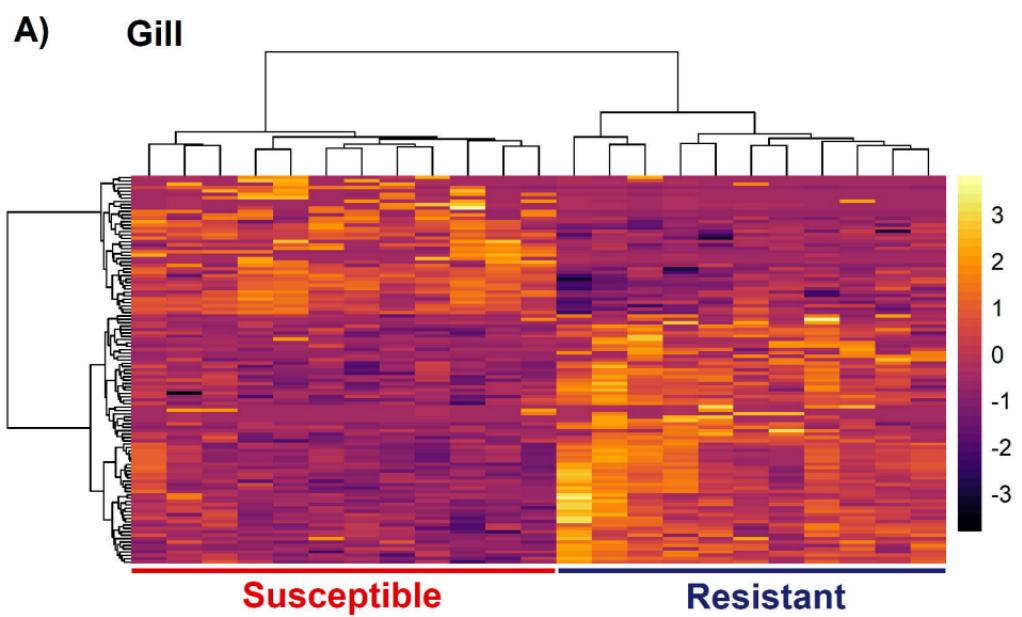
623

624 Additional file 2

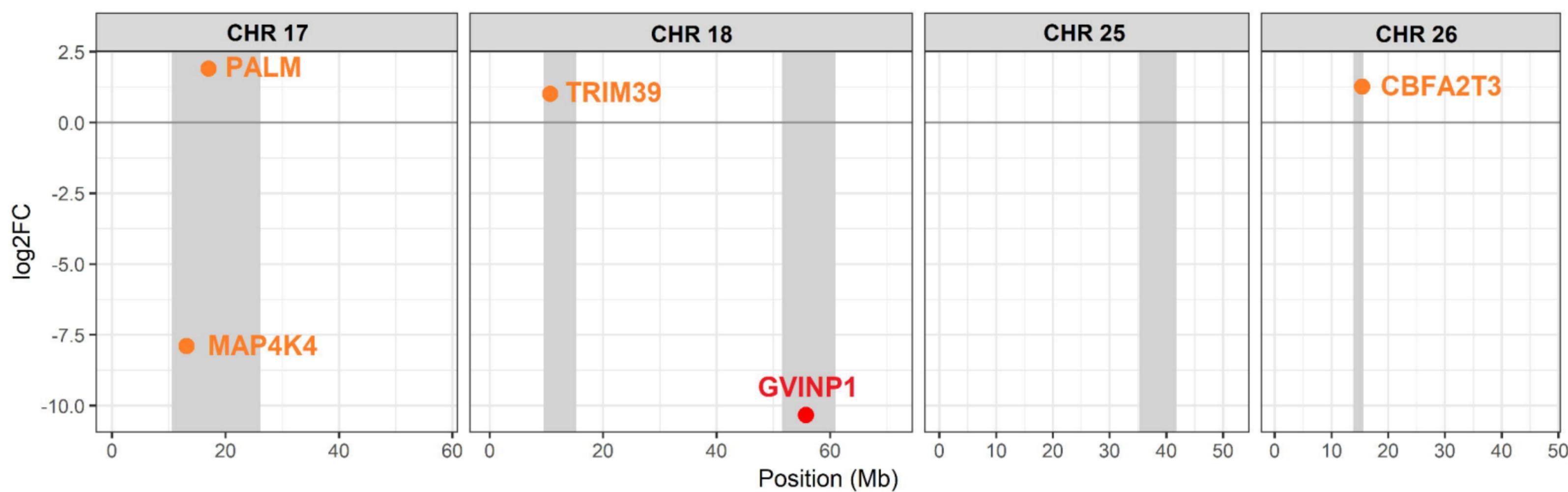

625 Excel file (.xlsx)
626 Differentially expressed genes between resistant and susceptible samples
627 Lists of differentially expressed genes between resistant and susceptible samples in gill
628 and head kidney. Gene ID, position in the Atlantic salmon genome (Chromosome, start
629 and end in base pairs), average expression of the gene, log 2 fold change between
630 resistant and susceptible animals (positive fold changes correspond to higher expression
631 in resistant samples), standard deviation of the fold change, FDR adjusted p-value, gene
632 annotation and gene symbol are shown.

633

634 Additional file 3



635 Excel file (.xlsx)
636 Phenotypes of all samples used for RNA sequencing
637 All collected phenotypes for the samples used in this study. ID of the sample, tissue,
638 whether it is resistant or susceptible, finclip ID linking to the genotypes (available in

639 Robledo et al. 2018), gill scores for both gills (and mean), weight and length at the end
640 of the challenge, and amoebic load measured by qPCR are shown.



▲ Head kidney - resistant
+ Head kidney - susceptible

● Gill - resistant
■ Gill - susceptible

CREG1

Gill

Head kidney

Allele

A
C

200
150
100
50
0

Read counts

LOC106576659

Gill

Head kidney

Allele

A
G

200
150
100
50
0

Animal

450 464 468 493 495 498 501 505 506 507 511 513 524 531 532 538 544 547 551 554 557 559 561 450 464 468 493 495 498 501 505 506 507 511 513 524 531 532 538 544 547 551 554 557 559 561